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Abstract

We report on chunk tagging methods for
German that recognize complex non-verbal
phrases using structural chunk tags with
Conditional Random Fields (CRFs). This
state-of-the-art method for sequence classi-
fication achieves 93.5% accuracy on news-
paper text. For the same task, a classi-
cal trigram tagger approach based on Hid-
den Markov Models reaches a baseline of
88.1%. CRFs allow for a clean and prin-
cipled integration of linguistic knowledge
such as part-of-speech tags, morphologi-
cal constraints and lemmas. The struc-
tural chunk tags encode phrase structures
up to a depth of 3 syntactic nodes. They
include complex prenominal and post-
nominal modifiers that occur frequently in
German noun phrases.

1 Introduction

In this paper1, we report on comprehensive exper-
imental results for a chunk tagging approach that
recognizes complex non-verbal phrases such as
nominal phrases (NP), prepositional phrases (PP),

adjectival and adverbial phrases in German.
We go beyond simple base chunks, that is,
non-recursive and non-overlapping sequences of
words. Base chunks were introduced and for-
malized as a sequence classification problem by
Ramshaw and Marcus (1995) and popularized
by a CoNLL shared task on chunking (Tjong

1This work is licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Page numbers
and proceedings footer are added by the organizers. License
details: http://creativecommons.org/licenses/by/4.0/.

Kim Sang and Buchholz, 2000). This problem
is also known as the IOB chunk tagging problem
because the chunk layer can be formulated as a se-
quence of tags expressing the begin (B) and con-
tinuation (I) of a chunk, or whether a token is
viewed as being outside (0) of any chunk.

In contrast to the base chunk approach, we an-
alyze the internal structure of complex phrases up
to a maximal depth of 3 phrase structure nodes.
As introduced by Skut and Brants (1998), struc-
tural chunk tags are needed that encode the hierar-
chical relation between adjacent tokens. Both, the
IOB and the structural chunk tag approach can be
treated as a sequence classification problem. We
compare the performance of well-established se-
quence classifiers such as Hidden Markov Models
(HMMs) with the state-of-the-art method of Con-
ditional Random Fields (CRFs) on the TüBa-D/Z
treebank (Telljohann et al., 2004), which is the
largest collection of consistently annotated news-
paper sentences in German.

The paper is organized as follows: In Section
2, we introduce the idea of structural chunk tags
and present the data extraction and transformation
from the treebank as well as the automatic linguis-
tic enrichment of the raw data in preparation to the
experiments. In addition, we describe the statisti-
cal tools and models used in our cross-validation
experiments. In Section 3, we report the quantita-
tive results of the experiments and discuss quali-
tative aspects of the most frequent errors.

2 Methods

Our approach is based on early work of Skut and
Brants (1998). They introduced the term chunk
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Figure 1: Complex NP annotated with structural tags
as presented in Skut and Brants (1998). See Section
2.2.2 for an explanation of their chunk tags.

tagging for applying standard statistical PoS tag-
ging techniques (i.e. HMMs) to the problem of
chunking complex NPs and PPs. We extend their
approach by using more data, more linguistic
features, and more advanced statistical sequence
classification methods to deal with this problem.
Additionally, we investigate the question of how
well post-nominal PPs can be identified by our
improved approach.

2.1 Related Work
Skut and Brants (1998) developed a recognizer
for complex chunk structures in order to cre-
ate a tool for semi-automatic syntactic annota-
tion. Their main idea was to extend chunking
from a simple recognition of the boundaries of flat
chunks to the calculation of nested chunk-internal
syntactical structures. Given the outer boundaries
of a chunk by a human annotator, their annota-
tion system built the internal structures of chunks
as complex as the one shown in Figure 1. They
also evaluated their chunk tagger as a stand-alone
application without human indication of chunk
boundaries. This is more comparable to our ex-
perimental setting. They reached 90.9% of cor-
rectly tagged tokens using the NEGRA treebank
(Skut et al., 1997) with a training corpus of 12,000
sentences. Due to the difficulties introduced by
post-nominal attachment of NPs, PPs and focus
adverbs, they trained and evaluated a chunk tag-
ger without attachment of post-nominal NPs, PPs
and adverbs. For this less complex task, they re-
port a precision of 95.5%.

It is noteworthy that structural chunk tags

can handle complex prenominal constructions as
shown in Figure 1. IOB-style chunks typically
need to disconnect the indefinite article from the
nominal head of the NP (see Kübler et al. (2010)
for a workaround). The NEGRA-derived German
chunk tagger for flat noun, prepositional and verb
chunks built on top of the TreeTagger (Schmid,
1994) shows exactly these limitations.

The recursive chunker from Kermes and Evert
(2002) is based on a symbolic regular expression
grammar and handles even complex prenominal
constructions. It also deals with post-nominal NP
attachment, but excludes post-nominal PP attach-
ment due to the high degree of ambiguity.

Chunkers based on cascaded rules (e.g. Müller
(2007)) or finite state transducer (for a more re-
cent implementation see Barbaresi (2013)) can ef-
ficiently build shallow syntactic structure. Hin-
richs (2005) contains an overview of several ear-
lier approaches for German.

2.2 Data

For our experiments, we use the TüBa-D/Z corpus
version 7.0, containing 65,524 sentences (hence-
forth referred to as TüBa)2. The corpus consists
of newspaper articles with detailed morphologi-
cal and syntactic annotations. This treebank is the
largest for German and because of its topological
and context-free grammar there are no discontigu-
ous phrase structures as for example in the TIGER
treebank (Brants et al., 2004).

2.2.1 Data Transformation and Enrichment

As can be seen in the upper tree of Figure 2,
TüBa’s phrase structures are deeply nested. For
instance, the proper name ’Taake’ is embedded at
a depth of 6 phrase structure nodes. In order to
be able to treat such complex PPs with our ap-
proach of limited chunk depth, we need to flatten
the TüBa trees in the style of TIGER trees. The
following transformations were applied:

1. The constituents of the dependent NP of a
preposition are treated as immediate constituents
of the PP. This approach has also been followed
recently in the setting of multilingual dependency
treebanks (McDonald et al., 2013).

2http://sfs.uni-tuebingen.de/ascl/ressourcen/corpora/tueba-
dz.html
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Internal tagset (preceding / succeeding token): p/s
Tagset from Skut and Brants External tagset: p External tagset: s

0 if m(wi) = m(wi−1) e if m(wi) = m(wi−1) e if m(wi) = m(wi+1)
+ if m(wi) = m2(wi−1) r if m(wi) = m2(wi−1) r if m(wi) = m2(wi+1)
++ if m(wi) = m3(wi−1) R if m(wi) = m3(wi−1) R if m(wi) = m3(wi+1)
- if m2(wi) = m(wi−1) l if m2(wi) = m(wi−1) l if m2(wi) = m(wi+1)
-- if m3(wi) = m(wi−1) L if m3(wi) = m(wi−1) L if m3(wi) = m(wi+1)
= if m2(wi) = m2(wi−1) E if m2(wi) = m2(wi−1) E if m2(wi) = m2(wi+1)
1 else - not integrated into syntax structure - not integrated into syntax structure

0 removed from syntax structure 0 removed from syntax structure
x chunk boundary x chunk boundary

Table 1: Comparison between Skut and Brants’ tagset and our tagsets. Our data contains 50 different p/s tags out
of 81 possible combinations.

Figure 2: Example for the transformation of a deep
syntactic phrase structure to the flattened chunk for-
mat. The structural chunk labels with our internal
chunk tagset are on the last line. The shown sentence
fragment translates as “In an internal control after the
termination of Taake this was noticed,. . . ”.

2. The content of unary nodes which are non-
heads in their mother constituent is directly at-
tached to the mother node.

3. Coordinated unary nodes are directly at-
tached to their mother nodes.

After the application of these transformations,
all topological and verbal constituents were re-
moved from the syntactic trees. All remaining
phrase structures with a syntactic depth larger
than 3 were removed. The final result of
these transformations for the example sentence is
shown in the lower part of Figure 2.

2.2.2 Internal and External Chunk Tagsets

For our experiments, we work with an en-
riched internal chunk tagset that encodes the
structural relation of a token to its preceding (p)
and succeeding (s) token. More fine-grained in-
ternal tagsets have proved to be profitable for sta-
tistical tagging approaches in the past (Brants,
1997). One goal of our experiments was to check
whether this is also the case for chunk tags.

Table 1 compares Skut and Brants’ tagset and
our tagsets. An equation as m(wi) = m2(wi−1)
reads as ’the mother node of token w at position i
is the grandmother node of the preceding token’.
The depth of the hierarchical dominance relation
m is given by its superscript. i specifies the lin-
ear position of a word in a sentence. Punctua-
tion is never integrated in the syntactic structure
(marked as ’-’). Tokens connected to nodes (e.g.
verbal) that were removed from the syntax struc-
ture are marked as ’0’. Chunk tag ’x’ indicates
chunk boundaries. Figure 2 shows an example of
the chunk encoding.

In our bidirectional internal tagset, an error of-
ten affects two tokens. This deteriorates the evalu-
ation results because a single error will be counted
twice. In a sentence like ’Aber weil der Kof-
fer in einem unterirdischen See gelandet ist, [...]’
(’But because the suitcase has landed in an un-
derground lake, [...]’) our system attaches ’in
einem unterirdischen See’ erroneously as a post-
nominal PP, resulting in two errors in the internal
tagset as shown in Table 2. However, reducing the
internal tagset to one of the external tagsets does
not lead to a loss of information for the chunk
structure. Therefore, we can train and label on
the bidirectional internal tagset and map to an ex-
ternal before evaluation.
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Tokens Gold System p/s p/ /s
der x/e x/e
Koffer e/x e/r X X
in x/e l/e X X
einem e/e e/e
unterirdischen e/e e/e
See e/x e/x

Table 2: Error propagation in the internal tagset

2.2.3 Input Data Enrichment
The task of a chunk tagger is to compute the se-

quence of chunk tags (=outcome) for a given se-
quence of tokens (=evidence). However, directly
using the raw text as the only evidence for predict-
ing the outcome misses useful linguistic general-
izations that are beneficial for this task. There-
fore, we automatically enrich the raw text by PoS
tags, normalized lemmas and morphological con-
straints.

First, we apply the TreeTagger 3.2 (Schmid,
1994) to compute PoS tags and lemmas from the
raw text input. For unknown words, we use the to-
kens as the lemma. In order to reduce the sparse
data problem, all lemmas are further normalized
by reducing hyphenated compounds to their last
segment, for instance ’0:2-Niederlage’ (0-2 de-
feat) is normalized to ’Niederlage’.

Second, morphological constraints for each
PoS-tagged token are built from the output of
GERTWOL, a commercial morphological an-
alyzer (Koskeniemmi and Haapalainen, 1996).
Morphological information is restricted to case
and number and filtered according to the PoS tag
computed by the TreeTagger. Because GERT-
WOL and the TreeTagger have slightly different
categorizations of parts of speech, some tag map-
ping was necessary.

In German, word forms exhibit a lot of syn-
cretism, especially between accusative and nomi-
native case. In our current approach, we do not
attempt to guess the correct analysis out of all
admissible analyses, but we strive for a compact
representation of the admissible as well as the ex-
cluded morphological categories. An 8 charac-
ter string is used to encode these constraints in
a systematic way where upper-case letters denote
the admission of a category and lower-case letters
denote the exclusion. Table 3 shows the actual
encoding conventions. The morphological con-
straints of ’Häuser’ (houses) are ’KNAdGUsP’.

Code Description
K/k With case/Without case
N/n Nominative admissible/excluded
A/a Accusative admissible/excluded
D/d Dative admissible/excluded
G/g Genitive admissible/excluded
U/u With number/Without number
S/s Singular admissible/excluded
P/p Plural admissible/excluded

Table 3: Encoding of morphological constraints

Token PoS Lemma Morphology Chk
In APPR in KnADgusp x/e
einer ART ein KnaDGUSp e/e
internen ADJA intern KNADGUSP e/e
Kontrolle NN Kontrolle KNADGUSp e/r
nach APPR nach KnaDgusp l/e
der ART d KNaDGUSP e/e
Kündigung NN Kündigung KNADGUSp e/r
von APPR von KnaDgusp l/e
Taake NN Taake ???????? e/x
sei VAFIN sein knadgUSp 0/0
dies PDS dies KNAdgUSp x/x
aufgefallen VVPP auffallen knadgusp 0/0
, $, , $$$$$$$$ -/-

Table 4: Representation of linguistic evidence and out-
come (= column ’Chk’)

Word forms not known by GERTWOL are en-
coded by ’????????’ and punctuation tokens by
’$$$$$$$$’.

Table 4 shows the result of the data enrichment
process for our example sentence. In our exper-
iments, we are interested to estimate the perfor-
mance increase in chunk tagging that results from
the morphological information, the PoS layer and
the lemmas.

2.3 Tagging Structural Chunk Tags

As mentioned before, complex chunk structures
in a sentence can be expressed by chunk tag se-
quences that correspond to the token sequence.
Therefore, any sequence classification method
can be applied to this problem. In our experi-
ments, we focus on baseline methods based on
HMM techniques and on state-of-the-art methods
based on CRFs.

2.3.1 Chunk Tagging with Trigram Taggers
As a baseline, we use the HMM-based trigram

tagger hunpos (Halácsy et al., 2007). This tool is
an open-source reimplementation of the TnT tag-
ger (Brants, 2000) that Skut and Brants (1998) de-
veloped and used for their work (see Section 2.1).
A standard PoS tagger as hunpos has a predefined
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and limited model how the evidence for the clas-
sification of the outcome is used. In a typical
trigram setting, this is the current token (lexical
emission probability) and the preceding two out-
come labels (transition probability predicted from
the limited history of Markov models). These re-
strictions guarantee a very efficient training and
labeling. Additionally, there is no need for a de-
velopment set for training, which enables the user
to split the available tagged material into a large
training (90%) and a test set (10%). As an ex-
tension to the classical trigram tagging model, the
hunpos tagger allows for condition the emission
probability of a word wi on the preceding and
the current tag (P (wi|ti−1ti)). This second order
emission probability produced consistently better
results in our chunk tagging experiments than a
simple first order emission probability.

A disadvantage of HMM taggers is their re-
striction to a single layer of evidence. For in-
stance, if we want to predict the chunk tags from
the layer of PoS and morphology, we need to inte-
grate that information in one combined evidence
token. For example, in order to chunk the third
token ’internen’ from our example sentence based
on the evidence of PoS and morphology we would
encode the evidence layer as ’NN KNADGUSP’,
i.e. the concatenation of PoS and morphology.
CRFs are a lot more general in that respect, as
they allow to have as many separate evidence lay-
ers as needed and to combine them freely into fea-
tures.

2.3.2 Chunk Tagging with sequential CRFs

Sequential Conditional Random Fields (Sut-
ton and McCallum, 2012) are state-of-the-art
sequence classification models for typical NLP
problems and have been shown to deliver excel-
lent performance on the IOB-style chunking tasks
(Sha and Pereira, 2003).

In our experiments, we use the freely available
and efficient CRF tool wapiti (Lavergne et al.,
2010). Unlike HMM tools, wapiti needs hand-
crafted feature templates that specify which in-
formation from which evidence layer is selected
and combined in order to predict the outcome, i.e.
the most probable sequence of structural tags for
a sentence. Feature templates are a practical ab-
straction layer that allow the user to specify the

Relative Position PoS Layer Example
Current NN
Preceding ADJA
Succeeding APPR
Preceding and current ADJA/NN
Current and succeeding NN/APPR
Preceding, current and succeeding ADJA/NN/APPR
Two positions back and current ART/NN
Current and two positions forth NN/ART

Table 5: Local context of our best CRF feature tem-
plate model. The second column illustrates the tem-
plate with the instantiation on the PoS layer on po-
sition 4 (token ’Kontrolle’) in our example sentence
from Table 4.

model in a concise way without actually forcing
the user to precompute the instantiated features
for each position in the sequence. The CRF tool
automatically instantiates the templates with the
training material. During training, it learns the
optimal weights for the instantiated features, and
by using appropriate regularization, it is able to
filter out irrelevant features. In all experiments
reported in the evaluation section, we used the de-
fault settings of wapiti: L-BGFS for the optimiza-
tion of the feature weights and elastic-net for reg-
ularization. wapiti requires a development set for
training, therefore, the data was split into a train-
ing (72%), development (18%) and a test (10%)
set.

Our best feature model. All evidence columns
shown in Table 4 can be used to define feature
templates. For a given position in the sequence,
evidence from the current, preceding or succeed-
ing positions can be combined. The amount and
source of evidence packed in a feature is un-
bound in principle, however, for performance rea-
sons evidence from the local context is most use-
ful. In typical sequential CRF modeling tools,
the evidence features can be automatically con-
ditioned on outcome bigrams (preceding and cur-
rent token, similar to the emission order of two
of HMMs) or outcome unigrams (current token
only). Bigram features can easily lead to feature
explosion, long training times, and decreased per-
formance (sparse data problem). We performed
extensive tests for building an optimal set of
feature templates. To our own surprise, a uni-
form and elegant set of unigram feature templates
proved to be the best. The evidence layer of to-
kens could be ignored totally. For the layer of
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PoS, lemmas and morphological constraints, we
have exactly the same feature templates3. Ta-
ble 5 shows the local context involved in our
features and illustrates them by examples taken
from the PoS layer. Only one bigram feature was
used, namely the bigram output distribution of the
chunk tags.

Alternative or more complex additional feature
templates could not improve the performance.
We tested for specific morphological cases (e.g.
genitive), pattern matching for function words
(e.g. articles), or combinations of evidence from
PoS/morphology and lemma/morphology.

Our 25 feature templates instantiate about
118 million features (standard deviation (SD)
331,577) out of which the final model contains on
average 690,540 active ones (SD 134,916). The
rather high SD is due to the lemma features.

3 Results and Discussion

We present selected comparative evaluation re-
sults derived from 10-fold cross-validation exper-
iments.4 We give the mean tagging accuracy,
standard deviation and confidence intervals (CI
95%) derived from a t-test applied to the means
of the 10 test folds. The CI expresses that there
is a 95% chance that the true accuracy in all rep-
resentative texts is contained within the computed
CI.

3.1 Quantitative Evaluation

Table 6 shows the results of our evaluation. The
best system with 93.54% accuracy is our wapiti
model using PoS tags, morphological constraints
and lemmas evaluated on the external tagset s. We
outperform the hunpos baseline based on PoS ev-
idence (87.15%) by 7.3%. Compared to the best
hunpos system (88.13%) using PoS and morphol-
ogy, we get an improvement of 6.1%. As ex-
pected, HMM-based tagging cannot make use of
complex input tokens that combine lemma, PoS
and morphology. However, the CRF model can
make use of the lemma evidence resulting in a

3The actual wapiti code for the feature templates can be
downloaded from http://kitt.cl.uzh.ch/kitt/
chunktag/wapiti.txt.

4See Vanwinckelen and Blockeel (2012) for arguments
why repeated cross-validation does not lead to better model
estimates than simple cross-validation.

relative improvement of 1.63% compared to PoS
and morphology.

Internal and external tagsets. As mentioned
in Section 2.2.2, we expect the internal tagset to
have a lower accuracy than the external due to er-
ror duplication. Tagset s is consistently slightly
better than tagset p (the one more related to Skut
and Brants’) with the one exception for wapiti us-
ing PoS evidence only. The use of an enriched in-
ternal tagset proves to be beneficial. For the best
system, performance is about 0.5% higher using
the internal tagset. The difference is not over-
whelming but appears to be very stable across all
system combinations.

Upper bound by gold PoS tags and morphol-
ogy. The lower part of Table 6 shows the effect
of providing the correct (gold) PoS tags and mor-
phological information (case and number) from
the TüBa as evidence for the statistical tools. Us-
ing these results we can estimate the upper bound
of the performance if we improve the PoS tagging
and provide a better morphological disambigua-
tion. For wapiti and our best feature templates,
this is 95.15%, resulting in a maximal relative
improvement of 1.72%. For hunpos, the gold in-
formation improves by maximally 1.44% for the
best evidence (P,M). These rather small numbers
show that there is not much room for improve-
ment by optimizing the linguistic enrichment be-
cause there will always remain wrong PoS tags
and morphological analyses.

Learning curve of internal tagset. In order to
check whether more training data could lead to
better results, we performed an additional experi-
ment on the first fold using the best wapiti system.
Starting with only 10,000 sentences of the TüBa,
we obtain 87.08% correctly tagged tokens. Go-
ing up to 60,000 sentences, we reach 89.05%. As
shown in Figure 3, the learning curve does not yet
level off and more data will probably help.

3.2 Qualitative Error Analysis

In order to better understand the error types of the
best system, we randomly sampled 10 errors for
each of the 7 most frequent error types (see Ta-
ble 7) from the test set of the first fold. In Table 8,
we give a breakdown of the linguistic properties
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Tagger Evidence Internal Tagset p/s External Tagset p External Tagset s
Acc. SD CIl CIu Acc. SD CIl CIu Acc. SD CIl CIu

wapiti P,M,L 89.08 0.41 88.79 89.37 93.47 0.32 93.24 93.70 93.54 0.33 93.31 93.78
92.67 0.28 92.46 92.87 93.02 0.31 92.80 93.24

P,M 86.60 0.39 86.32 86.88 91.92 0.30 91.70 92.13 92.04 0.29 91.84 92.25
90.95 0.27 90.76 91.14 91.40 0.30 91.18 91.61

P 84.62 0.45 84.30 84.94 90.89 0.30 90.68 91.10 90.74 0.33 90.51 90.98
89.76 0.35 89.51 90.01 90.43 0.34 90.19 90.67

hunpos P,M,L 79.15 0.45 78.83 79.47 86.91 0.36 86.65 87.18 87.17 0.37 86.90 87.43
84.24 0.34 84.00 84.49 87.34 0.39 87.07 87.62

P,M 80.40 0.50 80.05 80.75 87.89 0.37 87.63 88.16 88.13 0.38 87.86 88.40
85.04 0.39 84.76 85.32 87.63 0.40 87.34 87.91

P 78.73 0.54 78.34 79.11 86.93 0.39 86.65 87.21 87.15 0.40 86.87 87.43
83.80 0.37 83.54 84.07 86.61 0.42 86.31 86.91

Using gold PoS (GP) and gold morphology (GM)
wapiti GP,GM,L 91.46 0.30 91.24 91.67 95.12 0.24 94.95 95.30 95.15 0.24 94.98 95.33

94.37 0.26 94.19 94.56 94.55 0.25 94.37 94.73
GP,GM 89.21 0.35 88.96 89.46 93.83 0.26 93.64 94.01 93.87 0.25 93.70 94.05

92.90 0.25 92.72 93.08 93.07 0.29 92.87 93.28
hunpos GP,GM,L 80.38 0.40 80.09 80.67 88.10 0.31 87.88 88.33 88.25 0.30 88.04 88.46

85.73 0.34 85.49 85.98 88.30 0.33 88.06 88.53
GP,GM 81.94 0.47 81.61 82.28 89.24 0.34 89.00 89.48 89.40 0.35 89.15 89.65

86.19 0.36 85.93 86.45 88.83 0.38 88.56 89.11

Table 6: Evaluation results of 10-fold cross validation experiments. Mean accuracy, standard deviation (SD) and
confidence interval 95% (CIl, CIu) are reported. The evidence column specifies the type of evidence used for
training and testing: P=PoS, M=morphological constraints, L=lemmas. Rows without numbers for the internal
tagset indicate experiments where we trained directly on the external tagsets.

Figure 3: Learning curve of internal tagset

for the two main sources of mistakes, namely at-
tachment errors (47 of 70) and errors in the at-
tachment level (19 of 70). The 4 remaining cases
are due to inconsistent tag sequences.

Attachment errors. In 27 cases an attachment
is missing, 20 cases have wrong attachments.
This error type is mostly related to PPs, followed
by NPs, and adjectival phrases (APs). Further-
more, our system often has difficulties with at-
tachment in combination with conjuncts, apposi-
tions and comparisons (see Table 8).

Wrong Count Error Type Correct
l/e 730 Attachment x/e
e/r 648 Attachment e/x
x/e 626 No attachment l/e
e/e 551 Attachment one level lower l/e
e/x 514 No attachment e/E
e/x 432 No attachment e/r
x/e 406 Attachment one level lower x/r
. . . . . . . . . . . .
All 12,998

Table 7: Most frequent error types of the internal
tagset (from about 500 error types)

Count PP NP AP
Attachment 20 19 1
thereof ambiguous 4 4
No attachment 27 18 7 2
thereof with conjuncts 8 3 5
thereof comparisons 2 1 1
thereof with appositions 1 1

Table 8: Attachment errors

Errors related to the level of attachment. In
these cases, our system attaches a level lower than
the gold standard. 12 of 19 cases are shallowly
embedded prepositions, most of the time com-
bined with conjuncts and appositions.

Figure 4 shows a case where the material of
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Figure 4: Sentence 330 with gold chunk tags: “Not a
day goes by that the no longer amused college does
not...”

Figure 5: Sentence 78: “The 31 year-old union em-
ployee and industrial merchant from Oldenburg . . . ”

the gold standard phrase ’FX’ (‘foreign language
material’) was directly embedded in the nomi-
nal chunk ’NX’ by our system. It assigned to
following chunk tags: das x/e no e/e longer e/e
amused e/e Kollegium e/x.

Another possibility is that appositions, con-
juncts or APs are not recognized as such and the
respective tokens are embedded on the same level
as the rest of the chunk.

Another source of errors are conjuncts where
some tokens are assigned to another conjunct
than annotated in the TüBa. Figure 5 shows a
case where the determiner ’Die’ (’the’) is inte-
grated in the first conjunct by our system: Die x/e
31jährige e/e Gewerkschaftsmitarbeiterin e/l . . . .

Inconsistent tag sequences. As the bidirec-
tional chunk tags encode the relation to the pre-
ceding and the succeeding token, the forward-
looking tag part of one token defines the
backward-looking part of the following token.
Our system assigns inconsistent tag sequences in
4 cases. In all cases this involves punctuation
marks inside a chunk. Figure 6 shows the gold
standard where our system predicted the follow-
ing inconsistent (in bold) chunk tags: der x/e
Frankfurter e/e ” -/- Guru e/x ” -/- Berthold E/e
Kilian e/E.

4 Conclusion

With our experiments we have shown that a CRF-
based state-of-the-art statistical sequence tagger
as wapiti using our hand-crafted feature templates

Figure 6: Sentence 211: “Finally the ”Guru” Berthold
Kilian from Frankfurt came to Bremen, to...”

can solve the structural chunk tagging problem
for German with an accuracy of 93.5%. For the
same task, a classical HMM-based trigram tag-
ger reaches only 88.1% accuracy and is therefore
substantially outperformed. Standard HMM tools
cannot easily profit from additional evidence such
as lemmas. Our results for HMMs are not directly
comparable with the reported accuracy of 90.9%
of Skut and Brants (1998). Their HMM system
additionally includes carefully selected morpho-
logical and syntactic information.

Our final feature templates for chunk tagging
turned out to be concise and uniformly structured
across the evidence layers of PoS, morphologi-
cal constraints and lemmas. Features and feature
combinations from a local context of maximally
two tokens to the left and right of the current to-
ken turned out to be optimal. Although we tried
our best, there might be some unexplored opti-
mizations. However, we would not expect sub-
stantial improvements using the same sources of
evidence that we experimented with.

The learning curve for the best system suggests
that more training material can improve the re-
sults even further. More training material could
be provided by transforming the TIGER treebank
and/or the NEGRA treebank into chunk structures
comparable to the ones derived from the TüBa.

The evaluation of the internal tagset with its
50 different tags showed 504 different tag confu-
sions for the test set of our first fold. However,
the majority of the occurring errors are attach-
ment errors and most of them are rather unsurpris-
ingly PP attachment errors. Although more train-
ing data will probably result in some improve-
ment, a more principled approach for the PP at-
tachment problem seems necessary (see Van Asch
and Daelemans (2009)). Within the framework
of CRFs an especially crafted evidence column
for verb/preposition preferences could be feasi-
ble. However, given the progress in efficient de-
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pendency parsing we should carefully consider
the combination of local evidence – which is typ-
ically exploited by approaches as ours – and non-
local evidence which is needed for full parsing
(see Swift et al. (2004)).

Our experiments with perfect morphology and
PoS tags from the TüBa show that better mor-
phological evidence can slightly improve chunk
tagging. However, our morphological constraints
on case and number for each token realized a lot
of the theoretically achievable performance gain.
A practical approach of testing the effective gain
using currently available resources could be the
application of the German rftagger that assigns
PoS and morphological tags (Schmid and Laws,
2008).
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