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Abstract
A key argument for modeling knowledge in on-
tologies is the easy re-use and re-engineering of
the knowledge. However, current ontology en-
gineering tools provide only basic functionalities
for analyzing ontologies. Since ontologies can be
considered as graphs, graph analysis techniques
are a suitable answer for this need. Graph anal-
ysis has been performed by sociologists for over
60 years, and resulted in the vivid research area
of Social Network Analysis (SNA). While social
network structures currently receive high atten-
tion in the Semantic Web community, there are
only very few SNA applications, and virtually
none for analyzing the structure of ontologies.
We illustrate the benefits of applying SNA to
ontologies and the Semantic Web, and discuss
which research topics arise on the edge between
the two areas. In particular, we discuss how dif-
ferent notions of centrality describe the core con-
tent and structure of an ontology. From the rather
simple notion of degree centrality over between-
ness centrality to the more complex eigenvector
centrality, we illustrate the insights these mea-
sures provide on two ontologies, which are dif-
ferent in purpose, scope, and size.

1 Introduction
A key argument for modeling knowledge in ontologies is
the easy re-use and re-engineering of the knowledge. How-
ever, beside consistency checking, current ontology engi-
neering tools provide only basic functionalities for ana-
lyzing ontologies. Since ontologies can be considered as
(labeled, directed) graphs, graph analysis techniques are a
promising tool. Sociologists have performed graph anal-
ysis since for over 60 years. In the late 1970ies, Social
Network Analysis (SNA) emerged as a research area out
of this work. Its aim is to analyze the structures of so-
cial communities. Typical applications include the analy-
sis of relationships like friendship, communication patterns
(e. g., phone call graphs), and the distribution of attendants
over several events. While social structures are currently
a steeply rising topic within the Semantic Web community
(e. g., friend-of-a-friend networks, 1 social tagging systems
like del.icio.us.org or www.bibsonomy.org, or semantics-
based P2P networks [22]), Social Network Analysis has
only been applied marginally up to now on ontologies and
the Semantic Web.

1http://www.foaf-project.org/

In this paper, we will discuss the use of SNA for ana-
lyzing ontologies and the Semantic Web. While the SNA
community has already discovered the internet and the Web
as fruitful application domains for their techniques a while
ago (e. g., analysing the link structure of the internet [17],
and email traffic [18; 23; 26]), SNA applications for the
Semantic Web are only emerging slowly. We advocate
here a systematic development of Semantic Network Ana-
lyis (SemNA), as the adoption of SNA to ontologies and the
Semantic Web. In this paper, we show that the application
of both basic and advanced SNA techniques to ontologies
provide a powerful tool for analyzing the structure of the
ontology. We adapt SNA tools to ontology analysis, and
discuss the findings. In particular, we discuss how different
notions of centrality describe the core content and structure
of an ontology. From the rather simple notion of degree
centrality over betweenness centrality to the more complex
eigenvector centrality based on Hermitian matrices, we il-
lustrate the insights these measures provide on two ontolo-
gies, which are different in purpose, scope, and size. The
results may be used for selecting the right ontology for a
specific application, as well as for re-engineering ontolo-
gies.

SemNA is a sub-area of Semantic Web Mining [4]. that
addresses the mining of the Semantic Web. To this end,
we consider ontologies as (both vertex- and edge-)labeled,
directed graphs. As we will discuss below, the existence
of different types of nodes and edges (which are reflected
in the labels) is a problem for standard SNA approaches.
We will discuss solutions for this problem. In this paper,
we present two selected applications, and discuss the use
of different SNA techniques for analyzing ontologies. The
examples will illustrate the deep insights we were able to
gain from the two ontologies.

Testcases: SWRC and SUMO ontologies.
The SWRC ontology2 provides a vocabulary about publi-
cations, authors, academic staff and the like. It consists of
54 concepts and 70 relations. Figure 1 shows a graphical
representation of the ontology. Rectangles represent con-
cepts, relations are shown as rounded boxes.

We selected the SWRC ontology as our first example,
as it is a handy size, and as we know its structure rather
well, since some of the authors have contributed to its
construction. We are thus able to validate the resulting
SNA findings (which were computed independently by the
non-ontology author) with our insight in the history of the
SWRC ontology. The promising results (which were also

2http://ontobroker.semanticweb.org/ontologies/
swrc-onto-2001-12-11.oxml
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surprising for the authors) motivated us to consider a larger
ontology, the SUMO ontology, where we only knew about
its general purpose, but no details about its structure nor its
content.

The aim of the Suggested Upper Merged Ontology
(SUMO)3 is to express the most basic and universal con-
cepts for creating a framework for merging ontologies of
different domains. With its 630 concepts and 236 rela-
tions, SUMO is significantly larger than the SWRC ontol-
ogy. This information is about all we knew about SUMO
when performing our analysis. We are thus in exactly the
situation of an ontology engineer who wants to gain deeper
insights to a previously unknown ontology.

Organization of the paper.
This paper is organized as follows. In the next section,
we will provide a brief overview over the history and main
lines of research in Social Network Analysis. In Section 3,
we will apply a representative selection of SNA techniques
to a representative set of ontologies with different struc-
tures. In particular, we will analyse the most central parts
of the ontology, and will study the eigenvector system as-
signed to the ontology. Section 4 addresses further applica-
tions of SNA for the Semantic Web. In the conclusion, we
summarize our experiences, and will discuss the research
issues that arise when applying SNA to ontologies and the
Semantic Web.

This paper has first been published at ESWC 2006 [15].

2 Social Network Analysis
Already as early as the 1930’s Moreno [20] started to de-
scribe social relationships within groups using so called so-
ciograms. A sociogram is a graph where the members of
an observed population are represented as nodes and the re-
lationships among members as edges. The step from mod-
elling relationships between entities of a graph to a struc-
tural analysis of these graphs started by using the results
from graph theory as early as the 1960’s. Pioneers in this
field are Harary, Norman and Cartwright [7]. To use the
tools of graph theory to analyze and thus describe structures
of social networks and to interpret these results in the con-
text of anthropological and sociological contexts was the
major achievement of these researchers. The notion of So-
cial Network Analysis (SNA) was used to subsume all tools
for methodological as well as functional analysis of such
group structures.

The two aspects of SNA, the functional aspect and the
structural aspect, each highlight a different perspective of
research. The functional view focuses on how the func-
tion of a network is determined by the structure of a given
network. Thus the question of flow between nodes is very
prominent. The structural view on the other hand is more
interested in the question of structure per se and what state-
ments about a given network can be made based on the
analysis of structure alone. Both aspects can be viewed
separately, but for some objects of interest, such as orga-
nizations, a combined approach may be more appropriate.
Since the use of SNA tools in the semantic web environ-
ment is just starting out, we will focus in this paper on the
structuralist view on SNA, in particular on different notions
of centrality. The concept of centrality has many differ-
ent branches. Just to name a few: in/out degree centrality,
betweenness centrality, information centrality, eigenvector
centrality. For a good overview see [9].

3http://www.ontologyportal.org/

Wasserman and Faust [27, p.205-219] describe to a great
extent the history of rank prestige index, which is an eigen-
vector centrality based concept. This index is based on
the idea, that the rank of a group member depends on the
rank of the members he or she is connected to. Stated
in mathematical terms this yields the eigenvalue equation
(for an eigenvalue equal to 1). The components of the
principal eigenvector are the rank prestige indices of each
group member. This concept is implemented in the hub-
and-authority algorithms of Kleinberg [16] and also in the
PageRank algorithm proposed by Page and Brin [6].

There have been different approaches to the analysis
of unbalanced graphs. All concepts work very well on
undirected and unweighted graphs. But if none of these
restrictions apply for a given graph, diffuculties arise.
Freeman [10] proposed to use the possibility to split any
asymmetric square matrix into its symmetric and skew-
symmetric part, perform a singular value decomposition
of the skew-symmetric matrix, and showed, that the re-
sult could be interpreted as a ranking of dominance. Tyler
et al. [26] could identify subgroups in unbalanced email
networks by analyzing betweenness centrality in the form
of inter-community edges with a large betweenness value.
These edges are then removed until the graph decomposes
into separate communities, thus re-organizing the graph
structure.

Barnett and Rice [2] showed that the transformation of
asymmetrical data into matrices that avoid negative eigen-
values may result in the loss of information. This is one
of the reasons why we will transform the adjacency matrix
into a Hermitian matrix in Subsection 3.3.

Beside considering the direction of links as discussed,
the notion of a graph can be refined in several ways. One-
mode graphs consider just one type of nodes (e. g., partici-
pants of an email network), while two-mode graphs distin-
guish between two types of nodes (but still have only one
type of edges), forming thus a bipartite graph (e. g., persons
and events they are visiting). More general, n-mode graphs
distinguish n types of nodes. The edges may also be typed.
Extending the definition of [27], we call a n-mode multi-
graph with k edge types a graph where the nodes may be
labeled with n different types and the edges with k differ-
ent labels. This reflects exactly the structure of an (RDFS-
based) ontology. Since the interpretation of such complex
graphs is more difficult, one often tries to preprocess the
data in order to obtain a 1- or 2-mode graph with only one
relation, i. e., with one type of edges. Of course the chosen
preprocessing transformation has to be taken into account
when interpreting the results.

To analyze networks more easily, several software tools
have been developed. These packages include, but are
not limited to UCINet,4 Pajek,5 and Visone.6 There are
also packages for R7 and also some implementations in
Java.8 For a good overview on SNA and its history refer
to Wasserman and Faust [27] and Freeman [11].

3 Network Analysis of Ontologies
Ontologies can be considered as n-mode multi-graphs with
k edge types. As argued above, n-mode multi-graphs with

4http://www.analytictech.com/ucinet.htm
5http://vlado.fmf.uni-lj.si/pub/networks/pajek/
6http://www.visone.info/
7http://www.stat.ucl.ac.be/ISdidactique/Rhelp/library/sna/

html/00Index.html
8http://jung.sourceforge.net/index.html
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k edge types are hard to analyze when n is larger than 2 or
3, and k is larger than 1. Therefore we follow the usual ap-
proach of projecting them first to a 1- or 2-mode 1-plex net-
work. In the sequel of this section, we will first illustrate the
benefit of some basic SNA approaches, before performing
a more sophisticated analysis, based on the analysis of the
eigenvectors of the adjacency matrix. To show the diver-
sity of results that can be expected from such an analysis,
we will apply the basic techniques to two different ontolo-
gies: the SWRC and the SUMO ontology, which differ in
purpose, scope, and size.

3.1 Preprocessing the Ontologies
As SNA works on graphs, we first transform the ontol-
ogy into a suitable graph. As in all knowledge discovery
(KDD) applications (and probably more so than in the av-
erage KDD scenario), the interpretation of the final results
is highly sensitive to the decisions made during preprocess-
ing.

A standard approach (which we use also) of turning n-
mode networks with k edge types into a (directed or undi-
rected) graph is to collect all types of nodes into just one
set of nodes, and to ignore the edge types.9 We will keep
the typing information, though, and refer to it during the
analysis.

As a first step, we set up a directed graph for the in-
put ontology in the following way: Technical artifacts were
pruned from the ontology. In the KAON ontology API, 10

which we used, these comprise the artificial root concept
present in all ontologies, and entities for lexical informa-
tion such as labels and word stems. Each concept and each
property became a node in the graph. Between two con-
cepts C1 and C2, a directed edge (C1, C2) was added if C1

is a direct subconcept of C2. For each property node, edges
are added from the each domain concept to the property
node, and from the property node to each range concept
(unless the property is scalar-valued or untyped), as well as
from the property to each superproperty.

The adjacency matrix A of this graph has one row and
one column for each node. If there is an edge from the ith
to the jth node, then aij := 1, else aij := 0. This matrix is
the subject of our subsequent analysis. For the SWRC on-
tology, A has thus 54+70 rows and 54+70 columns, with
entries 0 and 1. The matrix for the SUMO ontology is
structured in the same way, with 630 + 236 = 866 rows
and columns in total.

3.2 Basic Methods of Network Analysis
The intuitive approach to analyze a network, represented as
a graph G := (V, E) with nodes (or vertices) v ∈ V and
edges e ∈ E, is to start with the number of connections
each node has. A node that has many connections is pre-
sumed to be important, while a node without connections
is presumed to be irrelevant. This concept is called degree
centrality. In the adjacency matrix A the degree centrality
ck of a vertex in an undirected graph can be calculated as
the row or column sum ck =

∑n
l akl of A. If the connec-

tion between two nodes has no directional preference this
is just called degree. If the relationship has an inherent di-
rection, like in ’person A called person B’ then the degree

9A more frequent way for handling different edge types is to
perform a sequence of analyses, one for each edge type. For
ontologies, however, this approach is not suitable, as most edge
types (beside ‘is a’ and eventually ‘part of’) appear only once.

10http://kaon.semanticweb.org/

# concepts # relations diameter density
SWRC 54 70 16 0.015
SUMO 630 236 27 0.0024

Table 1: Size, diameter, and density of SWRC and SUMO

is categorized into in- (column sums) and outdegree (row
sums) depending on whether the connection ends at a node
or starts at a given node.

The betweenness centrality is the (normalized) number
of shortest paths between any two nodes that pass through
the given node. The betweenness centrality provides often
a high degree of information, as it describes the location of
a node in the graph in a global sense, while in- and outde-
gree consider the direct neighbor nodes only.

Based on the degree centrality we can define the density
d of a network. Let the network describe a non-directional
relationship between nodes, then the density is defined as
the number of existing connections divided by the number

N := |V |(|V |−1)
2 of all possible edges as d =

∑
kl

akl

N .
Thus a completely connected network has a density of 1.
In the directed case one has to keep in mind that at most
two connections are possible between two nodes. Thus the

density dd becomes dd =
∑

kl
akl

|V |(|V |−1) . This concept is not
useful anymore when multiple connections are allowed or
when the connections become valued or weighted, because
no total number of possible connections can be given in that
case.

Another measure of how well a graph is connected is
its diameter. For all pairs A, B of nodes, we calculate the
shortest path from A to B, and take then the maximum over
their lengths. The well-known small-world phenomenon
states that social networks have a small diameter. Diameter
and density are used for comparing networks.

Global comparison of SWRC and SUMO.
To analyze the given ontologies, we calculated for each of
them the diameter and the density of the network. The re-
sults are shown in Table 1. These indices were generated
using Pajek.

Compared to typical social networks, the density of the
SWRC ontology (0.015) is very sparse. SUMO has an even
sparser density with 0.0024. The fact that the difference be-
tween both ontologies is approx. one magnitude, which is
in the same ratio as their difference in size, indicates that
the concepts in both ontologies have a similar number of
properties attached in average. It might be interesting to an-
alyze more ontologies to check whether this is some kind of
constant stemming from ontology engineering principles.
We assume that ontologies are scale-free networks because
of their construction.

For studying both ontologies in more details, we com-
puted as next step for all their nodes indegree, outdegree
and betweenness centrality.

The SWRC ontology in detail.
Table 2 shows the indegrees, outdegrees and betweenness
centralities of the nodes in the graph extracted from the
SWRC ontology. While the degrees could still be read from
Fig. 1, the betweenness centrality has to be listed.

Considering the degrees only, one observes that the Bib-
TeX part of the ontology was modeled with the highest
level of detail: BibTeX-related concepts such as ‘Book’

3
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# Label do di bc

1 Academic Staff 10 4 0.102
2 Administrative Staff 1 0 0.
3 Article 7 0 0.
4 Assistant Professor 1 0 0.
5 Associate Professor 1 0 0.
6 Association 1 0 0.
7 Book 13 0 0.
8 Booklet 5 0 0.
9 Conference 2 0 0.
10 Department 2 0 0.
11 Development Project 1 1 0.004
12 Employee 2 4 0.025
13 Enterprise 1 0 0.
14 Event 6 9 0.019
15 Exhibition 1 0 0.
16 Faculty Member 1 3 0.013
17 Full Professor 1 0 0.
18 Graduate 1 1 0.016
19 In Book 13 0 0.
20 In Collection 14 0 0.
21 In Proceedings 12 0 0.
22 Institute 3 0 0.
23 Lecture 2 0 0.
24 Lecturer 1 0 0.
25 Manager 1 0 0.
26 Manual 6 0 0.
27 Master Thesis 1 0 0.
28 Meeting 4 1 0.001
29 Misc 3 0 0.
30 Organization 8 10 0.134
31 Person 7 5 0.024
32 PhDStudent 4 1 0.024
33 Ph DThesis 1 0 0.
34 Proceedings 9 0 0.
35 Product 2 3 0.017
36 Project 7 7 0.12
37 Project Meeting 1 0 0.
38 Project Report 2 0 0.
39 Publication 5 14 0.022
40 Report 2 2 0.005
41 Research Group 3 1 0.01
42 Research Project 1 1 0.004

# Label do di bc

43 Research Topic 3 1 0.079
44 SoftwareComponent 2 0 0.
45 Software Project 2 0 0.
46 Student 2 3 0.027
47 Technical Report 3 1 0.014
48 TechnicalStaff 1 0 0.
49 Thesis 6 2 0.01
50 Topic 1 1 0.
51 Undergraduate 1 0 0.
52 University 3 2 0.041
53 Unpublished 3 0 0.
54 Workshop 2 0 0.
55 Abstract 0 1 0.
56 address 0 9 0.
57 Affiliation 1 1 0.019
58 AtEvent 1 1 0.
59 author 0 10 0.
60 booktitle 0 2 0.
61 carried Out By 1 1 0.009
62 carriesOut 1 1 0.033
63 Chapter 0 2 0.
64 cooperate With 0 2 0.
65 Date 0 2 0.
66 Dealt With In 1 1 0.004
67 Describes Project 1 1 0.004
68 Developed By 1 1 0.017
69 develops 1 1 0.006
70 edition 0 4 0.
71 editor 0 6 0.
72 Email 0 1 0.
73 employs 1 1 0.013
74 Event Title 0 1 0.
75 fax 0 1 0.
76 financedBy 1 1 0.009
77 Finances 1 1 0.033
78 Given By 1 1 0.
79 Has Part Event 1 1 0.
80 Has Parts 0 3 0.
81 hasPrice 0 1 0.
82 head 0 2 0.
83 Head Of 1 1 0.011
84 head Of Group 1 1 0.008

# Label do di bc

85 homepage 0 1 0.
86 howpublished 0 2 0.
87 institution 0 0 0.
88 Is About 1 1 0.078
89 IsWorkedOnBy 1 1 0.069
90 Isbn 0 1 0.
91 Journal 0 1 0.
92 Keywords 0 1 0.
93 Location 0 2 0.
94 member 0 2 0.
95 member Of PC 1 1 0.01
96 month 0 11 0.
97 name 0 6 0.
98 Note 0 1 0.
99 number 0 6 0.
100 organization 0 4 0.
101 organizer Or Chair Of 1 1 0.01
102 Pages 0 4 0.
103 participant 1 1 0.001
104 phone 0 1 0.
105 Photo 0 1 0.
106 Price 0 1 0.
107 product 1 1 0.001
108 projectInfo 1 1 0.009
109 publication 0 2 0.
110 Publisher 0 5 0.
111 publishes 1 1 0.01
112 School 1 1 0.012
113 series 0 8 0.
114 source 0 1 0.
115 has student 1 1 0.002
116 Studies At 1 1 0.024
117 Supervises 1 1 0.023
118 supervisor 1 1 0.006
119 TechnicalReport 1 1 0.017
120 Title 0 2 0.
121 Type 0 3 0.
122 Volume 0 6 0.
123 Works AtProject 0 2 0.
124 Year 0 1 0.

Mean (Degree) 1.82 1.82 –
Std (Degree) 2.84 2.55 –

Table 2: Degree and betweenness centrality of concepts (# 1–54) and relations (# 55–124)

Figure 1: The SWRC Ontology

and ‘InCollections’ have high outdegrees (i. e. a large num-
ber of properties) but no indegree, while the related prop-
erties such as ‘author’, ‘month’, and ‘address’ have large
indegree.

Properties which apply to all kinds of publications, such
as ‘title’ and ‘year’, have a low degree, as they are attached
to ‘Publication’ only and are inherited by its subclasses.
This is a result of the way we set up the adjacency matrix.
An alternative way of setting up the matrix is to model ex-
plicitly also the inherited attributes. This is an example for
the fact that the modeling step has to be taken into account
for the interpretation of the SNA results.

The betweenness centrality gives us a more global de-
scription of the roles of nodes in the graph. For SWRC,
it returns first of all ‘Organization’ and ‘Project’, followed
in short distance by Academic Staff’ and ‘Research Topic’.
These are thus the concepts that play a ‘bridging role’ in
SWRC; they are used for describing (chains of) other ob-
jects (these are the incoming edges), and they are described
by (chains of) other objects (the outgoing edges). From a
database perspective, these are typical candidates for joins
in a query.

The SUMO ontology in detail.
We also computed the list of in, out and between degrees
of the concepts and relations of the SUMO ontology. Due
to space restrictions, we omit this list. The means of in-
and outdegree (which are obviously equal, as each outgo-
ing edge has to go in somewhere) are at 2.07. The stan-
dard deviation is 1.67 for the outdegrees, and 5.8 for the
indegrees. The large difference of the standard deviations
indicates a heterogeneity in the way of modeling.

When looking at the concepts and relations with out- and
indegrees differing largely from the mean, this heterogene-

4
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Outdegree Indegree
Process 20 10
Object 15 21
RealNumber 13 15

Outdegree Indegree
BinaryObject 3 102
AsymmetricRelation 2 71
UnaryFunction 3 54

Table 3: Highest out- and indegrees of SUMO concepts.

ity can be explained. The highest indegree has the con-
cept ‘BinaryPredicate’ (di = 102), and the highest out-
degree has the concept ‘Process’ (do = 20). The former
shows that this technical notions is important for the de-
signers of the ontology. However, this concept is conceptu-
ally not part of the domain of interest of the ontology, but
rather a meta-construct. If the KR language permitted dif-
ferent arity relations, this would be modeled with language
constructs and not by reification. The latter, on the other
hand, indicates that ‘Process’, which is indeed a concept of
the domain of interest, is modelled in a high level of de-
tail by providing many properties that a process can have.
As in the SWRC ontology, the betweenness centrality em-
phasizes more on the conceptual part of the ontology: the
top node according to this measure is ‘Object’, followed by
‘Formula’, ‘Entity’, ‘Physical’, ‘List’, ‘Process’. These are
the central nodes of the SUMO ontology.

3.3 Eigensystem Analysis
Compared to the centrality measures described so far, the
eigensystem of the adjacency matrix provides an overall
view of the network, while still allowing a very detailed
structure analysis of its parts.

Eigenvector centrality measurements have become a
standard procedure in the analysis of group structures.
Mostly symmetric (dichotomized) data has been used.
Bonacich and Lloyd [5] present an introduction of the use
of eigenvector-like measurements of centrality for asym-
metric data. The analysis of directed, weighted, asymmet-
ric relationships within a social network poses some diffi-
culties. In this paper we will use a method based on the
status (rank prestige) index method [27, p.205-219], that
was adapted by the first author to complex adjacency ma-
trices. We sketch the principal approach here (the technical
details are presented in [13] and [14]) and adapt it to the
analysis of ontologies.

In the following, we consider an ontology as a network
which can be modeled as a directed, weighted graph G =
(V, E) with V denoting the set of nodes or members and E
denoting the set of edges, links or communications between
different members. Self references (loops) are excluded.

We use the following construction rules for a complex
adjacency matrix H of the initial graph G: First, we con-
struct a square complex adjacency matrix C with n nodes
from the possibly weighted real valued adjacency matrix A
of graph G by C = A+ iAt with akl = m+ ip where m is
the number of outbound edges (or equivalently the weight
of the outbound edge) from node k to node l, p is the num-
ber of inbound edges (or equivalently the weight of the in-
bound edge) from node l to node k, and i is representing
the imaginary unit (i2 = −1). As can be seen, ckl = iclk

holds. Then we rotate C by multiplying it with e−i π
4 in or-

der to obtain a Hermitian matrix H , i. e., H := C · e−i π
4 .

For the proof see [14].
The fact that the resulting matrix is Hermitian has the ad-

vantage that it has full rank and thus a complete orthogonal

eigenbasis can be found. The consequence is that H can
be represented by a Fourier sum as the sum of all orthogo-
nal projectors Pk = xkx∗k, weighted by the corresponding
eigenvalue λk: H =

∑n
k=1 λkPk. Since all eigenvalues

are real, they can be sorted by absolute value. In addition
the eigenvalue can be used to calculate the covered data
variance. These characteristics can be used to analyze a
network structure at different levels of relevance as will be
shown later in this paper.

Under this similarity transformation the coordinate inde-
pendent characteristics of the original directional patterns
are kept, no information is lost. For instance, more out-
bound than inbound links lead to a negative sign of the
imaginary part of hkl, while more inbound than outbound
links lead to a positive sign of the imaginary part of hkl.
Now one can analyze the eigensystem of the matrix H in
order to gain insights into the structure of the underlying
ontology.

Eigensystem analysis of the SWRC ontology.
We start by using the adjacency matrix A for the SWRC
ontology from subsection 3.2, and construct the matrix H
as described above. This matrix is the subject of further
examination.

Let us first have a look at the distribution of the eigen-
values of H as shown in Fig. 2. The diagram suggests
a symmetry in the spectrum. This indicates that major
components of the network are star like in structure. As
the concept hierarchy of SWRC is a tree, this hierarchy
has a snowflake structure if considered as graph. Hence
our observation that stars are predominant indicates that
the concept hiararchy has a more important influence on
the overall structure of the SWRC ontology than the non-
hierarchical relationships.

0 20 40 60 80 100 120
j

-1

-0.5

0

0.5

1

λj

Figure 2: Eigenspectrum of the ontology sorted by value

Fig. 3 displays the cumulative covered variance of the
ontology. One can see that the first two eigenvalues cover
already 29 % of the variance of the system, that it has a
clear distance to the following eigenvalue, and that the first
14 eigenvalues cover approx. 70 % of the overall variance.
The remaining eigenvalues contribute marginally only.

In Fig. 4 we now take a more detailed look at the eigen-
vectors and their components. The lefthand side gives the
eigenvalues of each eigenvector, the righthand side gives
covered data variance, each eigenvector is represented hor-
izontally with the components numbered 1 through 125 on
the bottom, and each eigenvector component is represented
as a colored (or gray scaled) field.

The eigenvector components are complex valued, indi-
cating in the phase of the complex number the direction of

5
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k

0.2

0.4
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σ2
c,K

Figure 3: Cumulative covered variance σ2
c,K of the SWRC

ontology by eigenvalues λk

the connection with respect to the central node,and in the
absolute value the relevance of the node in this eigenvector.
The color representation lends itself naturally. The abso-
lute value of the component is given by the brightness of
the colored field. In gray scales an absolute value of 0 or
near 0 is black, while an absolute value close to 1 is bright
or has a saturated color. The phase of the complex num-
ber is represented by color where a phase of 0 is given as
red and counter clockwise π

4 is yellow, π
2 is yellow-green,

3
4π green,−π cyan, − 3

4π blue, − π
2 blue-magenta,− π

4 ma-
genta and coming back to red. Thus for example the field
with the coordinates 1.0, 39 is bright red which indicates an
eigenvalue with high absolute value and phase 0.

By checking for the largest eigenvector component in
each of the eigenvectors (colored red) corresponding to
these eigenvalues we can see which concept/relation of the
ontology is most central: In the first eigenvector (i. e., the
lowest row in Fig. 4, with eigenvalue +1), the brightest
color is in column 39, which is the concept ‘Publication’.
The fact that the same column shows in the eigenvector
for the negative of the eigenvalue (i. e., in the second row
from below, with eigenvalue −1) the same phase (as it is
red as well) indicates that the concept ‘Publication’ is the
center of a star like structure. The concept ‘Organization’ (
= column 29) follows (at some distance) with the third and
fourth eigenvector. This confirms that publications were in
the key focus of the developers of SWRC – a finding we
were already pointed to when analysing the in- and outde-
grees in the previous subsection. In fact, this fits with the
history of the development of the SWRC ontology, which
started by transforming the BibTeX format into an ontol-
ogy.

When looking further down the eigenvalues, we observe
that of the three concepts ‘Academic Staff’, ‘Employee’
and ‘Person’, ‘Academic Staff’ already becomes relevant
in the fifth eigenvector, while ‘Person’ becomes relevant as
late as the 11th eigenvector. ‘Employee’ does not feature
as a central concept in any eigenvector. This observation
raises the question if the concepts ‘Employee’ and ‘Person’
are really needed by the applications the SWRC ontology
is targeted to, or if they eventually have just been added
because ‘one is usually doing so’ when designing an ontol-
ogy.

In Fig. 4, we observe also that the concept ‘Academic
Staff’ interlaces with ‘Organisation’, ‘Project’ and ‘Per-
son’. This behavior is visible by observing that while ‘Aca-
demic Staff’ is colored red in the fifth eigenvector (eigen-
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Figure 4: The 14 strongest eigenvectors of the ontology

value −0.52), it changes color already in the next line and
goes back to red again in line 10 and again in line 14. The
three other concepts are colored red in the remaining eigen-
vectors in between. The absolute values of the eigenvalues
do not come in strict pairs of equal absolute value but dif-
ferent sign, thus the three star like structures can not be
clearly separated into blocks. The pattern of connection
of AcademicStaff to the rest of the network is not easily
explained. The pattern of AceademicStaff is distrubed by
other structures that have approximately the same amount
of connections, thus seperating the eigenvalues.

When considering the eigenvectors of the 36th to 44th
eigenvalue (which are out of Fig.4 due to space restric-
tions), we observe that the concepts ‘Assistant Professor’,
‘Associate Professor’, and ‘Full Professor’ (columns 4, 5,
and 17) behave identically with respect to ‘Faculty Mem-
ber’ (column 16). As these three concepts are also very
similar from an ontology engineering point of view, we take
this as a hint that, in a re-engineering step, they should be
unified to a single concept, with an additional attribute like
‘status’.

Finally, we take a look at the partial sums as described
earlier. In Fig. 5 we see the partial sum of the Fourier sum
of the first two eigenprojectors weighted by their eigenval-
ues and rotated back (

∑2
k=1 λkPk). This figure was gener-

ated by using an adapted k-means cluster algorithm based
on the eigensystem. To define the initial cluster centers we
use the eigenvector components with the highest absolute
value of those eigenvectors that have a negative eigenvalue.
We further restrict the selection to all those eigenvectors
where the eigenvalues add up to explain data variance to a
predefined level of 70%. Thus we do not need to set the
number of clusters ex ante. An approximated block ma-
trix is generated when we then sort the eigenvectors and
rearrange the eigenvector components accordingly before
calculating the eigenprojector. Since the matrices are her-
mitian, the blocks are symmetric but different in color. The
color-coding is the same as in Fig. 4. What is clearly visi-
ble is the BibTeX structure as a block in the upper left hand
corner. It shows a very strong outbound connection from
concepts like ‘Book’, ‘InBook’, etc. to Publication’, ‘ad-
dress’ and ‘edition’ for example.

If we now take the partial sum of the first 14 eigenpro-
jectors we bring more detail to the picture. In Fig. 6 we
see in addition to the BibTeX block five right angles in the
matrix plot. These five structures belong to the concepts
of ‘Organisation’, ‘Academic Staff’, ‘Project’, ‘Event’ and
‘Person’. As this matrix can be read as a ‘partial adjacency
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Figure 5: Back rotated partial sum of first two eigenprojec-
tors

matrix’, such right angles are the structure one expects for
stars in the graph: one central node pointing from/to several
nodes around it. Different to the BibTeX block that is vis-
ible in the upper left hand corner, these concepts play thus
a central role in their surroundings. The color of the hori-
zontal part of the angle indicates the direction: for ‘Organi-
zation’, it is green, hence this concept has many inbound
edges – its subconcepts. The red color for ‘Acadamic
Staff’ comes from its many outbound properties. ‘Project’,
‘Event’ and ‘Person’ have both incoming and outcoming
edges/properties.

Eigensystem analysis of the SUMO ontology.
The eigensystem of the SUMO ontology differs signifi-
cantly from the one of SWRC. Not only because the SUMO
ontology is modeled as a graph with more then 800 nodes,
but if differs in that this ontology does not have such a very
prominent center.

The spectrum of SUMO (given in Fig. 7) shows – as in
the SWRC case – a very strong symmetry, thus suggesting
star like structures which come again from the concept hier-
archy where several subconcepts all point to their common
superconcept. Different to SWRC, the cumulative covered
variance (Fig. 8) shows a rather slow incline. While the
first two eigenvalues of the SWRC ontology covered al-
ready 29% of the data variance, the first two eigenvalues
of SUMO cover only about 10 %. The incline then goes
without any obvious steps. This suggests that many con-
cepts need to be taken into account to explain the complete
ontology. Otherwise said, the degree of detail in SUMO
seems to be more balanced than in SWRC.

Due to space restrictions, we cannot display the equiva-
lents of Figs. 4 to 6 for SUMO here. We only present the
major insights of our analysis verbally. The concept ‘Bi-
nary Predicate’ contributes most to the interpretation of the
first two eigenvectors. ‘Asymmetric Relation’ seems to fol-
low the same pattern in connecting to other nodes. Thus it
is the second strongest concept in the first two eigenvectors.
The fact that these two concepts also have a high absolute
value in the following six eigenvectors further indicates that
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Figure 6: Back rotated partial sum of first 14 eigenprojec-
tors

these two concepts also contribute to a high extent to the
interpretation of these patterns. This might tells us that, in
SUMO, these two concepts play a predominant role.

The third and fourth eigenvectors are most strongly influ-
enced by the concepts ‘Unary Function’, ‘Total Valued Re-
lation’ and ‘Unit of Measure’. These three concepts have
similar incoming connections from many concepts which
are all of the form‘. . . Fn’. This can be taken as a hint that
these bundles of relations could be unified if there were a
suitable construct in the KR formalism.

Concluding this section, we summarize that the out-
/indegree analysis (and in particular the different differ-
ences of the standard deviations for out- and indegree)
showed us that SUMO is more heterogenous in its way of
modeling (due to the lack of a construct for higher-arity
relations in the KR language) than SWRC, but that it is –
according to the eigensystem analyis – more homogenous
in the distribution of the coverage of different sub-domains
of interest.

4 Other Applications of SNA in the
Semantic Web Context

There are interesting first results from emerging SNA ap-
plications in the Semantic Web context. Mike [19] de-
fines a model of semantic-social networks for extracting
lightweight ontologies from folksonomies. Besides cal-
culating such measures as the clustering coefficient, (lo-
cal) betweenness centrality or the network constraint on
the extracted one-mode network, Mika uses co-occurence
techniques for clustering the concept network. Stucken-
schmidt [24] uses network analysis to partition an ontology
into a disjoint and covering set of concepts. After creat-
ing a dependency graph of the ontology and computing the
strength of the dependencies the line island method [3] is
used to determine strongly related concepts. These are then
used to form a partition of the ontology graph. The tool
Ontocopi described in [1] performs what is called Ontology
Network Analysis for initially populating an organizational
memory. Several network analysis methods are applied to

7

303

KDML 2006



0 200 400 600 800
j

-1

-0.5

0

0.5

1

λj

Figure 7: Eigenspectrum of the SUMO ontology sorted
by value

200 400 600 800
k

0.2

0.4

0.6

0.8

1

σ2
c,K

Figure 8: Cumulative covered variance σ2
c,K of the

SUMO ontology by eigenvalues λk

an already populated ontology to extract important objects.
In particular, a PageRank-like [6] algorithm is used to find
communities of practice of individuals represented in the
ontology.

Another field of interest regarding SemNA are Friend Of
A Friend (FOAF)11 networks which are studied for instance
in [21] and [8]. Both articles focus on analysing the struc-
ture of the social network yielded by a large collection of
FOAF documents.

5 Conclusion
In this paper, we have shown that Social Network Analysis
provides a promising set of tools for analyzing ontologies
and Semantic Web applications, providing deep insights
into the structure of ontologies and knowledge bases. In
particular, we have seen that the analysis of a given on-
tology can be done very thoroughly at different levels of
granularity.

While the degree based measures from SNA already give
an insight into the importance of certain concepts and prop-
erties of the ontology, the eigenvector analysis provides a
detailed analysis of the importance of entities and the struc-
ture of the ontology. Little used “dummy” concepts, as well
as candidates for concept fusion can be detected, and the
topical clusters within the ontology and their structure can
be shown using the eigenprojectors. The analysis is also
useful for selecting the right ontology for reuse from a set
of candidate ontologies. The eigenvalue analysis provides
deep insights into the structure and focus of each ontology
and supports the selection of the most suitable result.

11http://www.foaf-project.org/

As the two research areas Semantic Web and Semantic
Network Analysis met only recently, open issues are still
abundant, and provide a rich domain of research for the
coming years:

• As seen above, SNA deals well with one- to n-mode
networks with one relation. However, ontologies typi-
cally consist of more than one or two concepts, and of
more than just one kind of relation. A systematic anal-
ysis of preprocessing steps which transform an ontol-
ogy into a one- or two-mode network, as well as the
interpretation of the results, is thus needed.

• One step further in this direction is the interesting and
far from trivial research question how to expand exist-
ing SNA approaches to n-mode multigraph data sets.

• The interpretation of the standard eigenvector analy-
sis needs currently some experience. Future work in-
cludes the use of cluster algorithms for rearranging the
dimensions of the vector space such that similar di-
mensions are visualized together.

• (Description) Logics based ontologies describe rela-
tions (such as the subsumption hierarchy) implicitly
only. It has to be studied whether these relations have
to be computed explicitly before SNA techniques can
be applied in a meaningful way.

• The next step after analyzing the ontologies is to
turn the outcome into support for search, navigation,
browsing, and restructuring ontologies and knowledge
bases. Seeing the large field of SNA techniques,
though, we expect a lot more techniques and tools to
come up within the next years.

• Another direction of research is the comparison with
philosophical aspects of ontology engineering. The
OntoClean [12] method provides a framework for the
evaluation of ontological decisions bsaed on philo-
sophical notions e.g. of Identity or Polysemy. Corre-
lations between the structural and philosophical prop-
erties of ontologies will have to be researched.
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