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Andrey R. Kolovsky

Abstract Many-body physics of identical particles is commonly believed to be a
sovereign territory of Quantum Mechanics. The aim of this contribution is to show
that it is actually not the case and one gets useful insights into a quantum many-
body system by using the theory of classical dynamical systems. In the contribution
we focus on one paradigmatic model of many-body quantum physics - the Bose-
Hubbard model which, in particular, describes interactingultracold Bose atoms in
an optical lattice. We show how one can find/deduce the energyspectrum of the
Bose-Hubbard model by using a kind of the semiclassical approach.

1 Introduction

The semiclassical methods are known to be a powerful tool in studying quantum
systems. They use information about classical dynamics of the system to predict
its quantum dynamics or find the energy spectrum. Besides practical aspect, these
methods also contribute to our understanding of subtle relation between the quan-
tum and classical mechanics – an issue which might be even more important. Until
now the overwhelming majority of semiclassical studies have been done for single-
particle problems. Yet, there is other type of problems which can be addressed by
using the same kind of ideas – these are dynamical and spectral properties of an
ensemble of identical particles. In this contribution we shall give an example of
application of ‘semiclassical methods’ to one of the paradigm models of the many-
body physics – the Bose-Hubbard (BH) model. This model describes, in particular,
ultracold bosonic atoms optical lattices [6], with a uniquefor the many-body physics
experimental control over the model parameters [7].
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2 Bose-Hubbard model

Denoting by ˆal and â†
l the bosonic annihilation and creation operators,[âl, â

†
l′ ] =

h̄δl,l′ , and by ˆnl = â†
l âl the number operator, the Bose-Hubbard Hamiltonian reads

Ĥ =
L

∑
l=1

εl n̂l −
J
2

L

∑
l=1

(
â†

l+1âl + h.c.
)

+
U
2

L

∑
l=1

n̂l(n̂l −1) . (1)

In this Hamiltonianεl are the on-site energies,J is the hopping matrix element,
andU the microscopic interaction constant. Having in mind cold Bose atoms in
the one-dimensional optical lattice, the constantU is mainly determined by thes-
wave scattering length for neutral atoms, and the constantJ by the lattice depth
[6]. In laboratory experiments both the scattering length and the lattice depth can
be varied in large intervals, which affords practically arbitrary ratioU/J. Notice,
that the Hamiltonian (1) preserves the total number of particles (atoms), which we
denote byN.

A remark concerning the boundary condition is in order. We assume a uniform
system (i.e., no spatial dependence for the on-site energies), for which we shall use
the periodic boundary condition ifL ≥ 3. In this case the Hamiltonian (1) can be
rewritten in terms of the operatorsb̂k andb̂†

k ,

b̂k =
1√
L

∑
l

exp

(
i
2πk

L
l

)
âl , b̂†

k =
(
b̂k
)†

. (2)

Unlike the operators ˆal (â†
l ), which annihilate (create) an atom in the Wannier states,

operators (2) annihilate or create an atom in the Bloch states. Using the transforma-
tion (2) and dropping the first term in the Hamiltonian (1) (which is a constant for a
uniform system) we have

Ĥ = −J ∑
k

cos

(
2πk

L

)
b̂†

k b̂k +
U
2L ∑

k1,k2,k3,k4

b̂†
k1

b̂†
k2

b̂k3b̂k4δ̃ (k1 + k2− k3− k4) , (3)

whereδ̃ is the periodicδ -function, i.e.,δ̃ (k) equals unity ifk is a multiple ofL and
zero otherwise. Depending on the addressed question this form of the BH model
might be more convenient than Eq. (1). In particular, it follows from Eq. (3) that for
U = 0 the eigen-energies of the BH Hamiltonian are given by the equation,

E j = −J ∑
k

cos

(
2πk

L

)
nk , ∑

k

nk = N . (4)

The total number of eigen-energiesE j obviously coincides with dimension of the
Hilbert space,

N =
(N + L−1)!
N!(L−1)!

, (5)
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which is obtained by counting all possible distributions ofN atoms amongL wells.
It is very difficult task to find energiesE j if U differs from zero. As it will be ex-

plained below, in general case we cannot find them analytically 1 while numerically
we are restricted to rather small system size because the dimension of the Hilbert
space grows exponentially withL andN. A way around these problems is to use
‘semiclassical methods’, where one is not bounded with small N andL. To this end
we introduce the classical counterpart of the quantum BH model.

3 Classical Bose-Hubbard model

Formally, the classical counterpart of the quantum BH modelis obtained by rescal-
ing the Hamiltonian (1) with respect toN and identifying the creation and annihila-
tion operators withc-number. This gives

H = −J
2

L

∑
l=1

(a∗l+1al + c.c.)+
g′

2

L

∑
l=1

|al|4 , (6)

where the constantg′ =UN is called the macroscopic interaction constant, to distin-
guish it from the microscopic interaction constantU . The Hamiltonian (6) generates
classical trajectories according to the Hamilton equationof motion,

i
d
dt

al =
∂H0

∂a∗l
= −J

2
(al+1 + al−1)+ g′|al|2al , (7)

which is known in the physical literature as the Discrete Nonlinear Schrödinger
Equation (DNLSE). Let us remark that the conservation law for particle number
takes the form of the norm conservation:∑L

l=1 |al|2 = 1.
Historically, Eq. (7) was deduced by using the mean-field approach, where the

complex amplitudesal have the meaning of order parameters. For this reason the
classical Hamiltonian (6) is often referred to as the mean-field Hamiltonian. In the
rest of this section we justify the Hamiltonian (6) rigorously, without appealing to
the mean-field approximation. We shall follow an approach based on the notion of
the Husimi function.2

Given |Ψ(t)〉 to be the many-body wave function of the quantum Hamiltonian,
the Husimi function is defined as

f (a,t) = |〈a|Ψ(t)〉|2 , (8)

where|a〉 are the so-called coherentSU(L) states[11],

1 This should be opposed to the Fermi-Hubbard model, where thespectrum can be found analyti-
cally by using the Betha ansatz.
2 A similar approach is based on the notion of the Wigner function [14, 13, 12]. The Husimi
function, however, has an advantage that it is positively defined.
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|a〉 =
1√
N!

(
L

∑
l=1

al â
†
l

)N

|vac〉 .

Note that the Husimi function (8) is a function ofL complex amplitudesal and the
time t. In terms of the Husimi function (8) the Schrödinger equation for the wave
function|Ψ(t)〉 takes the form

∂ f
∂ t

= {H, f}+ O

(
1
N

)
, (9)

where{. . . , . . .} denotes the Poisson brackets, thec-number HamiltonianH is given
in Eq. (6) and we refer the reader to the work [16] for the explicit form of terms
which are inverse proportional toN. The crucial point in the presented derivation
of the classical Hamiltonian is that Eq. (9) formally coincides with equation on the
Husimi function of a single-particle system if one identifies 1/N with the Planck
constant.3 Thus one can use the common semiclassical theory to study theBH
model. This theory relates the energy spectrum of the quantum BH model (1) to the
phase-space structure of the classical BH model (6). We shall give examples in the
subsequent sections.

To conclude this section we also display the classical counterpart of the Hamil-
tonian (3):

H = −J∑
k=

cos

(
2πk
3

)
b∗kbk +

g
2 ∑

k1,k2,k3,k4

b∗k1
b∗k2

bk3bk4δ̃ (k1 + k2− k3− k4) , (10)

whereg = UL/N. Notice that the macroscopic interaction constantg in Eq. (10)
differs from the above introduced constantg′ by the factorL. Often one uses the
constantg also in Eq. (7). In this case, however, the amplitudeal are normalized to
L but not to unity. To be certain, we shall characterize interactions by the constant
g = UN/L and restrict ourselves by the parameter region whereg ≤ J.

4 Bose-Hubbard dimer

We proceed with examples, where the simplest case corresponds to L = 2 – the
so-called BH dimer. Noticing that the BH system has two independent integrals of
motion – the energy and the norm – we immediately conclude that the dimer is an
integrable system. In fact, using the action-angle variables,al =

√
Il exp(iθl), and

taking into account conservation of the norm,I1 + I2 = 1, the original system of
two degrees of freedom reduces to the following effective system of one degree of
freedom,

3 The effective Planck constanth̄e f f = 1/N should not be mismatched with the fundamental Planck
constant̄h which we set to unity from now on. We also mention that within the discussed formalism
al anda∗l are the canonical variables, i.e., one does not interpret them as order parameters.
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He f f = gI2− J
√

1− I2cos(θ ) , |I| ≤ 1 , (11)

whereI = (I2− I1) andθ = θ2−θ1. 4 Forg 6= 0 the phase portrait of the system (11)
resembles that of the mathematical pendulum. Small oscillations of this pendulum
have the frequency

Ω =
√

J2 +2gJ , (12)

which is know in the physical literature as the Josephson frequency. We mention,
in passing, that Josephson’s oscillations of cold atoms in atwo-site optical potential
were observed in the experiment [2].

Quantizing the effective system (11) in terms ofh̄e f f = 1/N one obtains the
energy spectrum of the BH dimer. As follows from the above analogy with the
pendulum, the low-energy spectrum of the BH dimer should be equidistant with the
level spacing given by the Josephson frequencyΩ , and the high-energy spectrum
should consist of doubly degenerate levels, which correspond to the clockwise and
counterclockwise rotations of the pendulum. These expectations are fully confirmed
by the numerical analysis. Figure 1(a) shows the energy spectrum of the BH dimer as
the function of the macroscopic interaction constantg for N = 40 where, to facilitate
the comparison, we rescale the spectrum by using the Josephson frequency (12). The
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Fig. 1 Energy spectrum of the 2-site BH model, left, and the 3-site BH model, right, forN = 40.
The energy is measured relative to the ground energyE0 and scaled with respect to the frequency
Ω given in Eq. (12) and Eq. (15), respectively. The value of thehopping matrix elementJ = 1.

4 Using one more canonical transformation,b1 = (a1 +a2)/
√

2 andb2 = (a1−a2)/
√

2, one gets
a different form of the effective Hamiltonian, which is similar to Eq. (14) in Sec. 5. Naturally, this
does not affect the final results.
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high- and low-energy regions, which are separated by the ‘quantum separatrix’, are
clearly seen in Fig. 1(a). Let us also mention that in the limit N → ∞ the density of
state diverges at the separatrix [3].

5 Bose-Hubbard trimer

The caseL = 3 is more complicated because the classical BH trimer is a non-
integrable system with mixed phase space. It is largely an open question about the
volumes of regular and chaotic components for a given energyshellH(a)= E. How-
ever, we can prove that the chaotic component vanishes at lowenergies and, hence,
we are left with a stability island.

The proof involves several steps. First we rewrite the Hamiltonian (10) forL = 3
in terms of the canonical variablesbk andb∗k . This gives

H = −J
1

∑
k=−1

cos

(
2πk
3

)
b∗kbk +

g
2

−1

∑
k1,k2,k3,k4=1

b∗k1
b∗k2

bk3bk4δ̃ (k1 + k2− k3− k4) .

Next we switch to the action-angle variables,bk =
√

Ik exp(iφk), and explicitly take
into account that∑k Ik = 1. This reduces our system of three degrees of freedom to
the system of two degrees of freedom:

H = (δ + g)(I−1+ I+1)+2gI0
√

I−1I+1cos(φ−1 + φ+1) (13)

−g(I−1I+1 + I2
−1+ I2

+1)+2g∑
±

I∓
√

I0I±1cos(2φ∓1−φ±1) ,

whereδ = J[1− cos(2π/3)], I0 = 1− I−1 − I+1 and the phasesφ±1 of variables
b±1(t) are measured with respect to the phase ofb0(t). The low-energy dynamics of
the system (13), which is associated with the low-energy spectrum of the quantum
system, impliesI±1 ≪ I0. Keeping in the Hamiltonian (13) only the terms linear in
I±1, and using one more canonical transformation,

I = I+1 + I−1 , θ = (φ+1 + φ−1)/2 ,

M = (I+1− I−1)/2 , ϑ = φ+1−φ−1 ,

we end up with the effective Hamiltonian which locally describes the low-energy
stability island:

He f f = (δ + g)I + g
√

I2−4M2cos(2θ ) , |M| ≤ I/2 . (14)

Note thatHe f f does not include phaseϑ and, hence, the actionM is a constant of
motion.

The obtained Hamiltonian (14) suffices to find the low-energyspectrum of the
3-site BH model. To do this we integrate the system (14) by introducing new action,
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Ĩ = (1/2π)
∮

I(θ ,E)dθ , and resolving the latter equation with respect to the energy.
We getE = Ω Ĩ where

Ω =
√

δ 2 +2gδ . (15)

Finally, we quantize actions̃I and M in units of the effective Planck constant
h̄e f f = 1/N. This gives equidistant set of energy levelsEn = E0 + Ωn, with (n +1)
degeneracy of thenth level. It should be stressed that the equidistant spectrum is an
approximation which is valid until some critical energyEcr. If we go to higher en-
ergy the spectrum becomes nonlinear and the degeneracy is removed, see Fig. 1(b).
It is also seen in Fig. 1(b) that for high energiesE ≈ E0 + ΩN/2 the regular spec-
trum coexists with an irregular spectrum, which is consistent with the fact that high-
energy energy shells of the classical 3-site system containboth regular and chaotic
components.

6 Many-site Bose-Hubbard model

For L ≫ 1 the role of chaos becomes even more important. Now majorityof eigen-
states of the BH model are chaotic states in the sense of Quantum Chaos [1, 15]. To
clarify the meaning of ‘majority of states’ we discuss the density of statesρ(E) of
the quantum BH model forL ≫ 1.

Let us for the momentU = 0. Then the spectrum is known analytically, see
Eq. (4). It follows from this equation thatρ(E) has the region of support|E| ≤ JN
and is peaked aroundE = 0, see Fig. 2 (a).5 As g is increased the whole distribution
shifts to the right by the mean interaction energyEint = gN and becomes profoundly
asymmetric, see panels (b) and (c) in Fig. 2. To relate the depicted distributions to
the classical BH model we scale the energyE andρ(E) with respect toN and use
the Weyl law. This gives

lim
N→∞

N
ρ(E/N)

N (N)
= ρcl(E) , (16)

whereN is given in Eq. (5),ρcl(E) is the phase-space volume of the energy shell
H(a) = E of the classical BH model, and we implicitly assume thatρcl(E) is nor-
malized to unity (i.e.,

∫
ρcl(E)dE = 1). For the consideredg = 0,1,2 the classical

density of statesρcl(E) is shown in the panels (d-f) in Fig. 2. A nice agreement with
the quantum density of states indicates thatN = 40 is already large enough to drop
the limit sign in Eq. (16). Let us also mention that forL ≫ 1 andg ≪ J the function
ρcl(E) can be well approximated by the following simple equation,

ρcl(E) = Bexp

(
A

√
1− E2

J2

)
, (17)

5 Slight asymmetry ofρ(E) with respect toE = 0 is related to the fact thatL is odd. For evenL
(for exampleL = 6) the distribution is perfectly symmetric, i.e.,ρ(E) is an even function ofE.
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whereA = A(L) is the fitting parameter andB the normalization coefficient. We
shall use Eq. (17) together with Eq. (16) to approximate the density of states of the
quantum BH model when performing statistical analysis of its energy spectrum.

The next step is to identify the borders of chaos in Fig. 2. To answer this ques-
tion we again appeal to the classical BH model. Here the critical energy or, more
exactly, crossover interval can be found by using Monte-Carlo simulations. In more
details, we randomly generate initial conditiona(t = 0), evolve it in time by solv-
ing DNLSE, and determine whether the trajectory is regular or chaotic. It was
found that forL ≥ 5 andg ∼ J the crossover interval is close to the energy of the
groundE0 ≡ Emin ≈ −J + g/2, which corresponds to the extended initial condi-
tion al(t = 0) ≈ 1/

√
L. For example, forL = 5 andg = 1 the crossover interval

is Emin + 0.05J < E < Emin + 0.15J. It should be mentioned that there is another
crossover interval which is close to the maximal energyEmax ≈ gL, which corre-
sponds to the localized initial conditional(t = 0) ≈ δl,l′ .

6 In the context of cold
atoms, however, only the lower critical energy is of interest because the right tail of
the density of states of the single-band BH model usually overlaps with the spectrum
originating from the second band of the many-bands BH model.
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Fig. 2 Density of states of the 5-site BH model forN = 20, panels (a-c), as compared to the clas-
sical ‘density of states’, panels (d-f). The energy is measured with respect to the mean interaction
energyEint = gN. The macroscopic interaction constantg = 0, panels (a) and (d),g = 1, panels (b)
and (e),g = 2, panels (c) and (f). The hopping matrix elementJ = 1.

6 Regular localized solutions of DNLSE are known as discrete solitons or breathers [5].
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7 Statistical analysis of the energy spectrum

As stated in Sec. 6, all states of the quantum BH model in the central part of the
distributionρ(E) are chaotic states. This can be proved by statistical analysis of the
eigenfunctions and eigen-energies, where the simplest test is the distributionP(s)
of the normalized distancess between two nearest energy levels,

s = (E j+1−E j)ρ(E j) . (18)

If the states are chaotic, this distribution should obey theWigner-Dyson statistics,

P(s) =
π
2

sexp
(
−π

4
s2
)

. (19)

The Wigner-Dyson statistics is usually opposed to the the Poisson statistics,

P(s) = exp(−s) , (20)

which is typical for integrable systems. We note that in the numerical analysis it is
more convenient to compare not distributions themselves but the integrated distri-
butions

I(s) =
∫ s

0
P(s)ds′ . (21)

−20 0 20 40
0

1

E−E
int

N
(E

)

(a)

0 1 2 3 4
0

1

s

I(
s)
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Fig. 3 Integrated density of states of the 5-site BH model forg = 1 andN = 19 (thin blue line
in the upper panel), and the integrated level-spacing distribution I(s) (solid blue line in the lower
panel) as compared to the integrated Wigner-Dyson distribution (dashed red line) and the integrated
Poisson distribution (dash-dotted green line). The hopping matrix elementJ = 1. The energies are
taken from the interval marked by the thick red line in the upper panel, that comprises 60 presents
of the total number of statesN = 1771.
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The solid line in the lower panel in Fig. 3 shows the integrated level-spacing dis-
tribution (21) forL = 5,N = 19, andg = 1, where energies are taken from the energy
interval marked by the thick line in the upper panel.7 An excellent agreement with
the Wigner-Dyson distribution is noticed. Let us mention that this excellent agree-
ment of the numerical data with Eq. (19) also indicates the relative volume of the
chaotic component in the classical BH model to be close to unity in the considered
energy interval. In this way the quantum and classical analysis of the BH model
compliment each other. Furthermore, calculatingP(s) for differentg and approxi-
mating the result by the Berry-Robnik distribution,8 we can estimate the relative
volumes of regular and chaotic components in the classical BH model. In particu-
lar, in the considered caseL = 5 the distributionP(s) changes from almost perfect
Poisson forg = 0.1 to almost perfect Wigner-Dyson forg = 0.5. Thus a transition
to the developed chaos in the classical BH model (in the considered energy interval,
of course) happens atg = 0.5.

To conclude this section we briefly discuss the energy interval E0 < E < Ecr,
where the energy spectrum is regular. We can find this regularspectrum by gener-
alizing the approach of Sec. 5. In fact, the effective Hamiltonian (14) describes the
coupling of the modek = 0 with the modesk1 = 1 andk2 = −1. If L > 3 the mode
k = 0 is also coupled to the modesk1 = k andk2 = −k. Repeating the analysis of
Sec. 5 we come to the effective Hamiltonian of the form (14) where the parameter
δ = J[1−cos(2π/3)] is substituted by the parameterδk = J[1−cos(2πk/L)]. Thus
the low energy spectrum of the system is given by a sum of equidistant spectra with
the frequencies

Ωk =
√

2gδk + δ 2
k , δk = J[1−cos(2πk/L)] . (22)

If we restrict ourselves by smallk ≪ L, the frequencies (22) are approximated by

Ωκ =
√

2gκ , κ = 2πk/L , (23)

which is nothing else as the Bogoliubov dispersion relationfor elementary excita-
tions of the Bose-Einstein condensate.

7 For the periodic boundary conditions (which are used throughout the paper) the quantum BH
model possesses additional, pure quantum integral of motion – the total quasimomentumκ =
2πk/L. Thus the whole spectrum can be decomposed intoL independent spectra labeled byκ . In
Fig. 3 we chooseκ = 2π/L subspace. The results for otherκ look similar, except the caseκ = 0
where one should take into account the odd-even symmetry of the eigenstates.
8 Berry-Robnik’s statistics gives level-spacing distribution for a system with mixed phase space
and interpolates between Poisson and Wigner-Dyson statistics.
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8 Conclusion

The presented results give the following picture of quantum-classical correspon-
dence between the classical (6) and quantum (1) BH systems.

The low-energy trajectories of the classical system are regular and encircle the
2L-dimensional invariant torus. Topologically, this multi-dimensional torus is a ten-
sor product ofL/2 four-dimensional tori defined by the effective Hamiltonians (14)
with δ substituted byδk = J[1− cos(2πk/L). Quantizing these tori in terms of the
effective Planck’s constant̄he f f = 1/N we obtain the lower-energy spectrum of the
quantum system, which forL ≫ 1 coincides with the Bogoliubov spectrum of ele-
mentary excitations above the ground state. Notice that, since we restrict ourselves
to values of the macroscopic interaction constantg of the same order as the hopping
matrix elementJ and assumeN ≫ 1, we haveU ≪ J. Thus the ground state of the
system is a super-fluid state. It is an open question whether one can extend the semi-
classical analysis into the region of largeg, where the ground state of the system is
a Mott insulator.

As we go to higher energies the invariant tori become gradually destroyed. This
means that energy shells of the classical BH model contain both the regular and
chaotic components and, depending on the initial condition, the classical trajectory
is either regular or chaotic. With respect to the quantum BH model this is the most
subtle case because the energy spectrum becomes a mixture ofthe regular spectrum,
which is a reminiscent of the Bogoliubov spectrum, and an irregular spectrum.

With further increase of the energy the classical BH model shows a transition to
the developed chaos and the spectrum of the quantum system becomes fully irregu-
lar. To avoid any misinterpretations we note that the term ‘irregular’ does imply the
eigen-energies to be random numbers. On the contrary, thereare important corre-
lations between positions of the energy levels which are reflected, in particular, in
the Wigner-Dyson distribution for distances between the nearest levels. Because the
same correlations are present for eigenvalues of a random matrix, the meaning of
the term ‘irregular’ is similarity of the spectrum with spectrum of random matrices.

In the work we focussed on the energy spectrum and did not pay much attention
to the eigenfunctions. It was shown in Ref. [8] that eigenfunctions of the BH model
also possess universal properties reflected, in particular, in the Breit-Wigner distri-
bution for the local density of states. This has important consequences for transport
phenomena with cold atoms. For example, if we address Bloch oscillations9 of
interacting Bose atoms, we fnd that they irreversibly decay[4, 10]. Remarkably,
this quantum dynamics is perfectly reproduced by solving classical Eq. (9) on the
truncated Husimi function [9]. This result provides one more example of successful
treating of a many-body system by means of classical mechanics.

9 Bloch oscillations are dynamical response of the system to an external static field. For non-
interacting atoms these would be periodic oscillation of the mean atomic momentum with the
Bloch frequency which is proportional to the field strength.
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