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Abstract

Germ cells normally differentiate while they are in contact with somatic support 

cells. The interaction between the germ cells and somatic support cells is essential for 

the production of functional gamates. Germ cells are closely associated with somatic 

support cells via gap junctions during oogenesis. We have previously reported that 

innexin2 (inx2) gene, which encodes an invertebrate gap junction protein, is involved 
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in the regulation of germ cell development in Drosophila ovaries. inx2 is expressed 

in escort cells and follicle cells. However, the regulatory mechanism underlying 

inx2 expression in these somatic support cells remains elusive. We investigated 

transcriptional regulatory regions of the inx2 gene using the Gal4/UAS system. Here, 

we show that the genomic fragment encompassing the upstream region of inx2 is 

required for inx2 expression in escort cells and follicle cells. Our data indicate that 

the regulatory elements to promote inx2 expression in the somatic support cells are 

located in the upstream region and also in the intron of the inx2 gene. Our results 

imply that inx2 expression in the somatic support cells may be differentially regulated 

by distinct sets of cis-elements.
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Introduction

Germ cells normally differentiate while they are in contact with somatic support 

cells. The interaction between the germ cells and somatic support cells is essential for 

the production of functional gamates. In Drosophila ovaries, somatic cells at the tip 

of germarium form the niche, in which germline stem cells (GSCs) are maintained. 

Upon GSC division, the daughter cell removed from the niche becomes to be wrapped 

by escort cells at the germarium region 2a (Decotto and Spradling, 2005). Then, the 

daughter cell initiates differentiation into a cystoblast that undergoes incomplete 

mitotic divisions to yield a 16-cell cyst; one becomes an oocyte and the other 15 germ 

cells form nurse cells. Next, the 16-cell cyst is associated with somatic prefollicular 

cells at the boundary of region 2a and 2b. The cyst moves into region 2b and becomes 

encapsulated by follicle cells to form an egg chamber (Nystul and Spradling, 2010). An 

egg chamber budded off from the germarium proceeds to the late stages of oogenesis. 

Germ cells are closely associated with somatic support cells via gap junctions during 

oogenesis (Mahowald, 1972; Bohrmann and Zimmerman, 2008). Gap junctions are 

involved in intercellular communication between germ cells and somatic support cells. 

innexin genes, which encode invertebrate gap junction proteins, are involved with 

germline development. The function of zpg gene, which is also known as innexin4, in 

germ cells is required for the survival of germ cells in ovaries. It has been proposed 

that Zpg in germ cells forms gap junctions with other Innexins in escort cells to 

mediate signals between germ cells and escort cells in order to promote germ cell 

differentiation (Tazuke et al., 2002). We previously reported that inx2 is expressed 

in escort cells and follicle cells, and that inx2 function in escort cells is required for 

germ cell survival and promotes cyst formation. inx2 function in follicle cells promotes 

egg chamber formation. Moreover, genetic experiments show that inx2 interacts with 

zpg (Mukai et al., 2011). These results strongly suggest that Inx2-gap junctions are 

involved in intercellular communication between germ cells and somatic support 
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cells to promote germ cell differentiation. The regulatory mechanism underlying inx2 

expression in escort cells and follicle cells would provide insight into the important 

aspects of oogensis. It would be also applicable to experimental tools to study gene 

function in a particular cell type-specific manner. We investigated transcriptional 

regulatory regions of the inx2 gene that control expression in ovarian somatic support 

cells using the Gal4/UAS system. 

  

Materials and Methods

Fly stocks. The wild-type strain used was Oregon-R (OR). The y w fly strain was 

used for the generation of transformants. UAS-mCD8-GFP was obtained from the 

Bloomington Stock Center. All stocks were maintained at 25°C or room temperature 

in a standard Drosophila medium.

DNA construction. pPTGal plasmid vector was obtained from the Drosophila Genomics 

Resource Center. To generate up 2.5kb inx2(WT)-Gal4, the upstream region of inx2 

was amplified from wild-type genomic DNA by polymerase chain reaction (PCR) using 

the inx2-up-KF01(NotI) (5’ –atttgcggccgcGATGTATAAAAGAGCCACAGG-3’) and

inx2-5’UTR-KR01(EcoRI) (5’ –cggaattcGGTTCCTCACTCGTTGGCCAC-3’) primers; 

this step was followed by digestion with NotI and EcoRI and subcloning into the multi 

cloning sites (MCS), NotI/EcoRI sites of pPTGal (Sharma, et al., 2002). To generate 

inx2 up0.9kb-Gal4, the upstream region of inx2 was amplified from wild-type genomic 

DNA by PCR using the

inx2-up-KF02 (XbaI) (5’-gctctagaCACTCCAGCAGCCACATGTAC-3’) and

inx2-up-KR02(EcoRI) (5’-cggaattcGCTTGGCTGCGCTAAACGCCG-3’) primers. 

The fragment was digested with XbaI and EcoRI, and then subcloned in the XbaI/

EcoRI sites of pPTGal.  To generate inx2 up0.5kb-Gal4, the upstream region 

of inx2 was amplified from wild-type genomic DNA by PCR using the inx2-

up-TF02(XbaI) (5’-gctctagaATCGTGCATGGCCGTAATGAA-3’) and inx2-up-

KR02(EcoRI) (5’-cggaattcGCTTGGCTGCGCTAAACGCCG-3’) primers. The fragment 

was digested with XbaI and EcoRI, and then subcloned in the XbaI/EcoRI sites 

of pPTGal.  To generate inx2-up 0.9~2.5kb-Gal4, the upstream region of inx2 was 

amplified from wild-type genomic DNA by PCR using the inx2-up-KF01(NotI) 

(5’-atttgcggccgcGATGTATAAAAGAGCCACAGG-3’) and

inx2-up-TR01(EcoRI) (5’-cggaattcGTACATGTGGCTGCTGGAGTG-3’) primers. 

The fragment was digested with XbaI and EcoRI, and then subcloned in the 

XbaI/EcoRI sites of pPTGal. To generate int 1.2kb inx2 (WT)-Gal4 and int 

1.2kb inx2 (mut)-Gal4, 3’-UTR region of inx2, which contains the intron, was 

amplified from wild-type and inx2 FA42 mutant genomic DNA, respectively, by 

PCR using the inx2-int-F01 (5’-gctctagaAAGTCTCGTATATACCATCCC-3’) 

and inx2-3’UTR-R03 (5’-GCTAACGTTTCTGGCTGCGGC-3’) primers. These 
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fragments were digested with XbaI and EcoRI, and then subcloned in the XbaI/

EcoRI sites of pBSK. The construct, which contains wild-type intron, termed 

int2.7kb inx2(WT)/pBSK and the construct, which contains mutant intron, termed 

int2.7kb inx2(FA42)/pBSK, were used as templates to obtain intron region by 

PCR using the T3 (5’-AATTAACCCTCACTAAAGGG-3’) and inx2-int-RR1(EcoR1) 

(5’-gggaattcACATTGGGCAACGCAGCC-3’ ) primers. These fragments were digested 

with XbaI and EcoRI, and then subcloned in the XbaI/EcoRI sites of pPTGal. The 

constructs were injected in y w flies by using a standard procedure (Rubin and 

Spradling, 1982). 

in situ hybridization and immunostaining of ovaries. in situ hybridization of ovaries 

was performed by using DIG-labeled antisense inx2 RNA probe, as previously 

reported (Mukai et al., 2011). Immunostaining was carried out as described (Mukai 

et al., 2011). The following antibodies were used: rabbit anti-Vasa (1:500, Kobayashi), 

rabbit anti-Inx2 (1:50, M. Hoch) (Bauer et al., 2004) and mouse anti-GFP (1:200, Wako 

Pure Chemicals). Alexa Fluor 488- and 568-conjugated second antibodies (Molecular 

Probes) were used at 1:1000. Stained ovaries were observed under confocal microscopy 

(TCS NT, Leica or FV1200, Olympus).   

Results 

inx2 has been reported to be expressed in somatic support cells, such as escort cells 

and prefollicular cells, which are located in germarium region, and also in follicle 

cells in egg chambers of adult ovaries (Bohrmann and Zimmerman, 2008; Mukai et 

al., 2011). In order to determine the genomic region required for inx2 expression in 

the ovarian somatic cells, we isolated ~2.5kb genomic fragment encompassing the 

upstream region of inx2 and inserted in the MCS of pPTGal vector (Sharma, et al., 

2002) (Fig. 1). This construct, termed up 2.5kb inx2(WT)-Gal4, was then introduced 

into the fly genome to obtain Gal4 lines. We crossed the Gal4 lines with UAS-mCD8-

GFP to examine the expression of GFP in the ovaries of F1 adults. GFP signal 

was detected in the somatic support cells in up 2.5kb inx2(WT)-Gal4>UAS-mCD8-

GFP ovaries. The distribution of GFP signal was similar to that of endogenous inx2 

mRNA (Fig. 2) and Inx2 protein (data not shown) (Mukai et al., 2011). GFP was 

detected in escort cells in germarium region 1~2a, in prefollicular cells in region2a/

b, and in follicle cells in egg chambers (Fig. 2 and 3). These observations indicate that 

the ~2.5kb genomic fragment encompassing the upstream region of inx2 contains 

regulatory elements.  

In order to locate regulatory elements that control inx2 expression in somatic support 

cells, we introduced a series of deletions into the up 2.5kb inx2(WT)-Gal4 construct. 

These derivatives were introduced into the fly genome to obtain Gal4 lines. The Gal4 

lines were mated with UAS-mCD8-GFP and investigated GFP expression in the F1 

ovaries. We generated three constructs with deletions in the upstream region (Fig. 1). 
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We obtained two independent Gal4 lines (M15-3 and M15-6) carrying inx2 up0.9kb-

Gal4. In inx2 up0.9kb-Gal4 (M15-3) >UAS-mCD8-GFP ovaries, GFP signal was 

detected in escort cells and prefollicular cells in germaria (Fig. 2 and 3). But GFP 

signal was hardly detectable in nascent egg chambers and egg chambers at stage 4-5. 

In inx2 up0.9kb-Gal4 (M15-6) >UAS-mCD8-GFP ovaries, GFP signal was detected in 

follicle cells in egg chambers but not in escort cells in germaria. These results suggest 

that the 0.9kb genomic fragment encompassing the upstream region of inx2 contains 

regulatory elements that promote inx2 expression both in escort cells and follicle 

cells. We found that further deletion to the position –0.5kb results in a dramatic 

reduction in the GFP expression in escort cells and prefollicular cells. In inx2 up0.5kb-

Gal4>UAS-mCD8-GFP ovaries, GFP was detectable in only subsets of follicle cells 

containing stalk cells. These results suggest that the genomic region between -0.9kb 

and -0.5kb is critical for inx2 expression in somatic support cells in germarium region. 

We also examined GFP expression in inx2 up 0.9-2.5kb-Gal4>UAS-mCD8-GFP and 

found that GFP signal was detected in only a subset of follicle cells containing stalk 

cells, but not in escort cells and prefollicular cells (Fig. 2 and 3). This suggests that 

regulatory elements, which control inx2 expression in follicle cells, are located in the 

upstream region between -2.5kb and -0.9kb.     

We have previously reported that the inx2 FA42 mutation decreases inx2 expression in 

escort cells and follicle cells, and have identified a small deletion in the intron of inx2 

gene in the mutant flies (Mukai et al., 2011). Therefore, we speculated that regulatory 

elements responsible for the expression in somatic support cells may also be located 

in the intron of the inx2 gene. To confirm this, we isolated genomic fragments in the 

intron of inx2 from wild type and inx2 FA42 mutant flies, and the fragments were both 

subcloned into the pPTGal vector. Theses constructs, termed int 1.2kb inx2 (WT)-Gal4 

and int 1.2kb inx2 (mut)-Gal4, were then introduced into the fly genome to obtain Gal4 

lines (Fig. 4). We investigated GFP expression in int 1.2kb (WT)-Gal4>UAS-mCD8-

GFP and int 1.2kb (mut)-Gal4>UAS-mCD8-GFP ovaries. We found that GFP signal is 

detectable in escort cells and prefollicular cells in int 1.2kb (WT)-Gal4>UAS-mCD8-

GFP but not in int 1.2kb (mut)-Gal4>UAS-mCD8-GFP ovaries (Fig. 4). This suggests 

that regulatory elements responsible for the expression in escort cells and prefollicular 

cells are located in the intron of the inx2 gene, and that the deletion in the inx2 FA42 

mutant disrupts the regulatory elements. 

Discussion 

In this paper, we report novel Gal4 lines, which effectively induce GFP expression 

in somatic support cells in Drosophila ovaries. By introducing a series of deletions 

into the up 2.5kb inx2(WT)-Gal4 construct, we show that the genomic region between 

-0.9kb and -0.5kb is critical for inx2 expression in escort cells. The upstream region 

between -2.5kb and -0.9kb exhibits enhancer activity in follicle cells. Furthermore, 
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our data suggest that regulatory elements in escort cells and prefollicular cells are 

located also in the intron of the inx2 gene. These results suggest that inx2 expression 

in somatic support cells is regulated by multiple regulatory elements lying within both 

the upstream region and the intron of the inx2 gene. Our results support an idea that 

inx2 expression in the somatic support cells may be differentially regulated by distinct 

sets of cis-elements. 

We have generated two independent Gal4 lines (M15-3 and M15-6) carrying inx2 

up0.9kb-Gal4. The M15-3 Gal4 line preferentially drives UAS-GFP reporter gene in 

escort cells and prefollicular cells, but the M15-6 Gal4 line preferentially induces GFP 

expression in follicle cells in egg chambers. It has been previously reported that genes 

expressed using the Gal4/UAS system show variable expression levels (Skora and 

Spradling, 2010). The Gal4/UAS variegation may influence GFP expression in these 

lines. Moreover, flanking sequences can have an effect on cis-element function (Goode 

et al., 2011). Genomic DNA flanking the inx2 up0.9kb-Gal4 constructs may affect the 

function of regulatory elements in the constructs.   

Our expression studies show that the upstream region of inx2 is sufficient to drive 

GFP expression in ovarian somatic support cells. However, we have previously 

reported that a deletion in the intron of inx2 reduces inx2 expression in somatic 

support cells and impairs oogenesis (Mukai et al., 2011). Therefore, the regulatory 

elements in both the upstream region and the intron of inx2 may cooperatively act 

to increase inx2 expression in the somatic support cells in order to promote germ cell 

development. Because the Gal4 is a potent transcription activator, we could detect 

enhancer activity of different regulatory elements in the upstream region and the 

intron of inx2, respectively. It is also plausible that GFP may be more stable than 

endogenous Inx2 protein. 

Somatic support cells, escort cells, prefollicular cells and follicle cells in ovaries play 

distinct roles during oogenesis. Thus, it is important for clarifying the molecular 

mechanisms that control oogenesis to investigate gene function in cell type. The Gal4 

driver lines developed in this study, inx2 up0.9kb-Gal4 (M15-3) and int 1.2kb (WT)-

Gal4 are able to induce gene expression preferentially in escort cells and prefollicular 

cells in the germarium region. These Gal4 driver lines may be beneficial tools to study 

gene function in oogenesis. 
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Figure legends

Fig. 1 Schematic representation of the inx2 locus, up 2.5kb inx2(WT)-Gal4 construct 

and its derivatives. Orange boxes indicate the inx2 open reading frame (ORF). The 

basal promoter (light green) and ORF of Gal4 (green) in the pPTGal vector are shown.

Fig. 2 (A) inx2 mRNA was expressed in escort cells (arrow), prefollicular cells 

(arrowhead) and follicle cells in wild-type ovary. (B-G) Germaria of up 2.5kb inx2(WT)-

Gal4 (F25-1-1) >UAS-mCD8-GFP (B), inx2 up0.9kb-Gal4 (M15-3) >UAS-mCD8-GFP 

(C), inx2 up0.9kb-Gal4 (M15-6) >UAS-mCD8-GFP (D), inx2 up0.5kb-Gal4 (M43-M1) 

>UAS-mCD8-GFP (E), inx2-up 0.9-2.5kb-Gal4 (F7-F1) >UAS-mCD8-GFP (F) and int 

1.2kb (WT)-Gal4 (M14-2-1) >UAS-mCD8-GFP (G) were double-stained with anti-Vasa 

(red) and anti-GFP (green) antibodies. (B’-G’) The GFP channel is shown its own.
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Fig. 3 (A-E) Egg chambers of up 2.5kb inx2(WT)-Gal4 (F25-1-1) >UAS-mCD8-GFP 

(A), inx2 up0.9kb-Gal4 (M15-3) >UAS-mCD8-GFP (B), inx2 up0.9kb-Gal4 (M15-6) 

>UAS-mCD8-GFP (C), inx2 up0.5kb-Gal4 (M43-M1) >UAS-mCD8-GFP (D), inx2-up 

0.9-2.5kb-Gal4>UAS-mCD8-GFP (F7-F1) (E) were double-stained with anti-Vasa (red) 

and anti-GFP (green) antibodies. (A’-E’) The GFP channel is shown its own.

Fig. 4 (A) Schematic representation of the int 1.2kb inx2 (WT)-Gal4 and int 1.2kb 

inx2 (mut)-Gal4 constructs. (B and C) Ovarioles of int 1.2kb inx2 (WT)-Gal4 (M14-2-1) 

>UAS-mCD8-GFP (B) and int 1.2kb inx2 (mut)-Gal4 (M03-2-1) >UAS-mCD8-GFP (C) 

were double-stained with anti-Vasa (red) and anti-GFP (green) antibodies. (B’and C’) 

The GFP channel is shown its own.


