
Sequencing in Intelligent Tutoring
Systems based on Online
Learning Recommenders

A thesis submitted to the Faculty 4 - Mathematics, Natural
Science, Economics and Computer Science for the degree of

Doctor of Natural Science (Dr. rer. nat.)
with core subject Computer Science

by

Carlotta Schatten, M.Eng.

Department of Computer Science

Information Systems and Machine Learning Lab (ISMLL)

University of Hildesheim, Germany

31. January 2017

mailto:schatten@ismll.uni-hildesheim.de
http://www.uni-hildesheim.de/de/ifi.htm
http://www.ismll.uni-hildesheim.de/index.html
http://www.uni-hildesheim.de

2

Abstract

Intelligent Tutoring Systems (ITS) are computer programs used to

teach students without the assistance of a human expert.

One of the most interesting aspect of ITS is the personalization and

scheduling ability that Learning Analytics implements. In the past

years, Educational Data Mining was used to analyze the data col-

lected by ITS and proved that specific students’ states can be recog-

nized. Learning Analytics goes one step forward as it analyzes the

data while the student is interacting with the system and takes schedul-

ing decisions accordingly. Its main goals are ameliorating the learning

experience and reduce the authoring efforts required when designing

an ITS.

In this thesis we design and test Learning Analytics algorithms for

personalized tasks’ sequencing that suggests the next task to a

student according to his/her specific needs. Our solution is based on

a sequencing policy derived from the Vygotsky’s Zone of Proximal De-

velopment (ZPD), which defines those tasks that are neither too easy

not too difficult for the student. The sequencer, called Vygotsky Policy

Sequencer (VPS), can identify tasks in the ZPD thanks to the informa-

tion it receives from performance prediction algorithms able to estimate

the knowledge of the student.

Under this context we describe hereafter the thesis contributions.

• A feasibility evaluation of domain independent Matrix Factoriza-

tion applied in ITS for Performance Prediction.

• An adaption and the related evaluation of a domain independent

update for online learning Matrix Factorization in ITS.

• A novel Matrix Factorization update method based on Kalman

Filters approach. Two different updating functions are used: (1)

a simple one considering the task just seen, and (2) one able to

derive the skills’ deficiency of the student.

• A new method for offline testing of machine learning controlled
sequencers by modeling simulated environment composed by a
simulated students and tasks with continuous knowledge and score
representation and different difficulty levels.

• The design of a minimal invasive API for the lightweight integra-
tion of machine learning components in larger systems to minimize
the risk of integration and the cost of expertise transfer.

Profiting from all these contributions, the VPS was integrated in a
commercial system and evaluated with 100 children over a month.
The VPS showed comparable learning gains and perceived experience
results with those of the ITS sequencer. Finally, thanks to its better
modeling abilities, the students finish faster the assigned tasks.

Zusammenfassung

Intelligent Tutoring Systems (ITS) sind Computer Programme, die be-

nutzt werden, um Schüler ohne den Beitrag von menschlichen Lehrern

zu unterrichten. Eine der interessantesten Aspekte von ITS ist die Per-

sonalisierung und die Sequenzierung, die von Learning Analytics im-

plementiert ist. In der Vergangenheit wurde Educational Data Mining

benutzt, um die von ITS gesammelten Daten zu analysieren. Es wurde

bewiesen, dass bestimmte Lernzustände von den Schülern erkannt wer-

den können. Learning Analytics geht einen Schritt weiter indem es die

Daten analysiert während der Schüler mit dem System interagiert. De-

mentsprechend ist Learning Analytics in der Lage Entscheidungen zu

treffen, z.B. wird eine schwierigere (oder einfachere) Aufgabe vorgeschla-

gen, wenn es aus den Daten erkennt, dass der Schüler gelangweilt (oder

überfördert) war. Das Hauptziel von Learning Analytics ist die Lerner-

fahrung zu verbessern und den Designaufwand von ITS zu reduzieren.

In dieser Arbeit entwickeln und testen wir Algorithmen für Learning

Analytics, die die personalisierte Sequenzierung von Matheaufgaben er-

lauben. Die Sequenzierung schlägt die nächste Aufgabe einem Schüler

vor, die seine Lernbedürfnisse entspricht. Unsere Lösung basiert auf

Vygotskys “Zone of Proximal Development” (ZPD), das die weder zu

einfachen noch zu schwierigen Aufgaben für den Schüler bestimmt. Der

Sequenzer, auch Vygotsky Policy Sequencer (VPS) genannt, ist in der

Lage Aufgaben im ZPD zu erkennen, dank die von einem Vorhersageal-

gorithmus geschätzte zukünftige Leistung des Schülers.

Die Arbeit enthält folgende Beiträge:

• Die Evaluation der Anwendbarkeit von Matrix Factorization als

Inhaltsdomäne unabhängige Algorithmus für die Vorhersage der

Leistung der Schüler.

• Anpassung und Evaluation eines Matrix Factorization basieren-

den Algorithmus, der die zeitliche Evolution der Schülerkenntnisse

einbezieht.

• Entwicklung von zwei Ansätzen für die Aktualisierung von Ma-
trix Factorization basierenden Modellen durch den Kalman Fil-
ter. Zwei Aktualisierungsfunktionen sind benutzt: (1) eine ein-
fache, die nur die letzte vom Schüler gesehene Aufgabe betrachtet,
und (2) eine, die in der Lage ist, seine fehlenden Kompetenzen
einzuschätzen.

• Ein neues Verfahren von Machine Learning gesteuerte Sequenzer
zu testen durch die Modellierung einer simulierten Umgebung, die
aus simulierte Schülern und Aufgaben mit stetigen erzielten und
gebrauchten Fähigkeiten und Schwierigkeitsgraden besteht.

• Die Entwicklung einer minimal eingreifenden API für die leichte
Integration von Machine Learning basierende Komponente in größere
Systeme, um das Integrationsrisiko und die Kosten vom Know-
How-Transfer zu minimieren.

Dank all diesen Beiträgen, wurde der VPS in ein großes kommerzielles
System integriert und mit 100 Kinder für einen Monat getestet. Der
VPS zeigte Lerneffekte und wahrgenommene Erlebnisse, die mit den
von den ITS Sequenzer vergleichbar sind. Infolge der besseren VPS
Modellierfähigkeiten konnten die Schüler die Aufgaben schneller lösen.

Contents

1 Introduction 1

1.1 Collaboration to the iTalk2Learn EU–Project 2

1.2 Contributions . 4

1.3 Publications . 5

1.3.1 First–author Publications 5

1.3.2 Coauthor Publications . 6

1.4 Chapters Overview . 7

2 Problem Formulation 11

2.1 Student’s Knowledge Estimation . 11

2.1.1 Evaluation Framework for Static Algorithms 13

2.1.2 Evaluation Framework for Time Evolving Algorithms 15

2.2 Sequencing . 16

2.2.1 Sequencing Evaluation . 17

2.3 Data Requirements . 18

2.3.1 Datasets for Performance Prediction 18

2.3.2 Exploratory Corpus . 21

2.4 iTalk2Learn Datasets . 21

2.4.1 Large Commercial Dataset 22

2.4.2 Fraction Tutor Datasets . 23

3 State of the Art 25

3.1 Performance Prediction . 26

3.1.1 Domain Dependent Performance Prediction 26

3.1.1.1 Bayesian Knowledge Tracing 26

3.1.1.2 Performance Factor Analysis (PFA) 29

3.1.2 Domain Independent Performance Prediction 30

3.1.2.1 Matrix Factorization in Intelligent Tutoring Systems 30

3.1.2.2 Time-aware Recommender Systems 31

3.2 State Modeling Techniques . 32

v

CONTENTS

3.3 Sequencing in Intelligent Tutoring Systems 33

3.3.1 Rule-based Sequencers . 34

3.3.2 Adaptive Rule-Based Sequencers 34

3.3.3 Policy–based Sequencers: Reinforcement Learning 35

4 Online Learning Matrix Factorization for Performance Prediction 37

4.1 Static Matrix Factorization . 38

4.1.1 MF and BKT Comparison 39

4.1.2 MF for Commercial ITS . 40

4.2 Updating Matrix Factorization . 41

4.2.1 Matrix Factorization Update 41

4.2.2 Incremental Matrix Factorization 43

5 Progress Modeling 45

5.1 Kalman Filter theory . 47

5.2 Kalman State Estimation for Matrix Factorization 49

5.2.1 Simple previous/next State Mapping 50

5.2.2 Skill Deficiency Aware KSEMF (KSEMF SD) 50

5.3 Experiments . 52

5.3.1 Dataset characteristics . 52

5.3.2 Hyperparameters’ Selection 54

5.3.3 State Variables’ Initialization 54

5.3.4 RMSE Evaluation . 54

5.3.5 Evaluation of the Cold Start Problem 62

5.3.6 Modeling Student Progress 62

5.3.7 Personalization . 65

5.3.7.1 Personalized state evolution 65

5.3.7.2 Personalized update evolution 65

5.4 Conclusions . 68

6 The Vygotsky Policy Sequencer 71

6.1 Content Sequencing Structure . 73

6.1.1 The Sequencer Structure . 74

6.1.2 Simulated Learning Process 76

6.2 Experiment Session . 78

6.2.1 Experiments on the Simulated Learning Process 80

6.2.2 Sensitivity Analysis on the Vygotsky Policy 80

6.2.3 VPS Evaluation . 81

6.2.4 Advanced Experiments . 82

6.3 VPS Feasibility and Utility . 86

vi

CONTENTS

6.3.1 Sequencing VPS Feasibility 88
6.3.2 Sequencing VPS Utility . 89

6.4 Conclusions . 90

7 Large Scale Experiment 91
7.1 Lightweight Integration of Machine Learning algorithms 93

7.1.1 Machine Learning Requirements 94
7.1.2 A novel Protocol for Machine Learning Integration 95

7.2 Sequencers’ Integration in Commercial ITS 98
7.2.1 Commercial ITS Dataset Preprocessing 100
7.2.2 Online Update Integration 101
7.2.3 Vygotsky Policy Integration 102
7.2.4 Technical Integration . 103

7.3 Experiment Session . 103
7.3.1 Experiment Design . 104
7.3.2 Results from Dataset Analysis 104
7.3.3 Post Test . 105
7.3.4 Questionnaire . 107
7.3.5 Integration . 108

7.4 Computational Requirements . 108
7.5 VPS with adaptive Threshold . 109
7.6 Conclusions . 111

8 Conclusions and Future Work 113
8.1 Achieved Results . 114
8.2 Future Work . 116

References 119

vii

CONTENTS

viii

List of Figures

2.1 Cross validation, the dataset is split in k partitions and for each

iteration a different set of data is used to train or test the model. In

the figure the test set is highlighted for each iteration in light blue.

The computed RSMEs for the k test partitions is then averaged to

obtain the final RMSE. 14

2.2 Dataset split for static Performance Prediction. To select the test

lines, the dataset is grouped by student and then ordered from the

oldest to the newest entry. The last lines for each unit completed

by a student, marked with the dark blue color, are excluded from

the training set and used for evaluation. 15

2.3 Bridge and Algebra Intelligent Tutoring System 19

2.4 Algebra and Bridge snapshot . 20

2.5 Example of questions posed within a task to the students 23

3.1 Table of scores given for each student on tasks (or interacting with

generic contents) (left), completed table by the MF algorithm with

predicted scores (right). 31

3.2 [32] cycle for switching between structured and exploratory tasks . . 35

4.1 Matrix decomposition . 38

5.1 Kalman Cycle . 47

5.2 RMSE sensitiveness analysis to latent features. 56

5.3 SlidingW RMSE with window size w = 5 58

5.4 SlidingW RMSE with window size w = 10 59

5.5 SlidingW RMSE with window size w = 15 60

5.6 Comparison between KSEMF and KSEMF SD 61

5.7 DTest Total RMSE behavior over time: Models marked with

”Cold” label are initialized with only 1 interaction in DTrain whereas

the others with 10. 63

ix

LIST OF FIGURES

5.8 Actual score (left), KSEMF SD predicted score (center), UpMF pre-

dicted score (left). 64

5.9 x-Axis: Number of tasks seen by the student or interactions. y-

Axis: (a) state evolution according to KSEMF SD with K=62.

(b) state evolution according to UpMF with K=102. (c) and (d):

knowledge evolution for KSEMF SD and UpMF computed as in

Eq. (5.9). (e) Total RMSE of KSEMF SD (blue), MF (green)

and UpMF (black). (f) Actual performance of the student (blue),

predicted performance by KSEMF SD (green), MF (red). 66

5.10 x-Axis: Number of tasks seen by the student or interactions. y-

Axis: (a) and (d): KSEMF SD state evolution of two different

students, K=62. (b) and (e): kn of KSEMF SD latent features

computed as in Eq. 5.9. (c) and (f): Total RMSE of KSEMF SD

(blue), MF (green) and UpMF (black) of two different students. . . 67

5.11 x-Axis: Number of tasks seen by the student or interactions. y-

Axis: (a) how the state evolves according to KSEMF SD with

K=62. (b) shows how the state evolves according to UpMF algo-

rithm with K=102. (c) and (d) show the knowledge evolution, com-

puted as in Eq. (5.9). (e) RMSE of KSEMF SD (blue), RMSE of

MF (green) and UpMF (black). (f) Actual Performance of the stu-

dent (blue), predicted performance of the student by the KSEMF SD

(green), predicted performance by MF (red) and ỹ (turquoise). . . . 69

5.12 Mean Update Over Time Update behavior at each interaction

on average for all students. 70

6.1 System structure in a block diagram. 73

6.2 Student with two skills, si = [0.3, 0.5] represented with a red circle,

could interact with the contents described in Tab. 6.1 represented

as the light blue circles. The radius of the circles indicates difficulty

for contents and ability level for the student. The red lines shows

the ZPD according to the simulated learning environment. Contents

whose center lies in the ZPD can be solved by the student. 79

6.3 Scenario: content number and difficulty level. 83

6.4 Comparison between RANGE and RND. Average skills sum, i.e.

knowledge, over all the students with variance 83

x

LIST OF FIGURES

6.5 Policy selection, i.e. the performance of the Vygotsky policy with
different yth at the same time step. Different groups of students
learned with the Vygotsky policy with yth values going from 0.1 to
0.9. As shown in the figure the knowledge levels change according
to the yth selected. 84

6.6 Effects of the different yth on the final knowledge of the students.
The learning curves of the student groups that learned with the
different Vygotsky policies. 84

6.7 Average Total Knowledge. How the average learning curve of the
students changes over time. 85

6.8 Average sequence selected by the GT and the VPS. The VPS ap-
proximate the optimal sequence that GT computes thanks to the
real skills of the students. 85

6.9 Gain over RANGE policy varying nk. The gain is measured at a
specific time step in percentage, considering the average knowledge
level of the two groups of students, one practicing with the RANGE
sequencer and one with the VPS. 87

6.10 Gain over RANGE policy varying nc. The gain is measured at a
specific time step in percentage, considering the average knowledge
of the two groups of students, one practicing with the RANGE
sequencer and one with the VPS. 87

6.11 Effect of noise in the simulated learning process. Beta distribution
noise with σ2 = 0.1. 88

7.1 New Framework for lightweight ML integration. Structure and in-
teraction between the ITS platform and the Learning Analytics Ser-
vices platform . 99

7.2 Two questions of the commercial ITS 100
7.3 Inter topic standard deviation, i.e. average of the standard deviation

between Topic Math Age for students that interacted with 10-24,
25-49, 50-99, or 100-150 tasks. 106

7.4 Time required on a laptop with an Intel Core i5 CPU (2.6GHz) and
8GB RAM without DB accesses for updating one student’s model
by UpMF (blue) and KSEMF SD (red). 110

7.5 Time required to extract one student’s history form a DB with
926000 lines on a laptop with an Intel Core i5 CPU with 2.6GHz
and 8GB RAM. 111

7.6 [18, 19, 20], VPS with adaptive threshold 112

xi

LIST OF FIGURES

xii

List of Tables

4.1 In this table we report the RMSE obtained by [53] with MF step
preprocessing. 39

4.2 Dataset Statistics . 41
4.3 Performance Prediction Error . 41

5.1 Baselines’ names, reference and description. 53
5.2 Subset statistics of the commercial ITS dataset described in Sec. 2.4.1 53
5.3 Hyperarameters’ ranges tested and selected values for the different

algorithms. 55

6.1 Simulated learning process with two skills. A simulated student
with ϕ = {0.3, 0.5} scores y and learning τ after interacting with
different contents cj. 78

6.2 Parameters MF . 82
6.3 Sequencers Description . 86

7.1 Parameter of the ML API . 97
7.2 Trial Data Analysis. Values are indicated with ± standard deviation 105
7.3 Post Test Comparison. Values are indicated with ± standard devi-

ation . 107
7.4 Questionnaire comparison. 1: strong disagreement, 5: strong agree-

ment. Values are indicated with ± standard deviation 108

xiii

LIST OF TABLES

xiv

Chapter 1

Introduction

Contents
1.1 Collaboration to the iTalk2Learn EU–Project 2

1.2 Contributions . 4

1.3 Publications . 5

1.3.1 First–author Publications 5

1.3.2 Coauthor Publications 6

1.4 Chapters Overview . 7

Intelligent Tutoring Systems (ITS) are computer programs used to teach

students without the assistance of a human expert. Such systems represent the

opportunity for a great change, especially in those countries where the rate teach-

ers/students is extremely low. Also in countries where this phenomenon does not

occur, ITS have become extremely popular, as they reduce the tuition costs for

students.

One of the most interesting aspect of ITS is the personalization and scheduling

ability that Learning Analytics implements. In the past years, Educational Data

Mining was used to mine a static snapshot of the data collected by ITS and proved

that specific students’ states can be recognized. According to the application and

the available sensors’ data, Machine Learning algorithms were used to recognize

if the student was over– or under–challenged, if (s)he was frustrated, bored, sur-

prised, etc.. Moreover, it was also possible to predict if the students were going to

give a correct answer to the posed questions and if they required help to proceed

1

1. INTRODUCTION

in the task.

Learning Analytics goes one step forward as it analyzes the data while the stu-

dent is interacting with the system and takes scheduling decisions accordingly. Its

main goals are ameliorating the learning experience and reduce the authoring ef-

forts required when designing an ITS.

In this thesis we develop Learning Analytics algorithms for task Sequencing,
i.e. we propose for each student a sequence of tasks adapted to his/her needs
and that maximizes his/her performances. We therefore suggest a solution
based on a Sequencing policy derived from the Vygotsky’s Zone of Proximal
Development (ZPD), which defines those tasks that are neither too easy not
too difficult for the student. The sequencer, called Vygotsky Policy Sequencer
(VPS), can sequence task in the ZPD thanks to the information it receives
from Performance Prediction algorithms. It is also our aim is to reduce the
authoring effort for sequencers integrated in large ITS to increase integrability.

To implement Performance Prediction, that is used by the VPS to pre-

dict the next student’s score by means of his/her modeled knowledge, we will use

Recommender Systems algorithms that have the advantage of being domain inde-

pendent, i.e. they do not require an extensive contents analysis to be used. We

then extend Performance Prediction developing Progress Modeling, that allows

modeling the state of the student in a meaningful way over time.

Since this work is strongly connected to the EU iTalk2Learn project we first present

its brief description. Then, we present the contributions and publications pre-

sented in this work and, finally, we briefly summarized the Chapters contents and

the associated papers.

1.1 Collaboration to the iTalk2Learn EU–Project

Many of the results presented in this work were achieved thanks to the FP7 EU

project called ”Talk, Tutor, Explore, Learn: Intelligent Tutoring and Exploration

for Robust Learning”–iTalk2Learn (grant no. 318051), where the University of

Hildesheim was the coordinator.

The main goal of the project was to build an intelligent platform able to collect,

analyze and adapt to student’s data, with the goal to ameliorate current state of the

2

1.1 Collaboration to the iTalk2Learn EU–Project

art of ITS. This platform combined key factors for the amelioration of personalized

tuition such as (1) natural language production and recognition, (2) structured and

exploratory learning activities and (3) several interventions methods.

To obtain the aforementioned three results the project individuated six objectives:

1. Design of new methods for automatic intervention selection, where with in-

tervention feedback, hints, tasks’ sequence or task’s type is meant.

2. Enable different type of tasks, i.e. students should practice both on struc-

tured and exploratory tasks.

3. Integrate voice interaction, the platform should be able to process the stu-

dents’ utterances to analyze their behavior and also be able to use speech

production to communicate with the user

4. Provide an open source platform

5. Develop rich structured and exploratory contents

6. Evaluate the previous results with a statistically significant number of stu-

dents

Our research focused on the first aforementioned objective: ”new methods for au-

tomatic intervention selection”. In particular, in this thesis we present Sequencing

as intervention method with Progress Modeling as a way to deliver such interven-

tion without detrimental data collections or too extensive domain information. In

achievement of Objective 6, the sequencer was evaluated with a large amount of

students and was able to sequence the rich structured contents selected for Objec-

tive 5.

All articles written in collaboration with Ruth Janning are listed in Sec. 1.3.2 and

represent the connection between Objective 1 and 3 of the iTalk2Learn project

as we will better explain in the state of the art chapter (Chapter 3 and Chapter

7). More precisely, we will show how the analysis of students’ speech production

can deliver insights on their perceived difficulty level and therefore better adapt

the VPS behavior. Another project contribution related to the VPS was already

proposed in [32] as well as in several project reports1. Connections between [32]

and the work presented in this thesis can be found in Chapter 5 and in [56].

1”Final report on methods and prototype for adaptive intelligence for robust learning sup-
port” http://www.italk2learn.eu/deliverables-and-publications/deliverables/

3

http://www.italk2learn.eu/deliverables-and-publications/deliverables/

1. INTRODUCTION

1.2 Contributions

This work delivers following contributions to the state of the art:

• A feasibility evaluation of domain independent Matrix Factorization applied
in Intelligent Tutoring Systems for Performance Prediction. As a result, we
show that, with Matrix Factorization, task IDs, student IDs, and scores can
be used to obtain a prediction for datasets not possessing the level of detail
that benchmark datasets of the area have.

• An adaption and the related evaluation of a domain independent update for
online learning Matrix Factorization in Intelligent Tutoring Systems. The
algorithms designed for Data Mining purposes are extended to work with
online learning problems in a Learning Analytics context.

• A novel Matrix Factorization update method based on Kalman Filters ap-
proach. The model is presented in two variations with two different updating
functions: (1) a simple one considering the task just seen, and (2) one able
to derive the skills’ deficiency of the student.

• A new method for offline testing of Machine Learning controlled sequencers
by modeling simulated environment composed by simulated students and
tasks with continuous knowledge and score representation and different dif-
ficulty levels.

• An alternative to Reinforcement Learning for task Sequencing called VPS
approach that does not require detrimental data collection for users and
extensive authoring effort. As shown in this work and the related derived
papers, the method also allow easy integration with other Machine Learning
state modeling techniques.

• The design of a minimal invasive API for the lightweight integration of Ma-
chine Learning components in larger systems to minimize the risk of inte-
gration and the cost of expertise transfer. The API allowed integration of
the developed sequencer in a large commercial ITS, that could not allow the
effort of a invasive integration.

• A large scale evaluation of the designed sequencer in a commercial system
with 100 users over one month. The sequencer proved to have compara-
ble learning gains and perceived experience results with those of the ITS
sequencer, which was designed over the years by experts. In addition, the
sequencer proved to have better modeling abilities, so that the students could
proceed faster through the curriculum.

4

1.3 Publications

1.3 Publications

In this Section we list the papers that contain or are strongly related to the work

presented in this thesis.

1.3.1 First–author Publications

The papers listed hereafter are part of this thesis.

1. Carlotta Schatten, Lars Schmidt-Thieme (2016):

Hybrid Matrix Factorization Update for Progress Modeling in Intelligent

Tutoring Systems, in Communications in Computer and Information Science

2016, Revised Selected Papers.

2. Carlotta Schatten, Lars Schmidt-Thieme (2016):

Student Progress Modeling with skills deficiency aware Kalman Filters, in

Proceedings of the 8th International Conference on Computer Supported

Education (CSEDU 2016).

3. Carlotta Schatten, Ruth Janning, Lars Schmidt-Thieme (2015):

Integration and Evaluation of a Matrix Factorization Sequencer in Large

Commercial ITS, in Proceedings of the 29th AAAI Conference on Artificial

Intelligence (AAAI 2015).

4. Carlotta Schatten, Ruth Janning, Lars Schmidt-Thieme (2014):

Vygotsky based Sequencing without Domain Information: A Matrix Factor-

ization Approach, in Proceedings of the Computer Supported Education.

5. Carlotta Schatten, Manolis Mavrikis, Ruth Janning, Lars Schmidt-Thieme

(2014):

Matrix Factorization Feasibility for Sequencing and Adaptive Support in

ITS, in Proceedings of the 7th International Conference on Educational Data

Mining (EDM 2014).

6. Carlotta Schatten, Martin Wistuba, Lars Schmidt-Thieme, Sergio Gutirrez-

Santos (2014):

Minimal Invasive Integration of Learning Analytics Services in Intelligent

Tutoring Systems, in Proceedings of the 14th IEEE International Conference

on Advanced Learning Technologies.

5

1. INTRODUCTION

7. Carlotta Schatten, Lars Schmidt-Thieme (2014):
Adaptive Content Sequencing without Domain Information, in Proceed-
ings of the 6th International Conference on Computer Supported Education
(CSEDU 2014).

1.3.2 Coauthor Publications

The work presented in this thesis was developed within the iTalk2Learn project
in collaboration with other researchers. We therefore often refer to papers that
are highly related to this thesis as they either deepened other aspects or proposed
enhancements for the VPS.
These papers are:

1. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2016):
Perceived task-difficulty recognition from log-file information for the use in
adaptive intelligent tutoring systems, in International Journal of Artificial
Intelligence in Education (JAIED).

2. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2015):
Improving Automatic Affect Recognition on Low-Level Speech Features in
Intelligent Tutoring Systems, in Proceedings of the 10th European Confer-
ence on Technology Enhanced Learning (EC-TEL 2015).

3. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2015):
Recognising perceived task difficulty from speech and pause histograms, in
Proceedings of the 17th International Conference on Artificial Intelligence in
Education (AIED 2015).

4. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2015):
How to aggregate multimodal features for perceived task difficulty recogni-
tion in intelligent tutoring systems, in Proceedings of the 8th International
Conference on Educational Data Mining (EDM 2015).

5. Lydia Voss, Carlotta Schatten, Claudia Mazziotti, Lars Schmidt-Thieme
(2015): A Transfer Learning approach for applying Matrix Factorization
to small ITS datasets, in Proceedings of the 8th International Conference on
Educational Data Mining (EDM 2015).

6. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2014):
Automatic Subclasses Estimation for a Better Classification with HNNP,
in Proceedings of the 21th International Symposium on Methodologies for
Intelligent Systems (ISMIS 2014), in Lecture Notes in Artificial Intelligence.

6

1.4 Chapters Overview

7. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme, Gerhard Backfried,

Norbert Pfannerer (2014): An SVM Plait for Improving Affect Recognition

in Intelligent Tutoring Systems, in Proceedings of the IEEE International

Conference on Tools with Artificial Intelligence (ICTAI 2014).

8. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2014):

Local Feature Extractors Accelerating HNNP for Phoneme Recognition, in

Proceedings of the 37th German Conference on Artificial Intelligence (KI

2014).

9. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2014):

Feature Analysis for Affect Recognition Supporting Task Sequencing in Adap-

tive Intelligent Tutoring Systems, in Proceedings of the 9th European Con-

ference on Technology Enhanced Learning (EC-TEL 2014).

10. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2014):

Multimodal Affect Recognition for Adaptive Intelligent Tutoring Systems, in

Extended Proceedings of the 7th International Conference on Educational

Data Mining (EDM 2014).

11. Ruth Janning, Carlotta Schatten, Lars Schmidt-Thieme (2013):

HNNP - A Hybrid Neural Network Plait for Improving Image Classification

with Additional Side Information, in Proceedings of the IEEE International

Conference on Tools with Artificial Intelligence (ICTAI 2013).

1.4 Chapters Overview

Chapter 2 In this Chapter we formulate the problems of Performance Predic-

tion, Progress Modeling and Sequencing from a Machine Learning perspective.

The dataset requirements and iTalk2Learn datasets are presented to better expli-

cate the challenges of applying specific algorithms in this context.

Chapter 3 In this Chapter we introduce the state of the art of Domain Depen-

dent and Domain Independent Performance Prediction, Kalman Filters as state

modeling technique and Sequencing in Intelligent Tutoring Systems.

7

1. INTRODUCTION

Chapter 4 In this Chapter we explain in detail Matrix Factorization and its on-
line updating versions, that are used in Chapter 5 as comparison to the developed
Progress Modeling approach.
Contributions of the work presented here are:

• Feasibility of Domain Independent Matrix Factorization for Performance
Prediction in ITS and

• Feasibility of Online Leaning Matrix Factorization for for Performance Pre-
diction in ITS.

These contributions are also published in: [43, 44].

Chapter 5 In this Chapter we go a step forward with respect to domain inde-
pendent Performance Prediction. From an approach informing only on the cur-
rent/next state of the user, we move to Progress Modeling, where the students’
state has to evolve in a meaningful, plausible and therefore interpretable way over
time.
In this scenario three problems arise:

1. Domain information, like tagging involved skills in tasks, necessitates experts
and thus is a time-consuming, costly, and, subjective. For large commercial
ITS it is even unfeasible.

2. Progress Modeling requires to be able to interpret the model, i.e. to be able
to associate the value of the model parameters with a specific user state.

3. The continuously changing student’s state and the necessity of new data
requires online updating algorithms, that refine their prediction after each
interaction.

The method developed for Progress Modeling is described in this Chapter and its
contributions are also published in: [46, 47]

Chapter 6 In this Chapter we propose a novel method of Sequencing based on
Matrix Factorization Performance Prediction and Vygotsky’s concept of Zone of
Proximal Development. This approach represents a valid alternative to Reinforce-
ment Learning and other domain dependent solutions. Sequencing contents, like
tasks, hints, and feedbacks, is an open issue for Intelligent Tutoring Systems. The
common approach is based on domain analysis by experts, who characterize each
content with skills involved and a difficulty level. In addition, Machine Learning
based sequencers require a specific dataset collection to create users’ models and

8

1.4 Chapters Overview

a Sequencing policy, which needs to be tested online with strong ethical require-
ments and a high number of users. The contributions of this Chapter are also
published in: [42, 45].

Chapter 7 In this Chapter we show how we adapted the Machine Learning
based domain independent sequencer of Chapter 6, composed of a Performance
Predictor and a score based task Sequencing policy, in order to be integrated in a
large commercial online maths ITS.
Thanks to a minimal invasive API we could trial the sequencer with 100 students
for a month and discuss the obtained online experiment’s results from different
perspectives. These contributions are also published in: [43, 48].

9

1. INTRODUCTION

10

Chapter 2

Problem Formulation

Contents
2.1 Student’s Knowledge Estimation 11

2.1.1 Evaluation Framework for Static Algorithms 13

2.1.2 Evaluation Framework for Time Evolving Algorithms . 15

2.2 Sequencing . 16

2.2.1 Sequencing Evaluation 17

2.3 Data Requirements . 18

2.3.1 Datasets for Performance Prediction 18

2.3.2 Exploratory Corpus . 21

2.4 iTalk2Learn Datasets . 21

2.4.1 Large Commercial Dataset 22

2.4.2 Fraction Tutor Datasets 23

In this Chapter we are going to define, from a machine learning perspective,
the problems introduced in Chapter 1. Following the structure of this work and
related chapters, the problems of Performance Prediction, progress modeling and
sequencing are presented.

2.1 Student’s Knowledge Estimation

In this work we start with addressing the problem of student’s knowledge estima-
tion for sequencing as a special case of the well known Performance Prediction

11

2. PROBLEM FORMULATION

problem in ITS. Thanks to the ZPD concept we hypothesized that it is possible to

indirectly estimate the students’ knowledge over time by the achieved performances

(e.g. scores) in structured activities with different levels of difficulty. Performance

Prediction will be formalized here as a regression problem, where at each time step

the score of the student in the different tasks must be predicted. Of course also a

classification modeling is possible, where the task can be either answered correctly

or incorrectly, but we will see later in the sequencing section, how the regression

approach is fundamental to the working of the VPS.

Information available to the problem are not only task ID, student ID and stu-

dents’ performances. Domain information locates a task in a topic hierarchy where

learning units are composed of sections, sections are composed of problems, that

are finally subdivided in steps. This scaffolding is necessary to allow an easy auto-

matic evaluation of steps that can be either correct or wrong. Steps are associated

with skills or Knowledge Components (KC), so that the predicted probability of

answering a task correctly can be associated with the amount of knowledge of the

student. Further examples of domain information are: the curriculum structure

(sum, subtraction, or multiplication of fractions, additions, etc.), number of skills

required to solve the exercise and other information necessary in order to indi-

viduate an unique step. In Algebra and Bridge datasets examples of KC or skills

are: Circle-Area, Rectangle-Area, Square-Area, etc. Domain in the area of ITS is

difficult to obtain as tagging tasks with required skills and difficulties necessitate

experts and thus is time-consuming, costly, and, especially for fine-grained skill

levels, also potentially subjective. Several taxonomies exist, but nothing prevents

ITS developers to use their own formalization [43].

In this work we want to use a completely data-driven approach represented by

domain independent algorithms, that predict the students performances by means

of latent unobservables parameters. Here only information such as task IDs, stu-

dent IDs and obtained scores are used [53]. The prediction of a score by mean of

only task ID and student ID matches the problem of rating prediction for Recom-

mender Systems. By interpreting the student knowledge as the student state, we

implicitly assume that this state needs to evolve in a meaningful and reasonable

way over time. This brought to the introduction of Progress Modeling, that can be

still formalized as a regression problem, where the model is updated in an iterative

way. The machine learning algorithms designed to solve these two problems have

high time constraints to be taken into account. In particular, the update should

occur without damaging the experience with the system. Therefore, the goal is to

update the model in 0.1s as requested by real time applications [34]. Considering

Recommender Systems algorithms Time Aware algorithms for the rating problem

have been developed. Here the problem of progress modeling differs in granularity

12

2.1 Student’s Knowledge Estimation

as the time required for user tastes to evolve is different from the abilities acquired

from a task. This is also proven by the fact that Time Aware algorithms model time

in slices, e.g. five slices for a period of years [55]. As such the problem of progress

modeling could be associated to the problem of Time Aware Recommenders with

the smallest possible size of time slice. Since learning session are composed of

many tasks this work is highly related also to Online Updating Recommenders.

Domain Independent Performance Prediction Performance Prediction is

a regression problem where, given a set S =
{
s1, . . . , si, . . . , s|S|

}
of students and

a set of tasks C with C =
{
c1, . . . , cj, . . . , c|C|

}
, we want to predict the real score

ytij ∈ [0, 1] that will be obtained by the i–th student si in the j–th task cj, based

on his previous performances. The predicted value will be computed by a function

ŷtij : S×C→ [0, 1]. The t index refers to the fact that the prediction changes over

time.

Domain Independent Progress Modeling Progress Modeling differs from

Performance Prediction since it implies that there is a meaningful evolution over

time. As such it must be possible to derive a function τ (si, cj) that, given the

current student’s abilities and the task (s)he interacting with, updates the student’s

model parameters.

2.1.1 Evaluation Framework for Static Algorithms

Performance Prediction algorithms aim at minimizing the Root Mean Squared

Error (RMSE):

RMSE =

√∑
i,j∈|DTest| (ŷij − yij)

2

|DTest|
, (2.1)

where |DTest| is the total number of data points in the test set. Cross validation

is an evaluation protocol that involves partitioning a sample of data into comple-

mentary portions. The training of the model is done using one subset (called the

training set), whereas validating is done on the other subset (called the validation

set or test set) (See Fig. 2.1). To reduce variability, multiple iterations of cross

validation are performed using different portions, and the validation results are

averaged over the iterations. One of the main reasons for using cross validation

instead of conventional validation, e.g. partitioning the dataset into two sets of

66% for training and 34% for testing, is to be sure that an ill posed dataset par-

titioning does not under- or overestimate the error of the model. The dataset is

split in partitions and for each iteration a different set of data is used to train or

13

2. PROBLEM FORMULATION

Figure 2.1: Cross validation, the dataset is split in k partitions and for each
iteration a different set of data is used to train or test the model. In the figure the
test set is highlighted for each iteration in light blue. The computed RSMEs for
the k test partitions is then averaged to obtain the final RMSE.

test the model. In Fig. 2.1 the test set is highlighted for each iteration in light

blue. The computed RSME for the k test portions is then averaged to obtain the

final RMSE.

For ITS datasets the split used is generally the one presented in Fig. 2.2, where

the dataset is grouped by student and then ordered from the oldest to the newest

entry. The last lines of each student are excluded from the training set and used

for evaluation. Generally the proportion 66% for train and 34% for test is man-

tained. This evaluation approach considers the fact that cross validation cannot be

used because it destroys the temporal dependency of the data. The training and

testing procedure is nevertheless repeated five to ten times and then the RMSEs

resulting are averaged to avoid the influence of the random initialization of the

14

2.1 Student’s Knowledge Estimation

Figure 2.2: Dataset split for static Performance Prediction. To select the test
lines, the dataset is grouped by student and then ordered from the oldest to the
newest entry. The last lines for each unit completed by a student, marked with
the dark blue color, are excluded from the training set and used for evaluation.

model parameters on the model performances.

For small datasets Leave One Out (LOO) is used as evaluation protocol for small

datasets since excluding 34% of the data for test would not leave enough data and

the model would not have enough data to generalize. The procedure simply takes

the last available line of a student for using it as test sample.

2.1.2 Evaluation Framework for Time Evolving Algorithms

In [55] interesting considerations were made about the requirement of a new eval-

uation approach for online updating algorithms that consider streams of data.

First of all, as the sequence of the data is crucial in this kind of problems, datasets

cannot be shuffled and have to be considered in their natural order. Moreover,

shuffling could destroy the time-awareness of the algorithms that take ordered

streams of data as input. Consequently, the evaluation of performances in the

prediction of past ratings using future ones is rather uninteresting. [55] continues

pointing out how online updates allow refining the model as soon as a new data

point is available. We want to stress here how this can help reducing many of

the issues related to personalized prediction [56]. [55] also informs how grouping

15

2. PROBLEM FORMULATION

data points in time slices is computationally demanding as it implies, for instance,

adding a hyperparameter, i.e. the time slice size. These slices are domain depen-

dent as one could choose winter, spring, summer, and autumn seasons for clothes,

months for movies, day of the week, etc., all such combinations needs to be tested

and evaluated. Aggregating lines in time slices cannot always be done in ITS,

since there is a continuous evolution of the student’s state over time. Therefore we

consider each time step as relevant and a more fine grained time representation is

required. Finally, one should consider that the action of rating an object, or, as

in our case, interacting with a task, influences the user. Such aspect can only be

taken into consideration by online updating algorithms.

For the aforementioned reasons, a new evaluation approach must be designed.

Since in cross validation the natural order of the data is destroyed, it cannot be

used to evaluate the performance of the error for data streams. To evaluate the

evolution of the error over time and avoid the cold start problem in personalized

algorithms such as Matrix Factorization, a part of the dataset must be used for

initialization and the other part is used to evaluate the online learning algorithm.

Similarly, [55] selects 20% of the dataset for the training and the rest for the online

testing.

In this work, we consider two kinds of error for the online testing, the Total RMSE,

i.e. the total RMSE evolution over time, and the SlidingW RMSE, i.e. the RMSE

of overlapping sliding windows of size w. So, while the Total RMSE gives and

overall performance of the algorithm, the SlidingW RMSE shows the performances

evolution over time. How these errors are computed is explained in detail in Alg.

1 for the Total RMSE and Alg. 2 for the SlidingW RMSE. The Total RMSE is

computed by taking the root of the by N t=T+1 normalized squared error at time

T . The SlidingW RMSE evaluates the RMSE of the last w available data points,

i.e. the points in a sliding window of size w over the T–interactions’ period.

Algorithm 1 Total RMSE, CumErrt=T cumulative squared error at time T ,
N t=T total number of interactions evaluated at time T
Input: yt=T+1, ŷt=T+1, CumErrt=T , N t=T

CumErrt=T+1 = CumErrt=T + (yt=T+1 − ŷt=T+1)2;
Total RMSEt=T+1 =

√
CumErrt=T+1/N t=T ;

2.2 Sequencing

Let C ⊆ C and S ⊆ S be sets of contents and students respectively, y : S × C →
[0, 1] is a function that computes the performance or the score of a student working

16

2.2 Sequencing

Algorithm 2 SlidingW RMSEt=T−(w−1):T+1, CumErrt=T−(w−1):T cumulative
squared error of the squared error computed from time T − (w − 1) to time T , w
selected window size
Input: yt=T+1, ŷt=T+1, CumErrt=T−(w−1):T , w
CumErrt=T−(w−1):T+1 = CumErrt=T−(w−1):T + (yt=T+1 − ŷt=T+1)2;
SlidingW RMSEt=T−(w−1):T+1 =

√
CumErrt=T−(w−1):T+1/w;

on a content, and T be the number of time steps assuming that the student is seeing
one content every time step. The content sequencing problem consists in finding
the optimal policy π∗:

π∗ : (C× Ŷi)→ C. (2.2)

that selects the next content given the available contents and the predicted score
on the contents Ŷi. In this work we consider a special kind of sequencing problem
as we want to find the best sequence without any domain knowledge, i.e. without
knowing the difficulties of the contents and the required skills to solve them.

2.2.1 Sequencing Evaluation

Sequencing problems requires a special approach to be evaluated. We are creating
a model able to suggest a sequence given the past outcomes produced by a human
being. Consequently, we are evaluating an adaptive and highly individualized set
of sequenced actions, whose effect is distributed over time. This generally causes
several difficulties in measuring differences in learning gains. Difference in se-
quencing performances were observed over longer period of time such as one entire
semester. Therefore, several success parameters are considered at the same time
to get an overview of the contribution of the sequencers implemented. Apart from
learning gains, perceived experience, and indicators retrieved from exploratory
data analyses are used. Examples of possible indicators are the time required for
adapting the sequencer to a new ITS and a comparison between the knowledge of
the student estimated or measured in different ways [10].
Further problems for sequencing algorithms evaluation involve the need to retrieve
a policy in light of the possible interactions with the system and the derived sub-
sequent state of the user. Being this subsequent state directly influenced by the
action of the sequencer algorithm, the effectiveness of a sequencer can be eval-
uated only with an online experiment involving interacting users. Nevertheless,
before having proof of the correct implementation of the sequencer, it is difficult
to have access to users. This occurs especially in ITS, where technologies’ issues
could introduce further frustrating elements to the learning process and therefore
jeopardize the experience with the system. Consequently, the algorithms’ usual

17

2. PROBLEM FORMULATION

assessment is a two-steps evaluation, that involves first an offline evaluation of

the algorithms interacting with a simulated environment. The latter mimics the

learning process and allow parallel developing and testing. If the offline tests are

successful, the algorithm can be applied in a real environment. This phase is called

online evaluation.

2.3 Data Requirements

In this Section we present the requirements of the data used for training Per-

formance Prediction, Progress Modeling and Sequencing algorithms. By individ-

uating key characteristics of benchmark datasets, we exemplify current research

challenges for machine learning applied to ITS personalization tasks.

2.3.1 Datasets for Performance Prediction

To create Machine Learning based Performance Prediction and Progress Modeling,

a dataset containing the performances over time of the students in the different

tasks is required. In this Section we explain the algorithms’ data requirements

by considering the publicly available datasets. We later explain in Sec. 2.4, how

the iTalk2Learn datasets differ from the commonly used benchmark datasets and

what changes to the algorithms were consequently required.

Commonly available benchmark datasets in the area of Performance Prediction

and Progress Modeling in ITS: ASSISTments [14], Bridge, and Algebra1.

We consider the Bridge and Algebra datasets to discuss the typical structure of

with ITS collected datasets. Bridge and Algebra were collected by the ITS dis-

played in Fig. 2.32.

Domain Information. As shown in the snapshot of Fig. 2.43, we can see that

the data does not only contain the minimal information required for performance

prediction, i.e. student ID, task ID and performance indicators, but also general

information about the tasks. Such information split the tasks in a set of problems.

Each problem is then further subdivided in steps that are associated to Knowledge

Components (KC). This means, as shown in Fig. 2.2, that each row of Fig. 2.4 can

be grouped or analyzed singularly according to the application needs as we will

later explain. In Algebra and Bridge datasets examples of KC are: Circle-Area,

Rectangle-Area, Square-Area, etc.

1http://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp
2 http://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp
3http://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp

18

http://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp
http://pslcdatashop.web.cmu.edu/KDDCup/rules_data_format.jsp

2.3 Data Requirements

Figure 2.3: Bridge and Algebra Intelligent Tutoring System

Domain in the area of ITS is difficult to obtain as tagging tasks with required

skills and difficulties necessitate experts and thus is time-consuming, costly, and,

especially for fine-grained skill levels, also potentially subjective. Since this is a

mandatory input for domain dependent Performance Prediction, understanding

and being able to map such information is crucial as collecting the students’ in-

teractions with the system.

Performance Indicators. The log files record of the students, that interacted

with the available tasks, contains several performance indicators such as if an

incorrect answer was given, the error rate and the opportunity count. The binary

performance measure used by BKT approach can be converted to a continuous one

without loss in prediction performances [58]. Additional data such as the number

of hints requested can be also collected.

Data Sequence. Generally the tasks are shown to the students with a fixed

sequence, i.e. equal for everyone, and the data are ordered temporally and per

student. This prevents the dataset usage for Reinforcement Learning algorithms

[45] as we will explain in the next Section. In addition, the data will be highly

unbalanced as more data will be available for the firstly seen tasks rather then the

last ones. Generally a limited amount of time can be dedicated to the data collec-

19

2. PROBLEM FORMULATION

Figure 2.4: Algebra and Bridge snapshot

tion and sometimes it is not possible to allow students to complete the designed

sequence by experts.

Sparseness. With sparseness we mean the percentage of tasks seen by each

student. The lower the percentage the sparser the dataset and the lower the

model performances especially if this is a personalized model. Sparseness is a well

known problem in Recommender systems as users rates only a small percentage

of the available items. [53] and [56] evaluated how this affected Recommenders

applied to ITS datasets by trying out several preprocessing approaches.

Personalization and Cold Start Problem. In addition to the previously men-

tioned aspects, a very important issue in this context is the small data availability.

Cold start problem arises when not enough interactions are available either for the

students (students’ cold start problem) or for the tasks (tasks’ cold start problem).

The cold start problem can be ignored when the student interacted with at least

10 tasks and the students practiced with a task at least 10 times [39]. Often do-

main information is used to reduce data sparsity [53] or cold start problems [56].

Although this problem is common to many applications, as reported in [56], in

the case of performance prediction it is even more challenging as novel students

are often the only ones available for testing. Moreover, schools generally give an

availability of only a few hours to interact with the ITS. Being the prediction

fully personalized for the tasks as well as for the students, it is strictly required

to have at least some interactions for a student and for a task in the training set

20

2.4 iTalk2Learn Datasets

to have a prediction. In the same paper, it is shown how the RMSE suffers from

this issue. For these reasons it is important to have an updating model that can

partially overcome this problem. More information about the relation between

personalization and the cold start problem can be found in Sec. 4.1.1 and Sec.

6.3.2.

2.3.2 Exploratory Corpus

Machine Learning methods targeting at retrieving the correct sequence of actions

were developed for robots or artificial agents. Therefore, issues regarding experi-

mentation on human test subjects were not considered, in particular constraints

on the number of data required for creating the state model were not set. In

addition, for specific sequencing algorithms such as Reinforcement Learning, the

dataset has to possess particular characteristics. For instance, with robots there

is the possibility of recording different sequences of actions without considering

the fatigue of the subject under test. It is needed to evaluate a good percentage

of the possible combination of actions. Otherwise the algorithm has not enough

information to find an optimal policy.

In order to collect this special kind of datasets, called exploratory corpus, in an

ITS domain the tasks should be sequenced randomly. This makes an ethical ques-

tion arise about the rights we have in suggesting difficult contents to novices or

easy contents to experts [10].

In conclusion, the necessity arose to develop a novel approach for sequencing in

ITS, which is presented in Chapter 6.

2.4 iTalk2Learn Datasets

Thanks to our collaboration in the iTalk2Learn project we could work with datasets

with restricted access, e.g. data collected with several versions of Fraction Tutor

[56], and data of a commercial ITS [44]. This implied solving additional challenges

as we will describe hereafter.

One of the main challenge of the project was being able to analyze log files within

the same framework. iTalk2Learn students practiced with very different ITS, with

different performance indicators and domain information structure. One in partic-

ular was developed only for iTalk2Learn during the entire lifetime of the project

[61]1. As we will see in this Section, it was of crucial importance utilizing domain

1http://www.italk2learn.eu/wp-content/uploads/2015/10/D1.

2-report-on-learning- tasks-and-cognitive-models.pdf

21

http://www.italk2learn.eu/wp-content/uploads/2015/10/D1.2-report-on-learning-
http://www.italk2learn.eu/wp-content/uploads/2015/10/D1.2-report-on-learning-
tasks-and-cognitive-models.pdf

2. PROBLEM FORMULATION

independent Performance Prediction, so that the large experiment described in

Chapter 7 could run within the time period of the iTalk2Learn project.

2.4.1 Large Commercial Dataset

The large commercial dataset used in the experiments of this work was collected

with an ITS with 20 topics about maths for children aged from 6 to 14, who can

practice with over 2000 tasks at school or at home.

An example of questions proposed to the students can be found in Fig. 2.5. From

these questions proposed in sets, that we call interactions or tasks, we do not

know which ones precisely were answered correctly since the ITS aggregates the

information in a single score.

Domain Information. For these multiple-skills interactions we do not possess

the skills involved we cannot use classic domain dependent approaches. To have an

idea of how much time is required for an extensive domain analysis for a set of tasks

under study, one should consider that domain experts individuated in three years

KCs or skills for fractions equivalence’s tasks, which represent 2% of the whole

datasets’ tasks. Since just a small portion of the datasets’ tasks was analyzed,

it would have been impossible to run a large scale experiment in iTalk2Learn,

reported in [43], unless domain independent algorithms were used.

Performance Indicators. As success indicator the ITS uses a score represented

in a continuous interval which goes from 0 to 10.

A lesson can be shown in test or exercise mode. The exercise mode consists of

approximately 10 questions on a topic and specific learning objectives. While

trying to solve those exercises a student can consult several hints, one of those is

the bottom-out hint, which displays the solution. The tests, instead, are composed

of 5 questions without hints.

Data Sequence. The topics and new skills to be acquired are introduced

following the curriculum of the country. The tasks are presented with a rule-based

sequencer, which increases the difficulty of the tasks once the student completed

and passed all the tasks of the difficulty level. If the tasks are not passed the

student gets a regression exercise or can try again to solve the task. This sequencer

also relies on the assumption that a student will be able to solve the exercises of the

achieved difficulty level but not the more difficult ones without having completed

all the lessons of the previous level.

The data granularity level is low if compared with benchmark systems, since we

22

2.4 iTalk2Learn Datasets

Figure 2.5: Example of questions posed within a task to the students

possess a single score record for the 10 questions of the exercises and one record
for the five test questions.

Cold Start, Personalization and Sparseness. Such aspects and their impact
on performance prediction, Progress Modeling and sequencing are evaluated in
Section 4.1.2 and in Sec. 6.3.2. In this work we show that it is possible to use this
dataset for performance and progress prediction despite the reduced granularity
and without using domain information (See Chapter 4). Moreover, the possibility
to use this dataset allowed to implement the large scale experiment discussed in in
Chapter 7 where we required a system with large dataset to test our fast updating
algorithms and API with lightweight integrability.

2.4.2 Fraction Tutor Datasets

Faction Tutor datasets were used during the iTalk2Learn project to evaluate the
effect that small datasets have on personalized models’ performances. Moreover,
they were used to show how little effort was required to adapt the domain inde-
pendent sequencer to another system (see Sec. 6.3.2). As reported by [56] this was
the smallest dataset ever used for Matrix Factorization performance prediction. In
particular, the preprocessing of different versions resulted from a cultural adaption
was discussed. Being curricula specific for each nation, several adjustments were
required between the German and U.S. version [56] as the students age and prior
knowledge changed. In this dataset we have then both students’ and tasks’ cold
start problem. Therefore, we present an analysis of the effect of these problems
and of sparseness and how they were analyzed solved in Sec. 6.3.2 and [32, 56].

23

2. PROBLEM FORMULATION

24

Chapter 3

State of the Art

Contents
3.1 Performance Prediction 26

3.1.1 Domain Dependent Performance Prediction 26

3.1.2 Domain Independent Performance Prediction 30

3.2 State Modeling Techniques 32

3.3 Sequencing in Intelligent Tutoring Systems 33

3.3.1 Rule-based Sequencers 34

3.3.2 Adaptive Rule-Based Sequencers 34

3.3.3 Policy–based Sequencers: Reinforcement Learning . . . 35

’Machine Learning algorithms’ refer to algorithms that can learn from the avail-

able data. They are able to distinguish between different situations, e.g. distin-

guish between picture of different objects, and predict an outcome, e.g. price

prediction, score prediction, or fuel consumption prediction.

Many Machine Learning techniques have been used to ameliorate ITS, especially

in order to extend learning potential for students and reduce engineering efforts

for designing the ITS. In this Chapter we will present the state of the art of Per-

formance Prediction, State Modeling, and Sequencing in ITS. For Performance

Prediction we will distinguish between domain dependent and domain indepen-

dent Performance Prediction, for state modeling we will present Kalman Filters

that are later used to build Progress Modeling, whereas for Sequencing we will

present rule based, adaptive and reinforcement learning based sequencers.

25

3. STATE OF THE ART

3.1 Performance Prediction

Different algorithms have been applied to model the knowledge acquisition process

with the objective of Performance Prediction, i.e. to predict what is the probability

of a correct answer or what will be the score obtained in a task. These algorithms

are of primary importance when this models are used for task selection.

This Section will start with presenting domain dependent algorithms, which are

used not only to predict the score of a student, but also to build a system internal

representation of his or her state or knowledge. Afterwards, we will present domain

independent algorithms, a valid alternative when the required domain information

is not available.

3.1.1 Domain Dependent Performance Prediction

In this section we present the two most famous domain dependent implementations

of Performance Prediction: Bayesian Knowledge Tracing and Performance Factor

Analysis.

3.1.1.1 Bayesian Knowledge Tracing

The most widely used algorithm for Performance Prediction is Bayesian Knowl-

edge Tracing (BKT), which was introduced by Corbett and Anderson in 1995 and

extended and refined in subsequent years [12]. The first implementation consisted

of a simple Hidden Markov Model where the performance prediction of all students

was modeled by four variables, two representing the performance (probability of

learning and probability of forgetting) and two representing the knowledge on a

single skill of a student population (probability of guessing and of slipping). In

this particular model the knowledge variables considered are called latent features

because they are never observed directly. Moreover, knowledge and performance

are represented as binary features (i.e., it is assumed that just two states are pos-

sible): for a skill learned/not learned and for an answer correct/wrong. Another

important variable is the prior probability representing the prior knowledge of

the student at the moment he or she starts to use the system. During the train-

ing phase, the four previously mentioned variables are estimated using a dataset.

Then, the model evolves during the testing phase by increasing or decreasing the

probability of learning of a skill according to the student’s answers. This is done

until the skills can be considered as learned. A skill is considered as such if the

probability of a correct answer is greater than 0.95.

Hereafter, we report the formulas of two Bayesian implementation: [2] and [22].

These formulas show how the probability of knowledge, guessing, and slipping are

26

3.1 Performance Prediction

used to predict the probability of the students to answer correctly. Moreover, they

also show how the model changes over time, i.e. how the probability of knowl-

edge is updated. In particular, the equations report that, as aforementioned, CKT

consider the probabilities of all involved skills for computing the performance and

knowledge probability. The two model’s parameters are the initial knowledge or

prior knowledge probability, i.e. P (k0j), and the transition probability, i.e. P (T).

The initial knowledge probability is the probability that a particular skill is already

learned at time step zero. The transition probability, instead, is the probability

that a skill from time t to time t+ 1 is learned. The two performance parameters

are P (G) and P (S), which are respectively the guess and the slip rate.

t is the current time step.
j refers to the j–th skill or KC.
yt represents the performance at time step t, where yt = 0 and yt = 1

mean the students gave a wrong and a correct answer respectively.
ktj represents the hidden state. It is the knowledge at time t on the

j–th skill.
P
(
ktj
)

is the learning probability, i.e. the probability that the student
learned the j–th skill a time t.

P (G) is the guessing probability for the j–th skill.
P (S) is the slipping probability for the j–th skill.
P (T) is the transition probability, i.e. P

(
ktj = 1 | kt−1j = 0)

)
.

P
(
k0j
)

is the initial knowledge or prior knowledge probability, i.e. the
probability that a particular skill is already learned at time step
zero.

K1 is the set of known skills, where known means P
(
ktj
)
≥ 0.95.

Standard BKT Prediction for correctly applying a skill:

P
(
yt = 1

)
= P

(
ktj
)

(1− P (Sj)) +
(
1− P

(
ktj
))
P (Gj) (3.1)

Standard BKT skill update for successful steps:

Pposterior

(
ktj
)

= P
(
ktj | yt = 1

)
=

P
(
ktj
)

(1− P (Sj))

P
(
ktj
)

(1− P (Sj)) +
(
1− P

(
ktj
))
P (Gj)

(3.2)

27

3. STATE OF THE ART

Standard BKT skill update for failed steps:

Pposterior

(
ktj
)

= P
(
ktj | yt = 0

)
=

P
(
ktj
)
P (Sj)

P
(
ktj
)
P (Sj) +

(
1− P

(
ktj
))

(1− P (Gj))
(3.3)

In the various extensions proposed the researchers have focused on different as-

pects separately, such as multiple-skill modeling, personalization, time, partial

credit and difficulty [2, 35, 36, 59].

Multiple skill modeling has been one of the most important targets of BKT re-

searchers. Creating a classic BKT model for each skill cannot infer properly on

the score of multiple step exercises and consequently limit the use of BKT to sim-

ple structured exercises. Xu and Mostow (2012) [63] make a comparison between

different approaches based upon both joint and not joint computation of multiple

skills. The work of [6] and [15] is based on a single skill which is entirely responsible

for the outcome of the considered step. [22], instead, suggests a first combination

of skills’ knowledge to predict students’ performances. This method is called Con-

junctive Knowledge Tracing (CKT) and modifies knowledge tracing by changing

the equations that deal with updating the student model after a student error.

The equations for updating after correct student responses are kept the same.

CKT Performance Prediction:

P
(
yt = 1

)
=
∏
j

P
(
ktj
)

(1− P (Sj)) +
(
1− P

(
ktj
))
P (Gj) (3.4)

CKT Skill Update for failed steps:

Pposterior

(
ktj | yt = 0

)
= (3.5)

=
(P (Sj)+(1−P (Sj))

∏
i6=K1

(P(kti)(1−P (Si))+(1−P(kti))P (Gi)))P(ktj)
1−

∏
j P(ktj)(1−P (Sj))+(1−P(ktj))P (Gj)

Nevertheless, in CKT the students’ knowledge and performance is still modeled

as a binary variable. Another more recent approach is proposed by [63], where

Item Response Theory is applied instead of Logistic Regression to refine knowledge

tracing.

Regarding personalization, there are two papers that are of particular interest.

The first, [35], proposes a multiple prior knowledge parameter. The algorithm will

decide to which level a student appertains. As a consequence, different students’

levels are defined. The second, [26], points out the necessity of modeling all the

28

3.1 Performance Prediction

variables differently for the students because the probability of knowledge is not

equal for each student at a specific time step, therefore the authors suggest creating

a model for each student. This information is then used to compute the necessary

time each student requires to practice, i.e. the number of exercises to be solved

before achieving proficiency.

Time modeling is a more recent advance of BKT and shows that training a model

with data that is too old has a negative influence on the model accuracy. This

happens because, from one learning session to the others, the student’s behavior

and knowledge can change [3]. This approach is similar to [31], that we will later

describe in more detail.

Partial Credit was also introduced by [58, 59]. A simple equation is developed to

create from a binary performance (the score can be either 0 or 1 in public datasets)

a continuous one (a score defined between 0 and 1). This strategy proved to be

effective for ameliorating the accuracy of BKT. This approach was used in several

papers related to this work, like [20, 56], that used with Factions Tutor collected

datasets, but required a continuous score measure for task Sequencing.

3.1.1.2 Performance Factor Analysis (PFA)

Another alternative to the aforementioned algorithms for domain dependent Per-

formance Prediction is Performance Factors Analysis (PFA) based algorithms. As

pointed out by [9, 15], the first related method to BKT is the Additive Factor

Model (AFM) [6] and Performance Factor Analysis (PFA), where the subject abil-

ity on a skill, easiness of a skill and the learning rate for each skill are modeled.

AFM has been earlier applied to multiple-skills [6, 27]. Although the model con-

siders the frequency of failure and success, the outcome of the exercises performed

is not considered. As a consequence, PFM is suggested [37]. Nevertheless, the

two algorithms are still considered equivalent since, comparing different error and

accuracy measures, one does not outperform the other in a statistically significant

way [9]. [9] proposes a new Factors Analysis based algorithm in order to consider

instructional interventions during the exercises. The algorithm used is called In-

structional Factor Analysis (IFM). In Eq. (3.8) one can find how the probability

of a correct response is computed by the different algorithms.

AFM: ln
pij

1−pij = θi +
∑
k

βkQkj +
∑
k

Qkj (γkNik) (3.6)

PFA: ln
pij

1−pij = θi +
∑
k

βkQkj +
∑
k

Qkj (µkSik + ρkFik) (3.7)

IFM: ln
pij

1−pij = θi +
∑
k

βkQkj +
∑
k

Qkj (µkSik + ρkFik + νkTik) (3.8)

29

3. STATE OF THE ART

Where: These algorithms model the Performance Prediction problem as a Machine

i i-th student
j j-th step
k k-th KC or skill
pij probability that student i performs step j correctly
θi coefficient representing the proficiency of student i
βk coefficient representing the difficulty of the skill or KC k
Qkj matrix informing weather step j requires knowledge about skill k
γk learning rate for KC or skill k
Nik number of times a student has practiced on a skill
µk coefficient representing the benefit of previous successes
Sik number of previous successes of student i on skill k
ρk coefficient representing the benefit of previous failure on skill k
Fik number of previous failures of student i on skill k
νk coefficient representing the benefit of previous tells on skill k
Tik number of previous tells of student i on skill k

Learning regression. The main difference between them is based on the number of

features considered.

3.1.2 Domain Independent Performance Prediction

Matrix Factorization (MF) has many applications like, for instance, dimensionality

reduction, clustering and also classification [11], but its most famous application is

for Recommender Systems [24], where the algorithm recommends items to a user

by predicting the ratings (s)he would give to them. A matrix, whose elements

represent the ratings users gave to some items, is decomposed to approximate the

missing values.

When algorithms are used for novel applications, several adjustments and analysis

are required. In this Section we refer first to work where static MF was adapted to

Intelligent Tutoring Systems. Then we continue presenting Time-Aware MF and

Online Updating MF. Online Updating MF are of particular interest for this work

as they can be used for task Sequencing as we will show in Chapter 6.

3.1.2.1 Matrix Factorization in Intelligent Tutoring Systems

The first times that MF was applied to ITS, [51, 52, 53] associated users with

students, items with tasks, and ratings to the probability of a correct answer at

first attempt.

30

3.1 Performance Prediction

0.1

0.95 0.1

 1 0.5

0.35

0.87 0.2 0.1

0.95 0.1

 1 0.5

0.35

0.87 0.20.1

0.12

0.3

0.95

0.83

0.85

0.79

0.85

0.85

0.2 0.2 1

Students

Contents

Students

Contents

Figure 3.1: Table of scores given for each student on tasks (or interacting with
generic contents) (left), completed table by the MF algorithm with predicted scores
(right).

As these algorithms are the one we used as comparison for our developed method,

we are going to explain them into detail in Sec. 4.1.

3.1.2.2 Time-aware Recommender Systems

Time-aware recommender system includes time as context information, that often

is modeled by learning the prediction of an item by a user at a specific time. In

papers predicting movie ratings or doing item recommendations, such as [62] and

[28], the data of a user are divided in time slices. Within the time slice the user’s

model is constant, and differs between time slices. This works well for applications

with day or seasonal influence and allows to have an implicit update of the model

without increasing too much the model dimensions that grows with the number of

slices. [16], instead, models the time in a two–step approach as its main tasks is

ranking based on users’ previous ratings. First item latent features are learned by

a ”continuous bag of word”. A neural network predicts an item of a user’s item

sequence. This allow to code in the item latent features sequential information.

Also in this case the time is modeled as slices. The so learned items’ latent features

are used to enrich the vanilla MF model by adding them as additional elements to

the items’ latent features. In the state of the art presented involving movie ratings

and ranking time slices where aggregated in months for a total of 5 slices for the

entire years-lasting datasets.

As aforementioned, the prediction of student’s performances over time implies

having fast-changing users’ states. For this reason, a time-slices approach does

not seem to be the more suitable way to model what is more a stream of data.

Moreover, Time-aware Matrix Factorization not necessarily has to run online, i.e.

while users are interacting with a system or with real time performances. At the

same time, Time-aware MF methods do not have to be an update of already exist-

ing models, therefore more similar to our approach are Incremental MF or Online

31

3. STATE OF THE ART

Learning MF. The online update proposed in [40] learns for each new sample avail-

able the model forgetting the previous estimate. This is slightly different than the

so-called ”incremental matrix factorization” [1, 55], that update the model in-

crementally, i.e. they update the current model with the latest state obtained.

However, as also shown and explained in Chapter 5, [40] is still better perform-

ing as it is a multiple-epoch SGD instead of a single-epoch one as [55] and [1].

Nevertheless, computational performances should be considered. As explained in

Chapter 7, considering the entire history of a student requires heavyweight queries

that extract this information from the database. As reported by [43] 6 seconds

were required for an update, whereas real time performances should stay under

the 0.1 seconds threshold [34].

Therefore, forgetting methods were proposed. [31] shows how one can shrink the

data used to retrain the users’ latent features as the more data are available the

more time is require for the update. In [13] and [31] methods to reduce the number

of data points is selected by a set of possible rules, that are dataset dependents and

require context data. Nevertheless, such approach usually reduces the accuracy of

the method. Moreover, how the algorithms forget is application specific and needs

to be investigated for ITS.

The online update proposed by [40] is explained in detail in Sec. 4.2.1. The online

update proposed by [1, 55] is explained in detail in Sec. 4.2.2.

3.2 State Modeling Techniques

Kalman Filters are one of the most used state estimation algorithms in operations

research [21]. They constitute a valid approach to our Progress Modeling problem

as they are able to model next state just considering the input, the observations,

and the current estimate of the state. Moreover, in such algorithms the sequen-

tiality of the measurements plays a major role. Classic Kalman Filters are used

to model a linear relationship between the next and current state and the current

observation. Nevertheless, several other extensions exists such as, for instance, the

Extended, the Unscented and the Particle Kalman Filter. The Extended Kalman

Filters (EKF) relax the assumption that a linear relationship between state and

observation is required. In order to do so the non-linear state and measurement

functions are approximated via Taylor expansion under the assumption of linear-

ity of a function around one point. Despite its efficiency in comparison to other

Kalman extensions, the EKF could still fail to deliver an acceptable prediction.

This happens if the uncertainty is too high or if the functions do not have a local

linearity. Therefore, the Unscented Kalman Filters (UKF) implement linearization

in a different way. The unscented transform is used to model the state by means

32

3.3 Sequencing in Intelligent Tutoring Systems

of a derivativeless technique. The performances of EKF and UKF are comparable
as the UKF are just a factor slower than EKF and UKF predictions are equal to
those generated by the Kalman Filter for linear systems. For non-linear systems
UKF produces equal or better results than EKF. However, if the distribution of
the filter’s belief is highly non-linear, the UKF performs poorly and Particle Fil-
ters represents a better choice [54]. Particle Filters partition the state space in
many parts where particles are filled according to some probability measure. The
higher the probability, the denser the particles are concentrated, that represents
the evolving probability density function [8].
As classic Kalman Filters were the algorithm we used as proof of concept that
Kalman Filters and Matrix Factorization can be combined to implement online
Performance Prediction, in Sec. 5.1 we describe such algorithm in detail.

3.3 Sequencing in Intelligent Tutoring Systems

In this work we present algorithms used for task Sequencing, that respect the data
requirements presented in Sec. 2.3. In this Section in particular, we distinguish
between five kinds of sequencers:

1. Fixed Sequencer: This sequencers follow a fixed path designed by human
experts.

2. Self Choice Sequencer: This sequencers suggest a fixed sequence or a set
of alternatives, but it is the user that at long last decides with which task to
practice.

3. Rule–based Sequencers: This sequencers use a set of ”if...then...” rules
to select the next task. Those rules are designed by human experts basing
on automatically retrievable indicators, e.g. the score or the difficulty of the
task. When a rule is triggered the corresponding previously decided action
is performed. This could be to increase or decrease the difficulty or change
skill to be learned.

4. Adaptive Rule–based Sequencers: These sequencers are an extension
of rule–based ones. They use ”if...then...” rules but the indicators of the
student’s state are provided by intelligent components, e.g. Performance
Predictors or emotion recognition.

5. Policy–based Sequencers: This sequencers implement the sequencing
rules in the form of an equation that takes as input the estimated students’
state. This equation is called policy and it can be either learned as in the case

33

3. STATE OF THE ART

of reinforcement learning or inspired by pedagogical theories as the Vygotsky

Policy Sequencer presented in Chapter 6.

Hereafter, we introduce the current state of the art on the topic of Sequencing in

ITS. We start with rule–based sequencers, we continue with adaptive rule–based

sequencers, and finally with policy based sequencers.

3.3.1 Rule-based Sequencers

Rule–based sequencers are used by ITS to schedule tasks in a way that imitates

adaptivity. The users proceed through a main sequence designed by experts ac-

cording to if (s)he pass or fail tasks. Depending how serious the failure is, dif-

ferent actions might be executed by the ITS. Generally, entire subsequences are

designed, that consist of specific tasks or repetitions of the failed tasks. The design

of a rule–based sequencer requires years of work for experts, as the sequences and

subsequences need to take under consideration every possible scenario. A radical

solution to this problem is to allow the students to select the contents they want

to practice with. However, this approach cannot be applied in ITS since not every

user knows what task is better for him/her [43].

In conclusion, despite the fact such sequencers have some adaptivity based on

simple indicators, we do not refer to them as adaptive sequencers as they have a

reduced set of alternative paths and therefore can be rather seen as an extension

of fixed sequencers.

3.3.2 Adaptive Rule-Based Sequencers

Newly developed method for Sequencing in ITS is the so–called adaptive rule–

based sequencer. This sequencer is characterized by the important role played by

Machine Learning methods, which, with their predictions, produce more accurate

indicators of the current state of the student.

BKT researchers have discussed the problem of Sequencing both in single and in

multiple skill environment in [22]. However, as pointed out by the same authors,

their policy was not able to order the tasks in order of difficulty as easy and dif-

ficult tasks were alternated. Moreover, [22] underline how multiple skill tasks are

modeled as single skill ones in order to overcome current BKT limitations. We

would like to stress that the Sequencing requires an internal skills representation

and consequently, together with the Performance Prediction algorithm, is domain

dependent.

Mazziotti et al. [32] suggest Sequencing approach using indicators computed by

34

3.3 Sequencing in Intelligent Tutoring Systems

Figure 3.2: [32] cycle for switching between structured and exploratory tasks

intelligent components performing emotion recognition, speech, and log-files anal-

ysis. Such intelligent components can recognize if the student is under–, over–,

or appropriately challenged. These indicators are used to define the rules that

decide whether it is necessary to switch from structured to exploratory tasks or

the other way around. The cycle shown in Fig. 3.2 is performed after each task is

completed. Once it is decided which type of task the student must practice with,

a type-specific sequencer performs the next action. The role of the sequencer used

to schedule structured tasks could be taken by the sequencer presented in Chapter

6.

3.3.3 Policy–based Sequencers: Reinforcement Learning

Reinforcement Learning (RL) is a Machine Learning approach that computes the

best sequence trying to maximize a previously defined reward function. Both

model–free and model–based [4, 29] RL were tested for content Sequencing.

Unfortunately, the model–based RL necessitates of a special kind of datasets called

exploratory corpus. Available datasets are log files of ITS which have a fixed

Sequencing policy that teachers designed to grant learning. They explore a small

part of the state–action space and yield to biased or limited information. For

instance, since a novice student will never see an exercise of expert level, it is

impossible to retrieve the probability of a novice student solving some contents.

Without these probabilities the RL model cannot be built [10]. Model–free RL,

35

3. STATE OF THE ART

instead, assumes a high availability of students with which one can perform an
online training. The model does not require an exploratory corpus but needs to
be built while the users are playing with the designed system. Given the high
cost of an experiment with humans, most authors exploit simulated single skill
students based on different technologies like Artificial Neural Networks or self
developed student models [29, 41] for an offline evaluation. Particularly similar
to our appraoch is [29], where contents are sequenced with a particular model–
free RL based on the actor critic algorithm [23], which was selected because of
its faster convergence in comparison with the classic Q–Learning algorithm [50].
Nevertheless, RL algorithms still need many iterations to converge and will always
need preliminary trainings on simulated students also after their evaluation.

36

Chapter 4

Online Learning Matrix
Factorization for Performance
Prediction

Contents
4.1 Static Matrix Factorization 38

4.1.1 MF and BKT Comparison 39

4.1.2 MF for Commercial ITS 40

4.2 Updating Matrix Factorization 41

4.2.1 Matrix Factorization Update 41

4.2.2 Incremental Matrix Factorization 43

In this Chapter we explain in detail Matrix Factorization and its online updat-
ing versions, that are used in Chapter 5 as comparison to the developed Progress
Modeling approach.
Contributions of the work presented here are:

• Feasibility of Domain Independent Matrix Factorization for Performance
Prediction in ITS and

• Feasibility of Online Leaning Matrix Factorization for for Performance Pre-
diction in ITS.

These contributions are also published in: [43, 44].

37

4. ONLINE LEARNING MATRIX FACTORIZATION FOR
PERFORMANCE PREDICTION

Figure 4.1: Matrix decomposition

4.1 Static Matrix Factorization

As described in Chapter 2, given are a set S =
{
s1, . . . , si, . . . , s|S|

}
of students

and a set of tasks C with C =
{
c1, . . . , cj, . . . , c|C|

}
. We want to predict the real

score ytij ∈ [0, 1] that will be obtained by the i–th student si ∈ S in the j–th task,

cj ∈ C. si is modeled by Matrix Factorization (MF) as a vector ϕ ∈ S := RK ,

where K is the number of skills involved and S is the student’s space. Also the

j–th task is defined as a vector ψj ∈ C := RK representing the K skills required

to solve a task defined in the tasks’ space C. In this context we want to find a

suitable prediction function able to compute the predicted performance ŷ(ϕi, ψj)

of a student si on a task cj considering all his past interactions. For static MF we

assume that ϕ and ψ are constant over time.

In static MF, the matrix Y ∈ Rns×nc can be seen as a table of nc total tasks

and ns students used to train the system, where for some tasks and students

performance measures are given. MF decomposes the matrix Y in two other ones

Ψ ∈ Rnc×K and Φ ∈ Rns×K , so that Y ≈ Ŷ = ΨΦT . Ψ and Φ are matrices of

latent features, where the latent features of each task cj and each student si are

collected. Although these latent features cannot be mapped to an exact meaning

as done in BKT technology, in [53] those values were associated with the skills

involved in the tasks and the skills of the students. The latent features learned

with stochastic gradient descent from the given performances allow computing the

missing elements of Y for each student i in each task j of a dataset D (Fig. 3.1)

without manually tagging the skills of the domain. For this reason this approach

has been called domain independent in [45]. This approach is also called static,

as the model parameters are not updated over time. The optimization function of

MF is represented by:

min
ψj ,ϕi

∑
i,j∈D

(yij − ŷij)2 + λ(‖Ψ‖2 + ‖Φ‖2) (4.1)

38

4.1 Static Matrix Factorization

where one wants to minimize the regularized Root Mean Squared Error (RMSE)
on the set of known scores. The prediction function is represented by:

ŷij =
K∑
k=0

ϕikψjk, (4.2)

A simple extension of Matrix Factorization is Biased Matrix Factorization (BMF),
where µ, µc and µs are respectively the average performance of all tasks of all
students, the learned average performance of a content, and learned average per-
formance of a student. The two last mentioned parameters are also learned with
the gradient descend algorithm.

minψj ,ϕi,µcj ,µsi

∑
i,j∈D

(yij − ŷij)2 + λ(‖Ψ‖2 + ‖Φ‖2 + ‖µcj‖2 + ‖µsi‖2) (4.3)

where one wants to minimize the regularized Root Mean Squared Error (RMSE)
on the set of known scores. The prediction function is represented by:

ŷij = µ+ µcj + µsi +
K∑
k=0

ϕikψjk, (4.4)

4.1.1 MF and BKT Comparison

We report hereafter the RMSE obtained by [53], whose implementation we used
to calibrate our. As one can see in Tab. 4.1, MF outperformed two BKT reference
implementations [2] and [7]. In order to avoid sparseness in benchmark datasets
[53] each line was abstracted to step level, i.e. the algorithm predicts if the student
is going to answer correctly to a specific step. Having the authors shared the
used hyperparameters we obtained equal results up to the third value after the
comma. The discrepancies can be imputed to the random initialization of the
model parameters.

Algorithm Algebra Bridge ASSISTments
BKT - EM [7] 0.31098 N/A 0.48860
BKT - BF [2] 0.31308 0.30849 0.49353

MF [53] 0.29898 0.29446 0.46041
BMF [53] 0.29819 0.29385 0.45822

Table 4.1: In this table we report the RMSE obtained by [53] with MF step
preprocessing.

39

4. ONLINE LEARNING MATRIX FACTORIZATION FOR
PERFORMANCE PREDICTION

4.1.2 MF for Commercial ITS

In this Section we discuss how MF can be applied in a commercial ITS, which

records data such as those described in Sec. 2.4.1. As aforementioned, the data

granularity level of this dataset is low if compared with benchmark systems, since

we possess a single score record for the 10 questions of the exercises and one

record for the five test questions. Having an aggregated test value for 5 different

questions on different concepts a multiple skill representation of the lessons would

be the most plausible. Nevertheless, this information is not available for all the

lessons, which are summarized with a single learning objective description.

Given the differences with the other benchmark datasets we needed first to dis-

cuss whether these data could be used for Performance Prediction and think of an

eventual preprocessing.

For the preprocessing, we started from the approach proposed in [53], who under-

lined the necessity to avoid sparsity to maximize MF performances. Since we did

not have information about the performance of the students up to the step level,

we predict the score on the single lessons. We then distinguish, if the lesson was

solved in exercise or test mode. This was done, since the use of hints strongly

influences the outcome of the exercise session and modifies the experiment modal-

ities. Moreover, we removed the skipped lessons in order to have only completed

ones.

We followed the standard approach in the field to divide the student history tempo-

rally in two thirds for training and one third for testing (see Sec. 2.1.1), evaluating

the performances with the RMSE. The score, as in [45], is represented in a contin-

uous interval which goes from zero to ten, normalized between zero and one.

In Tab. 4.2 we present the statistics of the dataset used for the experiments. In

particular, out of the 30 Million lines recorded, approximately two thirds were seen

in exercise mode, i.e. with a bottom out hint available. Approximately half of the

tasks seen in exercise mode used the bottom out hint. For this reason, exercise

scores must be considered carefully, especially for adaptive sequencing. In Tab.

4.3 we present Global Average, i.e. a worst case predictor that assumes students

will always perform equally to the global score average computed on the training

dataset. The Biased Student-Task predictor, instead, uses only the biases µ, µs,

and µc of Eq. 4.4, i.e. the latent features number K is set to zero. Consequently,

out of Tab. 4.3 one can see the contribution of the single components of Eq. 4.3

in ameliorating the prediction.

In conclusion, according to the results in Tab. 4.2, the dataset is suitable for the

task of Performance Prediction despite the reduced granularity and MF is able

to predict a continuous interval performance in a multiple-topic scenario. This

is different to what was done in e.g. [12], where the main task was to predict if

40

4.2 Updating Matrix Factorization

Table 4.2: Dataset Statistics

Number of Tasks (Exercise and Test lessons) 2 035
Number of Students 258 391
Total Student-Task Interactions 30 813 070
Total Exercise sessions 17512972
Exercise passed (Score 70-99) 9 520 278 i.e. 54
Gaming the system (Score 100 + Bottom out hint) 3 988 891 i.e. 23%
Total Test sessions 13 300 098
Test session passed (Score 60-99) 4 378 461 i.e. 33%
Average score obtained 8.1

Table 4.3: Performance Prediction Error

Experiments, score range [0,1] RMSE, ± SD over five experiments
Global average 0.3032796
Biased User-Item Exercise 0.2639167± 3.6989 10−5

Biased User-Item Topic 0.26416832± 3.36935 10−5

Task Preprocessing 0.26061115± 5.97504 10−5

the student was going to answer correctly at first attempt. Finally, thanks to the

positive results of single tasks’ score prediction, we can conclude that with this

dataset it is possible to implement domain independent Performance Prediction.

4.2 Updating Matrix Factorization

Several Time-Aware Matrix Factorization approaches exist, in this work we will

focus on online–updating ones that can be used for sequencing. In particular,

we present two algorithms called hereafter Matrix Factorization Update [40] and

Incremental Matrix Factorization [1, 55].

4.2.1 Matrix Factorization Update

One of the criticized problems of MF is that it does not deal with time, i.e. the

latent features are constant after the first training. In order to keep the model up

to date, [43] implemented, in a large commercial ITS, the online update proposed

in [40]. The update, that we will call hereafter UpMF, consists in solving again

the minimization problem of Eq. (4.5) optimizing only ϕi with stochastic gradient

41

4. ONLINE LEARNING MATRIX FACTORIZATION FOR
PERFORMANCE PREDICTION

Algorithm 3 UpMF [40], where β is the learning rate, λ is the regularization
parameter, Ψ are the tasks’ latent features, iterMax is the number of algorithm’s
iterations, Historyi are all the tasks IDs j the student i interacted with perfor-
mance y. The algorithm computes ϕti, i.e. the latent features of the student at
time t.
Input: Historyi, λ,Ψ, β, K, iterMax

Output: ϕti
ϕti ∼ N(0, σ2);
iterMax= Historyi.length ∗ iterMax;
for iter = 1 to iterMax do

Select j randomly from Historyi;

Err = y −
(∑K

k=0 ϕ
t
ikψjk

)
;

for k = 1 to K do
ϕtik+ = β (err ∗ ψjk − λϕtik);

end

end

descent algorithm considering the interactions of the single student i.

min
ϕi

∑
j∈Di

(yij − ŷij)2 + λ
(
‖ϕi‖2

)
(4.5)

This means the student’s model is learned at each interaction from the beginning
forgetting the previous estimate. [43] coherently with [40] noticed that after ap-
proximately 20 interactions the model update’s error for UpMF was degenerating.
[43] overcame the problem by retraining the model each night, assuming students
would see approximately 10 tasks per day. This was of course imposing strong
requirements on the machine where the application ran since the training is more
demanding computationally in comparison to the prediction phase.
According to the pseudo-code Alg. 3 reported, several limitations of this algo-
rithm can be identified as we will see in Sec. 5.3.4. The main one that we can
identify in Alg. 3 is the dependency between the history length and the number
of algorithm’s iterations required to converge to a solution. The more student’s
interactions are available, the more iterations are needed by UpMF to converge.
As a consequence the time required to update the model increases over time (See
Sec. 7.4). To keep the update time constant one should select meaningful samples
out of the given history. This problem was tried to be solved with the help of
context data in [31] and is explained in Sec. 4.2.2. However, this approach affect
the error performances which are reduced. This happens because less data points
are used to train the model.

42

4.2 Updating Matrix Factorization

4.2.2 Incremental Matrix Factorization

The difference between Alg. 3 and Alg. 4 is that in the latter the update is per-
formed in an incremental way, i.e. starting from the last estimation of ϕi

t−1 and
using j-th task’s latent feature ψtj and the score yti,j the i-th student obtained.
[1, 55] online update (without context information) is a one-iteration SGD, there-
fore, as we will see in Chapter 5 it will have a faster computational performance but
worse RMSE performances in comparison to UpMF, which is a multiple-iteration
SGD and it can be seen as a retraining of students’ latent features. The pseudo-
code of such algorithm is presented in Alg. 4. Alg. 4 was extended by [31] by

Algorithm 4 Abernathy [1, 55], where β is the learning rate, λ is the regulariza-
tion parameter, ψtj are the task’s latent features of task j and yti,j is the score, the
last task ID j the student i interacted with with performance yti,j. The algorithm
computes ϕti, i.e. the latent features of the student at time t.

Input: ϕt−1
i , λ,ψtj , y

t
i,j, β, K

Output: ϕti
Err = yti,j −

(∑K
k=0 ϕikψjk

)
;

for k = 1 to K do
ϕtik+ = β

(
err ∗ ψjk − λϕt−1ik

)
;

end

adding a forgetting mechanism that reduces the error but unfortunately also slows
down the algorithm as the forgetting procedure also requires some computational
time.
The algorithm proposed is a multiple-iteration SGD like [40] but a subset of rat-
ings is selected to retrain the model. The simplest feasible forgetting approach
consists of a sliding window that selects the last N interaction of a user. Other
more complicated approaches require to individuate the most popular items or
scale the user latent feature by a factor.
There is a high difference in performances when these forgetting methods are ap-
plied to different datasets, moreover these forgetting methods require additional
hyperparameters to be selected and therefore computational performances are af-
fected. Finally, some forgetting approaches cannot be extended to all domains, for
instance post popular item selection cannot be applied to tasks or hints selection
in ITS.

43

4. ONLINE LEARNING MATRIX FACTORIZATION FOR
PERFORMANCE PREDICTION

44

Chapter 5

Progress Modeling

Contents
5.1 Kalman Filter theory . 47

5.2 Kalman State Estimation for Matrix Factorization . . 49

5.2.1 Simple previous/next State Mapping 50

5.2.2 Skill Deficiency Aware KSEMF (KSEMF SD) 50

5.3 Experiments . 52

5.3.1 Dataset characteristics 52

5.3.2 Hyperparameters’ Selection 54

5.3.3 State Variables’ Initialization 54

5.3.4 RMSE Evaluation . 54

5.3.5 Evaluation of the Cold Start Problem 62

5.3.6 Modeling Student Progress 62

5.3.7 Personalization . 65

5.4 Conclusions . 68

In this Chapter we want to go a step forward with respect to domain inde-

pendent performance prediction. From an approach informing only on the cur-

rent/next state of the user, we move to Progress Modeling, where the students’

state has to evolve in a meaningful, plausible and therefore interpretable way over

time.

In this scenario three problems arise:

1. Domain information, like tagging involved skills in tasks, necessitates experts

and thus is time-consuming, costly, and, subjective.

45

5. PROGRESS MODELING

2. Progress Modeling requires to be able to interpret the model, i.e. to be able

to associate the value of the model parameters with a specific user state.

3. The continuously changing student’s state and the necessity of new data

requires online updating algorithms, that refine their prediction after each

interaction.

Problem (1) involves domain dependent performance prediction algorithms: Bayesian

Knowledge Tracing (BKT) [12] and Performance Factors Analysis (PFA)[37]. There-

fore, [53] proposed Matrix Factorization (MF) as domain agnostic alternative. As

such, MF does not require skills’ tagging (see Sec. 4.1.2) and can be easily inte-

grated in larger systems (See Chapter 7).

[30] stresses the fact that intelligent components’ too high requirements often pre-

vent them to be used in commercial environments. Therefore, domain indepen-

dence and lightweight integrability are desirable properties as large ITS often do

not possess the skills involved in the tasks and cannot invest large efforts either in

tagging all their contents or in changing their systems’structure.

If MF algorithms represent a good solution to Problem (1), they unfortunately

suffer from Problem (2) since the parameters of the model cannot be used to in-

terpret the state of the user and its progress over time.

Finally, Problem (3) arises for MF applications in ITS. Item Recommendation is

affected by time differently than task recommendation, since voting movies in dif-

ferent permuted orders will not affect the user’s ratings unless a long time passes

between ratings. For this reason it is possible to model user evolution and item

characteristics in aggregated time slices, where more subsequent ratings are con-

sidered as generated from the same static model.

In ITS, instead, the students learn something according to their learning rate after

each exercise. If exercises are shown in order or in reverse order of difficulty not

only scores will change, but also the acquired knowledge will be different. There-

fore the usage of an online updating model is mandatory for an accurate prediction.

Best way to do so, would be to refine the prediction after each action to allow in

the future also hints and feedback recommendation.

In this Chapter we first explain Kalman Filters, a state estimation algorithm used

in operations research [21]. Then we continue explaining how MF and Kalman

Filters were combined to find an updating function for the students’ model. This

is achieved in two different ways, one of which exploits equations of a student

simulator (See Sec. 6.1.2) mimicking the learning process of a student.

We perform an extensive evaluation considering different error measures, cold start

problem and interpretability of the model.

As a result, the model:

46

5.1 Kalman Filter theory

Figure 5.1: Kalman Cycle

1. has reduced computational requirements,
2. remains domain independent,
3. has a reduced prediction error,
4. is less sensitive to the lack of user data,
5. and is made interpretable.

These contributions are also published in: [46, 47].

5.1 Kalman Filter theory

Kalman Filters constitute a valid approach to our Progress Modeling problem
as the sequentiality of the measurements plays a major role. For their recursive
structure they do not require the load of the entire student’s history to compute
the update, so that the update time is constant.
Before explaining the Kalman’s equations into detail, we briefly introduce the
Kalman approach in modeling state’s evolution. As shown in Fig. 5.1 the Kalman
algorithm can be described as a two-steps cycle, where the alternating phases
are called ”predict phase” and ”correct phase”. During the predict phase the
state and error estimation are projected, i.e. one tries to predict what influence a

47

5. PROGRESS MODELING

certain input would have on the state’s evolution. The input can be seen as the
set of actions that could be performed and our goal is to find the best one for the
specific situation modeled by the system. With a more actual state estimate we
can try to predict the next observed measurement, where the measurement is what
we can observe from the surrounding environment. When a new measurement is
finally observed, the algorithm uses the information to correct its estimates. At
this point, the cycle starts from the beginning. In order to implement the cycle
equations, it is required to identify in the problem under analysis the state, input
and observable measurement of the system as shown in Fig. 5.1 with the step ”[A]
System information”. How this was done for student Progress Modeling is one of
the key contributions of this Chapter.
The state x at time t is modeled as a linear combination of the state at time
t − 1 and a control input u at time t − 1 with additive Gaussian noise w (Eq.
(5.1)), where A and B are matrices of coefficients multiplying the state and control
variables respectively.

xt+1 = Axt +But + wt (5.1)

In Eq. 5.2 the measurements of the environment are predicted adding the current
state estimation multiplied by a coefficient matrix H to Gaussian noise v.

yt+1 = Hxt + vt (5.2)

Instead of learning from scratch the student’s parameters after each interaction,
the Kalman Filter updates its estimation at each time step with the predict (Eq.
(5.3)) and correct (Eq. (5.4)) equations, integrating in its prediction the novel
available information. Kalman Filters computes the belief on the current state
modeling its mean x̂−t and its error covariance matrix P−t with Eq. (5.3), where
Q is the state noise covariance matrix derived from the Gaussian noise variance w
of the state variables.

x̂−t+1 = Ax̂t +But

P−t+1 = APtA
T +Q (5.3)

Then, with a new measurement yt, state estimation x̂t and error covariance matrix
Pt are corrected with Eqs. 5.4, where Kt is the so-called Kalman Gain and R the
measurement noise covariance matrix derived from the variance of the measure-
ment noise vt.

Kt = P−t+1H
T
(
HP−t+1H

T +R
)−1

x̂t+1 = x̂−t+1 +Kt

(
yt −Hx̂−t+1

)
Pt = (I −KtH)P−t (5.4)

48

5.2 Kalman State Estimation for Matrix Factorization

R, Q and P0 are all diagonal matrices whose values are treated as hyperparameters,

e.g. Q = diag(0.01) means that all Q values on the diagonal are assigned to 0.01

[54]. We want to use this approach to model the evolution over time of the MF’s

latent features and consequently show the students’ progress over time.

5.2 Kalman State Estimation for Matrix Factor-

ization

In this Section we present our novel method for Progress Modeling: the Kalman

State Estimation for Matrix Factorization. In order to integrate the Kalman Filter

and MF we first need to identify the state and the control of the system.

As described in Chapter 4, the i–th student si is modeled by MF as a vector

ϕt ∈ S := RK , where K is the number of skills involved and S is the student’s

space and the j–th task cj is defined as a vector ψj ∈ C := RK representing the

K skills required to solve a task defined in the tasks’ space C.

In this context we want to find a suitable prediction function able to compute the

predicted performance ŷ(ϕi, ψj) of a student si on a task cj considering all his past

interactions. Moreover, at each time step ϕt of student si needs to be updated to

ϕt+1 with a function τ : S× C→ S.

Under this interpretation, ϕti should be the evolving state. The control over the

system are the tasks’ latent features ψj presented to the student, whereas the score

yt represents the measurement and its prediction ŷt at time t (Eq. (5.5)). Since

this algorithm is modeling the state and the interaction with the environment

explicitly, a working Kalman Filter does not only show that the approach is valid

for performance prediction, but also that (1) the students’ latent features can be

interpreted as the students’ state and that (2) the tasks’ latent features can be

interpreted as the tasks’ characteristics.ϕ1
...
ϕk

t+1

= A

ϕ1
...
ϕk

t

+B

ψ1
...
ψk

t

+ wt

ŷt+1 = H

ϕ1
...
ϕk

t

+ vt (5.5)

In order to integrate the prediction function of MF (Eq. (4.2)) we formalized the

relationship between state ϕti and predicted measurement ŷt as in (5.6), having

49

5. PROGRESS MODELING

then H = ψT .

ŷt =

ψ1
...
ψk

T

t−1

ϕ1
...
ϕk

t−1

+ vt−1 (5.6)

Still missing is Eq. (5.1), i.e. the function τ mapping the state ϕi
t with the state

at time t+1. We present in the following subsections two working ways to do this,

but several other approaches could exist.

5.2.1 Simple previous/next State Mapping

For Eq. (5.1), we need to formulate an update function τ , which represents the

learning from one task interaction. In order to do so we applied the simple reason-

ing that the student needs to learn proportionally from the task according to its

learning rate ν and the tasks’ required skills ψ. Therefore we suggested following

equations

ϕ
(t)
ik = ϕ

(t−1)
ik + νψjk,

i.e.

A = diag(1)

and

B = diag(ν)

. We treated ν as a hyperparameter of the model as v, and w. In the future,

however, ν could be learned in the initialization procedure. In our case the ini-

tialization of KSEMF consists in the computation of a first estimation of the Ψ

and Φ(t=0). In our experiments this was done with the training obtained by MF

standard algorithm as we will explain in Sec. 7.3. Finally, in order to have a

personalized model, each student has his/her own KSEMF instance updating ac-

cording to his/her latent features values and performances.

How an update cycle of KSEMF algorithm work can be found in Alg. 5.

5.2.2 Skill Deficiency Aware KSEMF (KSEMF SD)

In this Section we present an amelioration of KSEMF, by making it aware of the

student’s skills deficiencies. In order to do so we design the update function τ

starting from the simulated student described in Sec. 6.1.2 that was able to sim-

ulate a learning process with continuous knowledge and score representation and

tasks with multiple difficulty levels. Nevertheless, we do not exclude the possibility

to use also other equations to model the relationship between ϕt and ϕt+1. The

50

5.2 Kalman State Estimation for Matrix Factorization

Algorithm 5 KSEMF update
Input: DTrain, DTest, Q, R, P0, ν
Use DTrain and Eq. (4.1) to obtain Φ(t=0) and Ψ;
for each si cj interactions in Dtest N do

A = diag(1), H = ψj
T ;

B = diag(ν)
ŷ=Predict, Eq. (5.3);
Correct, Eq. (5.4);

end

simulator models a learning process defined by the Zone of Proximal Development
(ZPD) [57], i.e. a student can learn from a task only if it is of the correct dif-
ficulty level. This is defined in the simulated environment as the difference αi,j

between the skills of the student ϕti and those required to solve the task ψj . As
a consequence αi,j represents the skill deficiency of the student. In Eq. (5.7) ỹ
represents the simulated score of the student and in [45] they were allowed to be
only positive. Therefore ϕik > ϕgk means student i is more knowledgeable than
student g in skill k and ψjk > ψfk means that task j is more difficult than task
f considering skill k. Finally ψjk < ϕik means of task j is too easy for student i
and (s)he cannot learn skill k from it (See 6.1.2).
To develop the Skill Deficiency aware Kalman State Estimation for Matrix Fac-
torization (KSEMF SD) we interpreted the simulator modeled skills ψjk and ϕik,
for all i, j, and k as the from MF computed latent features. We then reformulated
the equations modeling the process, Eq. (5.7), to fit Eq. (5.1) and work also with
negative latent features. Therefore, we slightly modified Eq. (5.7) by considering
the absolute value of ψjk and ϕik. These changes allowed also negative latent fea-
tures, but kept the ZPD properties of the simulator, i.e. a student cannot learn
from too easy tasks and learns from a task proportionally to his knowledge and
the skills required to solve the task. Also in this case each student has his/her own
KSEMF SD instance.

ỹ(ϕi, ψj) = max(1− ||α
i,j||

||ϕi||
, 0)

τ(ϕi, ψj)k =ỹ(ϕik, ψjk)α
i,j
k

αi,jk = max(|ψjk| − |ϕik| , 0) (5.7)

Under this interpretation ϕi,k = 0 means student i does not possess skill k and
|ϕi,k| > 0 now means having some ability in skill k. Given Eq. (5.7) we obtained

ϕ
(t)
ik = ϕ

(t−1)
ik + (ỹ(ϕik, ψjk)γδ(|ϕik| < |ψjk|))ψjk,

51

5. PROGRESS MODELING

i.e.
A = diag(1)

and
B = diag

(
(ỹ(ϕik, ψjk)τ

i,j
k γ
)
, (5.8)

where γ is a weight selected as an hyperparameter. Therefore, the pseudo-code
for KSEMF SD is described in Alg. 6.

Algorithm 6 Experiments’ Framework
Input: DTrain, DTest, Q, R, P0

Use DTrain and Eq. (4.1) to obtain Φ(t=0) and Ψ;
for each si cj interactions in Dtest N do

A = diag(1), H = ψj
T ;

Compute B using Eq. (5.8);
ŷ=Predict, Eq. (5.3);
Correct, Eq. (5.4);

end

5.3 Experiments

In this Section we analyze different aspects of the algorithms KSEMF and KSEM SD
performances. First, we describe the dataset used for the experiments; then, we
analyze the hyperparameters’ selection, the performances, the model initialization,
and the sensitivity to the cold start problem. Afterwards, we discuss the ability
of the algorithm to model the student progress. This is done from different per-
spectives, which involve the personalization of the state modeling and the update
rate.
First we present the comparison with the baseline algorithms presented in Tab.
5.1.

5.3.1 Dataset characteristics

Of the large dataset of the commercial ITS, described in Sec. 2.4.1, we selected
a subset described in Tab. 5.2. According to the results presented in Sec. 6.3.2
having students with less than 10 interactions would damage considerably the
performances, without the possibility to distinguish between the error due to the
cold start problem and the error due to the inability of the model. Moreover, our
purpose to derive an incremental and highly temporal dependent model requires

52

5.3 Experiments

Paper Section Acronym
Reference Reference

Matrix Factorization [53] Sec. 4.1 MF
Incremental [1, 55] Sec. 4.2.2 Abernathy

Matrix Factorization
Matrix Factorization [40] Sec. 4.2.1 UpMF

Update

Table 5.1: Baselines’ names, reference and description.

Table 5.2: Subset statistics of the commercial ITS dataset described in Sec. 2.4.1

DTrain DTest

Number of Tasks 2035 2035
Number of Students 24288 713
Total Student-Task 751109 102038
Interactions, N

students with long histories to verify that the prediction performances do not de-

teriorate over time.

We selected only the students i of one country with at least Ni > 10 interac-

tions, where one interaction correspond to a student solving a task. The avail-

able students are then further divided in two groups. The group of those with

10 < Ni < 100 is used to initialize the latent features of all algorithms (DTrain,

Tab. 5.2), whereas the others with Ni > 100 are used to test the online updates

of Abernathy, UpMF, KSEMF, and KSEMF SD (DTest Tab. 5.2). Since DTrain

and DTest have no overlapping students, the DTest students’ cold start problem is

solved by including in DTrain data of their first interactions with the ITS, so that

their latent features can be learned in a full training. The samples necessary to

avoid the cold start problem, both for students and tasks, are generally 10. This

amount was empirically defined by [39].

This subset selection should not influence the generalization ability of the model

since it is safe to assume that all the students come from the same distribution. For

instance, the fact of having or not having a long history in the system is not related

to the general ability of the student. Generally, in experiments with small systems

at prototype level, it is possible to distinguish good and not so good students by

having a look at the number of tasks they completed in a specific amount of time

[56]. On the contrary here, the commercial ITS possesses a sequence adaptivity,

that reduces this problem. Moreover, since the ITS is used used mainly at school

over the years it is unlikely that only good students completed ten tasks.

53

5. PROGRESS MODELING

5.3.2 Hyperparameters’ Selection

All the model hyperparameters of MF, Abernathy, UpMF, KSEMF, and KSEMF SD

were selected with a full Grid Search, i.e. the influence on the model error of dif-

ferent combinations of hyperparameters is analyzed in a brute force manner. First

MF ones were evaluated considering the RSME obtained with a further split of

DTrain. 66% of DTrain was used to train the MF model and its 34% was used to

test the model with the different hyperparameters. Abernathy, UpMF, KSEMF,

and KSEMF SD best hyperparameters are then selected in the ranges presented

in Tab. 5.3 according to the performances in DTest. In particular we used the

value Total RMSE computed as in Alg. 1 to evaluate the performances of the

algorithm.

UpMF, Abernathy, and MF hyperparameters are λ, β, iterMax and K. In addition

to these, KSEMF, and KSEMF SD possesses four more hyperparameters: Q, R,

γ or ν, and P0. The empirical approach is to model Q, R, and P0 as diagonal

matrices and test their diagonal values with a logarithmic scale. The selected hy-

perparameters are reported in Tab. 5.3.

In the future more efficient approaches to hyperparameters’ selection could be used

as the ones suggested by [60] and [49].

5.3.3 State Variables’ Initialization

The next question to answer was how to initialize the latent features of the fol-

lowing online updates: UpMF, Abernathy, KSEMF, and KSEMF SD. Since all

algorithms are fully personalized they suffer from the so called cold-start problem,

which occurs when no information is available about the students or the tasks.

Therefore, a random initialization of the latent features would lead to very bad

performances [56]. Usual approach to solve the problem is to train a model with

the classic MF algorithm and use the computed tasks’ latent features to initialize

the online updates. These are then kept constant while the student’s latent fea-

tures are updated with the different algorithms, e.g. as in Alg. 5. So, the by MF

computed students’ and tasks’ latent features are used to initialize respectively

Φ(t=0) and Ψ of all online updating algorithms. Initialization of DTest students’ is

possible because data of their first interactions with the ITS is included in DTrain,

so that their latent features was learned in a full training.

5.3.4 RMSE Evaluation

In this Section we evaluate the overall algorithm performances by computing the

Total RMSE, as in Alg. 1. For MF, UpMF, Abernathy, KSEMF, and KSEMF SD

54

5.3 Experiments

T
ab

le
5.

3:
H

y
p

er
ar

am
et

er
s’

ra
n
ge

s
te

st
ed

an
d

se
le

ct
ed

va
lu

es
fo

r
th

e
d
iff

er
en

t
al

go
ri

th
m

s.

P
a
ra

m
e
te

rs
R

a
n
g
e

S
te

p
U

p
M

F
A

b
e
rn

a
th

y
K

S
E

M
F

K
S
E

M
F

S
D

L
ea

rn
in

g
R

at
e
β

0.
01

-0
.1

0.
01

0.
01

0.
01

0.
01

0.
01

L
at

en
t

F
ea

tu
re

s
K

2-
12

0
20

10
2

12
0

62
62

R
eg

u
la

ri
za

ti
on

λ
0.

01
-0

.1
0.

01
0.

01
0.

00
9

0.
01

0.
01

0.
00

1-
0.

01
0.

00
1

N
u
m

b
er

of
It

er
at

io
n
s

10
-2

00
10

10
0

10
0

25
25

I
te
r M

a
x

S
ta

te
N

oi
se

C
ov

.
Q

0.
00

00
1-

1
lo

ga
ri

th
m

ic
-

-
0.

00
1

0.
00

00
1

E
rr

or
N

oi
se

C
ov

.
P
0

0.
00

00
1-

1
lo

ga
ri

th
m

ic
-

-
1

1
M

ea
su

re
m

en
t

N
oi

se
0.

00
00

1-
1

lo
ga

ri
th

m
ic

-
-

0.
00

1
0.

00
1

C
ov

.
R

W
ei

gh
t
γ

0.
00

00
1-

1
lo

ga
ri

th
m

ic
-

-
-

0.
00

1
L

ea
rn

in
g

R
at

e
ν

0.
00

00
1-

1
lo

ga
ri

th
m

ic
-

-
0.

00
1

-

55

5. PROGRESS MODELING

0 20 40 60 80 100 120 140
0.22

0.225

0.23

0.235

0.24

0.245

0.25

0.255

Latent Features

R
M

S
E

Sensitiveness of RMSE to number of Latent Features

KSEMF_SD
MF
Abernathy
UpMF
KSEMF

Figure 5.2: RMSE sensitiveness analysis to latent features.

we analyze the sensitiveness to the number of latent features. Moreover, we re-

peated the experiment five times to be able to exclude the variance influence due to

the random initialization of the MF. As shown in Fig. 5.2 KSEMF and KSEMF SD

are able to outperform our reference baselines in all tried latent features configu-

rations. As expected, any kind of update delivers a lift in the performances of the

algorithms.

Abernathy shows worse performances than UpMF, this can be easily explained

by considering that Abernathy is a single-epoch SGD whereas UpMF has a multi-

epoch SGD based update. Therefore, UpMF not only could learn from the new

data point, but also had more information available as it uses the entire student’s

history.

In comparison to KSEMF and KSEMF SD, Abernathy has worse performances

despite it uses the same amount of data information: KSEMF and KSEMF SD,

and Abernathy perform their update considering the last state estimate and the

last observation. Nevertheless, KSEMF and derived algorithms model the uncer-

56

5.3 Experiments

tainty on the state, measurements, and observations and therefore they can use

these information to decide how to update the state. How much the filter should

update its belief is coded in the Kalman Gain, Kt = P−t+1H
T
(
HP−t+1H

T +R
)−1

,

which controls the relation between the predicted state estimate and the measure-

ment. The smaller R, the surer we are about our measurement. By considering the

”correct” phase equation, x̂t+1 = x̂−t+1 +Kt

(
yt −Hx̂−t+1

)
, jointly with that of the

Kalman Gain, we see how the state update will rely mostly on the measurements

if R is small. When the state is known accurately then P−t+1 and consequently

HP−t+1H
T are smaller compared to R, causing that the filter mostly ignores the

measurements and relies mostly on the previous state estimate. The same role of

the Kalman Gain is played in Abernathy and UpMF by the regression hyperpa-

rameter, which is however constant over time. It is well known by experts in the

area of MF algorithms that both the regression hyperparameter and the number of

latent features should be adapted to the amount of data available, i.e. the history

length. This means that the best hyperparameters combination changes over time

and implies a trade off between optimizing for the first interactions or the last ones.

This problem can be seen clearly in Figs. 5.3, 5.4, and 5.5, where we evaluated the

RMSE evolution over time in overlapping sliding windows, SlidingW RMSE. In

the first interactions the algorithm has still good performances, but afterwards it

deteriorates significantly. The problem is reported also in Chapter 7, and, to avoid

this issue, we retrained the model each night. This is however a quite demanding

computational requirement and, as we will see in Sec. 5.3.6, can affect the Progress

Modeling approach we want to use. Moreover, UpMF requires the entire history of

one student as input parameter for Alg. 3 that in case of database (DB) implemen-

tation will not only slow down the performances but also increase the complexity of

the system. The other algorithms do not require demanding DB accesses to extract

the entire student’s history since it uses only information of the current time step

to predict the next one. More difficult is to evaluate if KSEMF or KSEMF SD

performs better. In Fig. 5.6 one can see that the algorithms have almost compara-

ble results. The slightly better performance of KSEMF SD for K = 122 points out

a less sensitivity to the increase of latent features’ by KSEMF SD. Nevertheless,

this difference is not statistically significant. As shown by the confidence intervals

plotted in the Figure. We can assume more safely that KSEMF SD performs bet-

ter than simple KSEMF from the SlidingW RMSE results reported in Figs. 5.3,

5.4, and 5.5, were for specific interactions the KSEMF SD error curve is clearly

under the one of KSEMF.

57

5. PROGRESS MODELING

0 50 100 150 200
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Interactions

R
M

S
E

 w
in

do
w

 w
=

5

KSEMF
KSEMFSD
UpMF
MF

Figure 5.3: SlidingW RMSE with window size w = 5

58

5.3 Experiments

0 50 100 150 200
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Interactions

R
M

S
E

 w
in

do
w

 w
=

10

KSEMF
KSEMFSD
UpMF
MF

Figure 5.4: SlidingW RMSE with window size w = 10

59

5. PROGRESS MODELING

0 50 100 150 200
0.2

0.22

0.24

0.26

0.28

0.3

0.32

Interactions

R
M

S
E

 w
in

do
w

 w
=

15

KSEMF
KSEMFSD
UpMF
MF

Figure 5.5: SlidingW RMSE with window size w = 15

60

5.3 Experiments

0 20 40 60 80 100 120 140
0.22

0.225

0.23

0.235

Latent Features

R
M

S
E

Sensitiveness of RMSE to number of Latent Features

KSEMF_SD
KSEMF

Figure 5.6: Comparison between KSEMF and KSEMF SD

61

5. PROGRESS MODELING

5.3.5 Evaluation of the Cold Start Problem

In this Section we discuss the impact of the cold start problem to the score predic-

tion for new students. As already discussed in Sec. 6.3.2, often researchers cannot

obtain enough time with children that have already experience with the system

and therefore MF utility is dramatically reduced. So, since the 10 interactions

required to avoid the student’s cold start problem ([39]) are not always available,

we show also results when just one interaction is included in DTrain.

In Fig. 5.7 we can see how the Total RMSE, computed as in Alg. 1, evolves over

time. Models marked with the ”Cold” label are initialized with only 1 sample

whereas the others are initialized with 10. MF Cold behaved like a random pre-

dictor with an error around 0.5 and is not shown in Fig. 5.7. As it is possible to

see, the 10 samples substantially improved the error. Nevertheless, we believe this

is still not an optimal initialization for KSEMF SD, since for the first interactions

KSEMF SD is outperformed by UpMF and MF with 10 samples initialization.

KSEMF SD, initialized with 10 samples, has a similar behavior as MF because it

inherits the error of MF tasks’ latent features whereas KSEMF SD error amelio-

ration is due to the better students’ latent features modeling.

If these 10 interactions are not available, KSEMF SD Cold converges faster to

smaller errors than UpMF Cold. In [56] it was discussed how the cold start prob-

lem limits the usage of MF in small ITS or for short experiments with new students.

Therefore, a faster converging error is an appealing property, that could further

reduce the requirements of MF.

5.3.6 Modeling Student Progress

In order to use the developed algorithm to model student progress, it is impor-

tant to be able to use the performance predictor as model for the user state and

take decisions accordingly. One of the claimed disadvantages of MF approaches

in comparison to BKT and PFA is that the amount of knowledge of the student

cannot be extracted directly from the latent features computed by the algorithms.

For this reason in Chapter 6 we proposed a sequencer which uses only the infor-

mation coming from the predicted score. In Fig. 5.9 it is shown (a) how the latent

features evolve according to KSEMF SD algorithm in a scenario with 62 latent

features and (b) how the latent features evolve according to UpMF algorithm in a

scenario with 102 latent features. Fig. 5.9 (f) shows the actual score of the student

(blue) and the predicted performance of the student by KSEMF SD (green) and

MF (red). This figure can be found larger in Fig. 5.8. There, one can see how the

actual score curve cannot be used to interpret the student progress. It must be

considered that the 200 interactions involve a period of one year, where the student

62

5.3 Experiments

0 50 100 150 200

0.15

0.2

0.25

0.3

0.35

Interactions

T
ot

al
_R

M
S

E

Total_RMSE

UpMF
KSEMF_SD
MF
KSEMF_SD Cold
UpMF Cold

Figure 5.7: DTest Total RMSE behavior over time: Models marked with
”Cold” label are initialized with only 1 interaction in DTrain whereas the others
with 10.

63

5. PROGRESS MODELING

0 100 200

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
(a) Actual Score

0 100 200
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
(b) KSEMF Predicted Score

0 100 200
0.4

0.5

0.6

0.7

0.8

0.9

1
(c) UpMF Predicted Score

Figure 5.8: Actual score (left), KSEMF SD predicted score (center), UpMF pre-
dicted score (left).

could have increased his knowledge in each of the 22 topics of several difficulty lev-

els. Since both UpMF and KSEMF SD mimic the actual score behavior, the same

interpretability problem occurs. However, the predicting ability of KSEMF SD let

us suppose that the latent features have indeed a state meaning for the algorithm

and consequently an evolution according to the student’s performance should be

monitored. Therefore, to monitor a meaningful trend, we aggregated the features

computing the absolute value normalized for the number of latent features as in

Eq. (5.9) and depicted the results in Fig. 5.9 (c) for KSEMF SD and (d) for

UpMF.

kn =
1

K

K∑
k=0

|ϕk| (5.9)

Under the interpretation that ϕi,k = 0 means student i does not possess skill k,

whereas |ϕi,k| > 0 means having some ability in skill k, variable kn could be un-

derstood as the personalized knowledge evolution or the learning curve of the user.

Although UpMF latent features are learned from scratch after each interaction one

can notice in the figures an evolution trend, which is as plausible as the one of

KSEMF SD. This also confirms that the latent features in MF approaches repre-

sent the state of the user and their value could be used to retrieve the students

64

5.3 Experiments

knowledge amount. We believe this works because the tasks’ latent feature are

kept constant. Therefore, in order to keep track of the current state of the stu-

dents one cannot do a full retrain of the UpMF model, as done by [43], since this

would reset the values of the tasks’ latent features, that allow reconstructing at

each interaction the state of the student by means of the student’s history.

5.3.7 Personalization

One important aspect of Progress Modeling is personalization. MF creates an

individualized model as well for tasks as for students. In order to do so also for

KSEMF SD, each student has his/her own KSEMF SD equations updating ac-

cording to his/her modeled state and performances. Since the simulator equations

are based on the state variable, in this context, also the B matrix is personalized

and change at each interaction. Therefore, the update equations of KSEMF SD

model personalization in two different ways. The B matrix represents the influ-

ence of the student on the update, i.e. what is his/her learning rate and its skills’

deficiency. The control u, i.e. the tasks’ latent features ψ, represents the influence

of the task on the knowledge acquisition of the student. Hereafter, we will see how

the state as well as the update evolve over time in a personalized way.

5.3.7.1 Personalized state evolution

In Fig. 5.10 (a) and (d) we can see the personalized latent features’ trends

of KSEMF SD. In Fig. 5.10 (c) and (f) and in Fig. 5.9 (e) we can see the

Total RMSEs of the models for three specific students. These are overall coherent

with the results presented in Fig. 5.7. This information could be used in several

ways, e.g. by later establishing the mapping between the computed kn trend and

the actual knowledge acquisition of the users, we could design novel policies for

sequencing tasks, feedback and hints. In addition, the relationship between kn

and the model error should be further analyzed. This will allow also to monitor

the performances of the performance predictor over time.

5.3.7.2 Personalized update evolution

In this Section we discuss the plausibility of the personalized update trend derived

through Eqs. (5.7). For simplicity we considered ỹ, which represents the update

of the state, since it is later multiplied with constant γ to obtain B (See Eq. 5.1).

In Fig. 5.11 (f) we show, for a student, how ỹ evolves over time. An almost con-

stant update is plausible, since it mimics the learning rate of the student, which

is related to his/her learning ability. However, its adaptive computation through

65

5. PROGRESS MODELING

0 50 100 150 200
−2

0

2
(a) State Evolution KSEMF

0 50 100 150 200
−0.5

0

0.5
(b) State Evolution UpMF

0 50 100 150 200
0

0.5

1
(c) Knowledge Evolution KSEMF

0 50 100 150 200
0.05

0.1
(d) Knowledge Evolution UpMF

0 50 100 150 200
0

0.1

0.2
(e) RMSE Error

0 50 100 150 200
0

0.5

1
(f) Score

Figure 5.9: x-Axis: Number of tasks seen by the student or interactions.
y-Axis:
(a) state evolution according to KSEMF SD with K=62.
(b) state evolution according to UpMF with K=102.
(c) and (d): knowledge evolution for KSEMF SD and UpMF computed as in Eq.
(5.9).
(e) Total RMSE of KSEMF SD (blue), MF (green) and UpMF (black).
(f) Actual performance of the student (blue), predicted performance by
KSEMF SD (green), MF (red).

66

5.3 Experiments

0 50 100 150 200
−5

0

5
(a) State Evolution Student 1

0 50 100 150 200
0

1

2
(b)Knowledge Evolution Student 1

0 50 100 150 200
0

0.2

0.4
(c) Error Student 1

0 50 100 150 200
−5

0

5
(d) State Evolution Student 2

0 50 100 150 200
0

1

2
(e) Knowledge Evolution Student 2

0 50 100 150 200
0

0.2

0.4
(f) Error Student 2

Figure 5.10: x-Axis: Number of tasks seen by the student or interactions.
y-Axis:
(a) and (d): KSEMF SD state evolution of two different students, K=62.
(b) and (e): kn of KSEMF SD latent features computed as in Eq. 5.9.
(c) and (f): Total RMSE of KSEMF SD (blue), MF (green) and UpMF (black)
of two different students.

67

5. PROGRESS MODELING

the state is of advantage, since it allows the model to faster adjust to the students’

states changes. In Fig. 5.12 we see that the average update for all students evolves

over time converging only in the last interactions to a constant value. This is ex-

plicable with the previously seen behavior of KSEMF SD in the first interactions

(see Fig. 5.7) and should be seen as another indicator that the initialization of the

algorithm is not optimal.

Although we were not interested in keeping the simulation properties of the simu-

lator from which we derived our equations, we briefly discuss why ŷ is smaller than

the actual performance. Since the variables of ϕ and ψ are not clipped between 0

and 1 as in [45]
∥∥αi,jk ∥∥ is consequently bigger on average and ỹ smaller than the ac-

tual performance. In conclusion, given the ameliorated results of KSEMF SD over

UpMF, reported in both Fig. 5.7 and Fig. 5.2, we overall showed that the designed

equations for KSEMF SD are suitable to update the students’ latent features.

5.4 Conclusions

In this Chapter we presented KSEMF and KSEMF SD, two novel methods for

student Progress Modeling based on online updating MF performance prediction

and Kalman Filters. Progress Modeling is proposed, as amelioration of domain

independent performance prediction, it allows showing the evolution of the stu-

dents over time in a plausible way. We showed that it is possible to give a specific

interpretation to latent features which represents the state of the student and the

characteristics of a task. In future work, the relationship between the computed kn

could be mapped with the real knowledge evolution with the final goal to deliver

an effortless analysis tool to teachers and developers. In order to do so, an idea

could be to apply the same approach to the contents’ latent features associating

the normed sum of the latent features with the estimated difficulty level of a task.

With a laboratory experiment it would be easier to map the from the algorithms

retrieved curve to the available tasks’ domain information, rather than trying to

map predicted and real students’ knowledge.

KSEMF and KSEMF SD also showed appealing properties in comparison to other

potential domain independent progress modeler. First, the algorithm requires

less resources as the entire student’s history is not necessary to compute the up-

dated latent features. Then, the algorithm is still domain independent because

the tagged skills of the tasks are not used to deliver a score prediction. Finally,

KSEMF SD reduced the prediction error and is less sensitive to the lack of data.

In future work we believe to further be able to reduce the error by developing a

better initialization of the students’ latent features. In conclusion, in this Chapter

we showed that Recommender Systems and Kalman Filters can be successfully

68

5.4 Conclusions

0 50 100 150 200
−5

0

5
(a) State Evolution KSEMF

0 50 100 150 200
−0.5

0

0.5
(b) State Evolution UpMF

0 50 100 150 200
0

0.5

1
(c) Knowledge Evolution KSEMF

0 50 100 150 200
0.05

0.1
(d) Knowledge Evolution UpMF

0 50 100 150 200
0

0.5
(e) RMSE Error

0 50 100 150 200
0

0.5

1
(f) Update

Figure 5.11: x-Axis: Number of tasks seen by the student or interactions.
y-Axis: (a) how the state evolves according to KSEMF SD with K=62.
(b) shows how the state evolves according to UpMF algorithm with K=102.
(c) and (d) show the knowledge evolution, computed as in Eq. (5.9).
(e) RMSE of KSEMF SD (blue), RMSE of MF (green) and UpMF (black).
(f) Actual Performance of the student (blue), predicted performance of the student
by the KSEMF SD (green), predicted performance by MF (red) and ỹ (turquoise).

69

5. PROGRESS MODELING

0 50 100 150 200
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26
Mean Update

Interactions

U
pd

at
e

Figure 5.12: Mean Update Over Time Update behavior at each interaction on
average for all students.

combined. We are then looking forward in testing such approach with other user
modeling applications.

70

Chapter 6

The Vygotsky Policy Sequencer

Contents
6.1 Content Sequencing Structure 73

6.1.1 The Sequencer Structure 74

6.1.2 Simulated Learning Process 76

6.2 Experiment Session . 78

6.2.1 Experiments on the Simulated Learning Process 80

6.2.2 Sensitivity Analysis on the Vygotsky Policy 80

6.2.3 VPS Evaluation . 81

6.2.4 Advanced Experiments 82

6.3 VPS Feasibility and Utility 86

6.3.1 Sequencing VPS Feasibility 88

6.3.2 Sequencing VPS Utility 89

6.4 Conclusions . 90

Sequencing contents, like tasks, hints, and feedbacks, is an open issue for Intel-

ligent Tutoring Systems. The common approach is based on domain analysis by

experts, who characterize each content with skills involved and a difficulty level. In

addition, Machine Learning based sequencers require a specific dataset collection

to create users’ models and a sequencing policy, which needs to be tested online

with strong ethical requirements and a high number of users.

71

6. THE VYGOTSKY POLICY SEQUENCER

In this Chapter we propose a novel method of sequencing based on Matrix Factor-
ization Performance Prediction and Vygotsky’s concept of Zone of Proximal Devel-
opment. This approach represents a valid alternative to Reinforcement Learning
and Bayesian Knowledge Tracing. Reinforcement Learning, can be reconnected to
robotics, which has an availability of accurate simulators and tireless test subjects.
The same cannot be said for ITS where, generally, apart from adults, also children
of any age are involved.
To perform an preliminary offline evaluation of the developed sequencer, we de-
signed a simulated learning environment with customizable scenarios. The se-
quencer’s tests allow showing that a performance prediction method can be used
to create offline fully personalized students’ models that combined with a score-
based sequencing policy propose contents without domain engineering/authoring
effort. Its results in the designed simulated environment are promising in compar-
ison to curriculum based policies.
Therefore, the main contributions of the developed sequencer are:

1. A content sequencer based on a Performance Prediction system that (1) can
be set up and preliminary evaluated in a laboratory, (2) models multiple
skills and individualization without engineering/authoring effort, (3) adapts
to each combination of contents, levels and skills available.

2. Simulated environment with multiple skill contents and students’ knowledge
representation, where knowledge and performance are modeled in a contin-
uous way.

3. Experiments on different scenarios with direct comparison with informed
baseline.

After a successful offline evaluation, several other considerations before integration
in an ITS need to be done. The final evaluation with an online experiment can be
found in Chapter 7, as well as a designed method for lightweight integration.
These contributions are also published in: [42, 45].
This Chapter is structured as follows. We will first discuss the issues related to the
evaluation of systems interacting with humans and the reason why the design of a
simulated learning process should be a mandatory first step in every sequencer’s
evaluation. After having discussed the plausibility of the simulated learning pro-
cess, we present our sequencer the so-called Vygotsky Policy Sequencer (VPS).
We analyze the results under different perspectives, by exploiting the simulated
learning process we consider different sequencing policies and analyses the effect
they have on learning. We then discuss how flexibly the sequencers adapts to
the different situations. We continue discussing next steps towards integration of

72

6.1 Content Sequencing Structure

Student

ITS

Vygotsky

Policy

Performance

predictor

Figure 6.1: System structure in a block diagram.

the VPS into a real system. In particular, we point to utility and feasibility of

the VPS. Finally, we introduce potential ameliorations that could lead to a more

personalized sequencer.

6.1 Content Sequencing Structure

The designed system is an ITS (see Fig. 6.1) that consists of different modules:

the available contents, the previous interactions of the students with the system

(log files), the students’ model computed by the Performance Predictor and the

Sequencer Policy. The Performance Predictor needs the log files of students in-

teracting with the contents that are used to predict their potential performance

or score in the next contents. The policy is applied in an adaptive way thanks

to the information on the predicted scores shared between Performance Predictor

and Sequencer.

First step toward a working prototype requires testing in a laboratory. Since se-

quencing problems can only be evaluated online, i.e. the sequence optimality can

be measured only after a student worked with it, we designed a simulated learning

process that is described in Sec. 6.1.2. We excluded the possibility of collecting an

73

6. THE VYGOTSKY POLICY SEQUENCER

exploratory corpus because making students practice with very easy and very diffi-

cult exercises in random order could be frustrating, especially if they are children.

After a first validation with real students, only a common dataset collection will

be necessary to set up the system with new contents, giving also the possibility to

calibrate the environment and later use it for new sequencing methods.

In this Chapter we use the word content to refer to the activities a student in-

teracts with, although our main focus here is task sequencing. Taking advantage

of the simulated learning process characteristics described, we can later interpret

contents as different ITS elements. As explained in [44], a content could be a hint,

a feedback, a topic or a task, whose sequencing could in each case take advantage

of the designed system as we will discuss later.

6.1.1 The Sequencer Structure

Let C ⊆ C and S ⊆ S be respectively a set of contents and students, dcj be the

difficulty of a content defined as dcj =
∑K

k=0 ψj,k. The content sequencing problem

consists in finding the optimal policy π∗:

π∗ : (C× Ŷi)→ C. (6.1)

that selects the next content given the available contents and the predicted score

on the contents Ŷi., i.e. without knowing the difficulties of the contents and the

required skills to solve them.

A common problem in designing a policy for ITS is retrieving the knowledge of the

student from the given information, e.g. score, time needed, previous exercises,

etc. The previous mentioned data types are just an indirect representation of the

knowledge, which cannot be automatically measured, but needs to be modeled

inside the system. Hence, integrating the curriculum and skills structure is the

cause of high costs.

In this work we try to keep the contents in the Vygotskys Zone of Proximal De-

velopment (ZPD) [57], i.e. the area where the contents neither bore or overwhelm

the learner. We mathematically formalized the concept with the following policy,

that we called Vygotsky Policy (VP):

ct∗ = argminc
∣∣yth − ŷt (c)

∣∣ (6.2)

where yth is the threshold score, i.e. the score that keeps the contents in the ZPD.

The policy will select at each time step the content with the predicted score ŷt at

time t most similar to yth.

Our approach is related but different from [25], where it is hypothesized that the

74

6.1 Content Sequencing Structure

ZPD could be used to select the next task, by considering the predicted probability

of answering a task correctly. The authors of [25] propose to select those tasks

where the probability of answering correctly is at 50 %, since the new data recorded

would also ameliorate the prediction ability of the model used for performance

prediction and 50 % would theoretically be in the middle of a ZPD defined between

0 and 1. Nevertheless the feasibility of this idea was not evaluated. We disagree

with this decision, as we want to focus on the sequencing performances rather than

on the prediction performances. A human teacher would select tasks that students

are more likely to solve and leave the ones that (s)he is not sure about for later. In

Sec. 6.2.2 and 7.2 we will suggest ways to select the correct yth value. Especially

in Sec. 7.2 we discuss how this value must be carefully decided.

The peculiarity of the VP is the absence of the difficulty and ”required skills”

concept. Defining the difficulty for a content in a simulated environment as ours

is easy, because we mathematically define the skills required. In the real case

it is not trivial and quite subjective. Also the required skills are considered as

given in the other state of the art methods like PFM and BKT, where a table

represents the connection between contents and skills required. Without skills

information not only BKT and PFM performance prediction cannot be used in

our formalization, also sequencing methods [22] have no information to work with.

Therefore, to compute ŷt please refer to Sec. 4.1 for the description of Biased

Matrix Factorization (BMF), which is the performance predictor used in this work.

At the same time please also consider that specific Performance Predictor and

policy were chosen, however, nothing is against using other ones in the future

following the same approach.

Matrix Factorization was selected for sequencing as it has several advantages in

comparison to BKT state of the art presented in Sec 3.1.1:

1. Domain independence. Ability to model each skill, i.e. no engineering/authoring

effort in individuating the skills involved in the contents.

2. Having better performances in Root Mean Square Error on Benchmark

datasets.

3. Possibility to build the system without an exploratory corpus, which is con-

sidered as unethical by pedagogues.

Despite the fact that MF is generally used for large datasets, the algorithms also

outperforms other state of the art algorithms for small datasets, as reported by

[38].

75

6. THE VYGOTSKY POLICY SEQUENCER

6.1.2 Simulated Learning Process

Given the necessity of preliminary evaluation in a laboratory, it is of crucial impor-

tance to have a simulated environment able to model reality with a certain degree

of fidelity. For our system we required a score and skill representation between 0

and 1, to be able to test following aspects:

1. Possibility to use score as single success indicator for sequencing

2. Ability to model a multiple skill domain and students’ knowledge by the

performance predictor

3. Possibility to change number of skills involved to test flexibility

4. Possibility to test also noisy processes

We designed a simulated student based on the following assumptions:

(1) A content is either of the correct difficulty for a student, or too easy, or too

difficult. (2) A student cannot learn from too easy contents and learns from difficult

ones proportionally to his knowledge level. (3) It is impossible to learn from a

content more than the required skills to solve it. (4) The total knowledge at the

beginning is different than zero. (5) The general ability on connected skills helps

solving and learning from a content. The last assumption is more plausible because

we assume to sequence activities of the same domain. For instance, in order

to solve a fraction addition, a student needs more related skills: multiplication,

fraction expansion etc. It is unlikely for a student to do a fraction expansion

without knowing how multiplication works. At the same time the knowledge of

multiplication will help him solving the steps on fraction expansion.

A student simulator is a tuple (S,C, y, τ) where, given a set S ⊆ [0, 1]K of students,

si is a specific student described as a vector ϕt. The latter is of dimension K, where

K is the number of skills involved. C ⊆ [0, 1]K is a set of contents, where cj is

the j–th content, defined with a vector ψj of K elements representing the skills

required. ϕi,k = 0 means student’s i skill level k is zero, whereas ϕi,k = 1 means

having full ability. In addition In ϕik > ϕfk means student i is more knowledgeable

than student f on skill k and ψjk > ψgk means that more knowledge on skill k is

required to solve content j than to solve content g. By comparing ψjk and ϕik we

define the ZPD as described in the formulas below. τ : S × C → S is a function

defining the amount of skills acquired by a student and therefore the follow-up

state ϕt+1 = ϕt + τ of a student si ∈ S after working on contents ctj at time t.

In particular S and C are the spaces of the students and contents respectively.

76

6.1 Content Sequencing Structure

Finally, a function yt defines the performance yt(ϕi, ψj) at time t.
y and τ can be formalized as follows:

y(ϕi, ψj) := max(1− ||α||
||ϕi||

, 0)

τ(ϕi, ψj)k :=y(ϕik, ψjk)αk

ỹ :=yε (6.3)

where
αi,jk = max(ψjk − ϕik, 0) (6.4)

and ε is proportional to the beta distribution B (p, q). We selected p and q in
order to have ỹ ∼ B (y, σ2), where σ2 is the variance, i.e. the amount of noise. We
chose the beta distribution because it is defined between zero and one as the score.
Consequently it will not change the codomain of the y function. The characteristic
of the formulas are the following.

1. The performance of a student on a content decreases proportionally to his
skill deficiencies w.r.t. the required skills.

2. The student will improve all the required skills of a content proportionally to
his performance and his skill-specific deficiency up to the skill level a content
requires.

3. As a consequence it is not possible to learn from a content more than the
difference from the required and possessed skills. When ψjk < ϕik means
that content j is too easy for student i and (s)he cannot learn from it.

4. A further property of this model is that contents requiring twice the skills
level that a student has, i.e. ‖ψj‖ ≥ 2 ‖ϕi‖, are beyond the reach of a
student. For this reason his performance will be zero (y = 0).
This is easily demonstrated with the following reasoning. Assuming there is
no noise, if a student i is not able to solve a content the score y must be
equal to zero. The score is zero when ||α||

||ϕi|| ≥ 1, but this holds only when

||α|| ≥ ||ϕi||. The only case in which this occur is when for each skill k

‖ψj −ϕi‖ ≥ ‖ψj‖ − ‖ϕi‖ ≥ ‖ϕik‖

‖ψj‖ ≥ ‖ϕi‖+ ‖ϕi‖ ≥ 2 ‖ϕi‖

77

6. THE VYGOTSKY POLICY SEQUENCER

cj dc y τk
[0.1, 0.1] 0.2 1 [0, 0]
[0.5, 0.6] 1.1 0.617 [0.12, 0.0617]
[0.5, 0.7] 1.2 0.515 [0.1, 0.1]
[0.9, 0.9] 1.8 0 [0, 0]

Table 6.1: Simulated learning process with two skills. A simulated student with
ϕ = {0.3, 0.5} scores y and learning τ after interacting with different contents cj.

With a simple experiment without noise, we can show the plausibility of the de-

signed simulator. We inserted values in Eqs. 5.7 as follows. Let us consider a

system with two skills and represent the student knowledge as ϕ = {0.3, 0.5}.
As it is possible to see in Tab. 6.1 with the increase of the content difficulty the

learning increases and the score decreases until ‖ψi‖ ≥ 2
∥∥ϕj∥∥. The maximal

difficulty level is equal to the number of skills since a single skill value cannot be

greater than one. The simulated environment in Tab. 6.1 can be represented in

a 2D diagram as in Fig. 6.2. The red circle represents the simulated student’s

proficiency level on the generic skills one and two. The circle radius, instead, rep-

resents the total knowledge of the simulated students. The light blue circles are

contents whose difficulty level is represented by the radius of the circle, whereas

the knowledge required to solve them is shown by their position in the diagram.

The area between the red lines describes the Zone of Proximal Development of the

student. Only contents in that area can increase the students’knowledge. If the

simulated student interacts with the contents located under the first red line, in the

bottom left corner, the score is one but no new knowledge is acquired. Contents

over the second red line, without intersection, are too difficult for the student and

consequently do not increase the knowledge of the student who will then perform

with a score equal to zero.

6.2 Experiment Session

In this Section we show the experiments performed on the learning process simula-

tor and on the sequencer interacting with it in different scenarios and introducing

noise.

A scenario is represented by a number of contents nc, a number of difficulty levels

nd, a number of skills nk, and a number of students for each group nt.

All the first experiments will have no noise, i.e. ỹ = y.

78

6.2 Experiment Session

Figure 6.2: Student with two skills, si = [0.3, 0.5] represented with a red circle,
could interact with the contents described in Tab. 6.1 represented as the light blue
circles. The radius of the circles indicates difficulty for contents and ability level
for the student. The red lines shows the ZPD according to the simulated learning
environment. Contents whose center lies in the ZPD can be solved by the student.

79

6. THE VYGOTSKY POLICY SEQUENCER

6.2.1 Experiments on the Simulated Learning Process

To prove the operating principle of the simulator we tested basic sequencing meth-

ods in a particular scenario. The one we chose is described in Fig. 6.3, with nd = 7

and nc = 150. For representation purposes we created the contents with increasing

difficulty, so that IDs implicitly indicates the difficulty. For example, a content

with ID 2 is easier than a content with ID 100, see Fig. 6.3. The proposed scenario

mimics an interesting situation for sequencing, i.e. when more apparently equiv-

alent exercises are available. The two policies we used are (1) Random (RND),

where contents are selected randomly, and (2) the in range policy (RANGE), where

each second content is selected in difficulty order. This strategy is informed on the

domain because it knows the difficulty of the contents. We initialized the students

and contents skills with an uniform random distribution between 0 and 1. Again

for representation purposes we show the average total knowledge of the students

that is represented by average of the students skills sum at each time step. We

chose to perform the tests on 10 skills, i.e. the maximal total knowledge possible is

equal to 10. We considered the scenario mastered when the total knowledge of the

student group is greater than or equal to the 95% of the maximal total knowledge.

Fig. 6.4 shows the total knowledge of two groups of nt = 200 students, one group

was trained with random policy the other one with the in range policy. RANGE is

characterized by a low variance in the learning process. RND, instead, has a high

variance because the knowledge level of the students at each time step is given by

chance. It is shown that the order in which the student practices on the contents is

important for the total final learning. Fig. 6.4 also shows how the practice on too

many contents of the same difficulty level, after a while, saturates the knowledge

acquisition. All these aspects demonstrate that the learning progress is plausibly

simulated.

6.2.2 Sensitivity Analysis on the Vygotsky Policy

In order to evaluate the VP we created two more sequencing methods that exploit

information not available in reality. The best sequencing knows exactly which

is the content maximizing the learning for a student, for this reason we called it

Ground Truth (GT). Vygotsky Policy Sequencer Ground Truth (VPSGT), instead,

uses the Vygotsky Policy and the true score y of a student to select the following

content. GT and VPSGT can be considered the upper bound of the sequencer

potential in a scenario, but are impossible in reality because they use information

that is not available. In order to select the correct value of yth we plot the average

knowledge level at time t = 11 for the policy with different yth. From Fig. 6.5

one can see that the policy is working for yth ∈ [0.4, 0.7], this because of the

80

6.2 Experiment Session

relationship between Eqs. 5.7 of the student simulator. In a real environment the

interpretation of these results is twofold. First we assume yth will be approximately

the score keeping the students in the ZDP. Second, this value would allow finding

the trade–off between exploring new concepts and exploiting the already possessed

knowledge. Moreover, as one can see in Fig. 6.6, the policy obtains good results if

compared with GT for some yth, but for others the policy is outside the ZPD and

the students do not reach the total knowledge of the scenario. In some experiments

we noticed that the width of the curve in Fig. 6.5 decreased so that the outer limits

of the yth interval create a sequence outside the ZPD. As consequence we selected

the value yth = 0.5, that means a student would solve half of the task correctly

and was successful in most of the scenarios.

How this value could be selected for a real ITS is discussed in Sec. 7.2.3.

6.2.3 VPS Evaluation

Similarly to the approach explained in Sec. 2.1.2, MF was previously trained

with ns students that were used to learn the characteristic of the contents. Con-

sequently, the dimensions of the MF during the simulated learning process are:

Ψ ∈ Rnc×P and Φ ∈ R(ns+nt)×P , so that Y ≈ Ŷ = ΨΦ.

The scenario we selected for the tests with the VPS has nc = 150, nd = 6, nk = 10

and nt = 400. In order to train the MF–model a training and test dataset need

to be created. We used ns = 300 students who learned with all the contents in

order of difficulty. We used 66% of the data to train the MF–model and the re-

maining 34% to evaluate the Root Mean Squared Error (RMSE) for selecting the

regularization factor λ and the learning rate of the gradient descent algorithm. We

performed a full Grid Search and selected the parameters shown in Tab. 6.2. The

sequencing experiments are done on a separate group of nt students. In order to

avoid the cold start problem 5 contents are shown to them and their scores added

to the training set of the MF. For T = 40 the best content c∗tj is selected with

the policy VP for the nt students, using the predicted performance ŷtij. In order

to avoid the deterioration of the model, after each time step the model is trained

again once all students saw an exercise. A detailed description of the algorithm of

the sequencer can be found in Alg. 7, where Y0 is the initial dataset.

The retraining of the Matrix Factorization is performed here with a full retraining

as in Sec. 4.1, nevertheless all of the previously mentioned update could be used,

e.g. Abernathy [1, 55], UpMF [40], KSEMF, and KSEMF SD (See Chapter 5). As

one can see in Fig. 6.7 the VPS selects the first content similarly to RANGE. Then

the prediction allows to skip unnecessary contents speeding up the learning. Once

the total knowledge arrives around 95%, the selection policy cannot find contents

81

6. THE VYGOTSKY POLICY SEQUENCER

Parameters Choice
Learning Rate 0.01

Latent Features 60
Regularization 0.02

Number of Iteration 10

Table 6.2: Parameters MF

that fit to the requirements. Consequently the students learn as slow as the RND

group, as one can see from the saturating curve. In Fig. 6.8 GT selects the con-

tents in difficulty order skipping the unnecesary ones. The average sequence of the

VPS, instead, is also with approximately increasing difficulty but in an irregular

way. This is due to the error in the prediction performance. In conclusion the pro-

posed sequencer gains 63% over RANGE and 150% over RND. The presented

Algorithm 7 Vygotsky Policy based Sequencer
Input: C, Y0 π, si, T
Train the MF using Y0;
for t = 1 to T do

for All c ∈ C do
Predict ŷ (cj, si) Eq. 4.4;

end
Find ct∗ according to Eq. 6.2;
Show ct∗ to si with Eq. 6.3;
Add y (si, c

t∗) to Yt;
Retrain the MF; // Corrects over- or underestimation by the MF

end

experiments show how the MF is able, without domain information, to model the

different skills of students and contents and partially mimics the best sequence,

which is the one selected by GT in Fig. 6.8.

6.2.4 Advanced Experiments

In this Section we want to show the correct working of the sequencer changing the

parameters of the scenario nk and nc and later adding noise. In order to do so

we consider the percentage of gain of VPS with respect to RANGE considering

a specific time step t = 30 with nk = 10 and nd = 6. As one can see in Fig.

82

6.2 Experiment Session

0 50 100 150
0

1

2

3

4

5

6

7

8

9

10

Exercise number

D
iff

uc
ul

ty
, o

r
su

m
 o

f t
he

 r
eq

ui
re

d
sk

ill
s

Figure 6.3: Scenario: content number and difficulty level.

0 50 100 150
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time Step

A
ve

ra
ge

 T
ot

al
 K

no
w

le
dg

e

RND
RANGE

Figure 6.4: Comparison between RANGE and RND. Average skills sum, i.e.
knowledge, over all the students with variance

83

6. THE VYGOTSKY POLICY SEQUENCER

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

A
ve

ra
ge

 T
ot

al
 K

no
w

le
dg

e
at

 ti
m

e
t=

11

yth

VPSGT
GT

Figure 6.5: Policy selection, i.e. the performance of the Vygotsky policy with
different yth at the same time step. Different groups of students learned with the
Vygotsky policy with yth values going from 0.1 to 0.9. As shown in the figure the
knowledge levels change according to the yth selected.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 T
ot

al
 K

no
w

le
dg

e
w

ith
 d

iff
er

en
t y

th

Time Step

GT
yth=0.2
yth=0.3
yth=0.4
yth=0.45
yth=0.5
yth=0.55
yth=0.6
yth=0.7
yth=0.8
yth=0.9
yth=1

Figure 6.6: Effects of the different yth on the final knowledge of the students. The
learning curves of the student groups that learned with the different Vygotsky
policies.

84

6.2 Experiment Session

0 5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

10

Time Step

A
ve

ra
ge

 T
ot

al
 K

no
w

le
dg

e

RND
RANGE
VPSGT
GT
VPS

Figure 6.7: Average Total Knowledge. How the average learning curve of the
students changes over time.

0 5 10 15 20 25 30 35 40 45 50 55
0

20

40

60

80

100

120

140

160

180

200

Time Step

E
xe

rc
is

e
N

um
be

r

VPS
GT

Figure 6.8: Average sequence selected by the GT and the VPS. The VPS ap-
proximate the optimal sequence that GT computes thanks to the real skills of the
students.

85

6. THE VYGOTSKY POLICY SEQUENCER

Policy Description
Random (RND) Contents are selected randomly
In Range (RANGE) Each second content is selected

in difficulty order.
Ground Truth (GT) Selects the contents according

to which is the one maximizing
the learning.

Vygotsky Policy based Chooses the next content using
Sequencer Ground Truth the policy and the real score of
(VPSGT) a student.
Vygotski Policy based Chooses the next content using
Sequencer (VPS) the policy and the predicted

score of a student.

Table 6.3: Sequencers Description

6.10 the gain obtained by the sequencer depends on the available number of con-

tents. Since in RANGE each second content is selected, with nc < 60 there are not

enough contents for all time steps. Our sequencer can adapt without problems to

the situation. The optimal point for the in range policy is when nc = 60 because

there is exactly the necessary number of contents for the student to learn. When

nc > 60 the students see many unnecessary contents and consequently learn slower.

Fig. 6.9 with nc = 60, t = 30 and nd = 6 shows the dependencies between skills

and gain. The experiments demonstrated a high adaptability of the sequencer to

the different scenarios.

Last we experimented the results robustness adding noise, i.e. ỹ = yε. We experi-

mented with σ2 ∈ [0, 0.5]. As one can see in Fig. 6.11 with σ2 = 0.1 the Vygotsky

sequencers are still able to produce a correct learning sequence but more time is

required. The VPSGT is the one that suffered the most from the introduction of

noise, probably related to the selection of yth.

6.3 VPS Feasibility and Utility

There are several considerations that needs to be taken into account before the

presented Sequencer can be tested integrated in an ITS. Therefore, we discuss

hereafter Feasibility and Utility of the VPS as preliminary evaluation of the effort

required to perform an online experiment.

86

6.3 VPS Feasibility and Utility

0 50 100 150 200 250 300
40

60

80

100

120

140

160

180

Number of Skills

G
ai

n
ov

er
 in

 R
an

ge
 P

ol
ic

y
t=

30
 in

 %

Figure 6.9: Gain over RANGE policy varying nk. The gain is measured at a
specific time step in percentage, considering the average knowledge level of the
two groups of students, one practicing with the RANGE sequencer and one with
the VPS.

0 50 100 150 200 250 300 350 400
−50

0

50

100

150

200

250

300

350

Number of Contents

G
ai

n
ov

er
 in

 R
an

ge
 P

ol
ic

y
t=

30
 in

 %

Figure 6.10: Gain over RANGE policy varying nc. The gain is measured at a
specific time step in percentage, considering the average knowledge of the two
groups of students, one practicing with the RANGE sequencer and one with the
VPS.

87

6. THE VYGOTSKY POLICY SEQUENCER

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8

9

10

Time Step

A
ve

ra
ge

 T
ot

al
 K

no
w

le
dg

e

RND
RANGE
VPSGT
GT
VPS

Figure 6.11: Effect of noise in the simulated learning process. Beta distribution
noise with σ2 = 0.1.

6.3.1 Sequencing VPS Feasibility

As aforementioned the presented experiments represent a proof of concept, i.e.

they give a hint of what could happen if the VPS were integrated in an ITS. Since

the VPS could deliver the same or better results than an informed state of the art

with less authoring effort, we can safely suggest that it is worth to try to confirm

our hypotheses. Before this can happen, the following questions still needs to be

answered.

Theoretically, the selection of yth implies the repetition of an evaluation experi-

ment several times, as we did in the related section with the simulated learning

environment. Therefore yth can be considered as a sequencer hyperparameter.

Nevertheless, simple reasoning can help us defining a reasonable range that could

allow a first experiment. First of all, in our use case we should consider the score

range that indicates whether the student sufficiently learned from the task and

yth should be set in this interval. As we will see in Chapter 7, a possible simple

solution involves an analysis of the log files. In the same Chapter, we also present

a more complex solution, which was developed in strong collaboration with the

authors of the cited papers.

In addition, as pointed out by the experiments with the simulated environment,

the scenario may influence the sequencers’ performances. Here, we want to stress

the fact that a large system with a large number of interactions and alternative ac-

tions is the most interesting scenario to test a domain independent sequencer. The

added contribution of the sequencer is its adaptivity. If just a few tasks are avail-

88

6.3 VPS Feasibility and Utility

able a fixed sequence will work as a VPS. The time to design the fixed sequence

will be reduced and will not require the infrastructure that the VPS and each Ma-

chine Learning method need for their implementation. Moreover, the domain may

be composed of different topics whose skills acquisitions are independent from one

another or with a minimal overlapping. Also this aspect should be investigated in

an online experiment.

Another important point to be taken under consideration is related to the cold

start problem. The latter is strongly connected with the personalized prediction

of Matrix Factorization and affects the utility of the sequencer as well. Therefore,

more information can be found in the next Section, Sec. 6.3.2.

6.3.2 Sequencing VPS Utility

In [56] the cold start problem’s effect on the MF performances applied in ITS

was analyzed. From this analysis insights about the utility of the VPS can be

obtained.

Utility defines how many interactions of a student are required by the system

before the VPS can get a reasonable task sequenced. Since the VPS error is

strongly dependent from the MF error, the VPS utility is strongly connected to

the MF and its sensitivity to the cold start problem. As discussed by [39], at least

10 interactions are required to neglect this problem. This condition often occurs

in ITS where systems are shown to novel students in different classes for trials.

How small datasets affects the performance of MF was already evaluated in [38]

and, despite the lack of data, MF was still the better performing of the different

algorithms tested. The dataset considered by [56], described in Sec. 2.4.2, is small

and also sparse. Therefore, it can be considered more challenging than the one in

[38].

The performance evaluation, presented by [56], considers the error of the MF that

predicts scores for students with a short history length, i.e. for students of which

just a few interactions are available. For this reason the impact of the cold start

problem is expected to be particularly strong . [56] tested the performance of MF

derived algorithms on different students’ sets that changed according to how much

data was available for one student. The authors considered the History Lengths

(HL), i.e. the number of interactions available for each student. The error was

evaluated with LOO considering the students that had at least interacted with is

3 for training. As typical for LOO approach, for each student the last interaction

was left out from the training set. They repeated the experiment then several

times, removing from the test set last interaction from the students with HL ≥ 3,

then HL ≥ 4, etc. until HL ≥ 8. By comparing the RMSE results of MF

89

6. THE VYGOTSKY POLICY SEQUENCER

so computed with those of other state of the art algorithms, we can foresee the
expected behavior of MF in an online experiment.
Under the interpretation of the author, MF and derived algorithms can be used for
prediction as soon as they beat a simple Global Average Predictor (GAP). BMF
and MF are in general influenced by data of students with short history negatively
at the beginning, although, for students with a longer history, these data can be
used to ameliorate performances. As shown by [56], from HL ≥ 5 MF, BMF and
prediction performed using just the BMF biases have not sufficient information
about the students to predict their performance.
In conclusion, this should hold theoretically also for the use of the VPS, although
an online experiment is required for a full evaluation.

6.4 Conclusions

In this Chapter we presented the VPS, a sequencer based on performance predic-
tion and Vygotsky’s concept of ZPD for multiple skills contents with continuous
knowledge and performance representation. We showed that MF is able dealing
with the most actual problems of Intelligent Tutoring Systems, like time and per-
sonalization, retrieving automatically skills required and difficulty. We proposed
VP, a performance based policy that does not require direct input of domain in-
formation, and a student simulator that helps in preliminary off-line evaluation.
The designed system achieved time gain over random and in range policy in al-
most each scenario and is robust to noise. This demonstrates how the sequencer
could solve many engineering/authoring efforts. Nevertheless, an experiment with
real students is required to better confirm the validity of the assumptions of the
simulated learning process. Preliminarily to this online experiment we presented
a discussion on Feasibility and Utility of the algorithm. Such aspects need to be
taken into account for the online experiment presented in the next Chapter. In
conclusion, the VPS was designed to work without domain analysis: the MF will
reconstruct it thanks to a continuous score representation. This will allow the in-
tegration of intelligent sequencers in ITS whose content analysis is not affordable.

90

Chapter 7

Large Scale Experiment

Contents
7.1 Lightweight Integration of Machine Learning algo-

rithms . 93

7.1.1 Machine Learning Requirements 94

7.1.2 A novel Protocol for Machine Learning Integration . . . 95

7.2 Sequencers’ Integration in Commercial ITS 98

7.2.1 Commercial ITS Dataset Preprocessing 100

7.2.2 Online Update Integration 101

7.2.3 Vygotsky Policy Integration 102

7.2.4 Technical Integration . 103

7.3 Experiment Session . 103

7.3.1 Experiment Design . 104

7.3.2 Results from Dataset Analysis 104

7.3.3 Post Test . 105

7.3.4 Questionnaire . 107

7.3.5 Integration . 108

7.4 Computational Requirements 108

7.5 VPS with adaptive Threshold 109

7.6 Conclusions . 111

91

7. LARGE SCALE EXPERIMENT

Many Machine Learning solutions for Learning Analytics are born and die

in laboratories due to the high integration requirements and constraints. As re-

ported in [30] only one half of the developed task recommenders interacts, in a

final evaluation stage, with students, whereas the other half stays at design or

prototype stage of development. Adaptations of models to be integrated into al-

ready existing systems cannot be evaluated as a whole and need to be observed

from different perspectives [5]. This is also important if we consider that in an

integration experiment partners, especially if coming form different research areas,

have different interests and qualitative measures. Integration within already ex-

isting ITS is even more challenging since those systems were not intended to be

combined with Machine Learning methods, so the tendency is to develop ad-hoc

learning environments. Such an integration is becoming unfeasible for Machine

Learning sequencing experiments also because large dataset are needed, time is

required to show students’ learning gains and it is necessary to have enough tasks

to sequence. This impose large scale experiment in sufficiently large systems, that

cannot be created ad-hoc.

In this Chapter we show how we adapted the Machine Learning based domain

independent sequencer of Chapter 6, composed of a Performance Predictor and a

score based task sequencing policy, in order to be integrated in the large commer-

cial online maths ITS described in Sec. 2.4.1.

Thanks to the work done, we could trial the sequencer with 100 students for a

month and discuss the obtained online experiment’s results from different perspec-

tives. The developed sequencer showed the following promising characteristics:

1. Lightweight integrability of Machine Learning based sequencer in not ad-hoc

constructed systems.

2. Having comparable response time as the actual rule based system.

3. Achieving the same post-test results with almost no curriculum authoring

effort.

4. Possessing a better user modeling, better adapting to the knowledge acqui-

sition rate of the students.

5. Outperforming the current sequencer in the perceived experience question-

naire.

92

7.1 Lightweight Integration of Machine Learning algorithms

These contributions are also published in: [43, 48].

In order to show how we achieved the aforementioned contributions we present

our work as follows. In Sec. 7.1 we present a new API that allows to integrate

Machine Learning algorithms with a single method, in Sec. 7.2 we present how

the Vygotsky Sequencer was adapted to a real time working web service. Finally,

in Sec. 7.3 we present the designed experiments and discuss the results.

7.1 Lightweight Integration of Machine Learning

algorithms

The impossibility to have tangible results on the specific use case without an online

test, especially for sequencing, is not sufficient to motivate the effort of a complete

ML integration. An easier ML integration would subsidize the possibility to: (1)

evaluate different Machine Learning (ML) methods, (2) increase data collection

by increasing the ITS users, (3) maintain the algorithms, e.g. because new data

are available or the model is outdated.

Previous discussion about the topic can be found in [33], who considers the ITS

as a pedagogical problem and underlines the necessity to separate the student

modeling from the other components. The ITS server has the task to provide

anonymous interaction between intelligent components on the basis of a specific

communication protocol. Whereas the student/teacher interface interacts with

the ITS server forwarding the contents to the students and resuming statistics

to the teachers. This framework oversimplifies Artificial Intelligence problems

neglecting the fact that Artificial Intelligence comprises both very simple heuristics,

like uninformed search algorithms, or more complicated ML methods. [17], instead,

proposes a plug-in framework for separating the contents from the sequencing, so

that the sequencing technology could be interchanged easily. Nevertheless, the

applicability of that framework to ML-powered sequencers is not discussed.

In this Chapter we fill the gap between data collectors and ML developers by:

1. exploring the requirements that ML systems have to be applied to a specific

learning problem (sequencing), and

2. proposing a minimally invasive protocol (based on web services) to easily

integrate Learning Analytics Services into e–learning systems. The latter

point allows also to minimize integration requirements reducing the risks

and necessary corrective actions in case of experiment failure.

93

7. LARGE SCALE EXPERIMENT

7.1.1 Machine Learning Requirements

ML is a part of Artificial Intelligence. It has the task to abstract from past data

to a model that can be used to predict the outcome of future cases. Consider-

ing ITS, the two most common ML applications are Performance Prediction and

sequencing. Such ML applications consist of 3 steps that need to be integrated:

1. Training, where the model is built,

2. Validating, where the model error is evaluated first off-line, i.e. in a lab-

oratory, and then online, i.e. applied within a bigger system as decision

method

3. Model Maintenance, where ML expertise is required to determine whether

the model is still data representative or a retraining is required.

The early integration for online validation is problematic. In case of Learning

Analytics humans are interacting with the system imposing ethically correct ex-

periments and higher degree of confidence. Other technical requirements exist:

due to the strong statistical approach, data collection or data exchange and analy-

sis could be considered as mandatory requirements for a ML experiment. Similarly

to medical applications, also in educational data mining there is the problem of

having access to data in reasonable amount1. The computational time necessary

to train the model is often not addressed in this application type and is strongly

algorithm dependent. Also if a small amount of time is required, several models

with different hyperparameters need to be built for the evaluation phase2. Slightly

different is the approach required for validating sequencing algorithms. The full

testing can be done only online [10], since a brute force approach, where all possible

sequences are tested on a single person, is not feasible. When the validation phase

is over, the model can be used as decision function for Performance Prediction or

sequencing. Generally, this operation does not require particular resources, if we

assume that the model does not need maintenance.

With these premises it is clearly necessary, especially for sequencing, to have an

early integration with low system coupling.

1With reasonable amount is meant a quantity that allows the model to generalize from the
single examples to an unique model.

2Hyperparameter tuning is done by comparing the prediction error of the model on a separate
part of the dataset.

94

7.1 Lightweight Integration of Machine Learning algorithms

7.1.2 A novel Protocol for Machine Learning Integration

In this Section, we propose a web service oriented integration protocol. In par-

ticular, we discuss the specific context of collaboration between a ML provider,

who has the ML expertise, and a ML client, who has the potentially exploitable

data. According to the requirements mentioned, all steps in Alg. 8 necessitate to

be integrated. In order to reduce the integration effort, several implementation

options are possible.

For the training it can be either assumed that the model is built by the client or

by the provider. In the first case the client must be sure to have enough compu-

tational resources to perform a model training and validation. In the second case,

the data are transferred to the provider that later returns the model to the client.

This is the simplest option since it reduces the required ML expertise of the client.

In case of maintenance or updates, it allows the provider to eventually change the

algorithm and just transfer the model. The validation phase of a Performance

Prediction method, instead, is done only in case of testing, whereas for sequenc-

ing the Get Next Exercise method needs to be integrated with Database (DB)

access already in the validation phase. The architecture in [17] could be extended

to ML based sequencers by granting reading and writing rights to the DB. Never-

theless, this approach still requires the API definition for model transfer and DB

integration. This is not straightforward if the developed method needs an online

formative evaluation and consequent refinements. Moreover, it neglects the lack

of ML expertise, the possible degradation of the model, and improper implemen-

tations of the sequencer.

Consequently, we designed the following system for increasing the chance to apply

ML methods to big amount of unexploited data.

Considering a Performance Prediction experiment the ML evaluation can be done

in a laboratory. Whereas for a sequencing problem, the integration of a ML se-

quencer in the ITS system must take place at the beginning of validation step

without previous exhaustive evaluation. The small integration requirements re-

duces the risks and necessary corrective actions in case of experiment failure.

The provider could be represented in our case from a ML expert group that devel-

oped a set of ML methods for Learning Analytics. The client, instead, could be

another research group or a company, that would like to use those method in its

system.

Web services are programming language independent services deployed over the

web with two main parties: the service provider and the service client.

To avoid also these problems a Web Service deploying the ML-powered sequencer

could be use. In order to do so a further separation of the sequencer is required

95

7. LARGE SCALE EXPERIMENT

Algorithm 8 Methods for consuming ML-powered sequencers

Build the Model(Train Dataset, Test Dataset)
Load Data from DB;
foreach hyperparameters do

Create Model;
Validate Model;
Save best actual Model;

end

Get Next Exercise()
Load the Model from the DB;
Use the Model for sequencing;
Record the real and predicted outcome;

Maintain the Model(Recorded data)
Evaluate Model degradation;
if Training done inhouse then

Build the Model();
else

Import the Model from a third party;
end

96

7.1 Lightweight Integration of Machine Learning algorithms

by eliminating the client database access. A part of the database will be dupli-

cated at the beginning of the cooperation and used by the provider for the training

phase. As a consequence, the provider will be able to create the model, tune it

and update it whenever it is necessary without any other requirement. The API

for the designed sequencer service is:

Get Next Exercise(StudentID, PreviousExerciseID, PreviousScore,

NextExID, T imestamp).

The parameters passed by the method Get Next Exercise can be found in Tab.

7.1. The parameters passed by the method Get Next Exercise are the student

Parameter Description
StudentID Identifcation number of the student. Used to update the

DB.
PreviousExerciseID Identification number of the task solved by the student.

Used to update the DB.
PreviousScore Score obtained by the student in the task he just solved.

Used to update the DB.
NextExID Identification number of the task selected by the VPS

to be shown to the student. Used to manage A/B tests.
Timestamp Timestamp, used for synchronizations between DB.

Table 7.1: Parameter of the ML API

ID, his last score and in which task he obtained it. The last parameter is a Times-

tamp used mainly for synchronization. This value can also be used to avoid that

for any transmission error, two times the same DB entry is recorded. The last data

recorded is necessary in order to maintain the copy of the DB up to date and give

the possibility to both sides to evaluate the results. It is important to notice that

the interests of provider and client are different and consequently different vali-

dations could take place. The method Get Next Exercise should be called after

the use of the old sequencer, if there is one, and before the sequencing decision is

applied by the ITS as shown in Alg. 9. By doing so, the client can decide with a

boolean flag whether the previous or the new sequencer has to be used. In order

for the system to be robust to connection problems a timeout variable is used.

The server side will take care of all parts that require a ML expertise and create

the wrapper in Fig.7.1 for sequencing the steps listed in Alg. 8.

The simple integration in Alg. 9 allows the client to decide with no additional

costs to change to another ML method offered by the Learning Analytics platform

97

7. LARGE SCALE EXPERIMENT

or continue to exploit the method as it is for further tests.

A comparison study can be run easily by maintaining the current sequencer version

as shown in Fig. 7.1. In case of local exploitation the web service structure can

be integrated within the client system importing from the provider the relevant

parts as done in [17]. Fig. 7.1 shows also how the DB of the Learning Analytics

platform is divided in three components. The log files DB, is partly composed

from the previous data of the company and the data collected by the service. The

model DB stores the developed ML models and the Domain DB contains curricu-

lum information (e.g. skills involved in the tasks, difficulty level, task domain)

that has to be taken into consideration while sequencing. The further separation

of the sequencer from the ITS envisages the possibility not to use curricula-based

sequencers but a novel kind, as proposed in Chapter 6, that schedules tasks exploit-

ing the statistical information of the students (e.g. scores, time needed, previous

exercise solved). For these reasons in Fig. 7.1 the domain DB is in brackets. The

increased complexity for the server side in Fig. 7.1 allows therefore also the use of

the same sequencer for different ITS. The same could be done with other Learning

Analytics ML applications by defining one API for each of them.

Algorithm 9 Implementing the Web Service, client side

Input: StudentID, PreviousExerciseID, PreviousScore, Timestamp
NextEx = Get Next Exercise Curriculum Based();
if !timeout ∧ Flag then

Get Next Exercise(StudentID, PreviousExerciseID, PreviousScore,
NextExID, Timestamp);

end

7.2 Sequencers’ Integration in Commercial ITS

In this Section we want to integrate the domain independent sequencer called

Vygotsky Policy Sequencer (VPS) presented in the Chapter 6 with the large In-

telligent Tutoring System presented in Sec. 2.4.1 by means of the lightweight API

presented in Sec. 7.1. This will involve further modifing two components: the Per-

formance Prediction method and the score based policy as described in Sec. 7.2.2

and in Sec. 7.2.3 respectively. The experiments performed in Sec. 7.3 represents

the online and final evaluation of the VPS in comparison to the state of the art

sequencer designed over the years by the experts for the commercial ITS.

In Chapter 6, the evaluation on groups of simulated students in comparison to

several sequences showed the advantages of such a system. There is no authoring

98

7.2 Sequencers’ Integration in Commercial ITS

F
ig

u
re

7.
1:

N
ew

F
ra

m
ew

or
k

fo
r

li
gh

tw
ei

gh
t

M
L

in
te

gr
at

io
n
.

S
tr

u
ct

u
re

an
d

in
te

ra
ct

io
n

b
et

w
ee

n
th

e
IT

S
p
la

tf
or

m
an

d
th

e
L

ea
rn

in
g

A
n
al

y
ti

cs
S
er

v
ic

es
p
la

tf
or

m

99

7. LARGE SCALE EXPERIMENT

Figure 7.2: Two questions of the commercial ITS

effort for sequencing required, since the system is flexible enough to adapt to ITS

with different number of tasks to practice per difficulty level. Therefore, most ad-

vantages are gained with large or small task availability per difficulty level. Given

a curriculum that possesses the correct number of tasks to practice with for each

difficulty level, the performances between a sequencer that selects tasks in order

of difficulty and the VPS are comparable. On the contrary, if there are more tasks

of the same difficulty level, VPS is able to skip the unnecessary ones. With just

few tasks pedagogical experts would be able to set up a unique sequence in a short

amount of time, since not many sequences could be implemented.

In conclusion, the most interesting scenario for an evaluation would need an ITS

with many tasks, where the sequencer could reduce the burden of pedagogical

experts. Given the interdisciplinary knowledge required for creating such an ITS

from scratch the experiment, without integration with an already existing system,

would not have been affordable.

7.2.1 Commercial ITS Dataset Preprocessing

As aforementioned in Sec. 2.4.1, the ITS has 20 topics about maths for children

aged from 6 to 14, who can practice on over 2000 tasks at school or at home. An

example of questions posed to the students in exercise and test tasks can be found

in Fig. 7.2. The score, as in [45], is represented in a continuous interval which goes

from 0 to 10. The topics and new skills to be acquired are introduced following

100

7.2 Sequencers’ Integration in Commercial ITS

the curriculum of the country.

This also defines the Math Age which represents both the student’s skills level on

a topic and task’s difficulty level. Tasks are assigned to topics and students have

a Math Age per topic. Considering a specific topic, a task of Math Age 10 means

that the difficulty should be solved by students of that age. It means also that a

student with Math Age of 10 in a topic knows more than a student of Math Age

9.

The commercial system possesses a rule–based adaptive sequencer that was de-

signed and refined by pedagogical experts over the year that we call state of the

art (SotA) sequencer. The Math Age is the indicator the SotA sequencer uses to

monitor the progress within the curriculum and select the next tasks. A student

can see tasks of the next difficulty level only if the ones of the previous level are

completed.

We analyzed the dataset collecting the information summarized in Tab. 4.2. In

order to avoid sparseness, which strongly affects MF, each line is generally ab-

stracted to Knowledge Component (KC) level, i.e. the algorithm predicts if the

student is going to answer correctly modeling his knowledge on a KC. Since we did

not have this information, we preprocessed the dataset at task level predicting the

future score for each task. In order to select the best performing model we followed

the standard approach in the field to divide the dataset temporally in two thirds

for training and one third for testing, evaluating the performances with the Root

Mean Square Error (RMSE) as done in Sec. 2.1.1. We considered the last 3 years

of data, excluding the oldest ones, since the tasks were slightly modified over time.

We also removed the skipped tasks, where the score is automatically assigned to

7.5 out of 10 (7.5/10) by the ITS. Those data were considered noisy since there

was no evidence that 7.5/10 could represent the knowledge of the student at that

time. With a full Grid Search we selected the best hyperparameters’ combination

(P = 50,λ = 0.01, learn rate = 0.02, 100 iterations per training).

7.2.2 Online Update Integration

It is well known to those working with recommender technology that MF deals

with slow evolving states, i.e. models are kept constant over a long period of time,

whereas here we have a fast evolving state. As a consequence if the student is

repeating a task his mark is computed as the weighted sum of the previous per-

formances. Two past data on the same task are considered equally. Since the stu-

dents’features change after each interaction in Chapter 6 the model was retrained

each time. Given the data amount this was not feasible while students were inter-

acting with the system. In order to keep the model up to date, we implemented

101

7. LARGE SCALE EXPERIMENT

the online update UpMF proposed in [40] and in Sec. 4.2.1 that was previously

tested for cold start problems in recommender systems. As already described, the

method is an approximation of a full MF retrain. Moreover, the paper reports how

the performances of the update deteriorates over time in comparison to the full

retrain. Considering Alg. 7, we solved again the minimization problem of Eq. 4.3

optimizing the student’s latent feature vector ϕ with gradient descend algorithm.

We noticed that after approximately 20 interactions the model’s update was not

updating features as expected. This is coherent with the errors behavior reported

in [40]. As a consequence, each night we retrained the model, assuming students

would see approximately 10 tasks per day. Given the large data availability we

had no cold–start problem, which is experienced in MF when not enough data on

tasks or on students are available. As aforementioned, the task cold–start problem

is not common to the movie rating applications since there the data availability

is higher, but could be experienced in ITS. For this reason it was crucial to have

a partner with large data availability both on tasks and on students. We were

able to select 100 students coming from the same school and that had already

experience with the system, so that also the student cold–start problem could be

avoided.

Despite the fact that KSEMF or KSEMF SD would have represented a better

choice to be implemented as Progress Modeling algorithm, they were not available

by the time the online evaluation took place. Since it was not possible to run

the experiment again with the novel algorithm, in Sec. 7.4 we evaluate theoret-

ically the advantages of having KSEMF approach instead of UpMF as predictor

analyzing also the computational requirements of the sequencer integrated as Web

Service.

7.2.3 Vygotsky Policy Integration

The policy integration consisted first of all in selecting the threshold score yth
(see Eq. 6.2). In Sec. 6.2.2 a sensitiveness analysis of the VP to yth was done

with simulated students. The same approach in a real scenario was considered

detrimental for children, consequently the threshold score was selected according to

the authors experience with the system and according to following considerations.

In Sec. 6.3.1 it was discussed that, in order to keep the student in the ZPD, the

selected score should be good, in order to be able to assume that the student

was learning something from the task, but also not excellent, to avoid unnecessary

repetitions on already known concepts. [44] suggested to select the threshold in the

middle of the passing range, i.e. given a passing score of 5.5/10 one should select

as threshold score 8/10. Our decision was made also on further considerations.

102

7.3 Experiment Session

Given the characteristics of the MF we assumed that the model was going to

underestimate the performances of the student, so 8 as threshold score would have

been too high. Moreover, experts, that were analyzing the tasks, suggested that

the path through the curriculum could be ameliorated by removing unnecessary

repetitions rather than increasing practice. Consequently, we decided to choose a

threshold score yth = 6.5, i.e. the lowest possible in the passing range keeping a

safe guard in case of overestimation by the model.

A further policy adjustment was required since in exercise modality bottom out

hints are available. We decided to consider only tasks in test model (see Sec. 2.4.1)

to evaluate students’ability. As a consequence only tests are selected with the VP.

Whether or not the correspondent exercise should be shown is decided considering

the Performance Prediction, if the score predicted is higher than 9.5/10 the exercise

is skipped.

7.2.4 Technical Integration

As proposed in [48] and in Sec. 7.1, we integrated the VPS within the ITS with a

single method API. The minimal integration effort, visible in Alg. 9, was crucial to

convince the commercial partner to invest time and effort integrating a sequencer

still not fully evaluated. The parameters passed by the method Get Next Task

have the following function. The student ID, the task ID and the relative score

obtained are required in order to maintain the VPS DB up to date. The method

Get Next Task was called after the use of the old sequencer by the ITS but before

the sequencing decision is applied as shown in Alg. 9. NextTaskID contained the

task suggestion of the state of the art sequencer, so that the VPS was able to man-

age the A/B test, deciding which students were practicing with which sequencer.

Moreover, to be robust to connection problems we used a Timestamp indicating

when the data was recorded in order to avoid inserting duplicates in the DB and

a timeout variable was used at ITS side for connection problems.

This single method was exposed as Web Service.

7.3 Experiment Session

The purposes of the trial with the students were several. Firstly, we wanted to

show that it is possible to sequence tasks by just considering students’ score with-

out frustrating them. Secondly, we wanted to evaluate sequencer performances in

comparison with the current sequencer used by the ITS, the so called SotA Se-

quencer, which was adapted over the years to the tasks and countries curricula. In

order to answer these questions we analyzed the following success criteria: learning

103

7. LARGE SCALE EXPERIMENT

gains evaluated with trial data analysis, comparison of questionnaire and post test
scores with the SotA sequencer, and finally we evaluate integration performances.

7.3.1 Experiment Design

To demonstrate learning gains by just changing sequences is known to be problem-
atic since the most used indicator is the learning gain of students. This is generally
obtained with a large number of students and over extensive time. Schools agreed
with us to let 98 children interact with the ITS 45 minutes a week for 4 weeks.
Another appointment in the fifth week was granted for a 30 minutes post test and
a five question questionnaire for the perceived experience. Students were able to
practice also at home and use all other related features of the ITS, e.g. spend
coins gained for passing tasks for decorating their virtual room. Of the 98 stu-
dents that were assigned to the study we randomly assigned them to two groups
one was practicing with the SotA sequencer and one with the VPS. Students did
not know to which system they were assigned. Given the reduced amount of time
we could not let students practice with all 20 topics in order to be able to mon-
itor any learning gain. We selected 3 topics and one recall topic, i.e. Fractions,
Properties of Numbers, Solving Problems as well as Rapid Recall on additions and
subtractions. Moreover, we limited the VPS degree of freedom by defining an ac-
tive range for each topic, i.e. we selected a subset of tasks between which the VPS
could choose in order to limit difficulty jumps. The active range of each topic is
initialized with the Math Age of the most difficult task of a topic a student could
solve, this represents the center of the range. We then allowed only tasks around
+/- one year Math Age from the center. Each time the student is able to solve
a more difficult task in test mode the center of the active range is updated. Al-
though from simulated experiments in Chapter 6 an active range seemed not to be
required, we preferred to adopt this risk minimization procedure in order to avoid
frustrating excessively the students in case of experiment failure. Experts consid-
ered the range adequate for an ethically correct experiment and large enough for
being able to evaluate the ability of the VPS to construct a reasonable path. For
introducing new topics we adopted the simple policy of showing them the easiest
available task, further tasks on the topic are selected in the active range with the
Vygotsky policy.

7.3.2 Results from Dataset Analysis

From the 98 students we filtered those that practiced on less than 10 tasks and/or
did not participate to all tests having 80 students left. From the trial data analysis
we could notice that there was no big usage difference. Both groups approximately

104

7.3 Experiment Session

VPS SotA
Avg Math Age Improvement 0.06±0.038 0.03±0.0354
Avg Start Math Age 8.41±1.42 8.26±1.94
Avg End Math Age 9.72±1.92 8.84±2.02
Avg Tasks Score 6.82±0.901 7.9±0.992
Inter Topic StD 0.64 ±0.30 0.32±0.44
MF Error 0.317±0.10 -

Table 7.2: Trial Data Analysis. Values are indicated with ± standard deviation

saw 2000 tasks in a month. In order to have a learning gain comparison we com-

puted the average Math Age per student and per topic at the beginning (Avg

Start Math Age) and at the end (Avg End Math Age) of the experiment. We

then normalized the difference, i.e. the students’ learning gain, with the number

of tasks seen, in order to exclude also amount of practice differences (Avg Math

Age Improvement). As one can see from in Tab. 7.2 the average improvement of

VPS students per task is double as much as the SotA ones. This proved that the

VPS is able to propose tasks in a way that students can proceed in the curriculum

also if this is composed by different topics.

However, by observing Fig. 7.3 it is possible to see how the average standard

deviation (Inter Topic StD) between topics’ Math Age (Inter Topic Standard De-

viation) is higher for those who interacted more with the system. This means that

the inter knowledge standard deviation between topics’ knowledge will increase

until the student finishes the tasks of some topics, i.e. when the tasks of the mas-

tered topics will be too easy to be in the ZPD and the VPS will select those of the

uncompleted topics.

The Performance Prediction was working correctly. As one can see in Tab. 7.2 the

average score for VPS students is 6.82, i.e. the threshold score 6.5 plus a slight

overestimation, as expected. The average score of the SotA students is coherent

with those of the data used to train the model as one could see comparing Tab.

7.2, 4.2.

7.3.3 Post Test

The trial post-test comprised 15 questions; 5 corresponding to each of the three

topics, excluding the recall. The questions were sourced by experts from the ITS

library of tasks ensuring that the Math Age assigned to the task was consistent

with their perceived difficulty of each chosen question, and that the questions

range of difficulty level was broad and considering each difficulty level. Given the

105

7. LARGE SCALE EXPERIMENT

Figure 7.3: Inter topic standard deviation, i.e. average of the standard deviation
between Topic Math Age for students that interacted with 10-24, 25-49, 50-99, or
100-150 tasks.

average age of student this range was from Math Age 7.5 to 11.0. All 15 questions

were taken from the test tasks. These originally existed in paper form and were

adapted to the online ITS tutor. Thus, converting the digital questions back to

their original form required no work, and the questions lost no key form factors

(such as digital interactivity) in the conversion process. For each question one

point was assigned so that the sum of points obtained, normalized in a 0 to 10

range, represents the score of the post test. Moreover, taking the tests from the

ITS curriculum, allowed the experts to reassess the student knowledge in order

to compute the actual Math Age. As expected due to the short time period of

the trial, no difference in average score and Math Age can be seen between the

two groups (Tab. 7.3). This means that the sequencer does not damage learning.

This result could appear at first glance in contrast with the average Math Age

improvement, however the final average Math age reported in Tab. 7.2 of VPS

students, i.e. the most difficult task students could solve, is more similar to those

evaluated by experts in the post test. Finally, the VPS system was able to better

model the current knowledge of the student and adapt to it.

106

7.3 Experiment Session

Post Test Score Average Math Age
VPS 6.68±1.53 9.94±0.60
SotA 6.70±1.79 9.96±0.71

Table 7.3: Post Test Comparison. Values are indicated with ± standard deviation

7.3.4 Questionnaire

In order to evaluate the perceived experience of the students following questions

were posed to them.

• Q1: Was the ITS fun?

• Q2: Were the exercises repetitive?

• Q3: Were the exercises easy?

• Q4: Was the ITS helpful?

• Q5: Was the ITS easy to understand?

The students could give a vote between 1 and 5 where 5 meant strong agreement

and 1 strong disagreement.

As one can see in Tab.7.4 in almost all questions the VPS is slightly better than

the SotA sequencer except from Q4 where the outcome is equal. In general the

experience was positive, as one can see from Q1 and Q4. There where no usability

issues related to introduction of the sequencer as reported from Q5. In Q3 stu-

dents stated that tasks were between the adequate difficulty and too easy. This is

coherent with the outcome of the post tests since the tasks proposed were too easy

at the beginning. The VPS was better at adapting to the students’ learn rate, so

the sequence proposed by the VPS was perceived by the students to be of a more

correct difficulty level. This agrees also with the data analysis where the average

score of the VPS students is lower than the those of the SotA group. The only

negative comment reported was the repetitiveness that could have been perceived

by both groups for several reasons. Firstly because the set of questions in the

tasks cannot be interrupted, secondly because the recall tasks are similar with one

another but in the commercial version are presented interleaved with more topics.

107

7. LARGE SCALE EXPERIMENT

Q1 Q2 Q3 Q4 Q5
VPS 3.76 3.69 3.26 3.56 4

±1.03 ±1.22 ±1.13 ±0.98 ±0.95
SotA 3.59 3.9 3.49 3.51 3.49

±1.23 ±1.12 ±1.13 ±1.29 ±1.11

Table 7.4: Questionnaire comparison. 1: strong disagreement, 5: strong agree-
ment. Values are indicated with ± standard deviation

7.3.5 Integration

We rented a server with 8 virtual CPUs, 30Gb RAM and two SSD of 80Gb each.

The adapted VPS required 6s worst case to: identify the student, his appertaining

group, update the model, and select the next task from the subset with the VP. The

last action was not always necessary, if, for instance, the student had to practice

with the correspondent test of an exercise or if he was of the SotA group and

then the suggestion of the ITS needed just to be forwarded. The sequencing time

could be further reduce by indexing the DB, but we did not require to do so, since

response times were already comparable to those of the current SotA sequencer.

The implementation was tested with 30 students practicing at the same time, but

we do not exclude it could work with more.

7.4 Computational Requirements

In this Section we show by discussing the computational requirements of KSEMF

and UpMF, why KSEMF would have been a better option as Performance Predic-

tor than UpMF for a large experiment such as the one described in this Chapter.

As reported in in the previous Sections, for 30 students in parallel UpMF required

6 seconds to update a student’s state. However, these 6 seconds included also

the time required for the selection policy. Therefore, we present hereafter a more

detailed analysis of the time required for the updates of KSEMF and UpMF. As

already said, the approach of [40] has the disadvantage that the more samples are

available, the more interactions are needed to UpMF to converge, and the more

computational time is required in an online experiment. As it is possible to see in

Fig. KSEMF is slower for short students’ histories but constant over time. This

allows a better evaluation of the characteristics of the machine required to run the

algorithm. This information is particularly important for systems where the al-

gorithm interacts with other processes that require additional computational time

like systems that combine different classifiers to take their decision [18, 19].

108

7.5 VPS with adaptive Threshold

Our additional purpose is to develop a real time predictor, so that it could be

use to sequence also hints and feedbacks that occurs at event level. According to

Human Computer Interaction literature, 0.1s is the maximal reaction time for a

perceived real time system [34]. Given Fig. 7.4, we could think that both KSEMF

and UpMF would allow real time interactions. However, UpMF algorithm exceeds

the 0.1s when access to a DB is required. In Fig. 7.5 we can see a small test

that should give a taste of the time performances required if UpMF is running on

an online experiment with read and write DB operations. In such cases a DB is

a requirement since not all model parameters can be stored in memory and con-

sequently more time needs to be taken into account. Particularly demanding is

the extraction with a query of the entire history of one student requested as input

parameter for Alg. 3. The DB generally possesses a caching system, i.e. the last

requested queries’ results are kept in the cache until the available space is required

for something else. Since we simulated the DB interaction with only one student

we deleted the cache after 20 interactions. As a result, each time a query is made

which is not in the cache a peak is registered. Such peaks appears more often

when more students interact with the system. KSEMF does not require these

demanding DB accesses to extract the entire student’s history since it uses only

information of the current time step to predict the next one.

In conclusion, in addition to reduced RMSE, KSEMF would have delivered reduced

computational requirements if implemented in the large experiment described in

this Chapter.

7.5 VPS with adaptive Threshold

The VPS has an advantage in comparison to other state of the art methods because

it does not require a detailed analysis of the skills involved. Nevertheless, some

steps were required for the VPS to be integrated within a learning platform, as

described by Sec. 7.2. In Sec. 7.2.3 we present an example about how yth could be

selected for a large commercial ITS. Nevertheless, this approach is far from being

optimal.

An automatic way to adapt yth was suggested in [18, 19, 20]. As yth determines the

score we want ideally a student to obtain, it is easy to understand that this value

could effect, not only if the student is indeed in the ZPD, but also his perceived

experience. As a matter of fact, students feel differently over- or under-challenged

and reaction to failures is generally different for every person. Therefore, the

selection of a unique yth is a pragmatic solution, but not the best one. As shown

in Fig. 7.6, the idea presented by Janning et al. hypothesize that from audio

perceived task difficulty recognition could be retrieved and used to adapt yth.

109

7. LARGE SCALE EXPERIMENT

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−3

Interactions

T
im

e
in

 [s
]

Time required for the Update

KSEMF_SD 22
KSEMF_SD 42
UpMF 22
UpMF 42
UpMF 142

Figure 7.4: Time required on a laptop with an Intel Core i5 CPU (2.6GHz) and
8GB RAM without DB accesses for updating one student’s model by UpMF (blue)
and KSEMF SD (red).

110

7.6 Conclusions

40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Students history initialization with DB access

Interactions

T
im

e
[s

]

Figure 7.5: Time required to extract one student’s history form a DB with 926000
lines on a laptop with an Intel Core i5 CPU with 2.6GHz and 8GB RAM.

Once it is determined that the student was over challenged by the task, one could,

for instance, increase the yth so that easier tasks are proposed. Similarly, if the

tasks are perceived as too easy, the yth values should be decreased.

7.6 Conclusions

In this Chapter we presented first a possible architecture for a minimal invasive

ML integration in ITS and then how we applied it to integrate the VPS into a

commercial ITS.

By presenting the steps of ML experiments and requirements we showed how ML

sequencers could be adapted to the current available frameworks. Moreover, we

reduced the integration effort for potential ML consumers proposing sequencers

as Learning Analytics Services. The latter allows an easy management of the ML

methods by the server side and a not binding trial opportunity for the client. In

addition, the novel proposed method allows parallel exploitation of ML-powered

sequencers and other ML-based modules by different ITS. With this lightweight

integration method we want to increase the possibility of integration in large sys-

tems, especially those with a high number of contents and users.

111

7. LARGE SCALE EXPERIMENT

Figure 7.6: [18, 19, 20], VPS with adaptive threshold

In order to prove that our lightweight integration method and the VPS work, we
integrated the VPS in a commercial ITS analyzing its potential from different per-
spectives. Although there was a high standard deviation due to the small sample,
results are promising, showing how the sequencer was able to better model the
students’knowledge. This result is coherent with the results of the questionnaire
and the post test. The latter tests also show that the VPS is not damaging learn-
ing and that children had an experience comparable with the SotA sequencer, a
sequencer that was modeled by experts over the years.

112

Chapter 8

Conclusions and Future Work

Contents
8.1 Achieved Results . 114

8.2 Future Work . 116

In this thesis we focused on algorithms for task sequencing in ITS, with the final

goal to allow students proceeding through tasks without the help of human teach-

ers. We worked on algorithms used for Educational Data Mining extending them

to Learning Analytics.

In particular we proposed for each student a sequence of tasks adapted to his/her

needs and that maximizes his/her learning amount and we then extend Perfor-

mance Prediction developing Progress Modeling, that allows modeling the state of

the student in a meaningful way over time.

Many of the results presented in this work were achieved thanks to the FP7 EU

project called ”Talk, Tutor, Explore, Learn: Intelligent Tutoring and Exploration

for Robust Learning”–iTalk2Learn (grant no. 318051), where the University of

Hildesheim was the coordinator. As such, we contributed to the main goal of the

project, which aimed at building an intelligent platform able to collect, analyze

and adapt to student’s data and therefore ameliorate current state of the art of

ITS.

The goal of developing ”new methods for automatic intervention selection” is ful-

filled here by considering sequencing as intervention method with Progress Mod-

eling as a way to deliver such intervention without detrimental data collections or

too extensive domain information. In achievement of statistical significance, the

113

8. CONCLUSIONS AND FUTURE WORK

sequencer was evaluated with a large amount of students and was able to sequence

the rich structured contents selected.

Moreover, thanks to the collaboration with other authors, we contributed to the

integration of the VPS with other machine learning algorithms empowered with

additional information, such as speech, that allows ameliorating the algorithm

performances.

8.1 Achieved Results

Hereafter we list the achieved results.

Chapter 4 First, in Chapter 4, we discussed the feasibility evaluation of domain

independent Matrix Factorization applied in Intelligent Tutoring Systems for Per-

formance Prediction. As a result, we show that, when using Matrix Factorization,

task IDs, student IDs, and scores can be used to obtain a prediction for dataset not

possessing the level of detail that benchmark datasets of the area have. There we

underlined the necessity of having an time evolving algorithm to model students’

knowledge acquisition. Therefore we adapted and evaluated domain independent

update methods for online learning Matrix Factorization. As a consequence, the

algorithms designed for Data Mining purposes were extended to work with the

online learning problem in a Learning Analytics context.

Chapter 5 In Chapter 5, a novel Matrix Factorization update method based on

Kalman Filters approach is presented in two variations, KSEMF and KSEMF SD,

which have two different updating functions: (1) a simple one considering the task

just seen, and (2) another one, which is aware of the skills’ deficiency of the stu-

dents.

KSEMF and KSEMF SD implement Progress Modeling as amelioration of domain

independent Performance Prediction and allow showing the evolution of the stu-

dents over time in a plausible way. We demonstrated that it is possible to give a

specific interpretation to latent features which represents the state of the student

and the characteristics of a task.

KSEMF and KSEMF SD also showed appealing properties in comparison to other

potential domain independent progress modeler. First, the algorithm requires less

resources as the entire student’s history is not necessary to compute the updated

latent features. Then, the algorithm is still domain independent because the tagged

skills of the tasks are not used to deliver a score prediction. Finally, KSEMF SD

reduced the prediction error and is less sensitive to the lack of data. In conclusion,

114

8.1 Achieved Results

in this work we showed that Recommender Systems and Kalman Filters can be

successfully combined.

Chapter 6 In Chapter 6 a new environment for offline testing of machine learn-

ing controlled sequencers is proposed. We designed a simulated environment com-

posed by simulated students and tasks with continuous knowledge and score rep-

resentation and different difficulty levels. Moreover, we presented an alternative

to Reinforcement Learning for tasks sequencing. The VPS approach does not

require detrimental data collection for users and extensive authoring effort. We

showed that MF is able dealing with the most actual problems of ITS, like time

and personalization, retrieving automatically skills required and difficulty. Then,

we proposed VP, a performance based policy that does not require direct input

of domain information, and a student simulator that helps in preliminary off-line

evaluation. The designed system achieved time gain over random and in range

policy in almost each scenario and is robust to noise. This demonstrates how

the sequencer could solve many engineering/authoring efforts. Preliminarily to an

online experiment we presented a discussion on feasibility and utility of the algo-

rithm. In conclusion, to use the VPS, theoretically no content analysis is required,

since the MF will reconstruct the domain information, thanks to continuous score

representation.

Chapter 7 In Chapter 7 we presented first a possible architecture for a minimal

invasive ML integration in ITS and then how we applied it to integrate the VPS

into a commercial ITS. The design of a minimal invasive API for the lightweight

integration of ML components in larger systems aims at minimizing the risk of

integration and the cost of expertise transfer. The API allowed integration of the

developed sequencer in a large commercial ITS, that could not allow the effort of

a invasive integration. By presenting the steps of ML experiments and require-

ments we showed how ML sequencers could be adapted to the current available

frameworks. Moreover, we reduced the integration effort for potential ML con-

sumers proposing sequencers as Learning Analytics Services. The latter allows an

easy management of the ML methods by the server side and a not binding trial

opportunity for the client. In addition, the novel proposed method allows parallel

exploitation of ML-powered sequencers and other ML-based modules by different

ITS. With this lightweight integration method we want to increase the possibility

of integration in large systems, especially those with a high number of contents

and users. In addition, the proposed service approach could be used for ML ap-

plications different than Learning Analytics.

115

8. CONCLUSIONS AND FUTURE WORK

In the same Chapter a large scale evaluation of the designed sequencer is pro-
posed. The large scale evaluation ran in a commercial system with 100 users and
one month. The sequencer proved to have comparable learning gains and perceived
experience results with those of the ITS sequencer, which was designed over the
years by experts. In addition, the VPS proved to have better modeling abilities, so
that the students could proceed faster through the curriculum. This is an appeal-
ing property for companies that develop ITS, since their goal is to prove not only
the best learning gains but also that they can be obtained in a reduced amount of
time in comparison to the other systems.

8.2 Future Work

The presented work is suitable for several extensions.

Student Modeling Chapter 5 presented kn, a way to show that the norm of
the student latent features increases over time. The latter could be mapped with
the real knowledge evolution with the final goal to deliver an effortless analysis
tool to teachers and developers. In order to do so, an idea could be to apply the
same approach to the contents’ latent features associating the normed sum of the
latent features with the estimated difficulty level of a task. It would be easier to
map the from the algorithms retrieved curve to the available tasks’ domain infor-
mation, rather than trying to map predicted and real students’ knowledge. Once
this is achieved, the same approach could be followed to determine the student’s
knowledge.
With respect to KSEMF approach one could extend the method by learning the
functions computing the next state from the previous state and the control values,
as well as the matrix computing the next observed measure form the current state
estimate. Another possible extension consists in ameliorating the model initializa-
tion, which seems to be one of the reasons why the algorithms have not so good
performances in the first iterations. This amelioration would also reduce the cold
start problem, which occurs by using personalized models. Other methods for the
solution of the cold start problem could be used such as Transfer Learning, Active
Learning, etc.

Sequencing As shown by the simulated environment, it is plausible to be-
lieve that an ameliorate performance predictor could deliver better performances.
Therefore, one could extend the VPS by integrating it with KSEMF Progress
Modeling. As suggested by [18, 19] the VPS could be further ameliorated by in-
tegrating a Performance Predictor analyzing other aspects of the student’s state

116

8.2 Future Work

such as the perceived task difficulty.
In the large scale experiments another potential extension is shown by considering
the performances of UpMF that requires the entire student’s history to update
the latent features. Therefore, KSEMF should not only reduce the error but also
the computational requirements of the algorithm. Finally, another extension is
required to sequence different topics. As shown in Chapter 7, after the experiment
the students that practiced with the VPS sequencer proceeded faster through the
curriculum, but had in the end an unbalanced profile, i.e. they had a different
amount of knowledge in the different topics.

117

8. CONCLUSIONS AND FUTURE WORK

118

References

[1] Abernethy, J., Canini, K., Langford, J., and Simma, A. Online collaborative

filtering. 32, 41, 43, 53, 81

[2] Baker, D., Ryan, S., Corbett, A. T., and Aleven, V. (2008). More accurate

student modeling through contextual estimation of slip and guess probabilities in

bayesian knowledge tracing. In International Conference on Intelligent Tutoring

Systems, pages 406–415. Springer. 26, 28, 39

[3] Baker, R., Pardos, Z., Gowda, S., Nooraei, B., and Heffernan, N. (2011). En-

sembling predictions of student knowledge within intelligent tutoring systems.

User Modeling, Adaption and Personalization, pages 13–24. 29

[4] Beck, J., Woolf, B. P., and Beal, C. R. (2000). Advisor: A machine learning

architecture for intelligent tutor construction. Association for the Advancement

of Artificial Intelligence/Innovative Applications of Artificial Intelligence, pages

552–557. 35

[5] Brusilovsky, P. (2001). Adaptive hypermedia. User modeling and user-adapted

interaction, pages 87–110. 92

[6] Cen, H., Koedinger, K., and Junker, B. (2006). Learning factors analysis–a

general method for cognitive model evaluation and improvement. In Interna-

tional Conference on Intelligent Tutoring Systems, pages 164–175. Springer. 28,

29

[7] Chang, K.-m., Beck, J., Mostow, J., and Corbett, A. (2006). A bayes net

toolkit for student modeling in intelligent tutoring systems. In International

Conference on Intelligent Tutoring Systems, pages 104–113. Springer. 39

[8] Chen, Z. (2003). Bayesian filtering: From kalman filters to particle filters, and

beyond. Statistics, pages 1–69. 33

119

REFERENCES

[9] Chi, M., Koedinger, K. R., Gordon, G. J., Jordon, P., and VanLahn, K.

(2011a). Instructional factors analysis: A cognitive model for multiple instruc-

tional interventions. 29

[10] Chi, M., VanLehn, K., Litman, D., and Jordan, P. (2011b). Empirically

evaluating the application of reinforcement learning to the induction of effective

and adaptive pedagogical strategies. UMAI. 17, 21, 35, 94

[11] Cichocki, A., Zdunek, R., Phan, A. H., and Amari, S.-i. (2009). Nonnegative

matrix and tensor factorizations: applications to exploratory multi-way data

analysis and blind source separation. ohn Wiley & Sons. 30

[12] Corbett, A. and Anderson, J. (1994). Knowledge tracing: Modeling the ac-

quisition of procedural knowledge. UMAI. 26, 40, 46

[13] Diaz-Aviles, E., Drumond, L., Schmidt-Thieme, L., and Nejdl, W. (2012).

Real-time top-n recommendation in social streams. In Proceedings of the sixth

ACM conference on Recommender systems, pages 59–66. ACM. 32

[14] Feng, M., Hansen, E. G., and Zapata-Rivera, D. (2009). Using evidence

centered design for learning (ecdl) to examine the assistments system. In annual

meeting of the American Educational Research Association (AERA), San Diego,

California. 18

[15] Gong, Y., Beck, J. E., and Heffernan, N. T. (2010). Comparing knowledge

tracing and performance factor analysis by using multiple model fitting pro-

cedures. In International Conference on Intelligent Tutoring Systems, pages

35–44. Springer. 28, 29

[16] Guàrdia-Sebaoun, E., Guigue, V., and Gallinari, P. (2015). Latent trajectory

modeling: A light and efficient way to introduce time in recommender systems.

In Proceedings of the 9th ACM Conference on Recommender Systems, pages

281–284. ACM. 31

[17] Gutiérrez, S., Pardo, A., and Kloos, C. D. (2006). A modular architecture for

intelligent web resource based tutoring systems. In International Conference on

Intelligent Tutoring Systems. 93, 95, 98

[18] Janning, R., Schatten, C., and Schmidt-Thieme, L. (2014a). Feature analysis

for affect recognition supporting task sequencing. In European Conference for

Technology-Enhanced Learning. xi, 108, 109, 112, 116

120

REFERENCES

[19] Janning, R., Schatten, C., and Schmidt-Thieme, L. (2014b). Multimodal

affect recognition for adaptive intelligent tutoring systems. In Workshop on

Feedback from Multimodal Interactions in Learning Management Systems at the

International Conference of Educational Data Mining. xi, 108, 109, 112, 116

[20] Janning, R., Schatten, C., and Schmidt-Thieme, L. (2016). Perceived task-

difficulty recognition from log-file information for the use in adaptive intelligent

tutoring systems. International Journal of Artificial Intelligence in Education,

pages 1–22. xi, 29, 109, 112

[21] Kalman, R. E. (1960). A new approach to linear filtering and prediction

problems. Journal of Fluids Engineering, 82(1):35–45. 32, 46

[22] Koedinger, K., Pavlik, P., Stamper, J., Nixon, T., and Ritter, S. (2011).

Avoiding problem selection thrashing with conjunctive knowledge tracing. In

International Conference of Educational Data Mining. 26, 28, 34, 75

[23] Konda, V. R. and Tsitsiklis, J. N. (2000). Actor-critic algorithms. Advances

in neural information processing systems, 12:1008–1014. 36

[24] Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques

for recommender systems. Computer, 42(8):30–37. 30

[25] Krohn-Grimberghe, A., Busche, A., Nanopoulos, A., and Schmidt-Thieme, L.

(2011). Active learning for technology enhanced learning. In Towards Ubiquitous

Learning, pages 512–518. Springer. 74, 75

[26] Lee, J. I. and Brunskill, E. (2012). The impact on individualizing student

models on necessary practice opportunities. International Conference on Edu-

cational Data Mining. 28

[27] Leszczenski, J. M. and Beck, J. E. (2007). Whats in a word? extending learn-

ing factors analysis to model reading transfer. In 13th International Conference

on Artificial Intelligence in Education, Educational Data Mining Workshop. 29

[28] Li, B., Zhu, X., Li, R., Zhang, C., Xue, X., and Wu, X. (2011). Cross-domain

collaborative filtering over time. In Proceedings of the Twenty-Second interna-

tional joint conference on Artificial Intelligence-Volume Volume Three, pages

2293–2298. Association for the Advancement of Artificial Intelligence Press. 31

[29] Malpani, A., Ravindran, B., and Murthy, H. (2011). Personalized intelligent

tutoring system using reinforcement learning. In FLAIRS. 35, 36

121

REFERENCES

[30] Manouselis, N., Drachsler, H., Vuorikari, R., Hummel, H., and Koper, R.

(2011). Recommender systems in technology enhanced learning. In Recom-

mender systems handbook, pages 387–415. Springer. 46, 92

[31] Matuszyk, P., Vinagre, J., Spiliopoulou, M., Jorge, A. M., and Gama, J.

(2015). Forgetting methods for incremental matrix factorization in recommender

systems. In Proceedings of the 30th Annual ACM Symposium on Applied Com-

puting, pages 947–953. ACM. 29, 32, 42, 43

[32] Mazziotti, C., Holmes, W., Wiedmann, M., Loibl, K., Rummel, N., Mavrikis,

M., Hansen, A., and Grawemeyer, B. (2015). Robust student knowledge: Adapt-

ing to individual student needs as they explore the concepts and practice the pro-

cedures of fractions. Intelligent Support in Exploratory and Open-ended Learning

Environments Learning Analytics for Project Based and Experiential Learning

Scenarios, page 32. ix, 3, 23, 34, 35

[33] Mühlenbrock, M., Tewissen, F., Hoppe, U., et al. (1998). A framework system

for intelligent support in open distributed learning environments. International

Journal of Artificial Intelligence in Education (IJAIED), 9:256–274. 93

[34] Nielsen, J. (1994). Usability engineering. Elsevier. 12, 32, 109

[35] Pardos, Z. A. and Heffernan, N. T. (2010). Modeling individualization in

a bayesian networks implementation of knowledge tracing. In User Modeling,

Adaptation, and Personalization. Springer. 28

[36] Pardos, Z. A. and Heffernan, N. T. (2011). Kt-idem: introducing item dif-

ficulty to the knowledge tracing model. In User Modeling, Adaptation, and

Personalization, pages 243–254. Springer. 28

[37] Pavlik, P., Cen, H., and Koedinger, K. (2009). Performance factors analysis-a

new alternative to knowledge tracing. In Artificial Intelligence in Education.

29, 46

[38] Pero, Š. and Horváth, T. (2015). Comparison of collaborative-filtering tech-

niques for small-scale student performance prediction task. In Innovations and

Advances in Computing, Informatics, Systems Sciences, Networking and Engi-

neering, pages 111–116. Springer. 75, 89

[39] Pilászy, I. and Tikk, D. (2009). Recommending new movies: Even a few

ratings are more valuable than metadata. In RecSys. 20, 53, 62, 89

122

REFERENCES

[40] Rendle, S. and Schmidt-Thieme, L. (2008). Online-updating regularized ker-

nel matrix factorization models for large-scale recommender systems. In Pro-

ceedings of the 2008 ACM conference on Recommender systems, pages 251–258.

ACM. 32, 41, 42, 43, 53, 81, 102, 108

[41] Sarma, B. S. and Ravindran, B. (2007). Intelligent tutoring systems using

reinforcement learning to teach autistic students. In Home Informatics and

Telematics: ICT for The Next Billion, pages 65–78. Springer. 36

[42] Schatten, C., Janning, R., and Schmidt-Thieme, L. (2014a). Vygotsky based

sequencing without domain information: A matrix factorization approach. In

Computer Supported Education, pages 35–51. Springer. 9, 72

[43] Schatten, C., Janning, R., and Schmidt-Thieme, L. (2015). Integration and

evaluation of a machine learning sequencer in large commercial its. In Associa-

tion for the Advancement of Artificial Intelligence 2015. Springer. 8, 9, 12, 22,

32, 34, 37, 41, 42, 65, 93

[44] Schatten, C., Mavrikis, M., Janning, R., and Schmidt-Thieme, L. (2014b).

Matrix factorization feasibility for sequencing and adaptive support in its. In

International Conference of Educational Data Mining. 8, 21, 37, 74, 102

[45] Schatten, C. and Schmidt-Thieme, L. (2014). Adaptive content sequencing

without domain information. In International Conference on Computer Sup-

ported Education. 9, 19, 38, 40, 51, 68, 72, 100

[46] Schatten, C. and Schmidt-Thieme, L. (2016a). Hybrid matrix factorization

update for progress modeling in intelligent tutoring systems. Communications

in Computer and Information Science. 8, 47

[47] Schatten, C. and Schmidt-Thieme, L. (2016b). Student progress modeling

with skills deficiency aware kalman filters. In International Conference on Com-

puter Supported Education. 8, 47

[48] Schatten, C., Wistuba, M., Schmidt-Thieme, L., and Gutirrez-Santos, S.

(2014c). Minimal invasive integration of learning analytics services in its. In

International Conference on Advanced Learning Technologies. 9, 93, 103

[49] Schilling, N., Wistuba, M., Drumond, L., and Schmidt-Thieme, L. (2015).

Joint model choice and hyperparameter optimization with factorized multilayer

perceptrons. In IEEE 27th International Conference on Tools with Artificial

Intelligence, pages 72–79. IEEE. 54

123

REFERENCES

[50] Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: An introduc-

tion, volume 1. Cambridge Univ. Press. 36

[51] Thai-Nghe, N., Drumond, L., Horvath, T., Krohn-Grimberghe, A., Nanopou-

los, A., and Schmidt-Thieme, L. (2011). Factorization techniques for predict-

ing student performance. Educational Recommender Systems and Technologies:

Practices and Challenges. IGI Global. 30

[52] Thai-Nghe, N., Drumond, L., Horvath, T., and Schmidt-Thieme, L. (2012).

Using factorization machines for student modeling. In User Modeling, Adapta-

tion, and Personalization Workshops. 30

[53] Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A., and Schmidt-Thieme,

L. (2010). Recommender system for predicting student performance. Procedia

Computer Science, 1(2):2811–2819. xiii, 12, 20, 30, 38, 39, 40, 46, 53

[54] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. MIT press.

33, 49

[55] Vinagre, J., Jorge, A. M., and Gama, J. (2014). Fast incremental matrix

factorization for recommendation with positive-only feedback. In User Modeling,

Adaptation, and Personalization, pages 459–470. Springer. 13, 15, 16, 32, 41,

43, 53, 81

[56] Voss, L., Schatten, C., and Schmidt-Thieme, L. (2015). A transfer learning

approach for applying matrix factorization to small its datasets. In International

Conference on Educational Data Mining. 3, 15, 20, 21, 23, 29, 53, 54, 62, 89, 90

[57] Vygotsky, L. L. S. (1978). Mind in society: The development of higher psy-

chological processes. HUP. 51, 74

[58] Wang, Y. and Heffernan, N. (2011). Extending knowledge tracing to allow

partial credit: Using continuous versus binary nodes. 19, 29

[59] Wang, Y., Ostrow, K., and Heffernan, N. (2016). Partial credit revisited:

Enhancing the efficiency and reliability of group differentiation at scale. Student

Modeling from Different Aspects, page 22. 28, 29

[60] Wistuba, M., Schilling, N., and Schmidt-Thieme, L. (2015). Sequential model-

free hyperparameter tuning. In 2015 IEEE International Conference on Data

Mining, pages 1033–1038. IEEE. 54

124

REFERENCES

[61] Witt, M. (2014). Primary Mathematics for Trainee Teachers. Learning Mat-
ters. 21

[62] Xiong, L., Chen, X., Huang, T.-K., Schneider, J. G., and Carbonell, J. G.
(2010). Temporal collaborative filtering with bayesian probabilistic tensor fac-
torization. In International Conference on Data Mining, pages 211–222. SIAM.
31

[63] Xu, Y. and Mostow, J. (2013). Using item response theory to refine knowledge
tracing. In International Conference of Educational Data Mining, pages 356–
357. 28

125

	1 Introduction
	1.1 Collaboration to the iTalk2Learn EU–Project
	1.2 Contributions
	1.3 Publications
	1.3.1 First–author Publications
	1.3.2 Coauthor Publications

	1.4 Chapters Overview

	2 Problem Formulation
	2.1 Student's Knowledge Estimation
	2.1.1 Evaluation Framework for Static Algorithms
	2.1.2 Evaluation Framework for Time Evolving Algorithms

	2.2 Sequencing
	2.2.1 Sequencing Evaluation

	2.3 Data Requirements
	2.3.1 Datasets for Performance Prediction
	2.3.2 Exploratory Corpus

	2.4 iTalk2Learn Datasets
	2.4.1 Large Commercial Dataset
	2.4.2 Fraction Tutor Datasets

	3 State of the Art
	3.1 Performance Prediction
	3.1.1 Domain Dependent Performance Prediction
	3.1.1.1 Bayesian Knowledge Tracing
	3.1.1.2 Performance Factor Analysis (PFA)

	3.1.2 Domain Independent Performance Prediction
	3.1.2.1 Matrix Factorization in Intelligent Tutoring Systems
	3.1.2.2 Time-aware Recommender Systems

	3.2 State Modeling Techniques
	3.3 Sequencing in Intelligent Tutoring Systems
	3.3.1 Rule-based Sequencers
	3.3.2 Adaptive Rule-Based Sequencers
	3.3.3 Policy–based Sequencers: Reinforcement Learning

	4 Online Learning Matrix Factorization for Performance Prediction
	4.1 Static Matrix Factorization
	4.1.1 MF and BKT Comparison
	4.1.2 MF for Commercial ITS

	4.2 Updating Matrix Factorization
	4.2.1 Matrix Factorization Update
	4.2.2 Incremental Matrix Factorization

	5 Progress Modeling
	5.1 Kalman Filter theory
	5.2 Kalman State Estimation for Matrix Factorization
	5.2.1 Simple previous/next State Mapping
	5.2.2 Skill Deficiency Aware KSEMF (KSEMF_SD)

	5.3 Experiments
	5.3.1 Dataset characteristics
	5.3.2 Hyperparameters' Selection
	5.3.3 State Variables' Initialization
	5.3.4 RMSE Evaluation
	5.3.5 Evaluation of the Cold Start Problem
	5.3.6 Modeling Student Progress
	5.3.7 Personalization
	5.3.7.1 Personalized state evolution
	5.3.7.2 Personalized update evolution

	5.4 Conclusions

	6 The Vygotsky Policy Sequencer
	6.1 Content Sequencing Structure
	6.1.1 The Sequencer Structure
	6.1.2 Simulated Learning Process

	6.2 Experiment Session
	6.2.1 Experiments on the Simulated Learning Process
	6.2.2 Sensitivity Analysis on the Vygotsky Policy
	6.2.3 VPS Evaluation
	6.2.4 Advanced Experiments

	6.3 VPS Feasibility and Utility
	6.3.1 Sequencing VPS Feasibility
	6.3.2 Sequencing VPS Utility

	6.4 Conclusions

	7 Large Scale Experiment
	7.1 Lightweight Integration of Machine Learning algorithms
	7.1.1 Machine Learning Requirements
	7.1.2 A novel Protocol for Machine Learning Integration

	7.2 Sequencers' Integration in Commercial ITS
	7.2.1 Commercial ITS Dataset Preprocessing
	7.2.2 Online Update Integration
	7.2.3 Vygotsky Policy Integration
	7.2.4 Technical Integration

	7.3 Experiment Session
	7.3.1 Experiment Design
	7.3.2 Results from Dataset Analysis
	7.3.3 Post Test
	7.3.4 Questionnaire
	7.3.5 Integration

	7.4 Computational Requirements
	7.5 VPS with adaptive Threshold
	7.6 Conclusions

	8 Conclusions and Future Work
	8.1 Achieved Results
	8.2 Future Work

	References

