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ABSTRACT 
This article describes an approach to solution of a problem of planning a mobile robot’s 
path in 2-dimentional space with obstacles. It gives the problem statement, which 
implies that there is no prior information about surrounding environment. It is supposed 
that the robot gathers real-time information via on-board sensors. The article also 
presents a theoretical analysis of such approach performance, along with comparison of 
the proposed approach to the existing ones, and demonstration of the suggested one’s 
advantages. The simulation experiment results fully proving the theoretical thesis are 
also represented. 
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INTRODUCTION 
In simultaneous localization and mapping of the environment, information about which 
is not available for the moment of the mobile robot’s operation starts, the main tasks are 
mapping of the surrounding space, defining the robot’s location in this space by the 
robot, and construction of the robot’s path ensuring its free moving to the destination 
point. Solution of these problems presents a basis for solution of higher-level problems. 

The task setting is the following: in the surrounding space ΚΕ=  containing both 

obstacles 
i

iΕ=Ε  (i – number of obstacles), and free space 
j

jΚ=Κ  (j – number of 

mutually unreachable areas of free space), =KE , to find such path 

 N=iΚ,Μ|Μ=Μ ii 1,  in the free space providing that the robot P moving from 
starting point M1 to destination point MN  does not collide any obstacles at any point Mi 
of its path: =ΕM  (fig. 1). 

At present there are many publications describing algorithms for the stated problem 
solution [1], [2], [3], [4], [5], [6], [7]. These algorithms can be divided into two groups: 

1  algorithms not planning path – in this case, motion direction at each point of 
time (motion period) is calculated as some function from data, acquired by the 
surrounding space sensors [1], [2], [3]; 

2  path planning algorithms: 

a) mapping data are abstracted by periodic structures (grids) [4], [5]; 
b) non-periodic graph formalizations of mapping data [6], [7]. 
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Fig. 1. Scheme of the space with obstacles and possible path of the robot 
 

Algorithms of the first group can be applied for initial gathering of mapping information 
(in the beginning of work or navigation in yet unexplored area of the environment), and 
to avoid collisions with dynamic obstacles. 
Algorithms of the second group use all available information about the surrounding 
space. Application of periodic grids demands making a compromise solution: high grid 
density allows better granulation/detail, but causes excessive cost for description of the 
environment, and vice versa– low grid detail result in decreasing detail of the space 
description. Algorithms using non-periodic graph formalizations lack such disadvantage 
– they allow minimizing the costs for the space description, while preserving control 
over detail. 

The most general and widely used algorithm realizing the approach of non-periodic 
graph formalization is the algorithm, described by O’Rourke in [6]. This algorithm uses 
a graph of obstacle visibility as mapping data abstraction. For path finding problem 
solution on a graph, the generalized formulation of Dijkstra’s algorithm is used, this 
enables to choose a suitable modification of algorithm to solve a certain problem with 
its limitations. Further in the article, the author will use O’Rourke’s algorithm as a 
reference algorithm for both theoretical analysis and comparison of performance with 
the suggested algorithm. 

 

FORMAL DESCRIPTION OF THE ALGORITHM 
The purpose of the algorithm is to construct motion path M.  
The source data is mapping data containing information about geometry of presently 
known surrounding space and information about geometry of the known obstacles. 
The algorithm consists of the following steps: 

1  Constructing a polygon of free space P(K):  
1) Initializing an empty P(K);  



 

2) Constructing a contour of the surrounding space C() in the shape of a 
broken curve;  

3) completing P(K) with a broken C() as a curve limiting the polygon;  
4) for each of the obstacles Ei in E:  

a) constructing an obstacle’s contour C(Ei);  
b) completing P(K) with a broken C(Ei) as a hole;  

2  constructing a triangulation of the free space polygon T = T(P(K));  
3  constructing  a dual graph of the triangulation G(T);  

4  defining the graph’s nodes G(T) corresponding to the current position and the 
target position;  

5  defining a path W from the current position to the target one by pathfinding on 
the graph  W = Dijkstra(G(T));  

6  altering the graph  representation of path W into geometric representation M. 
Further, separate steps of the algorithm are taken separately; the article describes 
limitations for source data, provides theoretical and experimental assessment of 
performance for their possible realizations. 

 

SOURCE DATA  
With no loss of generality, it is possible to suggest that ground mobile robots have got 
two degrees of freedom for movement, therefore the analysis of two-dimensional 
environment map is enough for the problem of path construction. 
The source data for constructing the path of a mobile robot is the current data of the 
surrounding environment mapping, of a mobile robot’s position in it (starting point), 
coordinates of an endpoint and geometrical parameters of the robot. 

To be applicable for the suggested algorithm operation, the mapping data should be 
preliminarily processed and represented as a collection of the surrounding space 
objects’ contours (taking into account the coordinates of its objects).  
In the framework of the proposed algorithm, a representation form for these objects is 
limited by the following: any contour  of an obstacle E shall be approximated by the 
broken curve, i. e. represents a collection of two sets: a set of vertices  ,V,i== i 1  and 

a set of edges connecting the vertices  R=j,ν=Ν j 1, :  Ν= , . The contours shall 

not have self-intersections: jiR=ji,=νν ji  ;1,; . Self-intersection of contours is 
not allowed for two reasons: a) the self-intersecting contours have not got a physical 
sense and indicate erroneous operation of the sensors data processing algorithms; b) the 
contours with self-intersections are not supported by a considerable number of 
triangulation algorithms due to ambiguousness of such contours interpretation. 

The robot geometry can be represented in the form of: 

 a point object;  



 

 a limiting circle of non-zero radius; 

 a limiting convex polyhedron; 

 a polyhedron describing the robot’s form in details. 
The most often considered case is a limiting circle. This is due to the fact that it allows 
constructing a path which excludes collisions at relatively high performance level. 
Solution of the task with description of a robot as a point in its pure form is not 
applicable, however some simple transformations reduce the task with the description of 
a robot as a circle to this very task [6]. A complete solution of the task with application 
of representations in the form of a limiting convex polyhedron and a polyhedron 
precisely describing the robot’s form is substantially more difficult task in its 
algorithmic sense, that is why it is not applied in practice due to limited computational 
performance of the mobile robot and excessive accuracy of the results. 
Thus, O’Rourke’s algorithm and the proposed algorithm both use point representation 
of a mobile robot geometry. 
 

APPROACH TO GRAPH FORMALIZATION  
The suggested algorithm for solution of a pathfinding task uses a graph abstraction of 
the space being explored. This approach to the environment description has been chosen 
because at present the instrument of graph analysis, including pathfinding, is 
increasingly developed and studied. 
As it was states in the above, both nodes of periodic grid and non-periodic elements 
characterizing the environment with the proper accuracy can serve as a graph’s vertices. 
Periodic grids have been excluded from consideration during earlier stages of the set 
problem analysis for the following reasons: 

 the construction of a grid requires choosing a step, which is not a trivial task; 

 periodic grids are crucially excessive: description of one physically continuous 
segment of space can require using several cells which, when transit to graph 
representation, expand the graph’s size. 

The reference algorithm suggests choosing vertices of the obstacles contours as nodes, 
and relations of visibility between the vertices (i. e. all sets of diagonals of the polygons 
in the free space) – as edges of the graph. Such formalization allows detecting a path 
from the starting point to the target one. Simultaneously, the given path shall be optimal 
in terms of geometrical length. The following can be referred as disadvantages of this 
algorithm: 

 a big size of the graph: number of its vertices equals to a number N of all the 
vertices of all the obstacles’ contours, while a number of edges of the graph 

reaches 
2
32 NN  (the case of a convex polygon) at the worst, i.е. we can 

reckon that the number of the graph’s edges (diagonals)  can be esteemed as [6]: 
E = O(N2);                                                         (1) 



 

 a large number of cycles on the graph which imposes limitations to algorithms 
of graph traversal and path searching.  

The consequence of large amount of information based on which we construct a graph 
is a greater algorithmic complexity of its construction. The best estimations are those of 
Welzl’s algorithm (O(N2)) [8] and algorithms of Ghosh and Mount (O(N logN + E))  
[6]. Complexity of the latter depends on a number of edges calculated as E = O(N2). 
Considering this, a complexity of the algorithm of visibility graph construction at the 
worst comes out at O(N logN + N2). For this reason further we consider Welzl’s 
algorithm. 
As will be illustrated below, the stated task of pathfinding with no limitations to its 
optimality can be solved with drastically less computational costs. To achieve this, we 
need to choose such free space abstraction that would describe it comprehensively and 
would have a sufficiently smaller size than one on the reference algorithm. Let us select 
a triangulation of polygons of the free space as such abstraction. For each triangulation, 
there is a dual graph that further will be used for pathfinding. A dual graph is a graph, 
vertices of which correspond to the triangulation triangles, while its edges are relations 
of adjacency between the triangles (a shared edge). 
A dual graph of triangulation, on the one hand, completely describes the free space 
structure and, on the other hand, it has a size less than the size of a graph derived from 
using the reference algorithm. A number of vertices of a dual graph is a value depending 
upon input data (a number of obstacles first of all), and amounts to N + 2m – 2, where m 
– number of obstacles. The number of vertices is O(N), which corresponds to the one 
for the algorithm described above. A number of edges depends on input data as well and 
equals N + 3m – 3 (with evaluation of O(N)), which dramatically exceeds the evaluation 
(1). 
Therefore, a graph’s size in the framework of the suggested algorithm is sufficiently 
smaller in the sense of the worst esteems than in the reference algorithm. This fact is 
relevant in analysis of algorithm of pathfinding on graphs given hereinafter. 

An equally important issue is a problem of algorithmic complexity of triangulation 
construction. There are many algorithms of triangulation construction with different 
complexity [6]. Evaluation of complexity for the best algorithm is O(N), which 
substantially exceeds  evaluation O(N2) in O’Rourke’s algorithm for the pathfinding 
problem solution. However, a practical realization of such algorithm is increasingly 
difficult and slow, so algorithms with theoretically slightly lower performance are 
applied. In the framework of simulation experiment described below we use Siedel’s 
algorithm with the complexity of O(N log*N + k logN) [9]. 

 

GRAPH SEARCH ALGORITHMS 

At present the task of pathfinding on graphs studies outstandingly well. Dijkstra’s 
algorithm for finding the shortest path on a graph should be noted in the first place 
among the proposed algorithms. Another widely known algorithm is A* search 
algorithm – a modification of Dijkstra’s algorithm based on using heuristics [10]. A* 
generally outperforms Dijkstra’s algorithm; however their worst-case performances 
correspond. A*’s tendency to exit to local minima with extensive stay there (which 
results in crucial decrease of performance in pathfinding tasks in the presence of a large 



 

number of complex nonconvex obstacles) can be singled out as a substantial 
disadvantage of A*. By virtue of its heuristic nature, A* algorithm has a lot of 
modifications and variants like, for instance, WA*[11], HGA*[12], R*[13] and others. 

In the framework of the suggested algorithm, we use Dijkstra’s algorithm because it 
does not share this tendency to a prolonged stay in a local minimum. While the 
complexity evaluation for this algorithm performed with the use of Fibonacci heap 
amounts to [14]: 

O(V logV + E),                                                    (2) 
where V – number of the graph’s vertices, E – number  of edges. 

Transition from Dijkstra’s algorithm to A* (or its modifications) is not a problem, but it 
requires construction of heuristics specific for a concrete problem statement limitations. 
The issue of such heuristics construction is not a subject of this piece of work. 
As it has been stated in the above, a number of vertices for visibility is V = N (where N 
– a number of vertices of all the contours of the obstacles), and a number of visibility 
graph’s edges is estimated as E = O(N2). In this case, the complexity (2) of Dijkstra’s 
algorithm operation shall be O(N logN + N2).  
For a dual graph of triangulation, an estimated number of vertices is V = O(N), and a 
number of edges equals E = O(N), which gives the estimated performance O(N logN + 
N). 

 

OVERALL COMPLEXITY  
Pathfinding algorithm consists of two stages: construction of a free space graph and 
pathfinding on this graph. The complexity of this algorithm can be calculated as a sum 
of its stages complexity. Thus, it is obvious that the complexity of the algorithm 
described by O’Rourke is equal to O(N logN + N2). The suggested algorithm’s 
complexity is O(N logN + N). Experimental results given below confirm the assumption 
about the difference in the complexity of the algorithms. 

 

SIMULATION EXPERIMENT  
The aim of the simulation experiment is to validate the suggested algorithm and to 
demonstrate its high performance in comparison to the known ones. 

As part of the experiment we compared operation of two algorithms: the one based on 
the visibility graph [6] (reference algorithm) and the proposed algorithm. 

As it was mentioned earlier, Welzl’s algorithm with the complexity of O(N2) was used 
as an algorithm of visibility graph construction. As there is no open realization of this 
algorithm, the author realized it using C++ programming language.  
As realization of a triangulation algorithm we use Siedel’s algorithm with the 
complexity O(N log*N + k logN), which  feebly differs from a linear one with constant k 
due to drastically slow growth of the recursive logarithm. Realization of this algorithm 
is supported by poly2tri. 



 

Dijkstra’s algorithm has also been realized by the author because the existing open 
realizations are either increasingly generalized, or they docking with the above 
described algorithms realizations is complicated. 

The simulation experiment was carried out on synthetic data, because it requires a great 
effort to prepare a set of real data with a definite step of the sets dimensions. While 
synthetic data are generated procedurally, and consequently control over dimension and 
other parameters of the sets is not a problem. 

The experiment uses the following scene: a rectangular surrounding space , where 
rows and columns enclose rectangular obstacles Ei (fig. 2). Minimal selection contains 2 
columns and 1 row. A number of obstacles in each following set increases by 1 column 
and 1 row. Such approach, on the one hand, ensures a dimension step for the data sets 
which allows to demonstrate the pattern of operation time growth for one or another 
algorithm, but on the other hand, it allows not to spend much time for processing of the 
sets which are slightly different in size, and so quickly shift to analysis of larger sized 
sets. 

 
Fig. 2. A sample of the experimental scene. Grey blocks correspond to obstacles Ei; 

white area is the surrounding space  

 
In the result of the experiment we got a row of patterns demonstrating substantial 
parameters of the algorithms operation, precisely: 

 operation time of the first stage (construction of a graph) (fig. 3); 

 size of a resultant graph in vertices and edges (fig. 4); 

 operation time of the second stage (pathfinding on the graph) (fig. 5); 

 total operation time (fig. 6). 

 



 

 
Fig. 3. Comparison of operation time of the first stage (construction of a graph) 

 

 
Fig. 4. Comparison of the graph size: a) vertices; b) edges 

 



 

 
Fig. 5. Comparison of operation time of the second stage (pathfinding in the graph) 

 

 
Fig. 6. Comparison of total operation time of the algorithms 

 
On the basis of data provided in fig. 6, we can draw a conclusion about sufficient 
advantage in the suggested algorithm performance.  
The suggested algorithm performance is conditioned by the fact that its first stage is 
executed faster than a corresponding stage in the reference algorithm and makes major 
contribution to a relative increase of its performance (fig. 3). Besides, the second stage 
is performed with less time consumption (fig. 5). Notwithstanding that the same 
algorithm (Dijkstra’s algorithm) as in the reference algorithm is used at the second 
stage, still its execution requires less time. This results from the fact that the number of 
vertices of the graph influences the algorithm operation time more drastically than the 
number of edges (about which we can conclude from evaluation of complexity for 



 

Dijkstra’s algorithm): the number of vertices of the analyzed graph is substantially 
lower than one in the reference algorithm (fig. 4a), though the number of edges exceeds 
the number of edges in the reference algorithm (fig. 4b), which leads to less operation 
time (fig. 5). 
Fig. 7 а, b allows to assess quality of the final solution. The suggested algorithm does 
not provide a solution optimal in terms of geometrical length of a path, but enables to 
construct a path, the length of which is optimal in terms of the graph abstraction’s 
metrics. 

 
Fig. 7. Paths constructed according to: a) the reference algorithm; b) the proposed 

algorithm 

 
In general case such path will be substantially different form an optimal one, however 
this difference can be minimized by a set of tools: at the expense of choosing some 
other geometrical elements of the triangulation grid as the graph’s vertices; detection of 
convex polygons and consolidation of the correspondent triangles in a graph in a unified 
vertex; geometrical optimization of the resultant path. 

 

CONCLUSION 
This work suggests an algorithm for solution of a problem of pathfinding for a mobile 
robot in two-dimensional space with obstacles. It was shown that the suggested 
algorithm has got a substantial advantage in performance in comparison to the reference 
algorithm. This theoretical advantage was proved in practice by a simulation 
experiment, where separate stages of the suggested and the reference algorithms were 
compared. 

However, the experiment showed that despite the advantage in performance, the 
suggested algorithm does not allow to achieve the solution quality as that of the 
reference algorithm. 
Thus, the suggested algorithm is not capable to completely supersede  the reference 
approach, however its application is reasonable in  a number of cases: for definition the 
existence of a path between two points of space; for calculation of a motion path of a 
mobile robot, when time costs for solution construction are more crucial than the path 
optimality. 
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