
Scheduling algorithms for automatic control systems for

technological processes

A.S. Chernigovskiy
1
, R.Yu. Tsarev

1
, D.V. Kapulin

1

1
Siberian Federal University, Krasnoyarsk, Russia

79, Svobodny Prospect, Krasnoyarsk, Russia

E-mail: achernigovskiy@sfu-kras.ru

Abstract. Wide use of automatic process control systems and the usage of high-performance

systems containing number of computers (processors) give opportunities for creation of high-

quality and fast production that increases competitiveness of an enterprise. Exact and fast

calculations, control computation, and processing of the big data arrays – all of this requires the

high level of productivity and at the same time minimum time of data handling and result

receiving. In order to reach the best time it is necessary not only to use computing resources

optimally, but also to design and develop the software so that time gain will be maximal. For this

purpose task (jobs or operations) scheduling techniques for the multi-machine/multiprocessor

systems are applied. Some of basic task scheduling methods for the mult i-machine process control

systems are considered in this paper, their advantages and disadvantages come to light, and also

some usage considerations in case of the software for automat ic process control systems

developing are made.

1. Introduction
Nowadays an enterprise can't exist in the competitive environment and even function at all, if processes
and operations control of production aren't carried out in an automatic mode by control systems [9].
Automatic process control system (APCS) is an integral part of production on the large modern
enterprises. Use of APCS not only allows reducing usage of human hand labour, but also promotes
improving production quality [2, 6]. As a result, requirement and necessity for use of APCS is obvious.
Also it is not necessarily to use APCS on production everywhere; it is possible to carry out automation
step by step, starting with the labour-consuming processes, and processes requiring high accuracy.

With high rates of technical progress in the field of computing, microprocessors become more and
more powerful, and their cost becomes less. In this regard for the modern APCS the multiprocessor and
multicomputer systems are began to be used more often. They allow to increase reliability of APCS at
whole because in case of a failure of one unit, the system won't cease to function because of components
redundancy [14].

Redundancy is especially necessary in case of real-time operation as the organization of concurrent and
multithreaded processes is possible because of it [1]. But not only correctly organized architecture of
hardware is necessary for achievement of the maximum productivity. As well the software developed for
APCS, using multi-machine and multiprocessor computing systems, has a great influence on the speed of
receiving results and correct controlling actions, on the speed and quality of input data processing [7]. For
this purpose it is necessary to select correctly the concurrent processes proceeding in APCS and to assign
to their available computing devices of system so that to receive minimum possible time of result

receiving [11]. For this purpose it is possible to use task scheduling algorithms for the distributed
computer systems. These algorithms are used to create such task schedule or operations execution which
in case of execution on APCS gives minimum time of result receiving [16]. In this paper basic task
scheduling algorithms which can be used in case of design of automatic process control systems are
considered.

The algorithms given below are intended for the one problem solution: making of such plan in which
execution time of all tasks will be minimum (it is denoted as Cmax in a scheduling problem definition). In

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Siberian Federal University Digital Repository

https://core.ac.uk/display/148037879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

such case, considered algorithms execute it in different methods and using different models. Scheduling is
carried for identical machines, which are machines that have identical productivity. We will carry out the
review of some algorithms and will show their applicability boundaries, and also advantages and
disadvantages.

2. Scheduling algorithms’ inputs and outcomes
In this section we consider well-known scheduling algorithms that have been proven to solve effectively
different practical scheduling problem and can be applied for automatic control systems for technological
processes.

2.1. Hu’s algorithm
First of all, it is necessary to consider that many algorithms use the precedence constraints among tasks to
show dependence of one tasks on others and impossibility of their execution, the prior won't be executed
yet. Usage of the oriented graphs is represented as the most convenient method. Hu's algorithm isn't an
exception here; it is applicable for the acyclic oriented graphs in which each vertex has only one
immediate successor, except finite vertex (intree) [8]. It is possible to call such graph as "reversed" tree,
its difference that a tree graph has one vertex without the entering arcs and some leaving arcs (root), in
this model the reverse case is used, there is one vertex without the leaving arcs (sink) with a set of the
entering [3]. Also restriction on processing time of each task is introduced, they need to have equivalent
duration in one or in p of time units (pj = p or pj = 1). Thus, it can be written a scheduling problem
definition for Hu's algorithm as follows, P|intree, pj = p|Cmax (or P|intree, pj = 1|Cmax) [8] that means:
making of such task execution plan that concerns precedence, processing times are identical, that gives
minimum completion time of all tasks set for finite number of identical machines (processors). It is
proved that the plan produced by Hu's algorithm is optimal for the above described problem definition.
Time complexity of algorithm is O(n).

It is very convenient to use this algorithm for such processes which have a large number of input data
and afterwards are processed in parallel and then as result give only one value or the controlling action,
because the structure of such process completely matches structure of a graph which each vertex has only

one immediate successor. Also it is very convenient to apply it in that case, when there is no opportunity
to measure runtime of each separate task and it is easier to take each of them for a time unit if the
schedule received such methods afterwards doesn't arrange with productivity results, it is possible to
perform further optimization or to use other algorithms. Hu's algorithm is easy to use and doesn't require
big computations; it can be applied directly under system design to provide satisfactory software modules
placement result. Sometimes, during the design, developers while planning placement of the software
modules use the methods explained in Hu's algorithm unconsciously. It is possible to tell that this
algorithm is result of natural attempt of computation scheduling and system optimization for the multi-
machine (multiprocessor) computing system.

As a disadvantage, of course, it is necessary to consider that this algorithm doesn't provide preemptive
schedules (with interruptions), but in certain cases it isn't necessary or even technically impossible. But,
nevertheless, Hu's algorithm is considered one of the simplest and basic algorithms for task scheduling
with the described "reversed" tree structure. One more disadvantage is equal duration restriction of all
system tasks, it can lead to some system idle time, but as it is mentioned, sometimes it is simply
impossible to avoid.

2.2. Coffman-Graham algorithm
The optimality of this algorithm is proved for P2|prec, pj = p|Cmax, (P2|prec, pj = 1|Cmax) [4, 5, 15], all
designations match with designated above, difference only in P2. Here P2 is an optimality for two
machines (processors). As it is possible to note one immediate successor restriction (intree absence in a
problem definition) for each graph vertex is lifted in this algorithm (Fig. 1), but essential restriction is
introduced, it is optimal only for two machines. However it is proved that it solves not only the minimum

makespan problem, but also finds minimum value of the tasks (operations) completion moments problem
(∑Cj), having solved both of these tasks Cmax and ∑Cj it is possible to receive the so-called ideal schedule.
It means that this algorithm one of the best in case of the given restrictions. Time complexity – O(n

2
), it is

higher, than Hu's algorithm have, because of two stages of scheduling: labeling of each task and
following tasks assignment for each machine according to received labels. Each task can use the first
labeling stage for obtaining the task list for the following use in algorithms which are intended for task
list scheduling which will be considered further.

Figure 1. Acceptable for
Coffman-Graham algorithm
graph example.

As it was already told, this algorithm – one of the best for two-machine systems, the schedule received

with its help is considered ideal, and also, unlike Hu's algorithm, can be applied to any to the acyclic
directed graph. Ideal means that the result schedule will have not only the minimum length, but a lso
ending time of each task in the schedule will be minimal as possible (Fig. 2). Also as well as Hu's
algorithm it is useful while it is impossible to estimate task duration and it can be used unit time
restriction for tasks.

The main delimiter is non-optimality for m ≥ 3 machines and not non-preemptiveness, about some
advantages of non-preemptive schedules was told above.

Figure 2. Schedule derived by means of Coffman-Graham algorithm
from the graph on fig. 1.

2.3. LPT (Largest Processing Time) algorithm
The LPT algorithm solves P || Cmax problem. From a problem definition it is visible that the precedence
relation isn't considered, and some independent tasks list is processed. Task list can be created by
Coffman-Graham's labeling algorithm, considering dependences, or any other possible way, while
analyzing structure of the graph vertexes precedence. The LPT algorithm is seldom applied in pure form,
more often it is used for combinatory optimization. With optimizations and using reasonable tasks choice
which scheduling gives the best result, this algorithm is capable to show good efficiency results. Time
complexity – O(n∙log(n)).

The LPT algorithm is very simple and evident in use that is important advantage. Also, unlike the first
two considered algorithms it can be applied to any duration tasks, without pj=p type restrictions, and it
allows to avoid those idle times which can be received as a result of algorithms with identical task
durations. The LPT algorithm plays an important role in further optimization. It is used in many modified
algorithms. Therefore it shouldn't be treated as non-optimal solution. It can be applied in that a way that

the system productivity will be increased in whole.
Important restriction is the impossibility of direct algorithm use for graph structures, but only for

independent tasks lists which need to be get independently. Also its relative optimality is equal to tLPT
(TS, m) / topt (TS, m) ≤ 4/3 – 1 / (3m) [4, 5], where to tLPT (TS, m) = Cmax of the dchedule received by LPT
algorithm for the independent tasks list TS for m of machines, topt (TS, m) = Cmax of the optimal schedule
for the same TS and m values. It means that the non-optimal decision at worst equal 4/3 – 1 / (3m), where
m is number of machines (handlers) in certain cases can be received.

2.4. McNaughton’s algorithm
McNaughton’s algorithm is optimal for P|pmtn|Cmax problem [10]. For a start it is worth mentioning such
concept as preemptive scheduling. Preemptive scheduling considers the possibility to interrupt a task and
to continue its performing later on another machine (processor). In this case it is also necessary to
consider information transfer time subsequently, and also some delays at interruptions, but nevertheless
scheduling algorithms consider ideal cases (Fig. 3). Here pmtn means what it was told earlier, it is about

that it is possible to split (interrupt) tasks and then to carry out by other machine. Of course, it should be
taken into account, whether there is a possibility of tasks interruption on that industrial control system for
which the software is projected, at technical or program impossibility of interruptions this algorithm won't
manage to be applied. Time complexity – O(n

2
).

Figure 3. Acceptable for McNaughton’s algorithm graph example.

The undoubted advantage of this algorithm is preemptiveness, it is the possibility accounting of tasks
division and the subsequent possible execution on another machine. Also this algorithm can use non-unit
task durations therefore the plan received with its help won't contain idle times which can arise because of
restrictions on task durations (Fig. 4). Therefore, in difference from LPT algorithm, this algorithm
considers possibility of tasks interruption and also allows to avoid the idle times caused by impossibility
of task splitting into parts and as a result of emergence of an idle time of longer task processing.

This method has the same disadvantages as LPT, i.e. it can’t be applied for a graph structure directly,
although it is proved to be optimal for an independent tasks list. It is recommended to follow the same

procedure to construct the task list of, as for the LPT algorithm.

Figure 4. Schedule derived by means of McNaughton’s algorithm from the graph on fig. 3
for four processors.

2.5. Muntz-Coffman algorithm
The algorithm is intended for P|pmtn, intree|Cmax and P2|pmtn, prec|Cmax problems solution [12, 13]. It
means that it is optimal for a graph which each vertex has only one immediate successor (Fig. 5), it is
possible to split task execution and then continue at another computer (processor), also it is optimal for
two machines for any acyclic kind of a graph.

Figure 5. Acceptable for Muntz-Coffman
algorithm graph example.

Moreover, it is possible to receive the execution task schedule with processor resource sharing based

on preemptive schedule, if such opportunity is available. In this case it is not important what kind of
duration vertexes have – number of time units or normal time, the algorithm can work with any of them.

This algorithm contains all advantages of the previous algorithms, it is optimal for intree (as well as
Hu's algorithm), and also for any kind of the acyclic graph for two machines (as well as Coffman-

Graham's algorithm). It operates with unit time tasks and with usual time durations (as well as LPT
algorithm) it allows to create preemptive schedules with interruptions (as McNaughton’s algorithm) (Fig.
6), and also machine (processor) resource sharing schedules (Fig. 7).

The same delimiter, as at the first two algorithms have is impossibility of application to any kind of
directed graph structure. The first restriction – the graph needs to be "reversed" tree type, the second – it
can be any kind of graph, but the schedule will be optimal for two-machine system.

Figure 6. Preemptive schedule derived by means of Muntz-Coffman
algorithm from the graph on fig. 5.

Figure 7. Resource sharing schedule derived by means of Muntz-
Coffman algorithm from the graph on fig. 5.

In Table 1 you can find distinguishing features of observed scheduling algorithms. Table 1 covers these

features to help when selecting proper algorithm to solve scheduling problem.

Table 1. Distinguishing features of scheduling algorithms

 Hu’s Coffman-Graham Muntz-Coffman LPT McNaughton

Nonpreemptive + + +

Preemptive + +

Unit processing times + + +

Any kind of processing
time

 + +

Simple schedule structure + + +

Machine resources
sharing scheduling

 +

3. Conclusion
In this paper the main task or operations scheduling algorithms of the software of APCS for execution on
distributed multiprocessor or multi-machine system are considered. In the paper the review of basic

algorithms of scheduling is made, advantages and disadvantages of each of them are revealed; some
recommendations about application of algorithms for design of the software of APCS are given.
Boundaries of applicability of each of algorithms, and also time complexity of their execution are shown

in article.
Considered in this article algorithms features give sufficient information for software developing of

APCS which optimally uses computing resources, for the purpose of receiving minimum result receiving
time. However, eventually, a necessary scheduling algorithm choice, and also design need to be applied
reasonably by experts and system designers. In the making of the optimum task execution plan it is
necessary to consider structure of processed data, its transmission flows and many other features of APCS
functions program implementation. Set of hardware and the software features metering is a ticket to
success of the best APCS composition and the minimum time of receiving the final product.

Acknowledgements
This work was supported by the Ministry of Education and Science of the Russian Federation in the

framework of the Federal target program «Research and development of priority directions of
development of the scientific-technological complex of Russia for 2014-2020» (agreement
№ 14.578.21.0116, unique ID project RFMEFI57815X0116).

References
[1] Al-Asaad H 2014 Real time scheduling of multiple executions of tasks to achieve fault tolerance in

multiprocessor systems AUTOTESTCON Proc. (St. Louis, United States, 15-18 September 2014)
323–328

[2] Cai Z, Hong R and Cui J 2015 Control system design for induction hardening machine based on
PLC and HMI Heat. Treat. Met. 40 224–227

[3] Chernigovskiy A S, Tsarev R Y and Knyazkov A N 2015 Hu's algorithm application for task
scheduling in N-version software for satellite communications control systems Int. Siberian Conf.
on Control and Communications, SIBCON 2015: Proc. (Omsk, Russia, 21-23 May 2015) 1–4

[4] Graham R L 1966 Bounds for certain multiprocessing anomalies Bell Syst. Tech. J. 45 1563–1581
[5] Graham R L 1969 Bounds on multiprocessing timing anomalies SIAM J. Appl. Math. 17 263–269
[6] Hamm C and Schaefers E 2015 Numerical control for ultra-precision machining Proc. of the 15th

Int. Conf. of the European Soc. for Precision Eng. and Nanotechnology, EUSPEN 2015 (Leuven,
Belgium, 1-5 June 2015) 3–7

[7] Hashimoto K, Tsuchiya T and Kikuno T 2000 New approach to fault-tolerant scheduling using task
duplication in multiprocessor systems J. Syst. Software 53 159–171

[8] Hu T C 1961 Parallel Sequencing and Assembly Line Problems Oper. Res. 9 841–848
[9] Grigorenko O, Stratan D and Sedykh J 2015 Current trends in the strategy of innovative

development of industries in Russia Mediterr. J. Soc. Sci. 6 364–370
[10] McNaughton R 1959 Scheduling with deadlines and loss functions Manag. Sci. 6 1–12
[11] Mertzios G B, Shalom M, Voloshin A, Wong P W H and Zaks S 2015 Optimizing busy time on

parallel machines Theor. Comput. Sci. 562 524–541
[12] Muntz R R and Coffman E G Jr 1969 Optimal preemptive scheduling on two-processor systems

IEEE Trans. Comp. C-18 1014–1020
[13] Muntz R R and Coffman E G Jr 1970 Preemptive scheduling of real-time tasks on multiprocessor

systems J. ACM 7 324–338
[14] Simevski A, Kraemer R and Krstic M 2014 Investigating core-level N-modular redundancy in

multiprocessors Proc. 2014 IEEE 8th Int. Symp. on Embedded Multicore/Manycore SoCs, MCSoC

2014 (Wakamatsu, Japan, 23-25 September 2014) 175–180
[15] Sinnen O 2014 Reducing the solution space of optimal task scheduling Comput. Oper. Res.

43 201–214
[16] Valckenaers P, Van Brussel H, Verstraete P, Saint Germain B and Hadeli 2007 Schedule execution

in autonomic manufacturing execution systems J. Manuf. Syst. 26 75–84

