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The central point of the concept of sustainable development proposed for overcoming unwelcome 
trends in the development of the environment – “The right to development must be fulfilled so as 
to equitably meet developmental and environmental needs of present and future generations” – 
contains certain conflict. The bottom line is that modern human beings cannot live without the 
infrastructure that pollutes the environment, and the future generations will not be able to live 
without this environment. The conflict can be mitigated by switching to the optimal infrastructure, 
which will maintain human impact on regional ecosystems at levels that fall within the range of their 
resilience. To achieve this goal, the following objectives must be fulfilled: 1) to develop methods 
for evaluating “resilience” of local ecosystems and the biosphere; 2) to develop technologies for 
production of goods that have the lowest possible environmental impact in all stages of their lifecycle: 
production, use, and disposal; 3) to develop methods for designing systems of optimal environmental 
management at regional levels and formulate an adequate optimality criterion. Difficulties arising in 
achieving these objectives have been illustrated by using rather simple examples. In some instances, 
the ecosystem shows a threshold response to upsetting impact, and on the way to the threshold, 
there may be no indications of the pending disaster. The possibility of the threshold response to 
the gradually increasing impact – a rise in the greenhouse gas concentrations – has been shown 
by using a low-dimensional model of the biosphere. An example of electric vehicles is used to show 
that if, by analogy with the input-output model (IOM) developed by W. Leontief, one takes into 
account the direct and indirect ecological damage caused by production, use, and disposal of the 
product, the resulting assessment of the environmental harm may be drastically different from the 
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claimed one. Simple examples demonstrate dramatic dependence of the configuration of the optimal 
infrastructure on optimality criteria used by decision makers.

Keywords: problems of sustainable development, stability of ecosystems and the biosphere, optimal 
nature management.
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Центральный пункт концепции устойчивого развития, предложенной для преодоления 
негативных тенденций в состоянии окружающей среды – «Сохранение среды обитания и 
природных ресурсов для следующих поколений при обеспечении хорошего качества жизни 
ныне живущих поколений», содержит в себе зерно конфликта. Проблема в том, что 
человечество не может существовать без инфраструктуры, загрязняющей среду обитания, 
без которой, в свою очередь, не смогут существовать будущие поколения. Остроту 
конфликта можно ослабить, если перейти к оптимальной инфраструктуре, обеспечивающей 
поддержание уровня антропогенного воздействия на региональные экосистемы в пределах 
их устойчивости. Для этого нужно решить следующие задачи: 1) разработать методы 
оценки “эластичности” локальных экосистем и биосферы; 2) развить технологии, 
производящие продукцию с минимальным экологическим воздействием на всех этапах ее 
жизни: производство, эксплуатация и утилизация; 3) разработать методы проектирования 
структур оптимального природопользования на уровне регионов с формулировкой 
адекватного критерия оптимальности. Сложности, возникающие при решении этих задач, 
проиллюстрированы на достаточно простых примерах. Показано, что отклик экосистемы на 
возмущающее воздействие может иметь пороговый характер, причем по мере приближения 
к порогу какие-либо признаки надвигающейся катастрофы могут отсутствовать. 
Возможность порогового ответа на плавно нарастающее воздействие – рост концентрации 
парниковых газов – показана на малоразмерной модели биосферы. На примере электрических 
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автомобилей продемонстрировано, что если по аналогии с моделью межотраслевого 
баланса, разработанной В.В. Леонтьевым, учитывать прямой и косвенный экологический 
ущерб, возникающий при производстве, эксплуатации и утилизации продукта, то полученная 
оценка экологического вреда может кардинально отличаться от декларируемой. На простых 
примерах показано, что конфигурация оптимальной инфраструктуры существенно зависит 
от критериев оптимальности, которыми руководствуются лица, принимающие решения.

Ключевые слова: проблемы устойчивого развития, устойчивость экосистем и биосферы, 
оптимальное природопользование.

Introduction

The existence of unfavorable or even 
catastrophic trends in the development of the 
environment has been recently recognized 
by various experts and leaders of most of the 
countries and international organizations 
(IPCC, 2014), as evidenced by the Declaration 
on Environment and Development signed at the 
Conference in Rio-de-Janeiro in 1992 (Rio, 1992) 
and subsequent international agreements.

The concept of sustainable development 
founded on 27 principles has been proposed as a 
blueprint for action. Let us now take a look at the 
problems associated with implementation of this 
concept. First, we should examine the principles 
and see whether they are accurate and balanced. 
Let us take the first principle as an example: 
“Human beings are at the centre of concerns for 
sustainable development. They are entitled to 
a healthy and productive life in harmony with 
nature.”

This sounds life-affirming, and the ultimate 
goal appears quite definite. Yet, the questions then 
arise: Can human beings attain harmony with 
nature? And if yes, what will it look like? The 
first question, however, that we should answer is 
“Have human beings ever lived in harmony with 
nature?”

The primate – the ancestor of humans, as 
well as all other organisms, was originally an 
integral part of the biosphere and was regulated 
by it. All living organisms in nature interact 

with other organisms and the environment in a 
balanced way, occupying their niches, which 
have been developed by evolution, in this system 
of interactions: they consume something and 
they are consumed. This is what should be 
called ecological harmony. Unbalancing of this 
interaction causes environmental disasters such 
as outbreaks of the Siberian silk moth, which 
leave behind almost dead parts of taiga, similar 
to those destroyed by fire.

However, as one of the branches of primates 
was evolving into the human, this branch began 
to break away from the rule of ecological laws, 
creating “a second nature”. Humans stayed within 
the biosphere, but impetuously expanded their 
ecological niche, simultaneously destroying the 
ecological niches of their neighboring species 
or eliminating competing or edible species. 
Humans differ from other “ecologically loyal” 
species in that they surround themselves with “a 
second nature” – infrastructure. Even in ancient 
times, this resulted in local environmental 
disasters.

The weight of evidence suggests (with a 
higher or lower level of certainty) that the Sahara 
resulted from slash-and-burn and clearcutting – 
factors causing rivers in that region to dry. 
Overgrazing has led to erosion and desertification 
of the formerly fertile soil. The proverb “Goats 
have eaten Greece” has been known since 
ancient times. In Greece, goat breeding caused 
elimination of woody plants, and goats’ hooves 
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have trampled the land. In the ancient times, soil 
erosion in the Mediterranean was 10 times more 
severe on ameliorated areas. In other regions, 
deforestation along riverbanks reduced the 
formerly navigable waters to shallow arroyos. 
Construction of powerful irrigation systems 
resulted in water and salt imbalance, leading to 
formation of vast saltmarshes.

Thus, we have to admit that human beings 
have almost never lived in harmony with nature. 
The root cause of environmental problems is 
that humans have strived to solve current issues 
ignoring the consequences of their actions. 
Hence, the ultimate goal presented in Principle 
1 has not been described with sufficient detail, 
and the few examples of harmonic coexistence 
of humans with nature over long periods of time 
in archaic communities are not applicable to the 
technological and populous society.

Infrastructure-biosphere conflict  
and possible ways of its elimination

The necessity to consider the consequences 
while solving the immediate problems is 
proclaimed in Principle 3 of the Declaration on 
Environment and Development: “The right to 
development must be fulfilled so as to equitably 
meet developmental and environmental needs of 
present and future generations.”

This principle sounds quite reasonable, but 
it contains certain conflict, whose resolution 
requires special effort. A civilized human 

being needs not only clean air, water and food 
but also such fruits of civilization as housing, 
heating, pharmaceutical drugs, cars, video, etc. 
However, the infrastructure that provides them 
has an unwelcome effect on the biosphere and 
climate (Fig. 1A). The bottom line is that modern 
human beings cannot live without the industrial 
infrastructure that pollutes the environment, 
and the future generations will not be able to 
live without the environment that is now being 
destroyed by industry.

The ideal way to resolve this conflict is to 
change over to closed-loop technological cycles, 
including complete waste recycling (to primary 
products) (Fig. 1B). Unfortunately, development 
of suitable technologies would require enormous 
expenditures, resulting in a considerable increase 
in the cost of the products. Market economy will 
not allow closed-loop cycles to be introduced in 
commercial production.

Yet, there is a realistic approach to 
environmental management that could mitigate, 
if not eliminate, infrastructure-biosphere conflict. 
This approach consists in decreasing human-
induced impact and developing an optimal 
infrastructure, which would maintain the level 
of human impact on regional ecosystems within 
their resilience limits, i.e. within the limits of 
their capacity to compensate for the external 
destructive effects.

Listed below are the objectives that should 
be achieved to implement the proposed approach 

Ecosystem
(biosphere)Human

Infrastructure

Ecosystem
(biosphere)Human

Infrastructure

Ecosystem
(biosphere)Human

InfrastructureA) B)

Fig. 1. The genuine collision of fulfilling human needs (A) and a drastic but unrealistic way to resolve it (B)
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to settling the abovementioned conflict. The 
objectives are listed in order of decreasing 
scientific “purity”:

1) to develop methods for evaluating 
“resilience” of local ecosystems and the 
biosphere;

2) to develop technologies for production of 
goods that have the lowest possible environmental 
impact in all stages of their lifecycle: production, 
use, and disposal;

3) to develop methods for designing systems 
of optimal environmental management at regional 
levels and formulate an adequate optimality 
criterion.

The first objective is a purely scientific 
task, while the second also contains a mandatory 
economic aspect and the third, in addition to 
economics, includes choice criteria, which are 
determined by the value system of decision 
makers.

Interestingly, the above objectives (probably 
incompletely listed) belong in the activity called 
engineering, which is aimed at creating something 
new rather than studying the surrounding world 
theoretically. The academically worded objective, 
Objective 1, although of fundamental importance, 
plays a subordinate role. Achievement of this 
objective will correspond to the development of 
the theory of strength of materials in engineering, 
without which none of the more or less vitally 
important constructions or devices has been 
created. That is why the specific environmental 

(or even biospheric) activity aimed at attaining 
these objectives can be properly called biospherics 
(Pechurkin, 1994) – a nearly forgotten name, 
created by analogy with bionics, electronics, and 
genetics.

Difficulties arising in achieving these 
objectives have been illustrated by using rather 
simple examples.

Objective 1. Evaluating “resilience”  
of local ecosystems and the biosphere

Let us examine the difficulties on the way 
to achieving Objective 1. No direct experiments 
can be conducted to estimate the limits of 
resilience of the ecosystem, as such experiments 
would inevitably destroy the ecosystem. The 
only possible way to reach this objective is to 
construct and investigate mathematical models 
of ecosystems. Consider a very simple model 
of human impact on the ecosystem. Suppose 
there is an ecosystem, e.g. a water body, which 
is characterized by the biomass of its biota, i.e. 
the biomass of all living organisms constituting 
it (Fig. 2).

A factory discharges its effluents into this 
ecosystem; these effluents will be collectively 
called a pollutant and denoted with letter S. 
This pollutant is fed into the ecosystem at a rate 
of V0. This pollutant may be slowly degraded 
through purely chemical processes that are not 
related to living organisms at a rate proportional 
to pollutant concentration – kxS. The same 

ЭкосистемаЭкосистема

Factory

V0

kхS μ(S)N

Ecosystem

Fig. 2. A scheme of pollutant fluxes in the ecosystem
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pollutant, however, may be consumed relatively 
quickly by microorganisms – components of the 
biota, which will then be consumed by other 
organisms – components of the ecosystem. 
Some microorganisms can even consume 
phenol and crude oil. The rate of consumption 
of the pollutant depends on its concentration and 
biomass of the biota – µ(S)N, where N is biota 
biomass.

The following equation describes pollutant 
dynamics:

 5
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where y is coefficient showing what portion of the 
substrate consumed (pollutant) is expended on 
synthesis of biomass, kd is mortality of biota.

The type of substrate concentration 
dependence of biota growth rate is of great 
importance. In general, as substrate concentration 
increases, the growth rate first increases, 
then slows down, and, finally, as substrate 
concentration increases further, the growth 
rate begins to decline. This is called substrate 
inhibition, for which jam is a common example. 
Sugar is a good substrate for microorganisms, but 

large quantities of sugar inhibit their growth, and 
sugar becomes a preserving agent.

In mathematical terms, substrate inhibition 
can be written as follows:
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Fig. 3. Stationary points in the pollutant-biota system (see details in the text)
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changes: pollutant concentration increases by 
a factor of one thousand while the amount of 
biomass drops to zero. An environmental disaster 
takes place.

Figure 5 shows the relationship between 
pollutant concentration and biota biomass and 
pollutant discharge rate. The most important 
in this graph is not that the state of the system 
changes dramatically and almost irreversibly 
but that the pending disaster has occurred 
unexpectedly, without warning. In fact, until 
the discharge rate reached its most critical value, 
pollutant concentration in the environment had 
remained constant, causing no concern, and the 
biomass had been even increasing, which could 
be (mistakenly) interpreted as an improvement in 
the state of the ecosystem.

The model proposed above is certainly very 
simple, and it does not take into account some 
of the essential properties of a real ecosystem. 
In a more realistic model of the ecosystem, 
some warnings are given, but they are very 
unobtrusive, and the curve showing the response 
of the system to the increase in the discharge 
rate cannot predict when the disaster will 
occur. This suggests an important conclusion 
that construction of valid mathematical models 
is an indispensable condition of rational 
environmental management, enabling both the 
existence of the industrial infrastructure and 
preservation of ecosystems.

Limits of resilience should be also determined 
for the biosphere-climate system as an integral 
system that is subjected to the ever-increasing 
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human impacts, which include greenhouse gas 
emissions and environmental pollution.

However, an obstacle in the path of 
constructing valid models of local ecosystems 
and, in particular, the biosphere is enormous 
complexity of these systems – the so-called 
curse of dimensionality. A possible solution to 
this problem situation is based on Principle 15 
(Precautionary principle) of the Declaration 
on Environment and Development: “In order 
to protect the environment, the precautionary 
approach shall be widely applied by States 
according to their capabilities. Where there are 
threats of serious or irreversible damage, lack 
of full scientific certainty shall not be used as a 
reason for postponing cost-effective measures to 
prevent environmental degradation.”

This principle suggests that we must find 
and consider the global scenarios that predict 
the gravest consequences. The constructive 
interpretation of the precautionary principle 
may be termed as “the worst-case scenario 
principle” (Bartsev et al., 2008).

In accordance with this principle, if there 
is uncertainty in evaluation of parameters, 
we must choose the worst combination of the 
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Fig. 6. An illustration of which of the possible scenarios is the worst-case one
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analyzed the system of possible feedbacks 
in the biosphere – climate system (BCS), we 
obtain the following (known to be incomplete) 
diagram of feedbacks (Fig. 7), which gives an 
idea of the complexity of the system.

Following the worst-case scenario 
principle, we have chosen the feedbacks that 
have the shortest characteristic times, i.e. the 
feedbacks that can give rise to quick changes 
in the BCS (Fig. 8).

The global model shown in Fig. 8 consists 
of five compartments between which carbon 
dioxide is exchanged: the atmosphere, land 
plants, the corresponding dead organic residues, 
and surface and deep layers of the ocean 
(Bartsev et al., 2012a). These compartments are 
interrelated through processes of growth, death, 
and decomposition of biomass and exchange of 
CO2 between the atmosphere and the ocean. 
The model also contains the anthropogenic 
carbon source, which upsets the carbon balance 
of the system. The set of equations constituting 
the model has the following form:
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The first equation describes the change 
in the amount of carbon in the atmosphere, 
the second – in the vegetation biomass, the 
third – in dead organic matter, the fourth – in 
surface ocean layers, and the fifth – in deep 
layers of the ocean. The detailed description 
and assumptions providing the basis for the 
model can be found elsewhere (Bartsev et al., 
2008; Degermendzhi et al., 2008); thus, here 
we only describe the types of functions used in 
the equations.

Fig. 7. A diagram of the most evident feedbacks in the biosphere
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The function of the growth rate of plant 
biomass (GtC/year) has the following form:

,
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where x is the amount of carbon in the biomass 
of the plant compartment (GtC); A – atmospheric 
carbon (GtC); T – average annual global surface 
temperature; Vp – the scale factor (1/(GtC/year)); 
xmax – the limited amount of biomass that depends 
on the limit of the density of plant cover.
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upwelling and Cf_downB downwelling. 
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flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

. (6)

The empirical dependence of the rate of 
plant biomass growth on temperature T and the 
maximum temperature Tmax is as follows:

 9

Function V(A) describes the growth of biomass in relation to the atmospheric concentration 

of CO2 in the form of the well-known Monod function: 

                                   (6) 

The empirical dependence of the rate of plant biomass growth on temperature T and the 

maximum temperature Tmax is as follows: 

                           (7) 

The empirical dependence of the growth of average global surface temperature on the CO2 

concentration was derived from the published data (Gifford, 1993): 

(8) 

 

where A is the current amount of carbon in the atmosphere, Ao is the amount of carbon in the 

atmosphere at the time of measuring the average surface temperature To, which is now equal to 

15.5; Tdel is the climate sensitivity. 

The form of function fuel(t) depends on the source of CO2 external to the biosphere that 

disrupts the closed loop of the carbon cycle. For the prediction of future dynamics, this function is 

determined by the possible scenario of burning fossil fuel. 

The extinction rate of biomass (GtC/year) is written in a simple form as follows: 

(9) 

where Vd is a scale factor; x is the amount of carbon (Gt) in the biomass. 

The rate of soil respiration (decomposition of dead organic matter) and CO2 emissions in the 

atmosphere is described with the following function: 

(10) 

where VS is a scale factor; y is the amount of carbon in dead biomass (Gt); fM(T) is the function of 

type (8) that expresses the temperature dependence of soil respiration, but for larger values of 

maximum temperature. 

In Eq.4 the term Ca_downAMin(A) describes the absorption of carbon dioxide with the surface 

layer of the oceans, and the term Ca_upBMout(A) emission of carbon dioxide from the ocean surface 

to the atmosphere. Variable coefficients ])([03.0
in

0)(M TATeA −−=  and ])([03.0
out

0)(M TATeA −=  describe 

the physical phenomenon of the decrease in gas solubility in the liquid at higher temperatures. 

These coefficients are obtained by simple empirical approximation of data on the concentration of 

CO2 in water at different temperatures (Kondratiev and Krapivin, 2004). The term Cd_upU describes 

upwelling and Cf_downB downwelling. 

Various evaluations of the carbon pool in the atmosphere and land compartments along with 

flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

. (7)

The empirical dependence of the growth of 
average global surface temperature on the CO2 

concentration was derived from the published 
data (Gifford, 1993):

 9

Function V(A) describes the growth of biomass in relation to the atmospheric concentration 

of CO2 in the form of the well-known Monod function: 

                                   (6) 

The empirical dependence of the rate of plant biomass growth on temperature T and the 

maximum temperature Tmax is as follows: 

                           (7) 

The empirical dependence of the growth of average global surface temperature on the CO2 

concentration was derived from the published data (Gifford, 1993): 

(8) 

 

where A is the current amount of carbon in the atmosphere, Ao is the amount of carbon in the 

atmosphere at the time of measuring the average surface temperature To, which is now equal to 

15.5; Tdel is the climate sensitivity. 

The form of function fuel(t) depends on the source of CO2 external to the biosphere that 

disrupts the closed loop of the carbon cycle. For the prediction of future dynamics, this function is 

determined by the possible scenario of burning fossil fuel. 

The extinction rate of biomass (GtC/year) is written in a simple form as follows: 

(9) 

where Vd is a scale factor; x is the amount of carbon (Gt) in the biomass. 

The rate of soil respiration (decomposition of dead organic matter) and CO2 emissions in the 

atmosphere is described with the following function: 

(10) 

where VS is a scale factor; y is the amount of carbon in dead biomass (Gt); fM(T) is the function of 

type (8) that expresses the temperature dependence of soil respiration, but for larger values of 

maximum temperature. 

In Eq.4 the term Ca_downAMin(A) describes the absorption of carbon dioxide with the surface 

layer of the oceans, and the term Ca_upBMout(A) emission of carbon dioxide from the ocean surface 

to the atmosphere. Variable coefficients ])([03.0
in

0)(M TATeA −−=  and ])([03.0
out

0)(M TATeA −=  describe 

the physical phenomenon of the decrease in gas solubility in the liquid at higher temperatures. 

These coefficients are obtained by simple empirical approximation of data on the concentration of 

CO2 in water at different temperatures (Kondratiev and Krapivin, 2004). The term Cd_upU describes 

upwelling and Cf_downB downwelling. 

Various evaluations of the carbon pool in the atmosphere and land compartments along with 

flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

, (8)

where A is the current amount of carbon in the 
atmosphere, Ao is the amount of carbon in the 
atmosphere at the time of measuring the average 
surface temperature To, which is now equal to 
15.5; Tdel is the climate sensitivity.

The form of function fuel(t) depends on 
the source of CO2 external to the biosphere that 
disrupts the closed loop of the carbon cycle. For 
the prediction of future dynamics, this function 
is determined by the possible scenario of burning 
fossil fuel.

The extinction rate of biomass (GtC/year) is 
written in a simple form as follows:

 9

Function V(A) describes the growth of biomass in relation to the atmospheric concentration 

of CO2 in the form of the well-known Monod function: 

                                   (6) 

The empirical dependence of the rate of plant biomass growth on temperature T and the 

maximum temperature Tmax is as follows: 

                           (7) 

The empirical dependence of the growth of average global surface temperature on the CO2 

concentration was derived from the published data (Gifford, 1993): 

(8) 

 

where A is the current amount of carbon in the atmosphere, Ao is the amount of carbon in the 

atmosphere at the time of measuring the average surface temperature To, which is now equal to 

15.5; Tdel is the climate sensitivity. 

The form of function fuel(t) depends on the source of CO2 external to the biosphere that 

disrupts the closed loop of the carbon cycle. For the prediction of future dynamics, this function is 

determined by the possible scenario of burning fossil fuel. 

The extinction rate of biomass (GtC/year) is written in a simple form as follows: 

(9) 

where Vd is a scale factor; x is the amount of carbon (Gt) in the biomass. 

The rate of soil respiration (decomposition of dead organic matter) and CO2 emissions in the 

atmosphere is described with the following function: 

(10) 

where VS is a scale factor; y is the amount of carbon in dead biomass (Gt); fM(T) is the function of 

type (8) that expresses the temperature dependence of soil respiration, but for larger values of 

maximum temperature. 

In Eq.4 the term Ca_downAMin(A) describes the absorption of carbon dioxide with the surface 

layer of the oceans, and the term Ca_upBMout(A) emission of carbon dioxide from the ocean surface 

to the atmosphere. Variable coefficients ])([03.0
in

0)(M TATeA −−=  and ])([03.0
out

0)(M TATeA −=  describe 

the physical phenomenon of the decrease in gas solubility in the liquid at higher temperatures. 

These coefficients are obtained by simple empirical approximation of data on the concentration of 

CO2 in water at different temperatures (Kondratiev and Krapivin, 2004). The term Cd_upU describes 

upwelling and Cf_downB downwelling. 

Various evaluations of the carbon pool in the atmosphere and land compartments along with 

flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

, (9)

where Vd is a scale factor; x is the amount of 
carbon (Gt) in the biomass.

The rate of soil respiration (decomposition 
of dead organic matter) and CO2 emissions in 
the atmosphere is described with the following 
function:

 9

Function V(A) describes the growth of biomass in relation to the atmospheric concentration 

of CO2 in the form of the well-known Monod function: 

                                   (6) 

The empirical dependence of the rate of plant biomass growth on temperature T and the 

maximum temperature Tmax is as follows: 

                           (7) 

The empirical dependence of the growth of average global surface temperature on the CO2 

concentration was derived from the published data (Gifford, 1993): 

(8) 

 

where A is the current amount of carbon in the atmosphere, Ao is the amount of carbon in the 

atmosphere at the time of measuring the average surface temperature To, which is now equal to 

15.5; Tdel is the climate sensitivity. 

The form of function fuel(t) depends on the source of CO2 external to the biosphere that 

disrupts the closed loop of the carbon cycle. For the prediction of future dynamics, this function is 

determined by the possible scenario of burning fossil fuel. 

The extinction rate of biomass (GtC/year) is written in a simple form as follows: 

(9) 

where Vd is a scale factor; x is the amount of carbon (Gt) in the biomass. 

The rate of soil respiration (decomposition of dead organic matter) and CO2 emissions in the 

atmosphere is described with the following function: 

(10) 

where VS is a scale factor; y is the amount of carbon in dead biomass (Gt); fM(T) is the function of 

type (8) that expresses the temperature dependence of soil respiration, but for larger values of 

maximum temperature. 

In Eq.4 the term Ca_downAMin(A) describes the absorption of carbon dioxide with the surface 

layer of the oceans, and the term Ca_upBMout(A) emission of carbon dioxide from the ocean surface 

to the atmosphere. Variable coefficients ])([03.0
in

0)(M TATeA −−=  and ])([03.0
out

0)(M TATeA −=  describe 

the physical phenomenon of the decrease in gas solubility in the liquid at higher temperatures. 

These coefficients are obtained by simple empirical approximation of data on the concentration of 

CO2 in water at different temperatures (Kondratiev and Krapivin, 2004). The term Cd_upU describes 

upwelling and Cf_downB downwelling. 

Various evaluations of the carbon pool in the atmosphere and land compartments along with 

flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

, (10)

where VS is a scale factor; y is the amount of carbon 
in dead biomass (Gt); fM(T) is the function of type 
(8) that expresses the temperature dependence of 
soil respiration, but for larger values of maximum 
temperature.

In Eq.4 the term Ca_downAMin(A) describes 
the absorption of carbon dioxide with the surface 

Surface 
temperature rise

Ocean
upper layers

degassing

Growth of 
CO2

concentration

Greenhouse 
effect

Decomposition
of soil organic

matter

Burning of 
fossil fuels

Surface 
temperature rise

Ocean
upper layers

degassing

Growth of 
CO2

concentration

Greenhouse 
effect

Decomposition
of soil organic

matter

Burning of 
fossil fuels
Burning of 
fossil fuels

Fig. 8. A diagram of the quickest feedbacks in the biosphere



– 144 –

Sergey I. Bartsev, Andrey G. Degermendzhi… Stability of the Biosphere and Sustainable Development…

layer of the oceans, and the term Ca_upBMout(A) 
emission of carbon dioxide from the ocean 
surface to the atmosphere. Variable coefficients 

 9

Function V(A) describes the growth of biomass in relation to the atmospheric concentration 

of CO2 in the form of the well-known Monod function: 

                                   (6) 

The empirical dependence of the rate of plant biomass growth on temperature T and the 

maximum temperature Tmax is as follows: 

                           (7) 

The empirical dependence of the growth of average global surface temperature on the CO2 

concentration was derived from the published data (Gifford, 1993): 

(8) 

 

where A is the current amount of carbon in the atmosphere, Ao is the amount of carbon in the 

atmosphere at the time of measuring the average surface temperature To, which is now equal to 

15.5; Tdel is the climate sensitivity. 

The form of function fuel(t) depends on the source of CO2 external to the biosphere that 

disrupts the closed loop of the carbon cycle. For the prediction of future dynamics, this function is 

determined by the possible scenario of burning fossil fuel. 

The extinction rate of biomass (GtC/year) is written in a simple form as follows: 

(9) 

where Vd is a scale factor; x is the amount of carbon (Gt) in the biomass. 

The rate of soil respiration (decomposition of dead organic matter) and CO2 emissions in the 

atmosphere is described with the following function: 

(10) 

where VS is a scale factor; y is the amount of carbon in dead biomass (Gt); fM(T) is the function of 

type (8) that expresses the temperature dependence of soil respiration, but for larger values of 

maximum temperature. 

In Eq.4 the term Ca_downAMin(A) describes the absorption of carbon dioxide with the surface 

layer of the oceans, and the term Ca_upBMout(A) emission of carbon dioxide from the ocean surface 

to the atmosphere. Variable coefficients ])([03.0
in

0)(M TATeA −−=  and ])([03.0
out

0)(M TATeA −=  describe 

the physical phenomenon of the decrease in gas solubility in the liquid at higher temperatures. 

These coefficients are obtained by simple empirical approximation of data on the concentration of 

CO2 in water at different temperatures (Kondratiev and Krapivin, 2004). The term Cd_upU describes 

upwelling and Cf_downB downwelling. 

Various evaluations of the carbon pool in the atmosphere and land compartments along with 

flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

 and 

 9

Function V(A) describes the growth of biomass in relation to the atmospheric concentration 

of CO2 in the form of the well-known Monod function: 

                                   (6) 

The empirical dependence of the rate of plant biomass growth on temperature T and the 

maximum temperature Tmax is as follows: 

                           (7) 

The empirical dependence of the growth of average global surface temperature on the CO2 

concentration was derived from the published data (Gifford, 1993): 

(8) 

 

where A is the current amount of carbon in the atmosphere, Ao is the amount of carbon in the 

atmosphere at the time of measuring the average surface temperature To, which is now equal to 

15.5; Tdel is the climate sensitivity. 

The form of function fuel(t) depends on the source of CO2 external to the biosphere that 

disrupts the closed loop of the carbon cycle. For the prediction of future dynamics, this function is 

determined by the possible scenario of burning fossil fuel. 

The extinction rate of biomass (GtC/year) is written in a simple form as follows: 

(9) 

where Vd is a scale factor; x is the amount of carbon (Gt) in the biomass. 

The rate of soil respiration (decomposition of dead organic matter) and CO2 emissions in the 

atmosphere is described with the following function: 

(10) 

where VS is a scale factor; y is the amount of carbon in dead biomass (Gt); fM(T) is the function of 

type (8) that expresses the temperature dependence of soil respiration, but for larger values of 

maximum temperature. 

In Eq.4 the term Ca_downAMin(A) describes the absorption of carbon dioxide with the surface 

layer of the oceans, and the term Ca_upBMout(A) emission of carbon dioxide from the ocean surface 

to the atmosphere. Variable coefficients ])([03.0
in

0)(M TATeA −−=  and ])([03.0
out

0)(M TATeA −=  describe 

the physical phenomenon of the decrease in gas solubility in the liquid at higher temperatures. 

These coefficients are obtained by simple empirical approximation of data on the concentration of 

CO2 in water at different temperatures (Kondratiev and Krapivin, 2004). The term Cd_upU describes 

upwelling and Cf_downB downwelling. 

Various evaluations of the carbon pool in the atmosphere and land compartments along with 

flows between them were presented in a number of works (Brovkin et al., 2002; Brovkin et al., 

 
describe the physical phenomenon of the 
decrease in gas solubility in the liquid at higher 
temperatures. These coefficients are obtained 
by simple empirical approximation of data on 
the concentration of CO2 in water at different 
temperatures (Kondratiev and Krapivin, 2004). 
The term Cd_upU describes upwelling and Cf _downB 
downwelling.

Various evaluations of the carbon pool in the 
atmosphere and land compartments along with 
flows between them were presented in a number 
of works (Brovkin et al., 2002; Brovkin et al., 
2004; IPCC, 2001; Kondratiev and Krapivin, 
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In accordance with the worst-case scenario 
principle, the initial values of model parameters 
were chosen as 850 GtC in plant biomass and 
1100 GtC in sediment organics.

In Eq.5, Eq.9, and Eq.10, scale factors 
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respiration equal to 55 GtC/year as estimated 
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Computer experiments expectedly show that 
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Fig. 9. Scenarios of biosphere dynamics at different values of the climate sensitivity Tdel. The graphs correspond 
to the following values of Tdel: (A) – 2 oC; (B) – 4.5 °C; (C) – 6 °C. In the latter case (C), the date of irreversibility 
is 2073. On the graph, the solid line describes the dynamics of the biomass, the dotted line indicates the dead 
organic matter, and the dashed line indicates the temperature change
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biosphere. It is shown that at Tdel = 6 °C the time 
to the irreversibility point becomes less than 100 
years, which leads to starting the run off regime 
in the biosphere.

Summarizing the possible properties of local 
ecosystems and the biosphere illustrated above, 
we can conclude that the threshold response of 
ecosystems and the entire biosphere, which is 
aggravated by the absence of any clear warnings 
of the approaching limit of stability, is a key 
challenge to biospherics.

Objective 2. Providing  
the lowest environmental impact  
over lifecycle of goods

Objective 2 corresponds to the problem of 
developing economically and environmentally 
optimal waste treatment systems. The economic 
aspect emerges because treatment of wastes, 
including old and broken devices and consumer 
goods, consumes power and resources, which 
cost money.

All commercially manufactured products 
and production plants have limited lifecycles. 

When they are not functional any more, products 
and production plants must be treated as waste 
and disposed of. As production and consumption 
material cycling has become prominent against 
the background of biospheric and environmental 
(regional) material cycles, the condition of 
minimizing environmental impact of industrial 
processes and commercial products acquires 
increasing importance.

Waste treatment may occasionally occur 
spontaneously, through natural chemical and 
biological processes. In most cases, however, 
alleviation of environmental impact consumes 
additional materials, power, and labor. It seems 
that larger expenditures could nullify the damage 
done by waste treatment to the environment. 
Unfortunately, these expenditures also produce 
adverse effects on the environment. There is an 
obvious contradiction here: the more effort we put 
into waste treatment, making it more thorough 
and complete, the greater environmental impact 
we produce (see Fig. 10) (Bartsev et al., 2012b).

In order to optimize environmental 
management, one has to choose and introduce the 

Fig. 10. A conditional graph illustrating the presence of the minimum of environmental damage. The thin solid 
line denotes residual environmental damage caused by the product vs. waste processing costs; the dashed line 
denotes the damage due to waste disposal; the thick solid line denotes the total environmental damage. Dmin – 
minimum possible level of environmental damage caused by the product, Copt – optimal waste processing costs
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technologies that would yield goods producing 
the lowest total damage to the environment in all 
their life stages, with economic costs remaining 
at the same level. If economic costs are different, 
optimal decisions in environmental management 
can only be achieved by resolving the problem of 
introducing the “cost” of environmental damage, 
expressed, e.g., as the “price” of a human life. 
This very difficult task is, however, beyond the 
scope of this consideration.

To achieve optimization of environmental 
management, one needs to find a relationship 
between the ultimate contamination and costs of 
production, use, and disposal of goods. It would 
be natural to assume that production of the waste 
by the goods, similarly to any other production, 
is proportional to the cost of the corresponding 
resources and depends on the technology used. 
Hence, the problem of determining the total 
environmental damage can be reduced to the 
problem of total inputs, which can be solved by 
methods similar to the input-output model (IOM) 
developed by W. Leontief (1973).

As noted above, total cost assessment must 
include costs of production, use, and disposal of 
a given product. Unfortunately, environmental 
advantages of goods are sometimes evaluated 
taking into account only their usage cost, as in 
evaluating the environmental advantages of 
electric vehicles vs. internal combustion engine 
vehicles in accordance with European standards 
(Eberhard, 2009).

As a parameter for comparison of goods, 
we propose introducing a common specific 
environmental cost of the usage of the l-th product 
(Bartsev et al., 2012b):
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Fig. 11. A fragment of the tree of resources needed to create an Ag-Zinc battery
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(14) 

 

where j
lx  denotes industrial capacities needed to generate a set of resources i

lS ; iS j  is a matrix 

whose columns correspond to resources needed by the j-th industry to manufacture a unit of 
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(15) 

 

where j
iy  is the amount of the i-th resource produced by the j-th industry per unit time, and j

iε  

characterizes input-output relationships. 

Thus, expression (14) can be written as follows: 

(16) 
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resources, and the need for them can be expressed from this vector similar to Eq.16. Thus, taking 

into account the N-th order indirect inputs, total resource inputs for the production, usage, and 

disposal of the product and, hence, the total environmental damage can be expressed as follows: 
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Calculation of the total resource consumption 
using Eq.17 can be given, for illustrative purposes, 
in expanded form:

 14

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=+++=Σ

002.0
5.0

62.0
05.1

1111
ik

i
i
j

k
i

i
j

k
i

i
j

ik
i

i
j

k
i

i
j

ik
i

i
j

ii SSSSSSSSSSS εεεεεε

 

( ) 6218.0

002.0
5.0

62.0
05.1

9.00101 =

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

== Σ
i

i
S SaR

 

Calculation of the total resource consumption using Eq.17 can be given, for illustrative 

purposes, in expanded form: 
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In our example, the matrix of resources i
jS  does not explicitly contain wastes of production 

plants. With this approach, environmental damage can be found by summing components of the 

total resource vector multiplied by the corresponding coefficients of the damage resulting from 

using resource ia , such as carbon emissions from combustion of unit coal or petrol. Total average 

carbon emissions resulting from production and use of a vehicle in our example will be equal to: 
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Comparison of the resource and environmental efficiency of gasoline and electric vehicles 

was performed under the following assumptions: a coal power plant is a source of electric power for 

the vehicle accumulator and for the construction of industrial facilities, mining of minerals, and 

production of accumulator components. Vehicles with engine power 50 kW are evaluated. The 

chosen gasoline consumption is 10 L for 100 km. Only the power unit is taken into account; in this 

test, the vehicle itself is ignored; equal inputs are supposed to be expended on the production of the 

vehicle body, suspension, etc. The generalized parameter takes into account inputs used to construct 

and dispose of all facilities that have contributed to the production and taken part in the usage of the 

vehicles; the inputs are proportional to the contribution, which decreases towards primary resources. 

Results of the comparison are given in Table 1. 

The results show quite clearly that the total environmental damage caused by the production, 

usage, and disposal of the vehicles is drastically different from the assessment declared by the 

advocates of electric vehicles, who are spreading the idea of their environmental safety. The result 

of the comparison was quite unexpected: carbon emissions to the atmosphere due to maintaining the 

operation of the electric vehicle are much greater than carbon emissions from the gasoline vehicle if 

indirect inputs of coal for the production of metal and electric energy are taken into account. 

Thus, the use of the proposed approach can significantly change the assessments of 

environmental and economic efficiencies of certain goods and industrial processes. The formalism 

discussed in the study can be used to give an integrated evaluation of the environmental damage of 
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advocates of electric vehicles, who are spreading the idea of their environmental safety. The result 

of the comparison was quite unexpected: carbon emissions to the atmosphere due to maintaining the 

operation of the electric vehicle are much greater than carbon emissions from the gasoline vehicle if 
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Thus, the use of the proposed approach can significantly change the assessments of 

environmental and economic efficiencies of certain goods and industrial processes. The formalism 
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Comparison of the resource and 
environmental efficiency of gasoline and electric 
vehicles was performed under the following 
assumptions: a coal power plant is a source of 
electric power for the vehicle accumulator and for 
the construction of industrial facilities, mining 
of minerals, and production of accumulator 
components. Vehicles with engine power 50 kW 
are evaluated. The chosen gasoline consumption 
is 10 L for 100 km. Only the power unit is taken 
into account; in this test, the vehicle itself is 
ignored; equal inputs are supposed to be expended 
on the production of the vehicle body, suspension, 
etc. The generalized parameter takes into account 
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inputs used to construct and dispose of all 
facilities that have contributed to the production 
and taken part in the usage of the vehicles; the 
inputs are proportional to the contribution, which 
decreases towards primary resources. Results of 
the comparison are given in Table 1.

The results show quite clearly that the total 
environmental damage caused by the production, 
usage, and disposal of the vehicles is drastically 
different from the assessment declared by the 
advocates of electric vehicles, who are spreading 
the idea of their environmental safety. The 
result of the comparison was quite unexpected: 
carbon emissions to the atmosphere due to 
maintaining the operation of the electric vehicle 
are much greater than carbon emissions from the 
gasoline vehicle if indirect inputs of coal for the 
production of metal and electric energy are taken 
into account.

Thus, the use of the proposed approach 
can significantly change the assessments of 
environmental and economic efficiencies 
of certain goods and industrial processes. 
The formalism discussed in the study can be 
used to give an integrated evaluation of the 
environmental damage of a technology to be 

introduced. The proposed formalism takes into 
account factors that are not taken into account 
by the input-output theory because of the specific 
tasks of economics – the notion of the product 
was expanded to the notion of resource, including 
industrial wastes and primary natural resources 
(such as the area of fertile lands). Generalization 
of the concepts of the IOM made it possible to 
find a relationship between the production of 
goods necessary for the servicing of indirect 
inputs and the environmental damage caused by 
this production.

Objective 3. Designing systems of optimal 
environmental management and adequate 
optimality criteria

Let us now examine Objective 3, which 
becomes attainable after achieving Objective 
1, i.e. determining resilience limits of the 
regional system, for which a system of optimal 
environmental management is being developed. 
At this stage, science can be of assistance, 
although playing less significant role than in the 
previous stages.

Let us take a simple example of optimization 
of environmental management (Bartsev et al., 

Table 1. Comparison of total inputs of resources and environmental damage for gasoline and electric vehicles 
with Ag-Zinc and lead-acid accumulators

Resources needed for the vehicle to run for 1 hour

Vehicle type (engine power 50 kW)

Gasoline 
vehicle

Electric vehicle

Ag-Zinc battery Lead-Acid 
battery

Labor force (human*hour) 0.3 13.2 0.6
Oil (ton) 0.0122 0.0113 0.0002

Coal (ton) 0.0001 0.0252 0.0234
Iron ore (ton) 0.0000 0.0001 0.0000

Non-ferrous metal ore (ton) 0.0000 1.9068 0.0477
Raw materials for construction industry (ton) 0.0000 0.0003 0.0000

Raw materials for chemical industry (ton) 0.0000 0.0013 0.0000
Carbon emission into atmosphere (kg) 11 32 23

Air stream (m3/hour) needed for dilution of toxic wastes 8138 1012545 927613
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2001). Suppose there is a town with a working-
age population of 1000. Three different plants 
with parameters (in conventional units) given in 
Table 2 may be constructed and operated in this 
town. The question arises: What plants should be 
established in this town? To answer this question, 
we can use simple systems of extremum seeking, 
taking into account limitations. In the examples 
given below, we used the MS Excel “Solver” 
tool. The level of environmental safety was set 
as limitation on the variable to be optimized. As 
the target function to be maximized, we used the 
parameters given in each example.

The decision appears to depend on what is 
considered as important by the authorities of this 
town. For instance, if environmental concerns 

dominate, no plants will be constructed, and the 
citizens will have to find ways to survive on their 
own.

If, for example, the priority is to employ the 
citizens, keeping pollution at a predetermined 
level, the infrastructure of the town will be 
described by data in Table 3.

If the authorities decide that the priority 
is to get maximum profit under conditions of 
full employment and keeping discharges at an 
environmentally safe level, the infrastructure is 
described by the data given in Table 4.

If the authorities choose profit as the priority 
and decide to increase the permissible levels of 
pollution (to 7 conventional units) and to ignore 
the employment status of the citizens (allowing 

Table 2. Parameters of plants

Parameters per technological unit Plant 1 Plant 2 Plant 3

Pollution level 0.5 0.3 0.3
Number of employees 50 200 50

Profit 100 50 70

Table 3. Infrastructure under conditions of full employment and environmental safety

Parameters Plant 1 Plant 2 Plant 3 Constraints

Number of units 0 5 0 No
Total pollution 0 1.5 0 1.5

Employed citizens 0 1000 0 1000
Total profit 0 250 0 250

Table 4. Infrastructure under conditions of maximum profit, full employment, and environmental safety

Parameters Plant 1 Plant 2 Plant 3 Constraints

Number of units 0 4.5 2.2 No
Total pollution 0 1.3 0.7 2

Employed citizens 0 889 111 1000
Total profit 0 222 156 378
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70 % unemployment), the infrastructure will be 
described by the data in Table 5.

These calculations show that in management, 
the most important thing is to choose the 
priorities in making decisions on citizens’ ways 
of living (Bartsev et al., 2012c). For instance, if 
environmental concerns become the only priority, 
there will be no production plants, and people 
will live in subsistence economy.

By prioritizing social stability, i.e. keeping 
unemployment at a socially safe level and 
maintaining pollution within predetermined 
limits, we obtain a different infrastructure of 
the region. If we add maximization of profit 
as a criterion, the infrastructure will change 
again.

If the authorities prioritize profit, raising 
permissible levels of environmental pollution 
(and living somewhere else) and caring little about 

social stability (and living even farther away), the 
infrastructure of economy will be completely 
different, and the lifetime of this infrastructure 
will be rather short.

Conclusion

Thus biospherics which can provide the basis 
for implementation of the concept of sustainable 
development, is necessarily an integrated 
science, which not only studies scientific aspects 
of the environmental crisis but also must take 
into account economic, social, moral, and other 
aspects of the life of humankind.
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Table 5. Infrastructure under conditions of maximum profit, arbitrary employment, and neglecting environmental 
safety

Parameters Plant 1 Plant 2 Plant 3 Constraints

Number of units 5 0 15 No

Total pollution 2.5 0 4.5 7

Employed citizens 250 0 750 1000

Total profit 500 0 1050 1550

References

Bartsev S.I., Degermendzhi A.G., Belolipetsky P.V. (2012a) Carbon cycle modeling and principle 
of the worst scenario. Models of the ecological hierarchy: from molecules to the ecosphere. Jordan F., 
Jorgensen S.E. (eds.) Elsevier, p. 447–458

Bartsev S.I., Degermendzhi A.G., Erokhin D.V. (2008) Principle of the worst scenario in the 
modelling past and future of biosphere dynamics. Ecological Modeling, 216: 160–171

Bartsev S.I., Degermendzhi A.G., Okhonin V.A., Saltykov M.Y. (2012b) An integrated approach to 
the assessment of an ecological impact of industrial products and processes. Procedia Environmental 
Science, 13: 837–846

Bartsev S.I., Ivanova Y.D., Shchemel A.L. (2012c) The worst scenario principle and the assessment 
of the impact of quality of life for biosphere dynamics. Models of the ecological hierarchy: from 
molecules to the ecosphere. Jordan F., Jorgensen S.E. (eds.) Elsevier, p. 459–467



Sergey I. Bartsev, Andrey G. Degermendzhi… Stability of the Biosphere and Sustainable Development…

Bartsev S.I., Mezhevikin V.V., Okhonin V.A. (2001) The principle of closure and criteria for optimal 
environmental management and sustainable development. Chemistry for Sustainable Development, 9: 
805–814 (in Russian)

Brovkin V., Bendsen J., Claussen M., Ganapolski A., Kubatzki C., Petoukhov V., Andreev A. 
(2002) Carbon cycle, vegetation, and climate dynamics in Holocene: experiments with the CLIMBER-2 
model. Global Biogeochemical Cycles, 16: 1139–1143

Brovkin V., Sitch S., Bloh von W., Claussen M., Bauer E., Cramer W. (2004) Role of land cover 
changes for atmospheric CO2 increase and climate change during the last 150 years. Global Change 
Biology, 10: 1253–1266

Degermendzhi A.G., Bartsev S.I., Gubanov V.G., Erokhin D.V., Shevirnogov A.P. (2008) 
Forecast of biosphere dynamics using small-scale models. Global climatology and ecodynamics: 
anthropogenic changes to planet earth. Cracknell A.P., Krapivin V.F. (eds.) Springer Praxis Books, 
Berlin, p. 241–300

Eberhard M. (2009) Tesla Motors, California ARB ZEV Symposium. https://www.arb.ca.gov/
msprog/zevprog/2006symposium/presentations/eberhard.pdf

Gifford R.M. (1993) Implications of CO2 effects on vegetation for the global carbon budget. The 
Global Carbon Cycle. Heimann M. (ed.) Springer-Verlag, Berlin, p. 159–199

IPCC (2001) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the 
Third Assessment Report of the Intergovernmental Panel on Climate Change. Houghton J.T., Ding Y., 
Griggs D.J., Noguer M., van der Linden P.J., Dai X., Maskell K., Johnson C.A. (eds.) Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA, 881 p.

IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group 
I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon S., 
Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M., Miller H.L. (eds.) Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA, 996 p.

IPCC (2014) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and 
III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Core Writing 
Team, Pachauri R.K., Meyer L.A. (eds.) IPCC, Geneva, Switzerland, 151 p.

Kondratiev K.Ya., Krapivin V.F. (2004) Carbon global cycle modeling. Moscow, Fizmatlit, 336 p. 
(in Russian)

Leontief W. (1973) Structure of the world economy (Outline of a Simple Input-Output Formulation), 
Nobel Memorial Lecture. http://laprimaradice.myblog.it/media/00/02/2730068406.pdf

Pechurkin N. (1994) Biospherics: a new science. Life Support & Biosphere Science, 1(2): 85–87
Rio (1992) The Rio declaration on environment and development/ http://www.unesco.org/

education/pdf/RIO_E.PDF
Semenov S.M. (2004) Greenhouse gases and present climate of the Earth. Moscow, Meteorology 

and Hydrology Publishing Centre, 175 p. (in Russian)
Trenberth K.E., Houghton J.T., Meira Filho L.G. (1996) The Climate System: an overview. Climate 

Change 1995. The Science of Climate Change. Houghton J.T., Meira Filho L.G., Callander B.A., 
Harris N., Kattenberg A., Maskell K. (eds.) Cambridge University Press, Cambridge, p. 51-64


