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Abstract

In recent years there has been an increased
interest in frequent pattern discovery in large
databases of graph structured objects. While the
frequent connected subgraph mining problem for
tree datasets can be solved in incremental poly-
nomial time, it becomes intractable for arbitrary
graph databases. Existing approaches have there-
fore resorted to various heuristic strategies and
restrictions of the search space, but have not
identified a practically relevant tractable graph
class beyond trees. In this paper, we define the
class of so called tenuous outerplanar graphs, a
strict generalization of trees, develop a frequent
subgraph mining algorithm for tenuous outerpla-
nar graphs that works in incremental polynomial
time, and evaluate the algorithm empirically on
the NCI molecular graph dataset.

1 Introduction
The discovery of frequent patterns in a database is one of
the central tasks considered in data mining. In addition to
be interesting in their own right, frequent patterns can also
be used as features for predictive data mining tasks (see,
e.g., [Deshpande et al., 2005]). For a long time, work on
frequent pattern discovery has concentrated on relatively
simple notions of patterns and elements in the database as
they are typically used for the discovery of association rules
(simple sets of atomic items). In recent years, however, due
to the significance of application areas such as the analysis
of chemical molecules or graph structures in the WWW,
there has been an increased interest in algorithms that can
perform frequent pattern discovery in databases of struc-
tured objects such as trees or arbitrary graphs.

While the frequent pattern problem for trees can be
solved in incremental polynomial time, i.e., in time poly-
nomial in the combined size of the input and the set of fre-
quent tree patterns so far computed, the frequent pattern
problem for graph structured databases in the general case
cannot be solved in output polynomial time, i.e., in time
polynomial in the combined size of the input and the set
of all frequent patterns. Existing approaches to frequent

∗A longer version of this paper appeared in the in the Pro-
ceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 197–206, ACM
Press, New York, NY, 2006. This short version has also been ac-
cepted to the ECML/PKDD Workshop on Mining and Learning
with Graphs(MLG 2006).

pattern discovery for graphs have therefore resorted to var-
ious heuristic strategies and restrictions of the search space
(see, e.g., [Cook and Holder, 1994; Deshpande et al., 2005;
Inokuchi et al., 2003; Yan and Han, 2002]), but have not
identified a practically relevant tractable graph class be-
yond trees.

In this paper, we define the class of so called tenuous
outerplanar graphs, which is the class of planar graphs that
can be embedded in the plane in such a way that all of its
vertices lie on the outer boundary, i.e. can be reached from
the outside without crossing any edges, and which have a
fixed limit on the number of inside diagonal edges. This
class of graphs is a strict generalization of trees, and is mo-
tivated by the kinds of graphs actually found in practical ap-
plications. In fact, in one of the popular graph mining data
sets, the NCI data set1, 94.3% of all elements are tenuous
outerplanar graphs. We develop an incremental polynomial
time algorithm for enumerating frequent tenuous outerpla-
nar graph patterns.

Our approach is based on a canonical string representa-
tion of outerplanar graphs which may be of interest in itself,
and further algorithmic components for mining frequent bi-
connected outerplanar graphs and candidate generation in
an Apriori style algorithm. To map a pattern to graphs in
the database, we define a special notion of block and bridge
preserving (BBP) subgraph isomorphism, which is moti-
vated by application and complexity considerations, and
show that it is decidable in polynomial time for outerpla-
nar graphs. We note that for trees, which form a special
class of outerplanar graphs, BBP subgraph isomorphism is
equivalent to subtree isomorphism. Thus, BBP subgraph
isomorphism generalizes subtree isomorphism to graphs,
but is at the same time more specific than subgraph iso-
morphism. Since in many applications, subgraph isomor-
phism is a non-adequate matching operator (e.g., when pat-
tern matching is required to preserve certain type of frag-
ments in molecules), by considering BBP subgraph isomor-
phism we take a first step towards studying the frequent
graph mining problem w.r.t. non-standard matching oper-
ators as well. Beside complexity results, we present also
empirical results which show that the favorable theoretical
properties of the algorithm and pattern class also translate
into efficient practical performance.

The paper is organized as follows. In Sections 2 and 3,
we define the necessary notions and the problem setting for
this work, respectively. Section 4 describes our algorithm
for mining frequent tenuous outerplanar graphs. Section 5
contains our experimental evaluation and finally, Section 6
concludes and discusses some open problems. Due to space

1http://cactus.nci.nih.gov/
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limitations, proofs are omitted in this short version.

2 Preliminaries
We recall some notions related to graphs [Harary, 1971].
An undirected graph is a pair (V,E), where V 6= ∅ is a
finite set of vertices and E ⊆ {e ⊆ V : |e| = 2} is a
set of edges. A labeled undirected graph is a quadruple
(V,E, Σ, λ), where (V,E) is an undirected graph, Σ 6= ∅
is a finite set of labels associated with some total order, and
λ : V ∪ E → Σ is a function assigning a label to each
element of V ∪ E. Unless otherwise stated, in this paper
by graphs we always mean labeled undirected graphs and
denote the set of vertices, the set of edges, and the labeling
function of a graph G by V (G), E(G), and λG, respec-
tively. Let G and G′ be graphs. G′ is a subgraph of G, if
V (G′) ⊆ V (G), E(G′) ⊆ E(G), and λG′(x) = λG(x) for
every x ∈ V (G′) ∪ E(G′). For a vertex v ∈ V (G), N(v)
denotes the set of vertices of G connected by an edge with
v.

A graph G is connected if there is a path between any
pair of its vertices; it is biconnected if for any two vertices
u and v of G, there is a simple cycle containing u and v.
A block (or biconnected component) of a graph is a maxi-
mal subgraph that is biconnected. Edges not belonging to
blocks are called bridges. The definitions imply that the
blocks of a graph are pairwise edge disjoint and that the set
of bridges forms a forest. For the set of blocks and the for-
est formed by the bridges of a graph G it holds that their
cardinalities are bounded by |V (G)| and they can be enu-
merated in time O (|V (G)|+ |E(G)|) [Tarjan, 1972].

Let G1 and G2 be graphs. G1 and G2 are isomorphic,
denoted G1 ' G2, if there is a bijection ϕ : V (G1) →
V (G2) such that (i) {u, v} ∈ E(G1) iff {ϕ(u), ϕ(v)} ∈
E(G2), (ii) λG1(u) = λG2(ϕ(u)), (iii) and if {u, v} ∈
E(G1) then λG1({u, v}) = λG2({ϕ(u), ϕ(v)}) hold for
every u, v ∈ V (G1). In this paper, two graphs are con-
sidered to be the same if they are isomorphic. G1 is sub-
graph isomorphic to G2 if G1 is isomorphic to a subgraph
of G2. Deciding whether a graph is subgraph isomorphic
to another graph is NP-complete, as it generalizes e.g. the
Hamiltonian path problem.

Outerplanar Graphs Informally, a graph is planar if
it can be drawn in the plane in such a way that no two
edges intersect except at a vertex in common. An outer-
planar graph is a planar graph which can be embedded in
the plane in such a way that all of its vertices lie on the
boundary of the outer face. Throughout this work we con-
sider connected outerplanar graphs and denote the set of
connected outerplanar graphs over an alphabet Σ by OΣ.
Clearly, trees are outerplanar graphs and hence, a graph
is outerplanar iff each of its blocks is outerplanar [Harary,
1971]. Furthermore, as the blocks of a graph can be com-
puted in linear time [Tarjan, 1972] and outerplanarity of
a block can be decided also in linear time [Lingas, 1989;
Mitchell, 1979], one can decide in linear time whether a
graph is outerplanar.

A biconnected outerplanar graph G with n vertices con-
tains at most 2n − 3 edges and has a unique Hamiltonian
cycle which bounds the outer face of a planar embedding
of G [Harary, 1971]. This unique Hamiltonian cycle can be
computed efficiently [Lingas, 1989]. Thus, G can be con-
sidered as an n-polygon with at most n − 3 non-crossing
diagonals. Below we state a bound for the number of cycles
of G. Due to space limitation, we omit the proof.

Proposition 1 A biconnected outerplanar graph with d di-
agonals has at most 2d+1 cycles.

Given outerplanar graphs G and H , deciding whether
H is subgraph isomorphic to G is an NP-complete prob-
lem. This follows from the fact that outerplanar graphs
generalize forests and deciding whether a forest is subgraph
isomorphic to a tree is NP-complete [Garey and Johnson,
1979]. The following stronger negative result is shown in
[Syslo, 1982].

Theorem 2 Deciding whether a connected outerplanar
graph H is subgraph isomorphic to a biconnected outer-
planar graph G is NP-complete.

If, however, H is also biconnected, the following positive
result holds [Lingas, 1989].

Theorem 3 Let G, H be biconnected outerplanar graphs.
Then one can decide in time O

(
|V (H)| · |V (G)|2

)
whether H is subgraph isomorphic to G.

For the special case of trees, the following positive result
holds [Matula, 1978].2

Theorem 4 The problem whether a tree H is sub-
graph isomorphic to a tree G can be decided in time
O

(
|V (H)|1.5 · |V (G)|

)
.

3 The Problem Setting
In this section we define the frequent subgraph mining
problem for a practically relevant class of outerplanar
graphs with respect to a matching operator that preserves
the pattern graph’s bridge and block structure. To define
the mining problem, we need the notions of tenuous outer-
planar graphs and BBP subgraph isomorphism.

Tenuous Outerplanar Graphs Let d ≥ 0 be some in-
teger. A d-tenuous outerplanar graph G is an outerplanar
graph such that each block of G has at most d diagonals.
For an alphabet Σ and integer d ≥ 0, Od

Σ denotes the set
of connected d-tenuous outerplanar graphs labeled by the
elements of Σ. The class of d-tenuous outerplanar graphs
forms a practically relevant graph class e.g. in chemoinfor-
matics. As an example, out of the 250251 pharmacological
molecules in the NCI dataset, 236180 (i.e., 94.3%) com-
pounds have an outerplanar molecular graph. Furthermore,
among the outerplanar compounds, there is no molecular
graph having a block with more than 11 diagonals. In fact,
there is only one compound containing a block with 11 di-
agonals; 236083 (i.e., 99.99%) compounds among the out-
erplanar graphs have at most 5 diagonals per block.

BBP Subgraph Isomorphism We continue our problem
definition by introducing a matching operator between out-
erplanar graphs. Let G, H ∈ OΣ. A bridge and block
preserving (BBP) subgraph isomorphism from H to G, de-
noted H 4BBP G, is a subgraph isomorphism from H to
G mapping (i) the set of bridges of H to the set of bridges
of G and (ii) different blocks of H to different blocks of G.
Notice that for trees, which are special outerplanar graphs
(i.e., block-free), BBP subgraph isomorphism is equivalent

2The bound in Theorem 4 is improved by a log factor in
[Shamir and Tsur, 1999]. For the sake of simplicity, we gener-
alize the algorithm in [Matula, 1978] to outerplanar graphs in the
long version of this paper. We note that the complexity of our al-
gorithm can also be improved using the idea of [Shamir and Tsur,
1999].
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to the ordinary subtree isomorphism. Thus, BBP subgraph
isomorphism can be considered as a generalization of sub-
tree isomorphism to outerplanar graphs which is more spe-
cific than ordinary subgraph isomorphism.

Besides complexity reasons raised by Theorem 2, the
use of BBP subgraph isomorphism as matching operator
is motivated by recent results in chemoinformatics which
indicate that more powerful predictors can be obtained by
considering matching operators that map certain fragments
of the pattern molecule to certain fragments of the target
molecule. One natural step towards this direction is to re-
quire that only ring structures (i.e., blocks) can be mapped
to ring structures and that edge disjoint ring structures are
mapped to edge disjoint ring structures.

The FTOSM Problem Using the above notions, we de-
fine the frequent d-tenuous outerplanar subgraph mining
problem (FTOSM) as follows: Given (i) an alphabet Σ, (ii)
a finite setD ⊆ Od

Σ of transactions for some integer d ≥ 0,
and (iii) an integer threshold t > 0, enumerate the set of all
connected d-tenuous outerplanar graphs in Od

Σ that match
at least t graphs in D w.r.t. BBP subgraph isomorphism,
i.e., enumerate the set

F t
Σ,d(D) = {H ∈ Od

Σ : Πt(D,H)} , (1)

where Πt(D,H) is the frequency property defined by

Πt(D,H) = |{G ∈ D : H 4BBP G}| ≥ t . (2)

By definition, F t
Σ,d(D) does not contain isomorphic

graphs. Furthermore, it is closed downwards w.r.t. BBP
subgraph isomorphism, i.e., G1 ∈ F t

Σ,d(D) whenever
G2 ∈ F t

Σ,d(D) and G1 4BBP G2. Given D and t, we
call a graph H satisfying (2) t-frequent.

The parameters of the FTOSM problem are the cardinal-
ity of the transaction dataset (i.e., |D|) and the size of the
largest graph in D (i.e., max{|V (G)| : G ∈ D}). Since d
is usually small, it is assumed to be a constant. Note that
the cardinality of F t

Σ,d(D) can be exponential in the above
parameters of D. Clearly, in such cases it is impossible to
enumerate F t

Σ,d(D) in time polynomial in the parameters
of D. We therefore ask whether the FTOSM problem can
be solved in incremental polynomial time (see, e.g., [John-
son et al., 1988]), that is, whether there exists an enumer-
ation algorithm listing the first k elements of F t

Σ,d(D) in
time polynomial in the combined size of D and the set of
these k elements for every k = 1, . . . , |F t

Σ,d(D)|.
We note that in the literature (see, e.g., [Johnson et al.,

1988]) one usually considers also the notion of output poly-
nomial time (or polynomial total time) complexity for enu-
meration algorithms. Algorithms in this more liberal class
are required to enumerate a set S in the combined size of
the input and the entire set S. Thus, in contrast to incre-
mental polynomial time, an output polynomial time algo-
rithm may have in worst-case a delay time exponential in
the size of the input before printing the kth element for
some k ≥ 1.

Although several algorithms mining frequent connected
subgraphs from datasets of arbitrary graphs w.r.t. subgraph
isomorphism have demonstrated their performance empiri-
cally, we note that this general problem cannot be solved in
output polynomial time, unless P = NP. On the other hand,
the frequent graph mining problem is solvable in incremen-
tal polynomial time when the graphs in the dataset are re-
stricted to forests and the patterns to trees. This follows

Algorithm 1 FREQUENTOUTERPLANARGRAPHS

Require: D ⊆ Od
Σ for some alphabet Σ and integer d ≥ 0,

and integer t > 0
Ensure: F t

Σ,d(D) defined in Eq. (1)

1: L1 = Fv ∪ Fb, where

Fv = {H ∈ OΣ : |V (H)| = 1 ∧Πt(D,H)}
Fb = {H ∈ Od

Σ : H is biconnected ∧ Πt(D,H)}

2: L2 = Fe ∪ Fbb ∪ Fbe, where

Fe = {H ∈ OΣ : |E(H)| = 1 ∧Πt(D,H)}
Fbb = {H ∈ G1 1 G2 : G1, G2 ∈ Fb ∧Πt(D,H)}
Fbe = {H ∈ G1 1 G2 : G1 ∈ Fb ∧G2 ∈ Fe ∧Πt(D,H)}

3: k = 2
4: while Lk 6= ∅ do
5: k = k + 1
6: Ck = GENERATECANDIDATES(Lk−1)
7: Lk = {H ∈ Ck : Πt(D,H)}
8: endwhile
9: return ∪k

i=1Li

e.g. from the results in [Chi et al., 2005b]. Since tenuous
outerplanar graphs form a practically relevant graph class
that naturally generalizes trees, by considering the FTOSM
problem we take a step towards going beyond trees in fre-
quent subgraph mining.

4 The Mining Algorithm
In this section we present Algorithm 1, an Apriori-

like [Agrawal et al., 1996] algorithm, that solves the
FTOSM problem in incremental polynomial time. For a
set D ⊆ Od

Σ and integer t ≥ 0, the algorithm computes
iteratively the set of t-frequent k-patterns from the set of t-
frequent (k − 1)-patterns. A k-pattern is a graph G ∈ Od

Σ
such that the sum of the number of blocks of G and the
number of vertices of G not belonging to any block is k.

In step 1 of the algorithm, we first compute the set of
t-frequent 1-patterns, that is, the set of t-frequent graphs
consisting of either a single vertex or a single block. The
first set, denoted by Fv in step 1, can be computed in lin-
ear time. The second set, denoted Fb, can be computed
in time polynomial in the parameters of D; an efficient
Apriori-based algorithm for this problem is presented in
Section 4.2.

In step 2 of the algorithm, we then compute the set of
t-frequent 2-patterns, i.e., the set of graphs in Od

Σ consist-
ing of either (1) a single edge or (2) two blocks having a
common vertex or (3) a block and a bridge edge having a
common vertex. We denote the corresponding three sets in
step 2 by Fe, Fbb, and Fbe, respectively. In the definitions
of Fbb and Fbe, G1 1 G2 denotes the set of graphs that can
be obtained from the union of G1 and G2 by contracting3 a
vertex from G1 with a vertex from G2 that have the same la-
bel. Clearly, G1 1 G2 ⊆ Od

Σ for every G1, G2 ∈ Od
Σ. The

set Fe of t-frequent edges can be computed in linear time.
Since the cardinalities of both Fbb and Fbe are polynomial
in the parameters of D, and BBP subgraph isomorphism

3The contraction of the vertices u and v of a graph G is the
graph obtained from G by introducing a new vertex w, connecting
w with every vertex in N(u) ∪ N(v), and removing u and v, as
well as the edges adjacent to them.
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between outerplanar graphs can be decided in polynomial
time by the result of Section 4.4 below, it follows that both
Fbb and Fbe and hence, the set L2 of t-frequent 2-patterns
can be computed in time polynomial in the parameters of
D.

In the loop 4–8, we compute the set of t-frequent k-
patterns for k ≥ 3 in a way similar to the Apriori algo-
rithm [Agrawal et al., 1996]. The crucial steps of the loop
are the generation of candidate k-patterns from the set of
t-frequent (k − 1)-patterns (step 6) and the decision of t-
frequency of the candidate patterns (step 7). In Sections 4.3
and 4.4 below we describe these steps in detail.

Putting together the results given in Theorems 7 – 10
stated in Sections 4.1 – 4.4, respectively, we can formulate
the main result of this paper:

Theorem 5 Algorithm 1 is correct and solves the FTOSM
problem in incremental polynomial time.

Before going into the technical details in Sections 4.1
– 4.4, we first describe a transformation on outerplanar
graphs by means of block contraction that is used in dif-
ferent steps of the mining algorithm. More precisely, for a
graph G ∈ OΣ, let G̃ denote the graph over the alphabet
Σ ∪ {#} derived from G by the following transformation:
For each block B in G, (i) introduce a new vertex vB and
label it by #, (ii) remove each edge belonging to B, and
(iii) for every vertex v of B, connect v with vB by an edge
labeled by #, if v is adjacent to a bridge or to another block
of G; otherwise remove v. In the following proposition we
state some basic properties of G̃.

Proposition 6 Let G ∈ OΣ. Then

(i) |V (G̃)| = 1 iff |V (G)| = 1 or G is biconnected,

(ii) for every e ∈ E(G̃), at most one vertex of e is labeled
by #, and

(iii) G̃ is a free tree.

Since G̃ is a tree, we call it the block and bridge tree (BB-
tree) of G.

4.1 Canonical String Representation
One time consuming step of mining frequent d-tenuous
outerplanar graphs is to test whether a particular graph
H ∈ Od

Σ belongs to some subset S of Od
Σ. To apply ad-

vanced data structures that allow fast search in large subsets
of Od

Σ, we need to define a total order on Od
Σ. Similarly to

many other frequent graph mining algorithms, we solve this
problem by assigning a canonical string to each element of
OΣ such that (i) two graphs have the same canonical string
iff they are isomorphic and (ii) for every G ∈ OΣ, the
canonical string of G can be computed efficiently. Using
some canonical string representation satisfying the above
properties, a total order onOΣ and thus, onOd

Σ as well, can
be defined by some total order (e.g. lexicographic) on the
set of strings assigned to the elements of OΣ. Furthermore,
property (i) allows one to decide isomorphism between two
outerplanar graphs by comparing their canonical strings.

Although the canonical string representation for outer-
planar graphs may be of some interest in itself, due to space
limitations we omit its definition which is based on the BB-
tree G̃ of G. By (iii) of Proposition 6, G̃ is a free tree.
Utilizing this property, we can generalize the depth-first
canonical representation for free trees (see, e.g., [Chi et al.,
2005a]) to outerplanar graphs, and state the following re-
sult:

Algorithm 2 FREQUENTBICONNECTEDGRAPHS

Require: D ⊆ Od
Σ for some alphabet Σ and integer d ≥ 0,

and integer t > 0
Ensure: Fb defined in step 1 of Algorithm 1

1: let L0 ⊆ O0
Σ be the set of t-frequent cycles in D

2: for k = 1 to d do
3: let Ck ⊆ Ok

Σ \ O
k−1
Σ be the set of biconnected

graphs H such that H 	∆ ∈ Lk−1 for every
diagonal ∆ of H

4: Lk = {H ∈ Ck : Πt(D,H)}
5: endfor
6: return

⋃d
k=0 Lk

Theorem 7 A canonical string representation of a graph
in OΣ with n vertices can be computed in time
O

(
n2 log n

)
.

4.2 Mining Frequent Biconnected Graphs
In this section we present Algorithm 2, an Apriori-like

algorithm, that computes the set Fb of t-frequent d-tenuous
biconnected graphs used in step 1 of Algorithm 1. Since
d is constant, Algorithm 2 runs in time polynomial in the
parameters of D.

In step 1 of Algorithm 2, we first compute the setL0 of t-
frequent cycles as follows: We list the cycles of G for every
G ∈ D and count their frequencies. Proposition 1 in Sec-
tion 2 implies that the number of cycles of a d-tenuous out-
erplanar graph G is bounded by O (|V (G)|) if d is assumed
to be constant. Furthermore, from [Read and Tarjan, 1975;
Tarjan, 1972] it follows that the cycles of a graph can be
listed with linear delay. Since isomorphism between cycles
can be decided efficiently, these results together imply that
L0 can be computed in time polynomial in the parameters
of D.

In loop 2–5 of Algorithm 2, we compute the sets of t-
frequent biconnected graphs containing k diagonals for ev-
ery k = 1, . . . , d. In particular, in step 3 we compute the set
Ck of candidate biconnected graphs H ∈ Ok

Σ satisfying the
following conditions: H has exactly k diagonals and the
removal of any diagonal from H , denoted by 	 in step 3,
results in a t-frequent biconnected graph. Putting the above
results together, we can state the following theorem. (We
omit the proof in this short version.)

Theorem 8 Algorithm 2 is correct and computes the set
of t-frequent d-tenuous biconnected outerplanar graphs in
time polynomial in the parameters of D.

4.3 Candidate Generation
In step 6 of Algorithm 1, we generate the set of candidate
k-patterns. In this section we give Algorithm 3, a gen-
eralization of the candidate generation algorithm for free
trees described in [Chi et al., 2005b], that computes the set
of candidate k-patterns from the set of frequent (k − 1)-
patterns. Applying the candidate generation principle of
the Apriori algorithm [Agrawal et al., 1996], each candi-
date is obtained by joining two frequent (k − 1)-patterns
that have an isomorphic (k − 2)-pattern core.

In the outer loop 2–12 of the algorithm, we consider each
possible pair G1, G2 of frequent (k − 1)-patterns, and in
loop 3–11, each pair g1 and g2 of leaf subgraphs of G1 and
G2, respectively. By a leaf subgraph of a k-pattern H for
k ≥ 2 we mean the subgraph of H represented by a leaf
of the BB-tree H̃ . If G1 and G2 are the same graphs then,
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Algorithm 3 GENERATECANDIDATES

Require: setLk−1 of frequent k−1-patterns for some k >
2

Ensure: set Ck of candidate k-patterns

1: Ck = ∅
2: forall G1, G2 ∈ Lk−1 do
3: forall g1 ∈ Leaf(G1) and g2 ∈ Leaf(G2) do
4: if G1 	 g1 ' G2 	 g2 then
5: forall g′1 ∈ Leaf(G1 	 g1) do
6: if g2 is attachable to g′1 consistently with G2 then
7: attach g2 in G1 to g′1 consistently with G2

and denote the obtained graph by C
8: if g1, g2 have the top two string encodings in C,

C 6∈ Ck, and C 	 g ∈ Lk−1 for every
g ∈ Leaf(C)

9: then add C to Ck

10: endfor
11: endfor
12: endfor
13: return Ck

for completeness, we consider also the case when g1 and g2

are isomorphic leaf subgraphs. We remove g1 and g2 from
G1 and G2, respectively, denoted by 	 in the algorithm,
and check whether the obtained graphs G′

1 and G′
2 are iso-

morphic (step 4). The removal of a biconnected component
means the deletion of each of its edges and vertices except
the distinguished vertex which is adjacent to a bridge or to
another block.

If G′
1 and G′

2 are isomorphic then we consider every leaf
subgraph g′1 of G′

1 (loop 5–10) and check whether g2 can
be attached to g′1 in G1 consistently with G2 (step 6). More
precisely, let g′2 be a block or a vertex not belonging to a
block in G2 such that g2 is hanging from g′2, i.e., the only
edge adjacent to g2 is adjacent also to g′2. We say that g2

can be attached to g′1 in G1 consistently with G2 if g′1 is
isomorphic to g′2. Thus, if the condition in step 6 holds
then we attach g2 to g′1 consistently with G2 and denote the
obtained graph by C (step 7).

Notice that C can be generated in many different ways,
depending on the particular choice of g1 and g2. To reduce
the amount of unnecessary computation, we consider only
those pairs which are among the top leaf subgraphs of C,
i.e., which have the top two string encodings w.r.t. a center
of C̃. By definition, a vertex representing a leaf subgraph
of C is always a leaf in C̃. If this condition holds then we
add C to the set of candidates in step 9 if for every leaf
subgraph g of C, the (k − 1)-pattern obtained from C by
removing g is frequent (see step 8). We omit the proof of
the following theorem.

Theorem 9 Let Ck be the output of Algorithm 3 and Lk the
set of frequent k-patterns for any k > 2. ThenLk ⊆ Ck, the
cardinality of Ck is polynomial in the cardinality of Lk−1,
and Ck can be computed in time polynomial in the size of
Lk−1.

4.4 BBP Subgraph Isomorphism
Algorithms 1 and 2 contain the steps of deciding whether a
candidate pattern H ∈ Od

Σ is t-frequent, i.e., whether it is
BBP subgraph isomorphic to at least t graphs in D. While
subgraph isomorphism between outerplanar graphs is NP-
complete even for very restricted cases (see Theorem 2),
Theorem 10, the main result of this section, states that BBP

subgraph isomorphism can be decided efficiently between
outerplanar graphs if the pattern graph H is connected. The
connectivity is necessary, as otherwise the problem would
generalize the NP-complete subforest isomorphism prob-
lem [Garey and Johnson, 1979]. We note that the result of
Theorem 10 generalizes the positive result on subtree iso-
morphism given in Theorem 4 and may thus be of some
interest in itself.

Theorem 10 Let G, H ∈ OΣ such that H is connected.
Then H 4BBP G can be decided in polynomial time.

Due to space limitations, we omit the proof of the above
theorem. We only note that the algorithm first computes
the BB-trees of the input graphs G and H , and then com-
bines the subgraph isomorphism algorithms between la-
beled trees (generalization of [Matula, 1978]) and labeled
biconnected outerplanar graphs (generalization of [Lingas,
1989]).

5 Experimental Evaluation
In our experiments, we used the NCI dataset consisting of
250251 chemical compounds. For our work, it was impor-
tant to recognize that 236180 (i.e., 94.3%) of these com-
pounds have outerplanar molecular graph. Thus, outer-
planar graphs form a practically relevant class of graphs.
Among the outerplanar molecular graphs, there are 21963
trees (i.e., 8.8% of the outerplanar subset). In the experi-
ments, we have removed the non-outerplanar graphs from
the dataset. Altogether, the outerplanar molecules contain
423378 blocks, with up to 11 diagonals per block. How-
ever, 236083 (i.e., 99.99%) of the outerplanar molecular
graphs have at most 5 diagonals per block. This empirical
observation validates our approach to assume the number
of diagonals to be constant.

The database contains a wide variety of structures, and
a low relative frequency threshold is needed to mine a sig-
nificant number of patterns. E.g. though there are 15426
pairwise non-isomorphic cycles in the database, only a few
of them are really frequent; the only one above 10% is the
benzene ring with frequency 66%.

Our results are given in Table 1. It shows the number
of candidate (#C) and frequent (#FP) k-patterns discovered
for k = 1, . . . , 15, as well as the runtime (T) in seconds
for the computation and evaluation of the candidates us-
ing the frequency thresholds 10%, 5%, 2% and 1%. As
expected, the number and the size of the discovered pat-
terns is much larger when the frequency threshold is lower.
Even though the embeddings of (k − 1) patterns are com-
puted (again) in level k, the time needed to complete one
level does not necessarily increase with k. It is interesting
to note that after the number of frequent k-patterns drops a
bit when k gets larger then 8, this number again increases
when k exceeds 12, and the number of frequent patterns
gets close to the number of candidate patterns. This is
because this particular dataset contains large subsets with
molecules sharing large biconnected structures (such as the
HIV active substance dataset). The time needed for candi-
date generation is always smaller than 1% of the total time.
The time needed for coverage testing per pattern depends
on how much structure these patterns share. If the number
of patterns is large, the time needed per pattern is usually
lower.

One can make several conclusions. First, our algo-
rithm can mine an expressive class of molecular patterns
from a relatively large database. Although the presented
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Table 1: Number of patterns (#C), number of frequent patterns (#FP), and runtime in seconds for candidate generation and
evaluation (T) with frequency thresholds 10%, 5%, 2%, and 1%

size 10% 5% 2% 1%
(k) #C #FP T #C #FP T #C #FP T #C #FP T

1 86 7 107 144 11 169 582 25 380 2196 55 824
2 74 16 446 216 24 570 1332 61 1118 6208 174 2554
3 139 41 1133 234 74 1393 510 170 2123 1516 659 5653
4 133 77 1232 266 154 2038 642 356 4079 2554 1776 11899
5 139 91 1071 319 222 2268 909 644 5603 4550 3886 20411
6 107 72 754 332 252 1847 1212 918 6105 7314 6490 28811
7 61 41 472 295 195 1168 1266 990 4964 10165 9058 34967
8 37 25 354 182 137 741 1086 893 3384 11479 10396 36391
9 20 13 205 137 116 602 956 803 2282 11129 10194 31721

10 8 5 130 131 119 594 828 700 1635 9370 8623 23412
11 0 0 0 131 117 565 697 604 1360 7276 6818 15530
12 0 0 0 115 107 536 707 665 1483 5533 5184 9345
13 0 0 0 78 64 412 1027 1022 2017 4395 4145 5252
14 0 0 0 27 21 250 1702 1700 2858 4303 4194 3707
15 0 0 0 4 3 89 2725 2715 3957 5422 5376 4089

experiments happened entirely in memory (taking about
600Mb), our approach does not depend on storing interme-
diate results in memory between the different passes over
the database. This means that we could also perform this
algorithm with a database on disk. In our application e.g.,
this would bring an overhead of about 15 seconds per pass
over the database. Second, we can conclude that the com-
plexity of the coverage testing scales well as the pattern
size grows, as predicted by theory. In this application, due
to the implementation exploiting shared structure among
patterns, the time needed for evaluation per pattern does
not even depend in a clear systematic way on the pattern
size.

6 Conclusion and Open Problems
We have defined the FTOSM problem motivated by chemi-
cal datasets and presented an Apriori-based algorithm solv-
ing this enumeration problem in incremental-polynomial
time. To the best of our knowledge, no fragment of the
frequent subgraph mining problem beyond trees has so
far been identified, for which the problem can be solved
in incremental polynomial time. Our algorithm is based
on a canonical string representation of outerplanar graphs
and further algorithmic components for mining frequent bi-
connected outerplanar graphs and candidate generation in
an Apriori style algorithm. Motivated by application and
complexity considerations, we introduced a special kind of
subgraph isomorphism which generalizes subtree isomor-
phism but is at the same time more specific than ordinary
subgraph isomorphism, and which is decidable in polyno-
mial time for outerplanar graphs. We presented also em-
pirical results with a large dataset indicating the effective
practical performance of our algorithm. We believe that
the identification of tractable practical fragments of the fre-
quent subgraph mining problem is an important challenge
for the data mining community.

Besides working on optimization of the algorithm, e.g.,
on improving the time complexity of the coverage testing,
it is natural to ask whether the positive result of this pa-
per can be generalized to arbitrary outerplanar graphs. No-
tice that our algorithm exploits the constant bound on the
number of diagonals only in the computation of the set Fb

of frequent biconnected graphs in step 1 of Algorithm 1.

Therefore, to generalize the result of this paper to arbitrary
outerplanar graphs, it is sufficient to consider the following
special problem: Given a finite set D ⊆ OΣ of biconnected
outerplanar graphs and a non-negative integer t, compute
the set of t-frequent patterns in D w.r.t. BBP subgraph iso-
morphism. Notice that this problem definition implicitly
requires t-frequent patterns to be biconnected because by
definition, there is no BBP subgraph isomorphism from a
non-biconnected graph to a biconnected outerplanar graph.
We do not know whether this special problem can be solved
in incremental or at least in output polynomial time.
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