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Abstract
Searching and mining nuclear magnetic reso-
nance (NMR)-spectra of naturally occurring sub-
stances is an important task to investigate new
potentially useful chemical compounds. Multi-
dimensional NMR-spectra are relational ob-
jects like documents, but consists of continuous
multi-dimensional points called peaks instead of
words. We develop several mappings from con-
tinuous NMR-spectra to discrete text-like data.
With the help of those mappings any text retrieval
method can be applied. We evaluate the per-
formance of two retrieval methods, namely the
standard vector space model and probabilistic la-
tent semantic indexing (PLSI). PLSI learns hid-
den topics in the data, which is in case of 2D-
NMR data interesting in its owns rights. Addi-
tionally, we develop and evaluate a simple direct
similarity function, which can detect duplicates
of NMR-spectra. Our experiments show that
the vector space model as well as PLSI, which
are both designed for text data created by hu-
mans, can effectively handle the mapped NMR-
data originating from natural products. Addition-
ally, PLSI is able to find meaningful ”topics” in
the NMR-data.

1 Introduction
Nuclear magnetic resonance (NMR)-spectra are an im-
portant finger printing method to investigate the chemical
structure of organic compounds from plants or other tis-
sues. Two-dimensional-NMR spectroscopy is able to cap-
ture the influences of two different atom types at the same
time (e.g. 1H, hydrogen and 13C carbon). The result of
an 2D-NMR experiment can be seen as an intensity func-
tion measured over two variables1. Regions of high inten-
sity are called peaks, which contain the real information
about the underlying molecular structure. The usual visu-
alizations of 2D-NMR spectra are contour plots as shown
in figure 1. An ideal peak would register as a small dot,
however, due to the limited resolution available (dependent
on the strength of the magnetic field) multiple peaks may
appear as a single merged object with non-convex shape.
In the literature peaks are noted by their two-dimensional
positions without any information about the shapes of the
peaks. Content-based similarity search of 2D-NMR spec-
tra would be a valuable tool for structure investigation by

1The measurements are in parts per million (ppm).

Figure 1: 2D-NMR spectrum of quercetrin. The plots at
the axes are the corresponding 1D-NMR spectra.

comparing spectra of unknown compounds with a set of
spectra, for which the structures are known. While the
principle is already in use for 1D-NMR spectra [7; 1; 11;
6; 2], to the best of our knowledge, no effective similarity
search method is known for 2D-NMR-spectra.

Simplified, a 2D-NMR spectrum is a set of two-
dimensional points. There is an analogy to text retrieval,
where documents are usually represented as sets of words.
Latent space models [5; 9; 3] were successfully used to
model documents and thus improved the quality of text re-
trieval. Recently, a diversity of text mining approaches for
different problems [4; 12; 8] have been proposed, which
make use of probabilistic latent space models. The goal of
this work is to show by example how to apply text retrieval
and mining methods to biological data originating from ex-
periments.

The contribution of this paper are methods to map 2D-
NMR spectra to discrete text-like data, which can be ana-
lyzed and searched by any text retrieval method. We evalu-
ate on real data the performance of two text retrieval meth-
ods, namely the standard vector space model [10] and PLSI
[5] in combination our mapping methods for 2D-NMR
spectra. Additionally, we propose a simple similarity func-
tion, which operates directly on the peaks of the spectra
and serves as bottom line benchmark in the experimental
evaluation. Our results indicate at a larger scope that text
retrieval and mining methods, designed for text data cre-
ated by humans, in combination with appropriate mapping
functions may yield the potential to be also successful for
experimental data from naturally occurring objects. In this
paper we consider exemplarily 1H, 13C one-bond heteronu-
clear shift correlation 2D-NMR spectra.

The paper is structured as follows: first, in section 2, we
introduce briefly the used text modeling methods while in
section 3, we propose the mapping functions for 2D-NMR
spectra. In section 4, we propose a simple similarity func-
tion as bottom line benchmark and define fuzzy duplicates.
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In section 5, we describe our experimental evaluation and
section 6 concludes the paper.

2 Models for Text Retrieval
Like a 2D-NMR spectrum consists of a set of peaks, a doc-
ument consists of many words, which typically are mod-
eled as a set. So assuming a 2D-NMR spectrum can be
transformed into a text-like object by mapping the continu-
ous 2D peaks to discrete variables, a variety of text retrieval
models can be applied. However, it is an open question,
whether models designed for quite different data, namely
texts created by humans, are effective on data which comes
for naturally occurring compounds and thus do not include
human design patterns.

We briefly introduce the essentials of the vector space
model and PLSI to make the paper self contained. In the
vector space model, documents are represented by vectors
which have as many dimensions as there are words in the
used vocabulary of the document collection. Each compo-
nent of a documents vector reflects the importance of the
corresponding word for the document. The typical quan-
tity used is the raw term frequency (tf) of that word for the
document, say the number of occurrences of that word in a
document d. In order to improve the retrieval quality, those
vectors are reweighed by multiply tf with the inverse doc-
ument frequency (ifd) of a word. The inverse document
frequency measures is large, if a word is included in only
a small percentage of the documents in the collection. For-
mally, we denote the set of documents by D = {d1, ..., dJ}
and the vocabulary by W = {w1, ..., wI}. The term fre-
quency of a word w ∈ W in a document d ∈ D is de-
noted as n(d,w) and the reweighed quantity is n̂(d, w) =
n(d,w) · idf(w). The similarity between a query document
q and a document d from the collection is

S(d, q) =
∑

w∈W n̂(d,w) · n̂(q, w)√∑
w∈W n̂(d,w)2 ·√∑

w∈W n̂(q, w)2

This can be interpreted as the cosine of the angles between
the two vectors.

Probabilistic latent semantic indexing (PLSI) introduced
in [5] extends the vector space model by learning topics
hidden in the data. The training data consists of a set
of document-word pairs (d(i), w(i))i=1,...,N with w(i) ∈
W and d(i) ∈ D. The joint probability of such a pair
is modeled according to the employed aspect model as
P (d,w) =

∑
z∈Z P (z) · P (w|z) · P (d|z). The z are hid-

den variables, which can take K different discrete values
z ∈ Z = {z1, ..., zK}. In the context of text retrieval z is
interpreted as an indicator for a topic. Two assumptions are
made by the aspect model. First, it assumes pairs (d,w) to
be statistically independent. Second, conditional indepen-
dence between w and d is assumed for a given value for
z.

The probabilities necessary for the joint probability
P (d,w), namely P (z), P (w|z) and P (d|z), are derived
by an expectation maximization (EM) learning procedure.
The idea is to find values for unknown probabilities, which
maximize the complete data likelihood

P (S, z) =
∏

(d(i),w(i))∈S

[P (z) · P (w(i)|z) · P (d(i)|z)]

=
∏

d∈D

∏

w∈W

[P (z) · P (w|z) · P (d|z)]n(d,w)

with S = {(di), wi))i=1,...,N} is the set of all document-
word pairs in the training set. In the E-step the posteriors
for z are computed.

P (z|d,w) =
P (z) · P (w|z) · P (d|z)∑

z′∈Z P (z′) · P (w|z′) · P (d|z′)
The subsequent M-step maximizes the expectation of the
complete data likelihood respectively to the model parame-
ters, namely P (z), P (w|z) and P (d|z).

P (d|z) =
∑

w∈W P (z|d,w) · n(d,w)∑
w∈W

∑
d′∈D P (z|d′, w) · n(d′, w)

P (w|z) =
∑

d∈D P (z|d,w) · n(d,w)∑
w′∈W

∑
d∈D P (z|d,w′) · n(d,w′)

P (z) =
∑

w∈W

∑
d∈D P (z|d, w) · n(d,w)∑

w∈W

∑
d∈D n(d,w)

The EM algorithm starts with random values for the model
parameters and converges by alternating E- and M-step to
a local maximum of the likelihood.

There are serval ways possible to answer similarity
queries using the trained aspect model. Because of its
simplicity, we adopt the PLSI-U variant from [5]. The
idea is to extend the cosine similarity measure from the
tf-idf vector space model. The extension by Hofmann
treats the learned multinomials P (w|d) as term frequen-
cies (tf). Note that P (w|d) = P (d,w)/P (d) with
P (d) =

∑
w′inW n(d,w′)/N . The multinomials P (w|d)

are smoothen variants of the original term frequencies
P̃ (w|d) = n(d, w)/(

∑
w′∈W n(d,w′)). The proposed

tf-weights are linear combinations of the multinomials
P (w|d) and P̃ (w|d). Thus, the new tf-idf weights used
for the documents within the similarity calculation are

n̂(d,w) = (λ · P (w|d) + (1− λ) · P̃ (w|d)) · idf(w)

with λ ∈ [0, 1]. Hofmann suggests in [5] to set λ = 0.5.
The tf-idf weights for the query are determined as in the
standard vector space model. The smoothen tf-weight for a
word which actually does not appear in the document may
be still non-zero if the word belongs to a topic which is
covered by the particular document. In that way a more
abstract similarity search becomes possible.

For 2D-NMR spectra similarity search it is not clear,
what is the best way to map the peaks of a spectrum to dis-
crete words. We develop methods for this task in the next
section. That will enable us to tackle the question, whether
methods like the vector space model or PLSI, which is de-
signed for text data, remains effective for experimental data
from natural products.

3 Mapping of NMR Spectra
In this section we propose different methods to map the
peaks of an NMR-spectrum from the continuous space of
measurements to a discrete space of words. With the help
of such a mapping, methods for text retrieval like PLSI can
be directly applied. However, the quality of the similar-
ity search depend on how the peaks are mapped to discrete
words. A preliminary study of the proposed mappings ap-
peared as poster in [13].

First we give a formal definition of 2D-NMR spectra.
A two-dimensional NMR-spectrum of an organic com-
pound captures many structural characteristics like rings
and chains. Most important are the positions of the peaks.
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As the shape of a peak and its height (intensity) strongly
varies over different experiments with the same compound,
the representation of a spectrum includes the peak positions
only.
Definition 1 A 2D NMR-spectrum A is defined as a set of
points {x1, . . . , xn} ⊂ R2. The | · | function denotes the
size of the spectrum |A| = n.
The size of a spectrum is typically between 4 and 30 for
small molecules found in naturally occurring products.

3.1 Grid-based Mapping
We introduce a simple grid-based method, on which we
will build more sophisticated methods. A simple grid-
based method is to partition each of the both axis of the
two-dimensional peak space into intervals of same size.
Thus, an equidistant grid is induced in the two-dimensional
peak space and a peak is mapped to exactly one grid cell it
belongs to. When a grid cell is identified by a discrete inte-
ger vector consisting of the cells coordinates the mapping
of a peak x ∈ R2 is formalized as

g(x) = (gc(x.c), gh(x.h)) with gc(x.c) =
⌊

x.c

wc

⌋
, gh(x.h) =

⌊
x.h

wh

⌋

The quantities wc and wh are the extensions of a cell in the
respective dimensions, which are parameters of the map-
ping. The grid is centered at the origin of the peak space.
The cells of the grid act as words. The vocabulary gener-
ated by the mapped peaks consists of those grid cells which
contain at least one peak. Empty grid cells are not included
in the vocabulary. A word consists of a two-dimensional
discrete integer vector.

Unfortunately the grid-based mapping has two disadvan-
tages. First, close peaks may be mapped to different grid
cells. This may lead to poor matching of related peaks
in the discrete word space. Second, peaks of new query
spectra are ignored when they are mapped to grid cells
not included in the vocabulary. So some information from
the query is not used for the similarity search which may
weaken the performance.

3.2 Redundant Mappings
We propose three mappings which introduce certain redun-
dancies by mapping a single peak to a set of grid cells. The
redundancy in the new mappings shall compensate for the
drawbacks of the simple grid-based mapping.

Shifted Grids
The first disadvantage of the simple grid-based method is
that peaks which are very close in the peak space may be
mapped to different grid cells, because a cell border is be-
tween them. So proximity of peaks does not guaranty that
they are mapped to the same discrete cell.

Instead of mapping a peak to a single grid cell, we pro-
pose to map it to a set of overlapping grid cells. This
is achieved by several shifted grids of the same granular-
ity. In addition to the base grid some grids are shifted into
the three directions (1, 0)(0, 1)(1, 1). An illustration of the
idea is sketched in figure 2. In figure 2, one grid is shifted
in each of the directions by half of the extent of a cell.
In general, there may be k − 1 grids shifted by fractions
of 1/k, 2/k, . . . , k−1/k of the extent of a cell in each direc-
tion respectively. For the mapping of the peaks to words
which consist of cells from the different grids, two addi-
tional dimensions are needed to distinguish (a) the k − 1
grids in each direction and (b) the directions themselves.

Figure 2: The four grids are marked as follows: base grid
is bold, (1, 0), (0, 1) are dashed and (1, 1) is normal.

The third coordinate represents the fraction by which a cell
is shifted and the fourth one represents the directions by
the following coding: value 0 is (0,0), 1 is (1,0), 2 is (0,1)
and 3 is (1,1). So each peak is mapped to a finite set of
four-dimensional integer vectors. The mapping of a peak
x ∈ R2 is

s(x) = {(gc(x.c), gh(x.h), 0, 0)} ∪
k−1⋃

i=1

{
(gc(x.c + i/k · wc), gh(x.h), i, 1),

(gc(x.c), gh(x.h + i/k · wh), i, 2),

(gc(x.c + i/k · wc), gh(x.h + i/k · wh), i, 3)
}

Thus, a single peak is mapped to 3(k − 1) + 1 words. A
nice property of the mapping is that there exists at least one
grid cell for every pair of matching peaks both peaks are
mapped to.

Different Resolutions
The second disadvantage of the simple grid-based mapping
comes from the fact that empty grid cells (not occupied by
at least one peak from the set of training spectra) do not
contribute to the representation to be learned for similar-
ity search. So peaks of new query spectra mapped to those
empty cells are ignored. That effect can be diminished by
making the grid cells larger. However, this is counterpro-
ductive for the precision of the similarity search due to the
coarser resolution. Thus, there are two contradicting goals,
namely (a) to have a fine resolution to handle subtle aspects
in the data and (b) to cover at the same time the whole peak
space by a coarse resolution grid so that no peaks of a new
query spectrum have to be ignored.

Instead of finding a tradeoff for a single grid, both
goals can be served by combining simple grids with
different resolutions. Given l different resolutions
{(w(1)

c , w
(1)
h ), . . . , (w(l)

c , w
(l)
h )} a peak is mapped to l grid

cells of different sizes. In order to distinguish between the
different grids an additional discrete dimension is needed.
So the mapping function is

r(x) =
l⋃

i=1

{(g(i)
c (x), g(i)

h (x), i)}

with g
(i)
c and g

(i)
h use w

(i)
c and w

(i)
h respectively. Note that

a hierarchical, quad-tree like partitioning is a special case
of the proposed mapping function with w

(i)
c = 2i−1wc and

w
(i)
h = 2i−1wh.

Combining shifted Grids with different Resolutions
Both methods are designed to compensate for different
drawbacks of the simple grid mapping. So it is nat-
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ural to combine both mappings. The parameters of
such a mapping are the number of shifts k, the num-
ber of different grid cell sizes l and the actual sizes
{(w(1)

c , w
(1)
h ), . . . , (w(l)

c , w
(l)
h )}. Beside the two coordi-

nates for the grid cells, additional discrete dimensions are
needed for the shift, the direction and the grid resolution.
Using the the definitions from above the mapping function
of the combined mapping of a peak is

c(x) =
l⋃

i=1

{(
g(i)

c (x.c), g(i)
h (x.h), 0, 0, i

)} ∪

k−1⋃

j=1

{(
g(i)

c (x.c + j/k · w(i)
c ), g(i)

h (x.h), j, 1, i
)
,

(
g(i)

c (x.c), g(i)
h (x.h + j/k · w(i)

h ), j, 2, i
)
,

(
g(i)

c (x.c + j/k · w(i)
c

)
,

g
(i)
h (x.h + j/k · w(i)

h ), j, 3, i
)}

Thus a single peak is mapped to l(3(k − 1) + 1) words. In
the next section all mappings are compared with respect to
the effectiveness for similarity search.

4 Directly Computing Similarity
In this section, we introduce a method to directly compute
similarity between pairs of spectra. This method will be
used in the experiments as a bottom line benchmark. We
also propose on the basis of direct similarity a definition of
fuzzy duplicates.

As a peak in a spectrum has two numeric attributes,
which can vary continuously, we formalize the notion of
matching peaks. A simple but effective approach is to re-
quire that a peak matches other peaks only within a certain
spatial neighborhood. The neighborhood is defined by the
ranges α and β.
Definition 2 A peak x from spectrum A matches a peak y
from spectrum B, iff |x.c− y.c| < α and |x.h− y.h| < β,
where .c and .h denote the NMR measurements for carbon
and hydrogen respectively.
Note that a single peak of a spectrum can match several
peaks from another spectrum. Given two spectra A and B,
the subset of peaks from A which find matching partners
in B is denoted as matches(A,B) = {x : x ∈ A, ∃y ∈
B : x matches y}. The function matches is not symmetric,
but helps to define a symmetric similarity measure
Definition 3 Let be A and B two given spectra and A′ =
matches(A,B) and B′ = matches(B, A), so the simi-
larity is defined as

sim(A,B) =
|A′|+ |B′|
|A|+ |B|

The measure is close to one if most peaks of both spectra
are matching peaks. Otherwise the similarity drops towards
zero.

An important application of similarity search is the de-
tection of duplicates to increase the data quality of a col-
lection of 2D-NMR-spectra. Clearly a naive definition of
duplicates does not work, like two duplicate spectra A and
B need to have the same size and the peaks at the same po-
sitions. The reason is that the spectra are measured exper-
imentally and so the peak positions differ even if the same

Group #Spectra #Peaks
Pregnans 11 17–26
Anthrquinones 8 3–6
Aconitanes 8 22–26
Triterpenes 17 24–31
Flavonoids 18 5–8
Isoflavonoids 16 5–7
Aflatoxins 8 8–10
Steroids 12 16–23
Cardenolides 15 18–25
Coumarins 19 3–8

Table 1: Groups with number of spectra and range of peaks

probe is analyzed twice. So flexibility should be allowed
for the peak positions. Another problem appears when two
spectra of the same substance are measured with different
resolutions. In case a spectrum is measured with low res-
olution it may happen that neighboring peaks are merged
to a single one. A restriction to an one-to-one relationship
between matching peaks can not handle such cases.

We propose a definition of fuzzy duplicates based on the
direct similarity measure, which can deal with both of the
mentioned problems.

Definition 4 A pair of 2D-NMR-spectra A and B are fuzzy
duplicates, iff sim(A,B) = 1.

By that definition it is only required that every peak of a
spectrum finds at least one matching peak in the other spec-
trum.

5 Evaluation and Results
In this section we present the results for duplicate detec-
tion, a comparison of the effectiveness of the mappings for
similarity search, and mining aspects of 2D-NMR-data.

5.1 2D-NMR-Data
The substances included in the database are mostly sec-
ondary metabolites of plants and fungi. They cover a repre-
sentative area of naturally occurring compounds and orig-
inate either from experiments or from simulations2 based
on the known structure of the compound. The database in-
cludes about 587 spectra, each has about 3 to 35 peaks.
The total number of peaks is 7029. Ten small groups of
chemically similar compounds are included in the database
for controlled experiments. The groups with the number of
spectra and number of peaks are listed in table 1 left. The
peak space with all peaks in the database is shown in figure
3 right. Two groups, steroids and flavonoids, are selected
as examples and shown with their peak distribution within
figure 3 right.

Natural steroids occur in animals, plants and fungi. They
are vitamins, hormones or cardioactive poisons like digi-
talis or oleander. The steroids in the database ar mostly hor-
mones like androgens and estrogens. Flavonoids are aro-
matic substances (rings). Some flavonoids decrease vascu-
lar permeability or possess antioxidant activity which can
have an anticarcinogenic effect.

5.2 Detection of Duplicates
We used the direct similarity function introduced in sec-
tion 4 to detect duplicates in the database. With a setting

2ACD/2D NMR predictor, version 7.08,
http://www.acdlabs.com/
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Figure 3: Distribution of the peaks of all spectra with the
distribution within the groups of flavonoids and steroids.

of a = 3ppm and b = 0.3ppm, which are reasonable tol-
erances, 54 of 171991 possible pairs are reported as fuzzy
duplicates. An inspection by hand revealed that 30 pairs
are just very similar spectra, but 24 are candidates for real
duplicates. Many of the found pairs come from the groups
shown in table 1. Some pairs consist of an experimental
and a simulated spectrum of the same substance which con-
firms the usefulness of the definition. There was also a sur-
prise, namely the pair Thalictrifoline/Cavidine. Both struc-
tures differ only in the stereochemical orientation of one
methyl group. Evidently, in this case the commercial soft-
ware package used for the simulation is not able to reflect
the different stereochemistry in calculated spectra. In the
future, fuzzy duplicates will be used to improve the quality
of collections of 2D-NMR spectra.

5.3 Performance Evaluation
The different methods for similarity search of 2D-NMR-
spectra are compared using recall-precision curves. The
search quality is high, when both – recall and precision –
are high. So the upper curves are the best.

First, a series of experiments is conducted using our pro-
posed mapping functions in combination with the vector
space model. Each spectrum from the ten groups is used
as a query while the rest of the respective group should be
found as answers. The plots in figure 4 and 5 show aver-
ages over all queries. The results for the simple grid-based
mapping are shown in figure 4a. The sizes of the grid cells
are varied over wc = 4, 6, 8, 10 and wh = 0.4, 0.6, 0.8, 1.0
respectively. Small sizes give the best results.

The use of shifted grids improves the performance sub-
stantially over simple grids, as shown in figure 4b,c. The
plots show the experiments for k = 2, 3. The results for
k = 2 and k = 3 are almost identical. However, the vo-
cabulary for k = 2 is much smaller. In practise, the smaller
model with k = 2 shifts is favored.

Also the mapping based on grids with different grid cell
sizes are assessed. Due to lack of space, only the results
from combinations of w

(1)
c = 4, w

(1)
h = 0.4 with other

sizes are reported, because those performed best among all
combinations. Figure 4d shows that also the mapping based
on different grid cell sizes outperforms the simple grid-
based mapping. But the improvement is not as much as for
shifted grids. The set of resolutions {(w(1)

c = 4, w
(1)
h =

0.4), (w(2)
c = 10, w

(2)
h = 1.0)} performs best.

Also, experiments are performed with the combination
of the previous two mappings, namely a combination of
shifted grids with those of different resolutions. The perfor-
mance results are shown in figure 4e which indicates that
the best combination, namely the resolution set {(w(1)

c =
4, w

(1)
h = 0.4), (w(2)

c = 10, w
(2)
h = 1.0)} with k = 2

shifts, outperforms both previous mappings. This is more
clearly seen in figure 4f which compares the best perform-
ing settings from the above experiments.

Next, a series of similar experiments is conducted us-
ing our proposed mapping functions in combination with
PLSI. Random initialization is used for the EM training
algorithm described in section 2. All curves are averages
from cross validation over all groups. As PLSI is trained
on the data beforehand, we used cross validation where the
current query is not included in the taining data. As the
groups are very small, the leave-one-out cross validation
scheme is employed. The results for PLSI are shown in fig-
ure 5a-f. PLSI requires to chose the number of hidden as-
pects. For the experiments reported so far, the PLSI model
is used with 20 hidden aspects. Also different numbers of
aspects are tested using the best combination of mappings.
Figure 5g shows that the performance with 10 aspects drops
a bit The increase in the numbers of aspects from 20 to 32
is only marginally reflected in increase of search perfor-
mance. So 20 is a reasonable number of aspects for the
given data.

In summery, the experiments with both text retrieval
methods show, that the mappings based on shifted grids and
those with different resolutions perform significantly bet-
ter than the simple grid-based mapping. In both cases, the
combination of shifted grids and grids with different res-
olutions is even better than the individual mappings. The
comparison between PLSI and the vector space model (fig-
ure 5h) shows that both have similar performance for small
recall but for large recall PLSI has a better precision.

Last, the direct similarity function is tested (figure 5i).
The size of the matching neighborhood is varied over
α = 4, 6, 8, 10 and β = 0.4, 0.6, 0.8, 1.0 respectively. The
search quality is quite low. In fact on average, it fails to de-
liver a spectrum from the answer set in the top ranks which
is indicated by the hill-like shape of the curves.

In conclusion, the results prove experimentally that the
vector space model as well as the PLSI model, which are
designed for text retrieval, are indeed effective for simi-
larity search of 2D-NMR spectra from naturally occurring
products.

5.4 Analysis of the latent Aspects
We analyzed the latent aspects learned by the PLSI model
using the mapping based on the combination of shifted
grids with different resolutions. The grid cells (words) with
high probability for a given aspect are plotted together to
describe the aspects meaning. Some aspects specialized
on certain regions in the peak space which are typical for
distinct molecule fragments like aromatic rings or alkane
skeletons. However, also more subtle details of the data
are captured by the aspect model. For example, the main
aspect for the group of flavonoids specializes not only on
the region for aromatic rings which are the main part of
flavonoids. It also includes a smaller region which indicates
oxygen substitution. A closer inspection of the database re-
vealed that indeed many of the included flavonoids do have
several oxygen substituents. The main aspect for flavonoids
with the respective peak distribution of the flavonoid group
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Figure 4: Average recall-precision curves using the vector space model
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Figure 5: Average recall-precision curves from leave-one-out cross validation experiments with the PLSI model (a-g), best
results of PLSI and vector space model (h) and results for the direct similarity (i).
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Figure 6: (a) Main aspect of the flavonoid group which
includes the region of aromatic rings (upper right cluster)
and the region for oxygen substituents (lower left cluster).
The gray shades indicate the strength of the association be-
tween grid cell and aspect. (b) An example of an flavonoid
(3’-Hydroxy-5,7,4’-trimethoxyflavone) where the aromatic
rings and the oxygen substituents (methoxy groups in this
case) are marked.

is shown in figure 6a. We believe a detailed analysis of
the aspects found by the model may help to investigate
unknown structures of new substances when their NMR-
spectra are included in the training set.

6 Conclusion
We proposed redundant mappings from continuous 2D-
NMR spectra to discrete text-like data which can be
processed by any text retrieval method. We demonstrated
experimentally the effectiveness of the our mappings in
combination with the vector space model and PLSI. Fur-
ther analysis revealed that the aspects found by PLSI are
chemically relevant. In future research we will study more
recent text models like LDA [3] in combination with our
mapping methods.
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