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ABSTRACT

Many new symmetry detection algorithms have been recently
developed, thanks to an interest revival on computational
symmetry for computer graphics and computer vision applica-
tions. Notably, in 2013 the IEEE CVPR Conference organized
a dedicated workshop and an accompanying symmetry detec-
tion competition. In this paper we propose an approach for
symmetric object detection that is based both on the compu-
tation of a symmetry measure for each pixel and on saliency.
The symmetry value is obtained as the energy balance of the
even-odd decomposition of a patch w.r.t. each possible axis.
The candidate symmetry axes are then identified through
the localization of peaks along the direction perpendicular to
each considered axis orientation. These found candidate axes
are finally evaluated through a confidence measure that also
allow removing redundant detected symmetries. The obtained
results within the framework adopted in the aforementioned
competition show significant performance improvement.
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1 INTRODUCTION

Symmetry is abundant in nature, both at the microscopic
(molecules etc.) and macroscopic level (animal and plant
species). Many human-made objects also display symmetric
elements. As such, symmetry is also present in the digital
world as it is an alternative representation of the physical one
[5]. So, local and global symmetries play an important part
in computer vision and machine intelligence: for example,
to simplify object detection [11], to minimize information
redundancy [9], to improve source modeling [13] and so on.
There is in fact a remarkable interest in this topic, that has
led to many symmetry detection algorithms.

The state of the art of symmetry detection techniques up
to 2010, surveyed in [9], has most recently focused on bilateral
reflection symmetry. The general approach is to recognize
symmetries in sets of geometrical objects such as points, line
segments or circles [2] or to directly employ the symmetry
axis transform (SAT) [3], but such methods are quite sensitive
to noise, despite being simple and efficient. More complex
approaches have been recently proposed, such as [1], where
however it is assumed that the number of symmetry axes is
known a priori.

In 2013 the IEEE CVPR conference organized a symmetry
detection competition, with two test scenarios: one on a
dataset presenting a single main symmetry axis and the other
containing multiple symmetry axes. Two works reported
the best results, per the survey paper [8]. The first [10]
uses constellations of interest points detected using SIFT-
like descriptors, and it reports the best results in both test
scenarios for recall rates lower than 80%. The second [12],
that pairs SIFT descriptors with gradient-based weighting
to select symmetry candidates and then validates them with
a principled statistical procedure, slightly outperforms the
first for high recall ratios. However, in the end, the results
were deemed to be not much satisfactory, as argued in [4].

In this paper we propose an algorithm for the detection of
symmetric objects in natural images. So, we start with a basic
mathematic tool that was proposed in [6] to find hierarchies of
symmetries in the raw data for the 1D domain. In that work,
detecting whether a 1D digital sequence possesses reflective
symmetry is a problem that is solved by decomposing the
sequence into its even and odd constitutive parts and then by
analyzing their respective energy. The approach is extended
here to natural images, i.e. the 2D domain, exploiting spatial
correlation properties in the data and using a saliency map to
recognize and properly identify the main symmetric object.

https://doi.org/10.1145/3095713.3095743
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The rest of the paper is organized as follows. We start in
Section 2 from a 1D analysis based on the even/odd decompo-
sition of discrete sequences. Then, we move to the 2D realm
in Section 3 and show how to avoid the pitfalls inherent in
the more complex domain. This is shown in Section 4, where
we give the details of the symmetry detection algorithm. To
properly benchmark it, we used the 2013 CVPR competition
dataset. We show in Section 5 that our algorithm outper-
forms all of those reported at the end of the competition in
[8]. Last, the paper concludes with Section 6.

2 SYMMETRY DETECTION IN 1D
DISCRETE SEQUENCES

We begin presenting a theoretical framework for detecting
whether a given 1D discrete sequence possesses reflection
symmetry properties to some extent, through the use of the
basic even/odd signal basic decomposition. The approach is
then extended to the problem of detecting symmetric objects
in natural images in the next Section.

Let us consider a real, finite-energy, 1D discrete sequence
𝑥[𝑛], supposing for simplicity sake that it has a finite sup-
port. The even/odd decomposition states that 𝑥[𝑛] can be
expressed as the sum of an even sequence 𝑥𝑒[𝑛] which is such
that 𝑥𝑒[𝑛] = 𝑥𝑒[−𝑛] and an odd sequence 𝑥𝑜[𝑛] such that
𝑥𝑜[𝑛] = −𝑥𝑜[−𝑛], as follows:

𝑥𝑒[𝑛] =
𝑥[𝑛] + 𝑥[−𝑛]

2
; 𝑥𝑜[𝑛] =

𝑥[𝑛]− 𝑥[−𝑛]

2
(1)

and 𝑥[𝑛] = 𝑥𝑒[𝑛]+𝑥𝑜[𝑛]. It is readily observable that 𝑥𝑒[𝑛] and
𝑥𝑜[𝑛] are orthogonal in the sense that their inner (or scalar)
product that is defined as <𝑥𝑒[𝑛], 𝑥𝑜[𝑛]>=

∑︀
𝑛 𝑥𝑒[𝑛]𝑥

*
𝑜[𝑛]

is 0. This also implies that the energies of 𝑥𝑒[𝑛] and 𝑥𝑜[𝑛],
respectively 𝐸𝑒 and 𝐸𝑜, sum up to the energy 𝐸 of 𝑥[𝑛].
Of course, this suggests a simple approach to determine
how much (anti)-symmetric a sequence is around the time
origin 𝑛 = 0. After decomposing the signal 𝑥[𝑛] along the
lines of Eq. (1), the more 𝑥[𝑛] is even (resp. odd) the higher
(resp. smaller) the energy of the even sequence 𝑥𝑒[𝑛], hence
hinting to a simple approach to determine how much (anti)-
symmetric a sequence is: decompose the signal into its even
and odd parts and compare their energies. However, this only
works if the signal is symmetric around its midpoint.

To approach the problem, it is convenient to generalize the
decomposition of Eq. (1) to encompass also the cases when
the symmetry is centered around a given point 𝑚. For a real,
finite-energy, finite support 1D discrete sequence 𝑥[𝑛], the
even-odd decomposition around a point 𝑚 states that 𝑥[𝑛]
can be expressed as the sum of an even sequence 𝑥𝑒[𝑛;𝑚]
and an odd sequence 𝑥𝑜[𝑛;𝑚] as follows:

𝑥𝑒[𝑛;𝑚]=
𝑥[𝑛]+𝑥[2𝑚−𝑛]

2
; 𝑥𝑜[𝑛;𝑚]=

𝑥[𝑛]−𝑥[2𝑚−𝑛]

2
(2)

and 𝑥[𝑛] = 𝑥𝑒[𝑛;𝑚] + 𝑥𝑜[𝑛;𝑚]. Since 𝑥𝑒[𝑛;𝑚] and 𝑥𝑜[𝑛;𝑚]
are orthogonal, their energies, that depend on 𝑚 and are
referred to as resp. 𝐸𝑒(𝑚) and 𝐸𝑜(𝑚), still sum up to the
energy 𝐸 of 𝑥[𝑛]. When 𝑥[𝑛] is prevalently even around 𝑚

(i.e. reflection symmetric), the energy 𝐸𝑒(𝑚) is more than
half of 𝐸. Therefore, to determine how much symmetric
a sequence around a given point 𝑚 is, the signal can be
decomposed as in Eq. (2) and 𝐸𝑒(𝑚) is then given by:

𝐸𝑒(𝑚) =
∑︁
𝑛

|𝑥𝑒[𝑛;𝑚]|2 =
∑︁
𝑛

⃒⃒⃒⃒
𝑥[𝑛] + 𝑥[2𝑚− 𝑛]

2

⃒⃒⃒⃒2
=

=
1

4

∑︁
𝑛

|𝑥[𝑛]|2 + |𝑥[2𝑚− 𝑛]|2 + 2𝑥[𝑛]𝑥[2𝑚− 𝑛] =

=
1

2
𝐸 +

1

2

∑︁
𝑛

𝑥[𝑛]𝑥[2𝑚− 𝑛] =
1

2
𝐸 + (𝑥 * 𝑥)[2𝑚]

(3)

where in the last passage (𝑥*𝑥) represents the convolution
of a discrete sequence with itself (termed in the following as
“auto-convolution”).

Local maxima of the auto-convolution correspond to points
for which there is good energy decoupling with respect to
their immediate neighborhood. Thus, it would appear that
local extrema of the auto-convolution can help identify even
symmetries. However, take the case where the signal 𝑥[𝑛] has
a clear local symmetry but outside the symmetry support
the signal is decidedly of higher energy and also possibly non-
symmetric. In this case, the samples in the non-symmetric
part of the signal leads to a bias in the computation of the
energy, to the point of drowning the corresponding auto-
convolution value and making the local symmetry no more
detectable, as illustrated by Fig. 1. In Fig. 1a an even sym-
metry is readily observable (the triangular impulse), but the
rest of the signal is just high energy noise with less obvious
symmetries. In Fig. 1b the auto-convolution computed on
the whole sequence is plotted, and the global maximum is
marked with a black circle. It is clear that it is not close to the
desired location, namely the center of the triangular impulse,
since the non-symmetric surrounding signal has affected the
position of the global symmetry point.

The solution to this problem is to limit the convolution
support over a basic window centered around the considered
point. This way, values of the “windowed” auto-convolution
are not affected by the behavior of the sequence in distant po-
sitions, which damages the precise detection of the symmetry
position when dealing with local symmetries, thus hopefully
both compensating for the imprecise location of the true sym-
metry point and rejecting false positives in the local maxima
due to noise (Fig. 1c). The windowed auto-convolution is
then normalized by the energy of the sequence in the window
so as to ease the comparison of symmetries between win-
dowed sequences having different energy. Alternatively the
metric used may become higher just because the signal in the
window has higher energy (compare Fig. 1d with Fig. 1c).

To identify the best local symmetry the window is shifted
at every location and the normalized auto-convolution is
computed for the central point of the window. This in effect
corresponds to just computing the inner product between the
windowed sequence and its mirrored version, normalizing it
by the energy of the windowed sequence. So the measure of
symmetry 𝑆 relative to the position in the center of a given



On Reflection Symmetry In Natural Images CBMI ’17, June 19-21, 2017, Florence, Italy

(a) The original signal, with
an artificially created, clear
local even symmetry. The
symmetry axes as found by
the global and local auto-
convolutions are also drawn.

(b) The global auto-
convolution of the signal
shown in Fig. 1a, with the
global symmetry marked.

(c) Windowed auto-
convolution of the signal
shown in Fig. 1a. A high
energy, weaker symmetry
can dominate a low energy,
stronger one due to the lack
of energy normalization.

(d) Windowed, energy nor-
malized auto-convolution of
the signal of Fig. 1a. Now,
the clear even symmetry is
dominant.

Figure 1: The effect of windowing and normalization
of the auto-convolution to improve the search for
local symmetry. The borders where windows go out
of bounds are set to 0.

window 𝑊 centered around the considered position, covering
2𝑛𝑝 + 1 positions, is given by:

𝑆(𝑊 ) =

∑︀𝑛𝑝

𝑛=−𝑛𝑝
𝑥[𝑛] · 𝑥[−𝑛]∑︀𝑛𝑝

𝑛=−𝑛𝑝
|𝑥[𝑛]|2

(4)

A last detail to consider is that the best symmetry point
may actually correspond to an half-integer position, as the
term 2𝑚 in Eq. 3 implies. If we want to retain the same
precision in the symmetry detection even after windowing
the auto-convolution as in Eq. (4), it follows that the win-
dow should be centered at half-integer positions as well. If
the computation is confined to the original samples 𝑥[𝑛], it
may be a problem to keep the number of positions inside
𝑊 invariant when centered in either integer or half-integer
positions. Therefore, 𝑥[𝑛] is interpolated by a factor of 2,
doubling 𝑛𝑝 and then computing 𝑆(𝑊 ) on the interpolated
image, so that such a computation uses consistent values for
adjacent symmetry positions.

3 PRINCIPLES OF SYMMETRY
DETECTION IN NATURAL IMAGES

Our objective is to extend the basic mathematical tool we just
derived to solve the problem of symmetric object detection in
2D images. To start, let us consider the case of the search for a
vertical symmetry axis, i.e. there is a horizontally symmetric
object in the image, clearly perceived by the human eye. To
search for symmetry axes in different directions, it may turn
convenient to rotate the image first in such a way that the
sought symmetry axis becomes vertical.

Using the 1D windowed, normalized auto-convolution pre-
viously explained in a row-wise fashion, it should be expected
that for all rows passing through the symmetry axis asso-
ciated to the object, a local maximum is found exactly in
correspondence with a vertical axis. By connecting the re-
sulting peaks in the vertical direction the symmetry axis can
be simply revealed. However, the noisy nature of data can
delete the 1D local symmetry: this possibility is unavoidable,
unless much effort is spent in removing the background, com-
pensating for illumination changes, or other artefact causes.

Our eyes disregard the absence of an actual symmetry in
the underlying data for those rows because our brain is able
to use the global reflection symmetry information: it extends
the symmetric vertical axis and connects it all the way. This
suggested us to compute a batch of 1D convolutions all at
once for a number of rows, in effect performing the row-wise,
windowed and normalized auto-convolution over a 2D square
patch. This way, we both correct for noisy placement of
symmetry due to image noise and exploit the 2D correlation
information present in the image, just like the human brain
that would hardly search for 2D symmetry by analyzing
separately data along a single dimension.

Consequently a symmetry measure 𝑆2 can be associated
to each center of a 2D patch 𝑃 as follows:

𝑆2(𝑃 ) =

∑︀𝑚𝑝

𝑚=−𝑚𝑝

∑︀𝑛𝑝

𝑛=−𝑛𝑝
𝑥[𝑚,𝑛] · 𝑥[𝑚,−𝑛]∑︀𝑛𝑝

𝑚=−𝑛𝑝

∑︀𝑛𝑝

𝑛=−𝑛𝑝
|𝑥[𝑚,𝑛]|2

(5)

Each considered possible patch has size (2𝑛𝑝 +1)× (2𝑛𝑝 +1).
The averaging taking place by flipping the 2D profile with
respect to any considered axis orientation for the whole
2D patch centered at any candidate position is the key of
its success. The symmetry axis is correctly extended over
adjacent rows independently of the presence of noise and
possible slight variations in the object texture.

4 PROPOSED ALGORITHM DETAILS

This Section describes the algorithm proposed for symmetric
object detection, including only those details that are deemed
essential to properly understand the argument put forward
in previous Sections to improve the correct localization and
verification of detected symmetry segments.

The objective of the first algorithm part is to compute a
symmetry value for all the pixels of the image 𝐼, for any given
angle. The values are obtained according to the principles
explained in Section 3, and that information is to be stored in
a 3D stack. As shown in Fig. 2, such a process is composed of
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Figure 2: Main processing stages involved in the 3D
symmetry stack computation.

three tasks. In the first one, 𝐼 is rotated by 𝑛 different angles
𝛼𝑖 to obtain 𝐼𝛼𝑖 . The symmetry value is calculated separately
for each angle, so that all possible symmetries can be captured
independently of their tilt. 𝐼𝛼𝑖 returns symmetries in the 𝛼𝑖

direction (0 ≤ 𝛼𝑖 < 180, with 𝛼𝑖 = 180∘𝑖/𝑛; here 𝑛 = 180).
As described in Section 2, the auto-convolution operation

applied to a sequence allows to locate the position of the
optimal symmetry axis. To improve the location up to half
pixel accuracy, a columns interpolation by a factor of 2 is
performed on 𝐼𝛼𝑖 . So, at the end of the first block of Fig. 2,

𝑛 images are formed, that are referred to as 𝐼𝛼𝑖 , representing
rotated and interpolated versions of the original image 𝐼.

In the map computation process, the level of symmetry
of each pixel 𝑝 of 𝐼𝛼𝑖 is computed. First, a 2D patch 𝑃 of
fixed size (2𝑛𝑝 + 1) and centered in 𝑝 is extracted. Then, the
symmetry measure 𝑆2(𝑃 ) is computed according to Eq. (5),
that takes values in the [−1, 1] interval. This is strictly related
to the ratio between the energy of the signal in the patch
and its even-odd decomposition around its middle vertical
axis. In particular, 𝑆2(𝑃 ) = 2𝐸𝑒/𝐸 − 1 = 1− 2𝐸𝑜/𝐸, where
𝐸 is the energy of the signal on the patch and 𝐸𝑒 (resp. 𝐸𝑜)
is the energy of the even (resp. 𝐸𝑜) part of the patch.

The map computation is performed for all images 𝐼𝛼𝑖 , so
that 𝑛 maps 𝑀𝛼𝑖 are generated. Finally, a 3D stack of 𝑛 maps,
in which the 𝑖-th slice is the map 𝑀𝛼𝑖 , is constructed. It is
called “symmetry stack” since it represents the local (pixel)
information about the level of symmetry. In the example
reported in Fig. 3, Fig. 3b shows the computed map for 𝛼 = 0∘

(vertical symmetry axis) superimposed on the test image
shown in Fig. 3a. The borders in Fig. 3a are discarded in
Fig. 3b since the patches fall outside of the image boundaries.
Observe how, in addition to two clear vertical axes where the
objects are, the uniform background also exhibits a significant
symmetry response.

At this point all symmetry axes present in the image 𝐼 can
be identified by processing the symmetry stack. In the end,
all candidate symmetry axes are extracted and mapped back
to the original image domain. The process is constituted by
four distinct operations (see Fig. 4). First, a straightforward
(half-wave) rectification is performed, by setting to 0 all
negative values of the stack (as done in Fig. 3 too). Following
the discussion we have carried so far, one could assume that
symmetry measures close to 1 identify stronger symmetries
and should be thus sufficient to identify symmetric objects.

(a) The test image, with two
clearly symmetric objects.

(b) The map 𝑀0∘ , related
to vertical symmetry axes,
scaled down to match the
horizontal size of Fig. 3a.

Figure 3: The symmetry computation stage for a test
image for 𝛼 = 0∘.

On the contrary, we observed experimentally that this is not
necessarily true. For example, large values can be associated
to uniform background regions that correspond to highly
symmetric structures. Moreover, objects that are perceived
by humans as clearly symmetric could have lower values due
to shadows, illumination changes, low resolution, etc. The
use of 2D patches may only alleviate this particular problem.

Instead of just taking the symmetry measure, a key obser-
vation is that searching for the peaks (local maxima) of the
symmetry map is more relevant. So, the absolute value of the
coefficient is not as important as its relationship with respect
to its neighbors. All local maxima along the rows of every
symmetry map can be associated to a specific direction 𝛼𝑖. A
connectivity analysis between such maxima can be performed
by means of a flood-fill algorithm. Consequently, all possible
reflection symmetries define a series of segments linking con-
nected local maxima existing in each row. Finally, in order
to project back the symmetry information onto the original
image coordinate system, each map 𝑀𝛼𝑖 is first horizontally
scaled down by a factor 2 to be consistent with the size of
the input image 𝐼 and then rotated by −𝛼𝑖.

The last part of the algorithm processes the candidate
symmetry segments to remove their redundancy, since many
segments can be associated to the same symmetry axis but
with slightly different slope. In the stack, an axis can be
detected in many adjacent slices of the stack, but retaining
just one would suffice. In addition, symmetry segments may
also be too short, indicating that the symmetry is associated
to a small restricted region, or associated to imperceptible
symmetries (e.g. background textures). A confidence measure
is then attached to the surviving symmetry segments, so that
they can be finally sorted in order of importance. Fig. 5
shows the processing blocks involved in this last stage of the
algorithm.

We extract a pair of features 𝑓1 and 𝑓2 for each symmetry
segment. The first one is directly connected to the symmetry
values that have been computed to detect the considered
segment. In particular, 𝑓1 is computed as follows:

𝑓1 =

∑︀
𝑘 𝑆2(𝑘)

𝑙
·
√
𝑙 =

∑︀
𝑘 𝑆2(𝑘)√

𝑙
(6)
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Figure 4: Main blocks of the candidate axes identifi-
cation process, starting from the symmetry stack.

The index 𝑘 in Eq. (6) spans the length 𝑙 of the segment in
the slice of the symmetry stack it lays on. In substance, 𝑓1
computes the average value of the symmetry measure 𝑆2(𝑃 )
centered on each point belonging to the segment and then
multiplies it by the square root of 𝑙. Experimentally, the
normalization by

√
𝑙 has proven to be a good compromise. It

penalizes those segments that are not relevant because they
are too short, as mentioned before, while at the same time de-
emphasize very long segments since they are likely associated
to outstretched background symmetries such as those present
in almost uniform regions of the image. The length 𝑙 is
actually normalized by the image diagonal size to make 𝑓1
invariant to the image size, so that the symmetry feature can
be compared across images with different dimensions.

However, given the particular nature of the competition’s
objective, a performance improvement can be expected by
another feature added to the symmetry segments process-
ing. As a matter of fact, the feature 𝑓1 is more aimed at
the detection of symmetric regions in a given image, and,
consequently no particular attention has been placed for fo-
cusing on the objects it contains. To reduce the gap between
human-perceived symmetry and actual data symmetry, some
help is needed by features that can focus on these objects.

A simple approach is employed in this work by computing
the saliency map described in [7] to have a quick hint of
where objects of interest might be. A second feature 𝑓2 is
computed on the symmetry segments as:

𝑓2 = 𝑆𝑀 ·
√
𝑙 (7)

where 𝑆𝑀 is the mean saliency on the locations traversed by
the candidate symmetry segment. The product with

√
𝑙 has

the same effect as in Eq. (6). The feature 𝑓2 is also normalized
image-wise in the [0, 1] interval by dividing its value by the
maximum found for each image.

Finally, the confidence measure for a given symmetry axis
is the linear combination 𝛾1𝑓1 + 𝛾2𝑓2 with 𝛾1 + 𝛾2 = 1 so as
to give an output still in the [0, 1] interval. The best linear
combination can be chosen using a training dataset, as done
here to benchmark the algorithm using the framework of the
2013 CVPR competition, or according to the specific require-
ments leaning towards either symmetric objects (increasing
𝛾2) or symmetric patterns such as textures (increasing 𝛾1).

Such a feature combination is also used in the redundant
segment removal process. The overlapping axes removal block
of Fig. 5 is tasked with deleting those segments likely to corre-
spond to the same symmetry. To take that decision, the same
criterion adopted in the true positives validation step of the
2013 CVPR competition is used. So, two symmetry segments
in different slices of the symmetry stack are considered as
redundant if the distance between their centers is smaller

Feature
Extraction

Overlapping Axes
Removal

Unsorted
Segments List f1

Sorted
Segments List

f2

Confidence
Measure

Figure 5: The stages involved in the symmetry seg-
ments processing.

than a fifth of the length of the shorter one and in addition
the angle that they form is no more than 10∘. To choose the
best symmetry segment among a redundant set, of course
the one with the best confidence is retained.

The symmetry segments are finally sorted using their con-
fidence valus, after the redundant ones are eliminated. An
example of the effect of the processing stage described in
Fig. 5 is shown in Fig. 6. As it can be seen, the symmetry
segments with the highest value shown in Fig. 6b perfectly
correspond to the main characters symmetries, while minor
symmetries and false alarms in Fig. 6a take on smaller values.

5 EXPERIMENTAL RESULTS

In this Section, the results of the proposed algorithm using
the dataset of the 2013 CVPR competition on symmetry
detection [8] are reported. The experimental procedure was
as follows. The parameters 𝛾1 and 𝛾2 have been obtained
on the training set, maximizing the precision for a recall
rate close to 80%. In the experiments the precision was
increased by setting a hard threshold 𝑇1 for 𝑓1 and 𝑇2 for 𝑓2,
since it can be confidently expected that a symmetry axis
whose either feature is close to 0 may be safely discarded.
The thresholds have been chosen on the training set by
maximizing the difference between increase in precision and
loss in recall. Fig. 7 depicts the precision/recall obtained
on the provided test dataset, for both the single axis and
multiple axes detection scenarios. The selected thresholds
for both test scenarios are reported too. Such a curve shows
very good performance. To put our results in perspective, the
precision/recall values obtained from [8] have been drawn on
the same graph.

For all conducted experiments, only 4 parameters need to
be set: the patch size 𝑛𝑝 = 100, the hard thresholds 𝑇𝑖 on
𝑓𝑖 and the feature weight 𝛾1. The method appeared exten-
sively robust to variations in its parameters. Computational
efficiency was not a focus in the current implementation.
The average computation time to generate the symmetry
stack with a 1∘ angular resolution (𝑛 = 180) for an average
213× 256 image on a standard computer (Intel Core 2 Duo
@ 2.13GHz, 4GB RAM) is 220𝑠 using Matlab v2013a. The
symmetry stack analysis takes only on average 72𝑠.

Finally, a collection of visual results is shown in Fig. 8,
taken from the provided dataset, that best represent the suc-
cess and the limits of the proposed algorithm. The detected
symmetry segments, shown superimposed on the images, are
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(a) Unsorted segments list de-
tected on the image. Note
how some of them traverse
symmetric regions that are
however not perceived as
such by the human eye.

(b) After sorting, the first
two segments of the list are
indeed associated to the two
main perceptual symmetries
on the image.

Figure 6: Symmetry segments detection on a test
image.

Proposed
Loy
Michaelsen
Patraucean
Petrosino

(a) Single axis test scenario,
using 𝑇1 = 0.3 and 𝑇2 = 0.53.

0.6 0.8

Proposed
Loy
Michaelsen
Patraucean
Petrosino

(b) Multiple axes test sce-
nario, using 𝑇1 = 0.49 and
𝑇2 = 0.53.

Figure 7: Precision/recall curve on the testing set
using the the 𝛾1𝑓1 + 𝛾2𝑓2 confidence measure and
hard thresholds as indicated, superimposed to those
found in [8].

those obtained with the confidence measure 𝛾1𝑓1+𝛾2𝑓2, with
𝛾1 = 0.7, higher than 0.9. Most of them represent exist-
ing symmetries very accurately. Two false positives are also
shown in the last row, showcasing two different limits of the
algorithm. The algorithm in the ‘eagle’ image is confused by
the flat background and by the absence of a truly symmetric
content in the supposedly symmetric object. On the other
hand, the mis-detection in the ‘bee’ image is caused by the
saliency map completely missing the animal and focusing
instead on the (though symmetric) bottom right region where
the detected symmetry axis is.

6 CONCLUSIONS

In this paper a new method for reflection symmetry axes
detection was presented. At its core, a symmetry value is
computed using the auto-convolution on a 2D patch for each
pixel of the image, suitably rotated for the considered symme-
try axis angle and interpolated by a factor of 2, to compute a
symmetry map for each angle. These values are extracted by

Figure 8: Collage of visual results on selected images
taken from the 2013 CVPR competition dataset.

sliding a window in the horizontal direction and computing
the energy-normalized, 2D auto-convolution of the pixels
therein. Crucially, candidate symmetry points are chosen
not by thresholding the symmetry value but searching for
local maxima of the symmetry measure in the orthogonal
direction. Once the candidates points are morphologically
connected to form candidate axes, they are further processed
to remove redundant axes and to assign a confidence value to
the surviving ones. The confidence value is a linear combina-
tion of the average of symmetry measure itself and the mean
saliency, computed along the candidate symmetry segment,
added to deal with the specific objectives of the experiments,
significantly increasing the precision.

The method has been experimentally validated using the
dataset provided during the 2013 CVPR symmetry detection
competition. The results outperform all of those reported
in [8] for both evaluation scenarios. Such good results are
truly remarkable. What is really worth noting is how such
a simple fix is enough to achieve good performance. This
proves how sound the basic, common-sense considerations
that went into the design of the method really are, without
any sophisticated use of other features. We plan to make the
software freely available for experimentation in the future.
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