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Abstract

In this paper, we investigate a semi-
supervised learning approach based on neu-
ral networks for nested named entity recog-
nition on the GermEval 2014 dataset. The
dataset consists of triples of a word, a
named entity associated with that word in
the first-level and one in the second-level.
Additionally, the tag distribution is highly
skewed, that is, the number of occurrences
of certain types of tags is too small. Hence,
we present a unified neural network archi-
tecture to deal with named entities in both
levels simultaneously and to improve gen-
eralization performance on the classes that
have a small number of labelled examples.

1 Introduction

Named Entity Recognition (NER) is an important
natural language processing (NLP) task that aims
at assigning a class label to a word such as person,
location, organization and so on. In contrast to the
traditional NER where a classifier assigns only a
single named entity (NE) for elements in text, the
GermEval 2014 dataset (Benikova et al., 2014b)
allows for elements to have two NEs at most. For
example, “TU Darmstadt” is not only considered
as an organization, but “Darmstadt” can be also
tagged as a location. The dataset consists of sen-
tences sampled from Leipzig Corpora Collection
(LCC) (Quasthoff et al., 2006) publicly available
for download.1

∗This work is licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Page numbers
and proceedings footer are added by the organizers. License
details: http://creativecommons.org/licenses/by/4.0/

1http://corpora.uni-leipzig.de/
download.html

Recently, neural networks (NNs) have suc-
ceeded in various NLP tasks including NER (Col-
lobert et al., 2011). Thus, we build a neural net-
work architecture solving the nested NER prob-
lem in a semi-superivsed way by making use of a
large number of unlabelled sentences from LCC.

2 Background

2.1 NER using Neural Networks
Collobert et al. (2011) proposed a unified neural
network architecture, namely SENNA, on which
we build an architecture for nested NER.

Consider a sentence t = {w1, w2, · · · , wNt}
of length Nt in which each word wi is associated
with its target yi, which has one of C possible
tags. The inputs to SENNA are the concatenated
vector representations for the words in the sen-
tence. The vector representations can be drawn
from a matrix L ∈ Rd×|V | where d is the dimen-
sion of the vectors and |V | is the number of words
in our vocabulary. While it is possible to define
another feature matrix that we want to learn such
as capitalization features L(caps) as well as the
word features L(w), for simplicity, we only con-
sider the word features as L in this Section.

Assuming that we wish to tag a word wi and let
kw be the width of a window. The vector repre-
sentations of word wi and of words surrounding
wi in a window are drawn from L, then concate-
nated to form xi = {L·wn}

bkw/2c+i
n=−bkw/2c+i ∈ Rd·kw

where bxc denotes the largest integer not greater
than x. If n is less than 1 or greater than Nt, a
special padding word is used instead. In turn, the
input xi is passed to a non-linear function to ob-
tain a hidden representation

hi = f
(
W(1)xi + b(1)

)
(1)

where the function f : R→ R is an element-wise
transfer function, e.g., sigmoid, tanh, and ReLU,
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W(1) ∈ RF×(d·kw) is a matrix of weights that link
input units to hidden units, and b(1) ∈ RF is a
vector of biases for the hidden layer. The hidden
representation hi is, then, fed forward to the out-
put layer to yield the prediction scores ŷi ∈ RC

of the tags for the given local context
ŷi = W(2)hi + b(2) (2)

where W(2) ∈ RC×F are the weights between
hidden and output units, each of which corre-
sponds to a tag, and b(2) ∈ RC are the biases
for the output layer.

If we assume that the tag of each word depends
only on that word and its context, i.e., xi, then
the probability distribution over {wi, yi} can be
formulated as follows

p (y1, · · · , yNt , w1, · · · , wNt) =

Nt∏
i=1

p (yi|xi; Θ) .

(3)

In order to convert the prediction scores ŷji of
the tag j for the word wi into probability, we can
use the softmax function

p (yji = 1|xi; Θ) =
exp ŷji∑
k exp ŷki

(4)

where Θ = {L,W(1),b(1)W(2),b(2)} is a set of
parameters. By taking the log, our objective, Eq.
4, becomes

max
Θ

Nt∑
i=1

C∑
j=1

I [yji = 1]

(
ŷji − log

C∑
k=1

exp ŷki

)
(5)

where I[·] denotes the indicator function which
takes 1 when the argument is true, otherwise 0.
This is referred to as word-level log-likelihood.

Learning Tag Dependencies In word-level
log-likelihood, tag dependencies are ignored by
the assumption that a tag is determined by only its
local context. To exploit dependencies between
tags, we take tag transition scores T ∈ RC×C

into account. A prediction score for the whole
sentence is given by

ŷ[c] =

Nt∑
i=1

W(2)hi + b(2) + Tci,ci−1 (6)

where [c] denotes a sequence of the tags in the
sentence, ci indicates the tag of the word wi, and
Tci,ci−1 is a transition score from ci−1 to ci. For
the case i = 1, we also need initial tag scores
Tc,0 ∈ RC . The prediction score for the sentence
is also transformed to a probability divided by the

scores over all possible tag sequences [k]

p
(
{yi}Nt

i=1|{xi}Nt
i=1; Θ,T

)
=

exp ŷ[c]∑
[k] exp ŷ[k]

.

(7)
Similarly, the objective taking transitions be-

tween tags into consideration is given by
max
Θ,T

ŷ[c] − log
∑
[k]

exp ŷ[k] (8)

which is referred to as sentence-level log-
likelihood and this can be addressed efficiently
using recursion.

2.2 Semi-Supervised Learning
The simplest algorithm for semi-supervised learn-
ing is self-training (Rosenberg et al., 2005). In
self-training, once a model is trained on labelled
data, it is used to predict labels of unlabelled data,
then such unlabelled data are provided as if addi-
tional labelled examples.

Pseudo-Label (PL) (Lee, 2013) is a semi-
supervised learning technique especially for NNs.
Unlike self-training, it estimates pseudo-labels,
most probable labels of unlabelled data, during
training and uses them to update parameters as
well as labelled examples. Its purpose is similar
to Entropy Regularization (Grandvalet and Ben-
gio, 2005) that minimizes conditional entropy of
unlabelled data as a measure of class overlap on
the feature space.

3 Semi-Supervised Neural Networks for
Nested NER

In contrast to the traditional NER, a word in
nested NER can be tagged by multiple NEs. For
simplicity, the number of levels is limited to two.

3.1 Jointly Learning Top-level and Nested
NEs

In nested NER, a sentence t can be characterized
by a sequence of triples {wi, y

1
i , y

2
i } where y1

i is
the tag of the word wi in the first level, and y2

i for
the second level. Note that the tags in both levels
are defined over the same set. Figure 1 describes
our proposed architecture to tackle nested NER.

The proposed model deals with all NEs in both
levels jointly during the learning phase by us-
ing an additional feature matrix L(ne) ∈ Rdne×C

for NEs, which is also a set of learnable param-
eters like L(w). Each column of L(ne) corre-
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Figure 1: An illustrative example of the proposed architecture for jointly learning top-level and nested NEs.
Consider a sentence t = {wi, y

1
i , y

2
i }6i=1 of length 6, a window of size kw = 5, and that we want to predict tags

y13 , y
2
3 for a word w3. Assuming that the number of NEs in the problem is 3, s indicates an index of a named

entity. A matrix of word embeddings L(w) and the tag transition matrix T are shared between two networks.
Each network is trained to make predictions NEs of given a word sequence {wi}6i=1 for each level.

sponds to a vector representation of a named en-
tity. Given the concatenated feature vectors of
a word xi in the window as described in Sec-
tion 2.1, we construct a vector representation for
NEs in the top-level corresponding to that word,
denoted by xne

i ∈ Rdne·kw , then concatenate it
to xi, which yields combined vector representa-
tions of words and NEs xcomb

i = {xi,x
ne
i } ∈

R(dne+dK)×kw . Similar to Eq.7 for the first
level NEs, the sentence-level log-likelihood is
also computed for the second level NEs like
ŷ2
i = W(4)f

(
W(3)xcomb

i + b(3)
)

+ b(4). Then,
the training objective considering the first- and
second-level NEs simultaneously is given by

p
(
{y1

i , y
2
i , wi}Nt

i=1; Θ̄
)

=

(1− α) p
(
{y1

i }Nt
i=1|{xi}Nt

i=1; Θ,T
)

+ αp
(
{y2

i }
Nt
i=1|{x

comb
i }Nt

i=1; θ,T
) (9)

where θ = {W(3),b(3),W(4),b(4),L(·)}, Θ̄ =
{Θ, θ,T}, and α ∈ [0, 1] is a control parameter.

3.2 Learning from Pseudo Labels of
Unlabelled Data

Semi-supervised learning methods are well-
suited to the problems where the number of train-
ing instances is insufficient. Tag distribution of
the GermEval dataset is highly skewed. In other
words, the proportion of the three tag types, i.e.,
LOC, PER, and ORG, amounts to approximately
70% (See (Benikova et al., 2014b) for statistics).

In this work, we apply PL to only the first
level in order to improve the generalization per-
formance on such small classes. The first term of
the right hand side in Eq. 9 can be re-written as

(1− α) p
(
{y1

i }
Nt
i=1|{xi}Nt

i=1; Θ,T
)

+ (1− α)βt p
(
{ŷ1

ui}uNt
ui=1|{xui}uNt

ui=1; Θ,T
)
(10)

where ui is an index of an unlabelled sentence
randomly selected from LCC, ŷ1

ui is a pseudo tag
for the word wui in an un-annotated sentence, and
β controls the importance of learning from unla-
belled data. Scheduling the control parameter at
time t takes the following form:

βt =


0 t < T1
t−T1
T2−T1

βmax T1 ≤ t ≤ T2

βmax t > T2

(11)

with βmax = 2, T1 = 100, and T2 = 500. 2 The
pseudo label ŷ1

ui is determined by simply choos-
ing the most confident one given prediction scores
for an un-annotated sentence during training.

4 Experiments

Our experiments were performed on the Ger-
mEval 2014 dataset, where the tags constitutes
four major types, i.e., LOC, PER, ORG and OTH,
and their sub-types which end with “-deriv” or “-
part” using a BIO tagging scheme. The results in

2The hyperparameters for scheduling PL were chosen via
cross validation.
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Table 1: Effect of word embeddings
Initialization P R F1

Random 69.67 54.19 60.96
Pretrain 68.39 69.27 68.82

Table 2: Effect of Pseudo Label as a regularizer
Learning scheme P R F1

Sup. learning (βt = 0) 68.39 69.27 68.82
Semi-sup. (βmax = 2) 77.08 68.40 72.48

Table 1 and 2 are reported in terms of the official
metric, namely M1 (See (Benikova et al., 2014a)),
in the GermEval 2014 Shared Task.

4.1 Details of Training

We evaluated the proposed method with the fol-
lowing hyperparameter settings over the number
of hidden units F = 300, the dimension of cap-
italization features dcap = 3, the dimension of
named entity features dne = 10, window size
kw = 5, α = 0.5, a fixed learning rate 0.01 for
SGD with AdaGrad (Duchi et al., 2011). In addi-
tion, we used length normalization over all em-
beddings such that ‖x‖ = 10 to prevent over-
fitting. For the transfer function in Eq.1, ReLU,
f(x) = max(0, x), is used. The feature matrices
L(caps) and L(ne) were initialized randomly.

4.2 Importance of Word Embeddings

We used word2vec (Mikolov et al., 2013) for
learning word embeddings because of its effi-
ciency.3 We set the dimension of word embed-
dings dw to 128 and the size of vocabulary |V | is
about 4M which yields the feature matrix L(w) ∈
R128×4M . We run the word2vec for 10 epochs
with a fixed learning rate 0.01 on approximately
87M sentences from a German Wikipedia dump,
LCC, and SDeWac (Faaß and Eckart, 2013).

The results of using pretrained word embed-
dings on unlabelled data in comparison to random
initialization are shown in Table 1. We observed
that NNs using pretrained word embeddings per-
form much better in terms of recall.

4.3 Effect of Semi-Supervised Learning

We evaluated our proposed approach for nested
NER. The results of this experiment are shown in

3https://code.google.com/p/word2vec/

Table 3: The System Performance on Unseen Data
Metrics P R F1

M1 76.76 66.16 71.06
M2 78.09 67.31 72.30
M3 (1st level) 77.93 68.52 72.92
M3 (2nd level) 57.86 37.86 45.77

Table 2. The semi-supervised approach outper-
forms the purely supervised one. We observe that
learning with pseudo labels reduces the number of
false positives which results in higher precision.
In particular, the number of predictions in the top-
level resulting from the supervised approach is
2738 while the semi-supervised approach yields
2378 predictions. Interestingly, we also observe
performance improvement on LOC and ORG as
well as the smaller classes including OTH and
“deriv”- and “part”-classes, but not all of them.

4.4 Results of GermEval 2014 Shared Task

The proposed method was submitted to the Ger-
mEval 2014 Named Entity Recognition Shared
Task. Our system called PLsNER was ranked at
5th and the scores are shown in Table 3. More re-
sults and comparisons with other systems can be
found in (Benikova et al., 2014a).

5 Conclusions

We proposed a neural network architecture,
which is capable of learning from top-level NEs
and nested NEs jointly in nested NER. By making
use of unlabelled data in a semi-supervised fash-
ion, we also demonstrated its effectiveness when
a small number of training examples are provided.

Our experiments show that the use of word
embeddings improves recall compared to random
initialization. Pseudo labels make it possible to
get more precise predictions. Additionally, our
system performs pretty well on unseen data with-
out use of language-dependent feature engineer-
ing steps.
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