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An analytical solution of the problem on elastic deformation of a membrane allows analyzing deformation
of typical living cells under the influence of magnetic disks attached to the cells. Based on the numerical
solution of two-dimensional elliptic boundary value problems, the magnetic polarizabilities of the disks
are obtained as the functions of magnetic permeability of the disk substance. It is shown that typical thin
disks made of iron, nickel and cobalt in the mode far from saturation are magnetized substantially the
same as a disk with infinite magnetic permeability. Though the solved problems are stationary, the results
are also usable in the analysis of quasi-stationary processes such as low-frequency variation of external
magnetic field.
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Introduction

The recently developed methods of destruction of cancer cells involve mechanical impact
induced by microscopic magnetic bodies attached to a cell membrane in different ways [5, 6].
Usually these bodies have shapes of thin disks. The mathematical modeling of the impact consists
in the calculation of the torque applied to a disk by the magnetic field and in the estimation
of the elastic forces induced by deformation of a cell. This article offers solutions to stationary
problems, though the results are applicable to the analysis of quasi-stationary processes, e.g.
deformations under external magnetic fields of low frequency. The description of magnetic and
mechanical phenomena uses the SI-system.
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1. Problem of magnetostatics
The mechanical effect of magnetic field on a magnetic disk is defined by the magnetic moment

P of the disk, which is given by integrating magnetization J over the disk volume

P =

∫
J dΩ. (1.1)

In the framework of a simplest model [7], the magnetization is linearly related to the magnetic
field strength H

J = χH, (1.2)

where χ is the magnetic susceptibility, µ = 1 + χ is the relative magnetic permeability.
For ferromagnetic materials, this law is valid at the comparatively low H with absence of

initial magnetization, which automatically holds true in low-frequency variable magnetic field
with zero average value. The description of micro- and nano-objects has to use a more advanced
micro-magnetic model [7].

The law (1.2) is in accordance with the expression for the magnetic induction B

B = µµ0H, (1.3)

where µ0 is the vacuum magnetic permeability. In the weak magnetic fields, cobalt and nickel
possess magnetic permeability of round 80 and 400, respectively. Details of properties of ferro-
magnetics can be found in the monograph [1]. There is no additional notation introduced for
the discontinuous function as it is implied that µ = 1 outside a body and a prescribed constant
µ inside the body.

The spatial distribution of a magnetic field is found from solving equations of magnetostatics

divB = 0,

rotH = 0,
(1.4)

that account for the absence of extraneous currents in our problems. Also B and H are related
as in (1.3).

Let a ferromagnetic disk be placed in a given uniform magnetic field H∞. The external field
distortion diminishes with the distance from a body; therefore, the required field is to satisfy
a boundary condition that is really set not at infinity but at a certain great distance from the
center of the disk

Hτ ||r|=R∞ = H∞
τ . (1.5)

Here, r is a point radius-vector; the subscripts ν, τ denote the normal and tangential components
of vectors.

The second equation in (1.4) allows introducing a potential V such that

H = −gradV. (1.6)

Then, the magnetostatics problem (1.3)–(1.5) reduces to a Dirichlet problem for one equation

−div(µ gradV ) = 0,

V ||r|=R∞ = −rH∞.
(1.7)

Since µ has strictly positive and limited values (in our problems, 1 6 µ 6 1000), the equation
is elliptical, and the boundary value problem (1.7) has a unique solution.

It is natural to use the axial symmetry of the disk to reduce the 3D problem (1.7) to a two-
dimensional problem. To this effect, a cylindrical coordinate system r, φ, z is introduced, with
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the z axis directed along the disk axis and the x axis of the related Cartesian coordinates placed
in a half-plane where H∞ is. This is the half-plane φ = 0. In case that H∞ is parallel to the z
axis, the x axis is chosen arbitrarily. Denote the angle between the z axis and H∞ by θ∞. Then

H∞
z = H∞ cos θ∞,

H∞
x = H∞ sin θ∞,

H∞
y = 0.

(1.8)

By the linearity of the problem (1.7), it is possible to consider independently a pair of problems
with a single non-zero component H∞

z or H∞
x and, then, to sum up the solutions. The expediency

of this separation is governed by the difference of two-dimensional formulations of these two
problems.

2. Axisymmetrical field

When the given external field is oriented along the axis of the disk, the required field possesses
the axial symmetry and the potential V is independent of the angle φ. Therefore it is possible
to write down the problem (1.7) in the form

− ∂

∂r

(
rµ

∂V

∂r

)
− ∂

∂z

(
rµ

∂V

∂z

)
= 0.

V |r2+z2=R2
∞

= −zH∞
z , (2.1)

where the equation is already multiplied by r.
The parameter rµ, which is a coefficient in this equation, vanishes in the axis r = 0. For the

problem solution to agree with the smooth solution of the original three-dimensional problem, it
is required that

∂V

∂r

∣∣∣∣
r=0

= 0.

In fact, the condition is implemented at a small distance R0 from the z axis as

−rµ
∂V

∂r

∣∣∣∣
r=R0

= 0. (2.2)

This is a no-flux condition for a flux with a density −rµ gradV and this is a natural condition
for the equation (2.1).

By antisymmetry relative to the half-line z = 0, the problem is solvable in a quarter of the
plane z > 0, r > R0 with one more boundary condition

V |z=0 = 0. (2.3)

The solution of the mixed boundary value problem (2.1)–(2.3) exists and is unique. In view
of the same properties of a 3D problem, just this solution is of interest.

The problem has been solved numerically. The used multigrid finite element method is
represented in the monograph [2] by the first author of the present article. Some applications of
the method are considered in the paper [3].

Fig. 1 shows the resultant distribution of the magnetic field for a nickel disk with a radius
R = 250 nm and a thickness h = 60 nm. Furthermore, the figure depicts equipotentials and
magnetic field lines, i.e. the lines where the vector B is tangential at each point.
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The magnetic moment of the disk, solely the component Pz ̸= 0 due to symmetry, after the
problem solving, can be found by integrating over the disk volume (1.1)

Pz =

∫ 2π

0

∫ h/2

−h/2

∫ R

0

Jz dφdz r dr.

The integration process accounts for (1.2, 1.6) and is simplified owing to the axial symmetry
and antisymmetry relative to the plane z = 0:

Pz = −4πχ

∫ R

0

(∫ h/2

0

∂V

∂z
dz

)
r dr = −4π(µ− 1)

∫ R

0

V (r, h/2)r dr.

From the problem linearity,
Pz = αΩH∞

z , (2.4)

where the coefficient αΩ is the magnetic polarizability of a body as a whole, Ω is the body
volume. Assuming homogeneity of substance, the parameter α is only governed by the body
configuration. The value of α is the basic required value.

The representative values of α are obtainable in the framework of a one-dimensional model
based on the smallness of the disk thickness relative to the disk radius h << R.

0 250 500r, nm

z,

nm

0

30

500

Fig. 1. Distribution of axisymmetrical magnetic field inside and outside a nickel disk, µ = 400.
The solid lines are equipotentials with a step H∞h/2, the fine lines are the magnetic field lines.
The rectangle 250 ∗ 30 nm is a quarter of the disk cross section

In this case, the first equation in (1.4) means the approximate constancy Bz = B∞
z . Accord-

ingly,

Hz = H∞
z /µ, Jz =

µ− 1

µ
H∞

z

are constant inside the disk.
The magnetic moment of the whole disk is found from multiplication by volume, i.e. the

one-dimensional approximation yields

α(1) = 1− 1/µ. (2.5)

The function α(1)(µ) is plotted in Fig. 2 as a fine curve. The solid curve shows the numerical
solution of the series of the problems (2.1)–(2.3) with the different values of µ. It is seen in the
figure that the disks are sufficiently thin for the one-dimensional model to have error under 40%
for all ferromagnetic materials. The true value of α is higher than in the one-dimensional model
since the field is higher at the disk edge than at the disk center adequately described by the
one-dimensional model. This is clearly seen in Fig. 1. The basic result is the equivalence of all
magnetics with µ > 10 subject to the limit accuracy of 10%.

It is worthy of mentioning that when µ → ∞, the problem (2.1)–(2.3) is essentially simplified
as V ≡ 0 inside the disk. So, it is sufficient to solve the problem for a Laplace equation outside
the disk with the complementary Dirichlet condition that V = 0 at the disk boundary.
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Fig. 2. The solid lines illustrate calculations of the magnetic polarizabilities of the disk, which
are divided by the volume of the disk, α = Pz/(ΩH

∞
z ) and β = Py/(ΩH

∞
y ), as against the disk

substance permeability µ. The fine line shows the analytical solution (2.5) of the one-dimensional
problem

3. Magnetization of a disk by a field normal to its axis
When the external magnetic field is parallel to the disk plane in the boundary value problem

(1.7) the function set in the boundary condition is given by

V |r2+z2=R2
∞

= −rH∞
x cosφ.

The magnetic permeability µ is independent of the angle φ due to axial symmetry of the disk.
These two circumstances enable finding the solution in the form

V (r, z) cosφ. (3.1)

Since the original problem (1.7) has a unique solution, the found solution in the form of (3.1)
is the required solution. As the axis has no peculiarities, it is required that V (r, z) vanishes

V |r=0 = 0.

As it is, the condition is implemented at a small distance R0 from the z axis as

V |r=R0
= 0. (3.2)

The problem (1.7), (3.2) takes on form

−1

r

∂

∂r

(
rµ

∂V

∂r

)
− ∂

∂z

(
µ
∂V

∂z

)
+

1

r2
V = 0,

V |r2+z2=R2
∞

= −rH∞
x , V |r=R0 = 0.

(3.3)

The equation (3.3) omits the common multiplier cosφ since for the fulfillment of the equation
at all values of φ is equivalent to zero multiplier in front of cosφ.

In view of symmetry of the problem (3.1) relative to the plane z = 0 the problem (3.3) is
solvable in a quarter of the plane with the additional boundary condition

∂V

∂z

∣∣∣∣
z=0

= 0. (3.4)

The problem (3.3, 3.4) has been solved numerically. Similarly to the previous Section, the
boundary conditions (3.3) hold true for a relatively small cylinder r = R0 and for a large sphere
r2 + z2 = R2

∞ with the parameters R0, R∞ selected from test calculations.
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Fig. 3a demonstrates the resultant distribution of the potential V (r, z) and Fig. 3b displays
the distribution of this potential over the plane z = 0 in accordance with (3.1). The field is much
weaker inside of the disk, and the equipotentials are therefore plotted with a step 50 times less.
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Fig. 3. Distribution of magnetic field inside and outside a nickel disk with the orientation in
parallel to the external field. The half-plane y = 0, x > 0 is left panel. The plane z = 0 is right
panel. The fine lines are the magnetic field lines; the solid lines are the equipotentials with the
same step H∞h/2 as in Fig. 1. The equipotentials inside of the disk are plotted at 50 times
smaller step

By definition, the tangent direction to a magnetic field line shows the orientation of B.
Considering that divB equals zero in view of (1.4), such lines posses one more essential property
namely conservation of flux in a magnetic field tube. In two-dimensional problems, this means
that |B| is inversely proportional to spacing of neighbor field lines, which makes the figures even
more informative.

By symmetry, the magnetic moment of the disk has the only x-component calculated, in ac-
cordance with (1.1), by integration of the magnetization Jx. On the strength of (1.2), (1.6), (3.1)

Jx = −χ
∂(V cosφ)

∂x
= −(µ− 1)

(
∂V

∂r
cos2 φ+

V

r
sin2 φ

)
.

The integral (1.1) takes on form

Px = −2π(µ− 1)

∫ h/2

0

dz

∫ R

0

(
∂V

∂r
+

V

r

)
r dr, (3.5)

where the integration with respect to φ has already been performed. Let the element of integra-
tion be transformed so that to allow analytical integration:∫ R

0

∂(rV )

∂r
dr = rV |R0 = RV (R, z).

Thus, from (3.5), obtain

Px = −2πR(µ− 1)

∫ h/2

0

V (R, z)dz.
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Since the problem is linear at the fixed µ and the disk geometry, the parameter β is constant
in the formula

Px = βΩH∞
x . (3.6)

The relationship of β and µ is illustrated in the right panel in Fig. 2. The curve is plotted
based on the solution to the series of problems at different values of µ.

The first basic result is the equivalence of all magnetic materials with µ > 70 within an
accuracy limited to 10%.

The second important, though expected, result ensues from the comparison of the right
and left panels of Fig. 2: magnetization is much higher in the plane of the disk than along
its axis, β/α > 6.6 for all µ > 70 of interest. Specifically for nickel with µ ≈ 400, we have
α ≈ 1.37, β ≈ 9.5, β/α ≈ 7.

The problem (3.3) is essentially simplified when µ −→ ∞ for V ≡ 0 inside of the disk. For
this reason, it is sufficient to solve the problem for a Laplace equation outside the disk with the
complementary Dirichlet condition V = 0 at the disk boundary.

4. Motion of disk
When the external magnetic field is parallel or perpendicular to the disk axis, the generated

magnetic moment of the disk is parallel to the field. Using (1.8), (2.4), (3.6) allows writing down

Pz = αΩH∞ cos θ∞,

Px = βΩH∞ sin θ∞,

Py = 0.

(4.1)

Such magnetic dipole experiences the torque N = [P × B∞], i.e.

Ny = −Ωµ0(H
∞)2(β − α) sin θ∞ cos θ∞, Nx = 0, Nz = 0. (4.2)

Naturally, when θ∞ = 0 or θ∞ = π/2, the torque vanishes. These positions of the disk are
equilibrium but only the second position, when θ∞ = π/2 and the field is in the plane of the
disk, is stable.

In case of the arbitrary initial orientation of the disk axis, in the time-independent magnetic
field, the disk will oscillate about the equilibrium position. Under loss of energy due to friction,
the disk plane will become parallel to the field. In a rotary field in a certain plane, the disk will
be positioned in parallel to this plane. When the disk is glued to an elastic surface rather than
freely float in fluid, the described motions will complicate. In such mechanical problem, the role
of the magnetic field reduces to the generation of the torque (4.2).

5. Mechanical effect of magnetic disks on cells
Let a disk with a radius R be completely glued to a membrane and rotated at an angle θ off

the membrane plane. Under concern is a phenomenon having the scale much smaller than a cell
radius Rc, and the curvature of the membrane is neglected therefore. The membrane is assumed
to be thin and is supposed to be fixed at a circle with a large radius R∞ and with the center at
the same point with the disk center. The formulation involves the polar coordinates r, φ of the
points in the plane of the undeformed membrane and the related Cartesian coordinates x, y, z.

The estimation of elastic forces generated under rotation of the disk assumes approximately
that the elastic forces are governed by deformation of the membrane. By the data from [4],
membranes of cells of mammals are stretched in the normal condition so that tension is of the
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order of σ = 10−5 N/m. The tension of the membrane is compensated by the pressure inside the
cells, and the pressure value is higher by ∆P = 2σ/Rc than the ambient pressure. In a cell with
Rc = 10 µm, ∆P ≈ 2 Pa.

The displacement of points along φ and r under low straining has higher order of infinitesimals
than the displacements in the perpendicular direction to the membrane. Let the latter be denoted
by w(r, φ). Thus, the displacement of the membrane points is described by one function w(r, φ).
The inclination of the circle with a radius R by a small angle θ and the zero rise at a circle
r = R∞ yields the boundary conditions

w(R,φ) = Rθ cosφ

w(R∞, φ) = 0. (5.1)

The membrane takes a shape such that the elastic energy I is minimum. In accordance
with [8]

I = πσ

∫ R∞

R

((
∂w

∂r

)2

+

(
1

r

∂w

∂φ

)2
)
r dr.

The condition for I of a uniform membrane to be minimal is the fulfilled equation below

1

r

∂

∂r

(
r
∂w

∂r

)
+

1

r2
∂2w

∂φ2
= 0. (5.2)

The solution is tried by the method of separation of variables in the form of w(r, φ) =
f(r) cosφ, where the dependence on the angle φ was at once found from the first boundary
condition (5.1). For the function f(r), the equation (5.2) produces an ordinary differential
equation

1

r

d

dr

(
r
df(r)

dr

)
− 1

r2
f(r) = 0.

Its general solution
f(r) = A/r +Br,

where A,B are arbitrary constants. The values of the constants are found from the boundary
conditions (5.1)

A = θR2/(1− (R/R∞)2), B = −θ(R/R∞)2/(1− (R/R∞)2).

The function f(r) coincident with the two-dimensional solution w(r, φ) in the x axis is shown
at θ = 25o in Fig. 4.

The membrane is inclined at each point relative to the plane, in particular by an angle γ in
the radial direction

tg(γ(r, φ)) =
∂w(r, φ)

∂r
=

df(r)

dr
cosφ =

(
−A

r2
+B

)
cosφ.

At a rigid circle boundary, it is possible to simplify the formula due to smallness of the angle
γ when tg γ ≈ γ ≈ sin γ. Then γ ≈ γ0 cosφ, where γ0 ≈ θ(1 + (R/R∞)2)/(1− (R/R∞)2).

From symmetry, the forces at the circle boundary produce zero x−, z− components of the
torque. Let us find the y-component. Under the assumed low straining, the tension of the
membrane remains, within small limits, equal to the preset value σ, accordingly, the mem-
brane section at the arc pulls the circle with a force dF = σRdφ in the direction that is
tangential to the membrane and is normal to the circle. This direction is approximately set
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by a vector e ≈ (cosφ, sinφ,−γ0 cosφ). The vector product of the force point radius-vector
r ≈ (R cosφ,R sinφ,Rθ cosφ) and the force gives

dNy = [r × e dF ]y = σR2(θ + γ0) cos
2 φdφ.

The integration over the whole circle yields the y-component of the torque

Ny ≈ σπR2(θ + γ0)/2 ≈ θσπR2/(1− (R/R∞)2). (5.3)

H
∞w(x, 0)

x

−R

R

θ

θ
∞

Fig. 4. Deformation of membrane at the disk rotation by θ = 25o. The rectangle is the disk
cross section

This expression includes the parameter R∞, the value of which is only determined by the
inequalities Rc ≫ R∞ ≫ R. For the employable disks having R < 0.5 µm, at a cell radius
Rc > 10 µm, it is acceptable upon the average that R∞ =

√
RcR ≈ 2 µm. Then, it follows from

(5.3) with an error of round 4% that

Ny ≈ θσπR2. (5.4)

The found torque of elastic forces neutralizes the torque (4.2) that rotates the magnetized
disk in the magnetic field. This equality, with the disk volume Ω written in terms of the disk
radius R and height h, yields the disk rotation angle

θ ≈ −0.5hµ0(H
∞)2(β − α) sin (2θ∞)/σ. (5.5)

The appropriate calculations were performed for a nickel disk with a radius R = 250 nm
and a height h = 60 nm in external magnetic field with a strength H∞ = 12 kA/m = 150 Oe.
Nickel in weak fields has relative magnetic permeability µ ≈ 400. In Secs. 2 and 3, the magnetic
polarizabilities of the disk were found relative to its volume, α ≈ 1.37 and β ≈ 9.5. The specific
tension of the membrane is σ = 10−5 N/m [4]. Placing these values in (5.5) results in the
maximum disk rotation θ ≈ 25o. The maximum angle of rotation comes when the angle between
the external magnetic field and the disk plane is θ∞ = 45o.

6. Extension of the application area of the results
This study offers solutions to stationary problems; at the same time, the results are appli-

cable to analyzing quasi-stationary processes, for instance, low-frequency variations of external
magnetic field.

It is safe to mention that the disk rotation angle (5.5) comes only for magnetic disks oriented
relative to the magnetic field direction so that θ∞ = 45o. Inasmuch as particles have arbitrary
orientations when attach to cells, the mentioned values of the parameters should be reduced a
few times for assessing average influence on a cell.
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In some experiments, for instance, [6], the magnetic field H∞ varies in time. The involved
frequency equals 50 Hz. It is readily assessed that at such low frequencies, both viscosity of
fluid and inertia of a disk and surrounding fluid involved in motion are neglectable, and it is
assumable that the process is quasi-stationary. The resultant limit values of the disk rotation
angle (5.5) are achievable when the magnetic field has the maximum strength, which occurs two
times within a period. When the field acquires opposite direction, the magnetic moment of the
disk changes the direction as well. For this reason, equal to their vector product, the torque (4.2),
which rotates the magnetized disk in the magnetic field, keeps the sign. Accordingly, during the
two half-periods, the disk rotates in the same direction as the field gets stronger and recurs free
position when the field becomes weaker. Therefore, in 0.01 s, the disk rotates at a maximum
angle and resets the initial position conformable with an undeformed membrane.

The presented model assumes linear relation between magnetization of a substance and the
magnetic field strength (1.2), and this assumption is approximately valid for ferromagnetic ma-
terials in weak fields. The description of micro- and nano-objects requires a more complicated
micro-magnetic model [7]. The detailed distributions of magnetization intensity become more
complex in this case. For instance, thin micro-disks have circumferencial magnetization non-
vanishing as the external magnetic field H∞ tends to zero. The results obtained in Secs. 2
and 3 in this study are inapplicable to micro- and nano-disks. Nevertheless, the findings on
micro-magnetic modeling from [5] mean that the magnetic moment of a micro-disk as a whole
is adequately proportional to the strength of the field when it is less than a saturation field
and is parallel to the plane of the disk. Moreover, these data can in rough way be written in a
(4.1)-conformable form Px = βΩH∞

x with β ≈ 20. Our calculations for disks used in [5] yield a
similar value of β at representative values of magnetic permeability µ from one to eight thousand
for permalloy Fe20Ni80 in macroscopic bodies. These largely scattered values of µ, resultant
from different manufacture technologies, have nearly no effect on β that is the same at high µ
and at µ = ∞. For disks with a twice as little diameter, the property of magnetic polarizability
is illustrated in Fig. 2.

It is possible that for a field with arbitrary orientation relative to a disk, the magnetization
intensity and field relation may have the form close to (4.1) for micro-disks despite non-linearity
of the micro-magnetic model. Then, the expression (5.5) is valid for the disk rotation angle.
Otherwise, at different magnetization intensities, it is only possible to use the estimate of the
membrane response to rotation of the glued disk, (5.4), obtained in Sec. 5 in the framework of
the theory of elastic thin shells.

Conclusion

In that way, we have calculated deformations of typical living cells under the influence of
magnetic disks glued to these cells.

The relations between the magnetic polarizability of disks and the magnetic permeability of
a disk substance have been obtained with the assumption that the magnetic permeability of a
substance equals a given constant. This approximation is valid for modes far from saturation,
i.e. for weak fields.

This study shows that representative thin disks made of such ferromagnetic materials as iron,
nickel and cobalt magnetize in the same way as at infinite magnetic permeability µ = ∞. It is
much simpler to solve problems with µ = ∞ since they reduce to the boundary value problems
for a Laplace equation outside a domain occupied by a magnetic material.

The article illustrates applicability of the results when initial modeling assumptions are only
partly valid.

This study has been supported by the Russian Science Foundation (project 14-15-00805).
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Россия

Построено аналитическое решение задачи о деформации упругой мембраны, которое позволяет
анализировать деформации типичных живых клеток под воздействием прикрепленных к клет-
кам магнитных дисков. На основе численного решения двумерных эллиптических краевых задач
получены зависимости магнитных поляризуемостей дисков от магнитной поницаемости их ве-
щества. Показано, что типичные тонкие диски, изготовленные из железа, никеля, кобальта, в
режимах, далеких от насыщения, намагничиваются практически так же, как при бесконечной
магнитной проницаемости. В работе решены стационарные задачи, однако полученные резуль-
таты могут быть использованы и при анализе квазистационарных процессов, происходящих,
например, при изменении внешнего магнитного поля с небольшой частотой.

Ключевые слова: эллиптическая краевая задача, магнитная поляризуемость, упругая мембрана,
живая клетка.
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