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Treating many-body quantum systems by means
of classical mechanics

Andrey R. Kolovsky

Abstract Many-body physics of identical particles is commonly bedié to be a
sovereign territory of Quantum Mechanics. The aim of thistdbution is to show
that it is actually not the case and one gets useful insigtitsa quantum many-
body system by using the theory of classical dynamical systén the contribution
we focus on one paradigmatic model of many-body quantumighiyshe Bose-
Hubbard model which, in particular, describes interactiittpcold Bose atoms in
an optical lattice. We show how one can find/deduce the engpggtrum of the
Bose-Hubbard model by using a kind of the semiclassicalcaar.

1 Introduction

The semiclassical methods are known to be a powerful toaludysng quantum
systems. They use information about classical dynamiche®ystem to predict
its quantum dynamics or find the energy spectrum. Besidedipahaspect, these
methods also contribute to our understanding of subtldioel®detween the quan-
tum and classical mechanics — an issue which might be evea imgortant. Until
now the overwhelming majority of semiclassical studiesehagen done for single-
particle problems. Yet, there is other type of problems Wiian be addressed by
using the same kind of ideas - these are dynamical and speaierties of an
ensemble of identical particles. In this contribution wealklgive an example of
application of ‘semiclassical methods’ to one of the pagadimodels of the many-
body physics — the Bose-Hubbard (BH) model. This model dlessyin particular,
ultracold bosonic atoms optical lattices [6], with a unidaethe many-body physics
experimental control over the model parameters [7].
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2 Bose-Hubbard mode

Denoting bya; and a}T the bosonic annihilation and creation operat{ﬁs,éﬁ] =
hd 1/, and bynj = éré; the number operator, the Bose-Hubbard Hamiltonian reads

(8aa+he)+5 z A (A (1)

In this Hamiltoniang, are the on-site energied,is the hopping matrix element,
andU the microscopic interaction constant. Having in mind colos& atoms in
the one-dimensional optical lattice, the constdns mainly determined by the-
wave scattering length for neutral atoms, and the constdt the lattice depth
[6]. In laboratory experiments both the scattering lengtt the lattice depth can
be varied in large intervals, which affords practically idry ratioU /J. Notice,
that the Hamiltonian (1) preserves the total number of plagi(atoms), which we
denote byN.

A remark concerning the boundary condition is in order. Waua®e a uniform
system (i.e., no spatial dependence for the on-site ergdrdie which we shall use
the periodic boundary condition if > 3. In this case the Hamiltonian (1) can be
rewritten in terms of the operatobg andby,

Bk_\%zexp<i2%k|>a, bl = (b)) . )

Unlike the operatora ”(ér), which annihilate (create) an atom in the Wannier states,
operators (2) annihilate or create an atom in the Blochstaising the transforma-
tion (2) and dropping the first term in the Hamiltonian (1) (@his a constant for a
uniform system) we have

] At oAb oA A~
- —chos< ) by bk + L, k4t>§1t>§2t>k3t>k4(5(|<1+kz— ks—ka), (3)
-,3-,

whered is the periodidd-function, i.e.,S(k) equals unity ifk is a multiple ofL and

zero otherwise. Depending on the addressed question tms dbthe BH model
might be more convenient than Eq. (1). In particular, itdels from Eq. (3) that for
U = 0 the eigen-energies of the BH Hamiltonian are given by theaggn,

Ej_—JZcos(Z%k) N . an:N. (4)

The total number of eigen-energiésg obviously coincides with dimension of the
Hilbert space,
(N+L-1)!

A= NI(L—1)!

(5)
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which is obtained by counting all possible distributiond\oAtoms amondy wells.

Itis very difficult task to find energie; if U differs from zero. As it will be ex-
plained below, in general case we cannot find them analfgtiéavhile numerically
we are restricted to rather small system size because thendion of the Hilbert
space grows exponentially withandN. A way around these problems is to use
‘semiclassical methods’, where one is not bounded with skhaindL. To this end
we introduce the classical counterpart of the quantum BHehod

3 Classical Bose-Hubbard model

Formally, the classical counterpart of the quantum BH méxlebtained by rescal-
ing the Hamiltonian (1) with respect t and identifying the creation and annihila-
tion operators witlc-number. This gives

i g/ L
H=-35 @aa+ce)+3 3 [al*, (6)

NI G
M~

1

where the constamgf = UN is called the macroscopic interaction constant, to distin-
guish it from the microscopic interaction constbhtThe Hamiltonian (6) generates
classical trajectories according to the Hamilton equatiomotion,

ig _OHo _
= daf

J
—§(a4+1+a471)+g’|a4|2a4 : 7)

which is known in the physical literature as the Discrete Nmar Schrodinger
Equation (DNLSE). Let us remark that the conservation lawp@article number
takes the form of the norm conservatigi:_; |ay |2 = 1.

Historically, Eq. (7) was deduced by using the mean-fieldraggh, where the
complex amplitudes, have the meaning of order parameters. For this reason the
classical Hamiltonian (6) is often referred to as the meala-fHamiltonian. In the
rest of this section we justify the Hamiltonian (6) rigortisvithout appealing to
the mean-field approximation. We shall follow an approactedzon the notion of
the Husimi function?

Given |¥(t)) to be the many-body wave function of the quantum Hamiltonian
the Husimi function is defined as

fat)=(@w(b), (8)

where|a) are the so-called cohereBd (L) states[11],

1 This should be opposed to the Fermi-Hubbard model, wherspbetrum can be found analyti-
cally by using the Betha ansatz.

2 A similar approach is based on the notion of the Wigner fumc{il4, 13, 12]. The Husimi
function, however, has an advantage that it is positivefindd.
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L N
ja) = % (Zﬁ@*) vac)

Note that the Husimi function (8) is a function bfcomplex amplitudes, and the
timet. In terms of the Husimi function (8) the Schrodinger equatior the wave
function|W¥(t)) takes the form

%_{H,f}+0<$) : (9)

where{...,...} denotes the Poisson brackets, threumber Hamiltoniar is given
in Eq. (6) and we refer the reader to the work [16] for the evipform of terms
which are inverse proportional td. The crucial point in the presented derivation
of the classical Hamiltonian is that Eq. (9) formally coibes with equation on the
Husimi function of a single-particle system if one idensfi&/N with the Planck
constant2 Thus one can use the common semiclassical theory to studghhe
model. This theory relates the energy spectrum of the quaBtd model (1) to the
phase-space structure of the classical BH model (6). Wé givalexamples in the
subsequent sections.

To conclude this section we also display the classical aypatt of the Hamil-
tonian (3):

2nk =
H=-J g COS(T) brby + % le ;Zbkgbkz;é(kl +ko—ks—kq), (10)
= kl=k2*, 3$k4

whereg = UL/N. Notice that the macroscopic interaction constgum Eq. (10)
differs from the above introduced constaptby the factorL. Often one uses the
constang also in Eq. (7). In this case, however, the amplitadare normalized to
L but not to unity. To be certain, we shall characterize irdgoas by the constant
g=UN/L and restrict ourselves by the parameter region whetel.

4 Bose-Hubbard dimer

We proceed with examples, where the simplest case corrdsgor. = 2 — the
so-called BH dimer. Noticing that the BH system has two ireteent integrals of
motion — the energy and the norm — we immediately concludetiieadimer is an
integrable system. In fact, using the action-angle vagisfal = /I, exp(i6), and
taking into account conservation of the norin;t+ I, = 1, the original system of
two degrees of freedom reduces to the following effectiveesy of one degree of
freedom,

3 The effective Planck constahgs = 1/N should not be mismatched with the fundamental Planck
constanfiwhich we set to unity from now on. We also mention that witthie tiscussed formalism
a anda; are the canonical variables, i.e., one does not interpeet ths order parameters.
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Herf =gl2—Jv/1—12cog8), |I|<1, (11)

wherel = (I,—11) and8 = 6, — 6;. % Forg # 0 the phase portrait of the system (11)
resembles that of the mathematical pendulum. Small osoifia of this pendulum

have the frequency
Q=+/32+29J, (12)

which is know in the physical literature as the Josephsoquieacy. We mention,
in passing, that Josephson’s oscillations of cold atomdwoasite optical potential
were observed in the experiment [2].

Quantizing the effective system (11) in termsffs = 1/N one obtains the
energy spectrum of the BH dimer. As follows from the abovel@pawith the
pendulum, the low-energy spectrum of the BH dimer shouldduadéstant with the
level spacing given by the Josephson frequef2gyand the high-energy spectrum
should consist of doubly degenerate levels, which cornedpo the clockwise and
counterclockwise rotations of the pendulum. These exfieatare fully confirmed
by the numerical analysis. Figure 1(a) shows the energyigspeof the BH dimer as
the function of the macroscopic interaction constgfor N = 40 where, to facilitate
the comparison, we rescale the spectrum by using the Jasefreguency (12). The

E-EpiQ
E-Epio

o 1 2 s : % 1 2 3 a
9 [¢]

Fig. 1 Energy spectrum of the 2-site BH model, left, and the 3-skerBodel, right, forN = 40.

The energy is measured relative to the ground enEgggnd scaled with respect to the frequency

Q given in Eq. (12) and Eg. (15), respectively. The value ofttpping matrix element = 1.

4 Using one more canonical transformatidm,= (a; +az)/v/2 andb, = (a; — a)/v/2, one gets
a different form of the effective Hamiltonian, which is slarito Eq. (14) in Sec. 5. Naturally, this
does not affect the final results.
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high- and low-energy regions, which are separated by tharftum separatrix’, are
clearly seen in Fig. 1(a). Let us also mention that in thetlixhi— o the density of
state diverges at the separatrix [3].

5 Bose-Hubbard trimer

The casel = 3 is more complicated because the classical BH trimer is & non
integrable system with mixed phase space. It is largely @&mauestion about the
volumes of regular and chaotic components for a given ersrgH (a) = E. How-
ever, we can prove that the chaotic component vanishes arevwgies and, hence,
we are left with a stability island.

The proof involves several steps. First we rewrite the Hamian (10) forl. = 3
in terms of the canonical variableg andby. This gives

-1

L 27k g ~
H=-J COS(—) bﬁbk—i— - ﬁ bﬁ by bk45(k1+ ko — ks — k4) .
kzzl 3 2k1,k2,%,k4:1 L

Next we switch to the action-angle variablbg~= /Ixexp(igk), and explicitly take
into account thaf I, = 1. This reduces our system of three degrees of freedom to
the system of two degrees of freedom:

H=(0+9)(l-1+1,1)+2glo\/l 1l ;1cog¢p 1+ ;1) (13)
—g(laly1+12,+12) +2g;|p/|olﬂcos(2qoﬂ_ @i1)

whered = J[1—cog2m/3)], lp = 1—1_31— 1,1 and the phase@;1 of variables
b14(t) are measured with respect to the phasay(f). The low-energy dynamics of
the system (13), which is associated with the low-energgtspen of the quantum
system, implies.; < lg. Keeping in the Hamiltonian (13) only the terms linear in
I+1, and using one more canonical transformation,

|:|+l+|717 9:((p+1+(0—1)/27
M=(l1—-1-1)/2, d=@1—¢@1,

we end up with the effective Hamiltonian which locally dekes the low-energy
stability island:

Hert = (04 0)l +9V12—4M2coq20), |M|<1/2. (14)

Note thatHes s does not include phas® and, hence, the actidvl is a constant of
motion.

The obtained Hamiltonian (14) suffices to find the low-enesggctrum of the
3-site BH model. To do this we integrate the system (14) bhyahicing new action,
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I'=(1/2m) §1(6,E)d0, and resolving the latter equation with respect to the gnerg

Q=+/52+2g3. (15)

We getE = QI where

Finally, we quantize action§ and M in units of the effective Planck constant
hef ¢ = 1/N. This gives equidistant set of energy levEls= Ep + Qn, with (n+ 1)
degeneracy of theth level. It should be stressed that the equidistant sp@dswan
approximation which is valid until some critical energy. If we go to higher en-
ergy the spectrum becomes nonlinear and the degeneracyasee, see Fig. 1(b).
It is also seen in Fig. 1(b) that for high energies: Eg + QN/2 the regular spec-
trum coexists with an irregular spectrum, which is consistgth the fact that high-
energy energy shells of the classical 3-site system cobtaimregular and chaotic
components.

6 Many-site Bose-Hubbard model

ForL > 1 the role of chaos becomes even more important. Now majofrigygen-
states of the BH model are chaotic states in the sense of Quabiaos [1, 15]. To
clarify the meaning of ‘majority of states’ we discuss thesigy of statep(E) of
the quantum BH model fdr > 1.

Let us for the moment) = 0. Then the spectrum is known analytically, see
Eqg. (4). It follows from this equation that(E) has the region of suppoj| < JN
and is peaked arourifl= 0, see Fig. 2 (af As gis increased the whole distribution
shifts to the right by the mean interaction enekgy = gN and becomes profoundly
asymmetric, see panels (b) and (c) in Fig. 2. To relate thectighdistributions to
the classical BH model we scale the eneEggndp(E) with respect td\ and use
the Weyl law. This gives

P(E/N)

im NEZS = pa(E). (16)

where. /" is given in Eq. (5)0q (E) is the phase-space volume of the energy shell
H(a) = E of the classical BH model, and we implicitly assume th@tE) is nor-
malized to unity (i.e.,/ pg (E)dE = 1). For the considered= 0, 1,2 the classical
density of statepy (E) is shown in the panels (d-f) in Fig. 2. A nice agreement with
the quantum density of states indicates that 40 is already large enough to drop
the limit sign in Eq. (16). Let us also mention that for> 1 andg < J the function

pa (E) can be well approximated by the following simple equation,

2
Pa(E) = Bexp(A\/l— %) , a7

5 Slight asymmetry op(E) with respect tcE = 0 is related to the fact that is odd. For ever.
(for exampleL = 6) the distribution is perfectly symmetric, i.@(E) is an even function oE.
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whereA = A(L) is the fitting parameter anB the normalization coefficient. We
shall use Eq. (17) together with Eq. (16) to approximate #esity of states of the
quantum BH model when performing statistical analysisoéitergy spectrum.

The next step is to identify the borders of chaos in Fig. 2. A®er this ques-
tion we again appeal to the classical BH model. Here thecatignergy or, more
exactly, crossover interval can be found by using MontedCaimulations. In more
details, we randomly generate initial conditiaft = 0), evolve it in time by solv-
ing DNLSE, and determine whether the trajectory is regulachmotic. It was
found that forL > 5 andg ~ J the crossover interval is close to the energy of the
groundEp = Enin &= —J + g/2, which corresponds to the extended initial condi-
tion a (t = 0) ~ 1/+/L. For example, fol. = 5 andg = 1 the crossover interval
iS Emin +0.05] < E < Epin + 0.15J. It should be mentioned that there is another
crossover interval which is close to the maximal enefgyx ~ gL, which corre-
sponds to the localized initial conditiag(t = 0) ~ & ..  In the context of cold
atoms, however, only the lower critical energy is of intetecause the right tail of
the density of states of the single-band BH model usuallylaps with the spectrum
originating from the second band of the many-bands BH model.

300 T T T T T 0.15

-20 0 20 40 60 -1 0 1 2 3
E-E E-E

Fig. 2 Density of states of the 5-site BH model fdr= 20, panels (a-c), as compared to the clas-
sical ‘density of states’, panels (d-f). The energy is meagwith respect to the mean interaction
energyEin = gN. The macroscopic interaction constgnt 0, panels (a) and (dj = 1, panels (b)
and (e),g = 2, panels (c) and (f). The hopping matrix eleménat 1.

6 Regular localized solutions of DNLSE are known as discretiéoms or breathers [5].
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7 Statistical analysis of the energy spectrum

As stated in Sec. 6, all states of the quantum BH model in téralepart of the
distributionp(E) are chaotic states. This can be proved by statistical asalfthe
eigenfunctions and eigen-energies, where the simplesistéise distributionP(s)
of the normalized distancedbetween two nearest energy levels,

s= (Ej+1—Ej)p(Ej) . (18)
If the states are chaotic, this distribution should obeyligner-Dyson statistics,

P(s) = gsexp(—gsz) . (19)

The Wigner-Dyson statistics is usually opposed to the thiss8a statistics,
P(s) = exp(—9) , (20)

which is typical for integrable systems. We note that in tbengrical analysis it is
more convenient to compare not distributions themselvéshauintegrated distri-

butions

S
I(s) = / P(s)ds . 1)
0
1
()
)
pd
. ‘ ‘
=20 0 20 40
E_Eint
1 —
e ®
O/ L L L
0 1 2 3 4

Fig. 3 Integrated density of states of the 5-site BH modeldes 1 andN = 19 (thin blue line

in the upper panel), and the integrated level-spacingibigton | (s) (solid blue line in the lower
panel) as compared to the integrated Wigner-Dyson distoib(dashed red line) and the integrated
Poisson distribution (dash-dotted green line). The happiatrix elemend = 1. The energies are
taken from the interval marked by the thick red line in the emppanel, that comprises 60 presents
of the total number of stateg” = 1771.
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The solid line in the lower panel in Fig. 3 shows the integitdéxel-spacing dis-
tribution (21) forL =5,N = 19, andg = 1, where energies are taken from the energy
interval marked by the thick line in the upper parfeAn excellent agreement with
the Wigner-Dyson distribution is noticed. Let us mentioattthis excellent agree-
ment of the numerical data with Eq. (19) also indicates thetive volume of the
chaotic component in the classical BH model to be close ttyumithe considered
energy interval. In this way the quantum and classical aislgf the BH model
compliment each other. Furthermore, calculati{g) for differentg and approxi-
mating the result by the Berry-Robnik distributidhwe can estimate the relative
volumes of regular and chaotic components in the classieah®del. In particu-
lar, in the considered case= 5 the distributionP(s) changes from almost perfect
Poisson foig = 0.1 to almost perfect Wigner-Dyson fgr= 0.5. Thus a transition
to the developed chaos in the classical BH model (in the densd energy interval,
of course) happens gt=0.5.

To conclude this section we briefly discuss the energy ialdfy < E < Eg,
where the energy spectrum is regular. We can find this regplectrum by gener-
alizing the approach of Sec. 5. In fact, the effective Haonithn (14) describes the
coupling of the modé& = 0 with the modeg; = 1 andk, = —1. If L > 3 the mode
k = 0 is also coupled to the mod&g = k andk, = —k. Repeating the analysis of
Sec. 5 we come to the effective Hamiltonian of the form (14gwehthe parameter
0 = J[1—cog2m/3)| is substituted by the parame@r= J[1— cog2rk/L)]. Thus
the low energy spectrum of the system is given by a sum of éjaitt spectra with
the frequencies

Qu=1/29%+ &, & =J[1-cog2mk/L)]. (22)
If we restrict ourselves by sma{l< L, the frequencies (22) are approximated by
Qu=+/20k, K=2nk/L, (23)

which is nothing else as the Bogoliubov dispersion relatmrelementary excita-
tions of the Bose-Einstein condensate.

7 For the periodic boundary conditions (which are used thhoug the paper) the quantum BH
model possesses additional, pure quantum integral of metithe total quasimomentum =
2nk/L. Thus the whole spectrum can be decomposedlintmlependent spectra labeled kyIn
Fig. 3 we choose = 271/L subspace. The results for othetook similar, except the case=0
where one should take into account the odd-even symmethedafigenstates.

8 Berry-Robnik’s statistics gives level-spacing distribatfor a system with mixed phase space
and interpolates between Poisson and Wigner-Dyson statist
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8 Conclusion

The presented results give the following picture of quantlassical correspon-
dence between the classical (6) and quantum (1) BH systems.

The low-energy trajectories of the classical system aralaegnd encircle the
2L-dimensional invariant torus. Topologically, this mutiimensional torus is a ten-
sor product oL /2 four-dimensional tori defined by the effective Hamiltamsg14)
with & substituted by = J[1— cog2rk/L). Quantizing these tori in terms of the
effective Planck’s constafibs; = 1/N we obtain the lower-energy spectrum of the
guantum system, which fdr > 1 coincides with the Bogoliubov spectrum of ele-
mentary excitations above the ground state. Notice thatesive restrict ourselves
to values of the macroscopic interaction constpoft the same order as the hopping
matrix element and assumél > 1, we havd) < J. Thus the ground state of the
system is a super-fluid state. It is an open question whettecan extend the semi-
classical analysis into the region of largewhere the ground state of the system is
a Mott insulator.

As we go to higher energies the invariant tori become grédyldalktroyed. This
means that energy shells of the classical BH model contaiin the regular and
chaotic components and, depending on the initial conditioa classical trajectory
is either regular or chaotic. With respect to the quantum Batleh this is the most
subtle case because the energy spectrum becomes a mixtiegefular spectrum,
which is a reminiscent of the Bogoliubov spectrum, and asgitar spectrum.

With further increase of the energy the classical BH modehsha transition to
the developed chaos and the spectrum of the quantum systammbs fully irregu-
lar. To avoid any misinterpretations we note that the ternegular’ does imply the
eigen-energies to be random numbers. On the contrary, #rerenportant corre-
lations between positions of the energy levels which arectdt, in particular, in
the Wigner-Dyson distribution for distances between therest levels. Because the
same correlations are present for eigenvalues of a randdnixpthe meaning of
the term ‘irregular’ is similarity of the spectrum with spgieom of random matrices.

In the work we focussed on the energy spectrum and did not peph @mttention
to the eigenfunctions. It was shown in Ref. [8] that eigewtions of the BH model
also possess universal properties reflected, in partidoléne Breit-Wigner distri-
bution for the local density of states. This has importamseguences for transport
phenomena with cold atoms. For example, if we address Blachlations® of
interacting Bose atoms, we fnd that they irreversibly dejgayl0]. Remarkably,
this quantum dynamics is perfectly reproduced by solvirggtal Eq. (9) on the
truncated Husimi function [9]. This result provides one merample of successful
treating of a many-body system by means of classical mechani

9 Bloch oscillations are dynamical response of the systermtexternal static field. For non-
interacting atoms these would be periodic oscillation @& thean atomic momentum with the
Bloch frequency which is proportional to the field strength.
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