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Abstract: This paper presents a method to solve the constrained infinite-time linear quadratic
regulator (LQR) problem. We use an operator splitting technique, namely the alternating
minimization algorithm (AMA), to split the problem into an unconstrained LQR problem and
a projection step, which are solved repeatedly, with the solution of one influencing the other.
The first step amounts to the solution of a system of linear equations (with the possibility to
pre-factor) and the second step is a simple clipping. Therefore, each step can be carried out
efficiently. The scheme is proven to converge to the solution to the infinite-time constrained
LQR problem and is illustrated by numerical examples.
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1. INTRODUCTION

An important extension of the famous result of Kalman
(1960) on the closed form solution of the infinite-horizon
linear quadratic regulator (LQR) problem is the case
where the input and state variables are constrained. This
problem is computationally significantly more difficult and
has been by and large addressed only approximately. A
prime example of an approximation scheme is model pre-
dictive control (MPC) which approximates the infinite-
time constrained problem by a finite-time one. Stability of
such MPC controllers is then typically enforced by adding
a suitable terminal constraint and a terminal penalty. The
inclusion of a terminal constraint limits the feasible region
of the MPC, and, consequently, the region of attraction
of the closed-loop system. In practical applications, this
problem is typically overcome by simply choosing a “suf-
ficiently” long horizon based on the process insight (e.g.,
dominant time constant). Closed-loop behavior is then an-
alyzed a posteriori, for instance by exhaustive simulation
or by investigating the set of optimality conditions of the
underlying optimization problem Primbs (2001).

There have been few results addressing directly the
infinite-horizon constrained LQR problem. The most well-
known effort is the work of Scokaert and Rawlings (1998),
where they extend the work of Sznaier and Damborg
(1987). The idea is to solve a sequence of quadratic pro-
grams (QPs) of finite horizon length, which is monoton-
ically non-decreasing. After each QP has been solved, a
membership condition for the terminal state is checked. If
the condition is not satisfied, the horizon was insufficient
and hence has to be increased.

Our approach is inspired from the framework of operator
splitting methods, a class of algorithms that has recently
gained considerable attention in, e.g., the compressed sens-
ing, machine learning and image processing communities
(see, e.g., Combettes and Pesquet (2011); Boyd et al.
(2011); Esser (2010)). From this family of algorithms,
we use the Alternating Minimization Algorithm (AMA)
Tseng (1991) to split the infinite-horizon constrained LQR
problem into two parts, an unconstrained LQR problem
and a proximal minimization problem. These two problems

are solved repeatedly (with the solution of one influencing
the cost function of the other) until convergence to the
solution to the original problem. This is in contrast to the
approach of Scokaert and Rawlings (1998), which requires
the solution of a sequence of constrained QPs. We show
that both sub-problems of the proposed algorithm can be
solved tractably (which is not a priori obvious since we are
working with infinite sequences), the first one by solving a
single finite-dimensional system of linear equations and the
second one by simple clipping of finitely many real num-
bers on the non-positive real line. The proposed method is
inspired by the splitting scheme used in O’Donoghue et al.
(2012) for the finite-time LQR problem.

Convergence of the scheme, and, consequently, recovery of
a stabilizing controller is guaranteed under mild assump-
tions. Therefore the proposed algorithmic scheme provides
a means to compute the solution of the infinite-horizon
constrained LQR problem with guaranteed convergence.
The algorithm can address large-scale problems and, we
believe, is potentially competitive for real-time control.

The paper is organized as follows: In Section 2 we in-
troduce the problem and formulate it by means of the
operator splitting framework. In Section 3 we explain in
detail the algorithmic scheme for the solution. Section 4
discusses the computational aspects; we propose a method
to efficiently solve the linear system that appears in each
iteration of the algorithm, which is the most computa-
tionally demanding step. In Section 5 the main theoretical
results are stated. In Section 6 we briefly introduce the idea
of accelerating the algorithm using Nesterov’s relaxation
scheme. Both the basic and the accelerated version of
the algorithm are illustrated with two examples in Sec-
tion 7. The theoretical justification of most of the results
presented here derives from operator splitting theory in
Hilbert spaces. All proofs that are not presented due to
space limitations are included in the extended version of
the paper Stathopoulos et al. (2014).
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2. PROBLEM STATEMENT AND AN OPERATOR
SPLITTING APPROACH

2.1 Formulation of the problem

The goal of the paper is to solve the infinite-time con-
strained LQR problem

minimize 1
2

∑∞
i=0 x

>
i Qxi + u>i Rui

subject to xi+1 = Axi +Bui, i ∈ N
x0 = xinit
Cxi +Dui ≤ b.

(1)

where xi ∈ Rn and ui ∈ Rm and b ∈ Rp. We make the
following standing assumption:
Assumption 1. The pair (A,B) is stabilizable, the optimal
value of problem (1) is finite, the set

X := {x ∈ Rn | Cx ≤ b}
contains the origin in the interior, the matrix [C D] has
full column rank and the matrices Q and R are positive
definite.
Remark 1. Assumption 1 is standard except for the re-
quirement that Q be positive definite; this requirement
facilitates the use of the Alternating minimization algo-
rithm (AMA) to solve problem (1) and can be dropped
by considering the dense form of (1); this is the subject of
future work.
The full column rank assumption on the matrix [C D] can
be trivially satisfied by adding redundant constraints on
states and inputs, e.g., box constraints with sufficiently
large diameter so that they are never activated. Note that
the condition is a technicality in order for the convergence
proof to hold true, and does not appear in the algorithmic
implementation.
Remark 2. (Stability). Clearly, under Assumption 1, the
optimal control sequence for problem (1) is stabilizing.
Therefore, there is no need to enforce stability ad hoc
as is commonly done when the infinite-time problem (1)
is approximated by a finite-time one solved in a receding
horizon fashion.

We view any infinite sequence

z := (z0, z1, . . .) :=
(
x
u

)
:=
(
x0, x1, . . .
u0, u1, . . .

)
as an element of an l2-weighted (or l2w) real Hilbert
space Hz induced by the inner product

〈z,y〉 =

∞∑
i=0

w−iz>i yi , ∀y ∈ Hz, z ∈ Hz,

where w > 1. The norm of any z ∈ Hz is thus given by

‖z‖Hz :=
√
〈z, z〉 =

√√√√ ∞∑
i=0

w−i‖zi‖22 .

Unless stated otherwise, for the rest of the paper by a
Hilbert space we mean the l2w real Hilbert space as just
introduced.

In order to solve the problem (1) by making use of operator
splitting techniques, we can rewrite (1) using the slack
variables σi ∈ Rp, i ∈ N, as

minimize 1
2

∑∞
i=0 x

>
i Qxi + u>i Rui

subject to xi+1 = Axi +Bui, i = 0, . . .
x0 = xinit
Cxi +Dui − σi = b, σi ≤ 0.

(2)

Viewing the sequence σ := (σi)i∈N as an element ofHσ, an
l2w Hilbert space defined analogously to Hz, we can further
rewrite problem (2) as

minimize h(z) + g(σ)
subject to Az − σ = b, (3)

where

• h(z) = f(z) + δD(z) = 1
2 〈z, Q

∞z〉+ δD(z), with

δD(z) =

{
0 xi+1 −Axi −Bui = 0, i ∈ N

x0 = xinit
∞ otherwise ,

and Q∞ = diag(Q,Q, . . .), where Q = diag(Q,R).
•

g(σ) =
{

0 σi ≤ 0 ∀ i ∈ N
∞ otherwise ,

• The operator A : Hz → Hσ is defined by (Az)i =
Āzi, where Ā := [C D]

• b = (b, b, b, . . .) ∈ Hσ.
We solve problem (3) by applying the Alternating Mini-
mization Algorithm (AMA) Tseng (1991) in an infinite-
dimensional Hilbert space framework. AMA belongs to
the family of operator splitting methods, thus allowing for
decomposition of a complex optimization problem into a
sequence of simpler ones. The method is presented below.

Algorithm 1 AMA for Problem (3).

0: Initialize λ0 ∈ Hσ, ρ ∈ (0, 2β) 1

repeat

1: zk+1 = argmin
z∈Hz

{
h(z)−

〈
A?λk, z

〉}
2: σk+1 = argmin

σ∈Hσ

{
g(σ) +

〈
λk,σ

〉
+ ρ

2‖Az
k+1− b− σ‖2Hσ

}
3: λk+1 = λk + ρ(b−Azk+1 + σk+1)

until termination condition is satisfied

The algorithm produces a sequence (of sequences) zk

converging to z∞, the sequence optimal in (1). This result
is stated rigorously in Section 5, Theorem 1.

Contrary to the most popular operator splitting method,
the Alternating Direction Method of Multipliers (ADMM),
AMA considers the minimization of the standard La-
grangian at Step 1 of Algorithm 1 and the augmented
Lagrangian at Step 2, while ADMM considers minimizing
the augmented Lagrangian in both steps. It will become
apparent later that this attribute is crucial in the case of
the problem we are trying to solve, but comes with the
extra restriction that the function h(z) has to be strongly
convex in order to guarantee convergence. Furthermore, it
introduces restrictions to the range of feasible stepsizes ρ
for AMA to provably converge.

In order to prove convergence of the method in a real
Hilbert space, we view the AMA as a special case of the
forward-backward splitting algorithm, first introduced by
Bruck (1977), popularized by Passty (1977) and proven
to convergence in a real Hilbert space in Bauschke and
Combettes (2011). More details on convergence of AMA
as used in this paper are in Section 5.

3. A FINITE DIMENSIONAL REPRESENTATION

The goal of this section is to show that each step of
Algorithm 1 can be carried out in a computationally

1 The permitted range for ρ depends on the spectral radius of
Ā, i .e., β = 1/‖Ā‖22. The derivation of this result is presented in
(Stathopoulos et al., 2014, Appendix A, Theorem 4).



tractable way (which is not a priori obvious since it
involves infinite sequences of real numbers).

Written explicitly the iterations of Algorithm 1 become

zk+1 = argmin
z

{
δD(z) +

1

2
〈z, Q∞z〉 −

〈
A?λk, z

〉}
(4)

σk+1
i =

(
Āzk+1

i − b− λki /ρ
)
− , i ∈ N (5)

λk+1
i = λki + ρ(b− Āzk+1

i + σk+1
i ), i ∈ N , (6)

where (·)− = min{·, 0}. The first step of the algorithm
(Eq. (4)) is an unconstrained LQ problem with a biasing

term 〈A?λk, z〉. Therefore, if for each iterate k ∈ N the

sequence λk = (λki )i∈N is zero from some time point T k

on, the first step is equivalent to the finite-dimensional
equality-constrained quadratic program (QP):

minimize 1
2x
>
TkPLQxTk + 1

2

∑Tk−1
i=0

{
x>i Qxi + u>i Rui

−λki (Cxi +Dui)
}

subject to xi+1 = Axi +Bui, i = 0, . . . , T k

x0 = xinit ,
(7)

where we minimize over (x0, . . . , xTk
), (u0, . . . , uTk−1), and

PLQ is the solution to the Riccati equation corresponding
to the standard linear quadratic regulator problem asso-
ciated with the matrices (A,B,Q,R). Problem (7) can be
efficiently solved by formulating the corresponding KKT
system. The solution involves a single matrix inversion
(which can be precomputed off-line for a given T k; see Sec-
tion 4 for details on how to efficiently carry out this step).
For i ≥ T k, the control law is ui = KLQxi, where the LQ
gain KLQ is given by KLQ = (R + B>PLQB)−1B>PLQA.
In conclusion, the first step (Eq. (4)) can be carried out
efficiently as long as we can guarantee that for each k a
finite time T k exists such that λki = 0 for i ≥ T k.

To see that this is indeed true we need to analyze the
second and third steps (Eq. (5), (6)). First, notice that
when initialized with λ0i = 0 for all i ∈ N, the statement
trivially holds for k = 0. Assume now k ∈ N and λki = 0 for
all i ≥ T k. Then according to the previous discussion, for
times i ≥ T k, the sequence xk+1

i is generated by the LQ

controller uk+1
i = KLQx

k+1
i and therefore xk+1

i converges
to the origin. Consequently, by Assumption 1, there exists
a time T k+1 ≥ T k such that Āzk+1

i = Cxk+1
i +Duk+1

i ≤ b
for all i ≥ T k+1. Looking at (5) and noticing that λki = 0

for i ≥ T k, it follows that σk+1
i = Āzk+1

i − b for all

i ≥ T k+1. As a result, the dual update term ρ(b−Āzk+1
i +

σk+1
i ) in (6) is equal to zero for all i ≥ T k+1 and therefore

also λk+1
i = 0 for all i ≥ T k+1. Therefore, there indeed

exists a sequence (T k)k∈N defined by the recursion

T k+1 := min{T ≥ T k | Cxk+1
i +Duk+1

i ≤ b ∀ i ≥ T}, (8)

with T 0 = 0, such that λki = 0 for all i ≥ T k. To determine
T k+1 computationally (given T k and xk+1 and uk+1) we

simply find the first time TS that xk+1
i enters a given

subset S, with 0 ∈ intS, of the maximum positively
invariant set of the system x+ = (A + BKLQ)x subject
to the constraint (C + DKLQ)x ≤ b. The time T k+1 is
then equal to the first time greater than T k such that
Cxk+1

i + Duk+1
i ≤ b holds for all i ∈ {T k+1, . . . , TS}.

More formally, we have the equality

T k+1 = min
{
T ≥ T k | ∃TS s.t. Cxk+1

i +Duk+1
i ≤ b (9)

∀ i ∈ {T, . . . , TS} and xk+1
TS ∈ S

}
.

Remark 3. In practice, to determine T k+1 after solv-
ing (7), we iterate forward the system dynamics x+ = (A+

BKLQ)x starting from the initial condition xk+1
Tk until

xk+1
i ∈ S.

Remark 4. The set S is determined offline and is not
required to be invariant. A good candidate is the set
{x | x>PLQx ≤ 1} scaled such that it is included in
{x | (C+DKLQ)x ≤ b}, or any subset of this set containing
the origin in the interior.

The preceding discussion is summarized in the following
algorithm:

Algorithm 2 AMA for the constrained LQR

Require: Q � 0, R � 0, Ā = [C D] full column rank
0a: Determine PLQ,KLQ solving the unconstrained LQR

problem associated with the matrices (A,B,Q,R).
0b: Determine a set S, with 0 ∈ intS, included in

any positively invariant set for the system
x+ = (A+BKLQ)x subject to the constraint
(C +DKLQ)x ≤ b. See Remark 4.

0c: Initialize λ0i = 0, T 0 = 0.
repeat

1: Solve problem (7) to get xk+1, uk+1

2: Determine T k+1 using (9) (see Remark 3)

3: Set σk+1
i =

(
Cxk+1

i +Duk+1
i − b− λki /ρ

)
−

i = 0, . . . , T k+1

4: Set λk+1
i = λki + ρ(b− Cxk+1

i −Duk+1
i + σk+1

i )
i = 0, . . . , T k+1

until a termination condition is satisfied 2

4. COMPUTATIONAL ASPECTS

The most expensive step of Algorithm 2 is step 1, which
requires the solution of the equality-constrained QP (7).
Necessary and sufficient optimality conditions for this
problem are given by the KKT system[

A11 A
>
21

A21 0

] [
z̃
ν

]
=
[−h1
h2

]
. (10)

The involved matrices and vectors are defined as follows:

z̃ =


x0
u0
...
xT

 , h1 =


ρC>λk0
ρD>λk0

...
ρC>λkT

 , h2 =


xinit

0
...
0

 ,
A11 = diag(ITk ⊗Q, PLQ),

and

A21 =


I 0 0 0 · · · 0 0 0
−A −B I 0 · · · 0 0 0
0 0 −A −B · · · 0 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · I 0 0
0 0 0 0 · · · −A −B I

 ,
where A11 is block diagonal with T k blocks of size (n +
m) × (n + m) and the last block n × n for PLQ; A11 � 0

2 Several termination criteria exist. We simply measure the progress
of the error in the states for two subsequent iterates, as described in
Section 7.



since Q � 0 by assumption. The matrix A21 is of full row
rank (T k + 1)n.

We use block elimination to solve equation (10) (see (Boyd
and Vandenberghe, 2004, Appendix C)). The procedure
involves inverting S = −A>12A−111 A12, which can be done by
using Cholesky factorization on −S and forward-backward
substitution.

Note that the size of the QP (7) can only grow in the
subsequent iterations of AMA since, by definition (8),
the sequence T k is nondecreasing. We thus look for an
efficient way to solve the upcoming QPs without seriously
increasing the computational load. This can be done by
observing that:

(1) Regarding matrix A11, increase of T k by ∆T k = T k−
T k−1 translates to inserting ∆T k blocks Q−1 to A−111

such that P−1LQ remains the last bock. Thus A11 does
not have to be re-inverted.

(2) Regarding matrix A21, the rows are expanded by
∆T k additional [ 0 . . . 0 −A −B ] matrices, and the
columns with the corresponding (0, 0, . . . , I) matrices
of suitable dimension.

Hence, the matrices do not need to be reformulated. A
Cholesky factorization can be performed every time the
matrices augment, i.e., at every iterate that ∆T k > 0.
Empirically, we observe that T k changes just a few times
during the first iterates and converges to a stationary
value, typically long before the algorithm itself has ter-
minated.

Remark 5. The method for solving (7) presented here is
just one among many and not necessarily the most efficient
one. For instance, Riccati recursion (with the bulk of it
carried out offline for a sufficiently large estimate of T k)
could be significantly more efficient. This is subject to
further investigation.

5. CONVERGENCE RESULTS

In this section we analyze convergence of Algorithm 2.
In particular we show that (i) the state-input sequence
zk converges to the optimal state-input sequence, and
(ii) that the sequence T k defined in (8) is bounded. In
order to do so, we use monotone operator theory. We
defer proofs relying on this theory to (Stathopoulos et al.,
2014, Appendix A), where we introduce the necessary
background; Appendix B of the same document provides
some supplementary proofs to further clarify the results
from Appendix A.

For an introduction to monotone operator theory and
the corresponding algorithms, the interested reader is
referred to Bauschke and Combettes (2011) and Eckstein
and Bertsekas (1992). The course notes Boyd and Parikh
(2011) provide a more readable but brief introduction
to the subject. Finally, in Esser (2010), the connection
between various operator splitting methods is analyzed in
a clear and comprehensible manner.

5.1 Convergence of Algorithm 2

Several results exist for convergence of operator splitting
methods in infinite-dimensional Hilbert spaces. In Attouch
and Soueycatt (2008) the authors prove convergence of

a variant of ADMM, namely the Proximal Alternating
Direction Method of Multipliers (PADMM) in the weak
sense. Weak convergence of the Douglas-Rachford method
and of ADMM were recently proven in Svaiter (2011) and
Moradifam and Nachman (2011), respectively.

It is well-known that AMA can be cast as the forward-
backward splitting algorithm (FBS) (see, e.g., Tseng
(1991), Goldstein et al. (2012)). The result is stated in
Proposition 1, Appendix A and the conversion is per-
formed in Appendix B of Stathopoulos et al. (2014). Mak-
ing use of the convergence properties of FBS in real Hilbert
spaces, we can establish the following crucial result:

Theorem 1. The state-input sequence
(
zk
)
k∈N generated

from Algorithm 2 converges strongly to the optimal state-
input sequence z∞, i.e.,

‖zk − z∞‖Hz
k→∞−−−−→ 0.

Proof. The proof is provided in (Stathopoulos et al.,
2014, Appendix A).

5.2 Boundedness of the sequence T k

In this section we prove that sequence defined in (8), which
guarantees that the size of the equality-constrained QP (7)
solved in each iteration of Algorithm 2 is bounded. We
establish this by proving that the sequence of the first
hitting times of the interior of the set S is bounded.

Theorem 2. The sequence T k generated by the Algo-
rithm 2 is bounded.

Proof. First note that for the statement to hold it is
sufficient to show that

lim sup
k→∞

T k <∞. (11)

To prove (11), define the sequence of the first hitting times
of the interior of S as

τk := inf{i ∈ N | xki ∈ intS}, k ∈ N ∪ {+∞},
where τ∞ < ∞ is the hitting time of the optimal state
sequence x∞. Clearly, τk ≥ T k and τk < ∞ since the
origin is in the interior of S and for each k ∈ N the sequence
(xki )i∈N generated by the Algorithm 2 converges to the
origin as i → ∞. We shall prove that lim supk→∞ τk ≤
τ∞ <∞, which implies (11).

For the purpose of contradiction assume that there exists
a subsequence τkj , j ∈ N, with limj→∞ τkj ≥ τ∞ + 1.
Since the sequence of hitting times τk is integer valued, this
implies that there exists a j? ∈ N such that τkj ≥ τ∞ + 1
for all j ≥ j?. We now use this to contradict the strong
convergence of xk to x∞ from Theorem 1. To this end,

observe that x∞τ∞ ∈ intS whereas x
kj
τ∞ /∈ intS for all j ≥

j?. By the definition of the interior there exists an ε > 0
such that y ∈ intS for all y with ‖y−x∞τ∞‖2 < ε. Therefore

‖xkjτ∞ − x∞τ∞‖2 ≥ ε for all j ≥ j?, and consequently

‖zkj − z∞‖Hz =

√√√√ ∞∑
i=0

w−i(‖xkji − x∞i ‖22 + ‖ukji − u∞i ‖22)

≥
√
w−τ∞‖xkjτ∞ − x∞τ∞‖22 ≥ w−τ

∞/2ε > 0

for all j ≥ j?, contradicting the strong convergence of zk

to z∞ asserted by Theorem 1.



6. ACCELERATION

In this section we discuss how we can accelerate the
convergence of Algorithm 2 by using the fast version
of AMA, called FAMA, accelerated through Nesterov’s
optimal over-relaxation sequence. For the particular case
of AMA, the acceleration first appeared in Goldstein et al.
(2012). The scheme is very simple:

Algorithm 3 FAMA for Problem (3).

0: Initialize λ0 = λ̂
0
∈ Hσ and α0 = 1.

repeat

2: zk+1 = argmin
z∈Hz

{
h(z)−

〈
A>λ̂

k
, z
〉}

3: σk+1 =argmin
σ∈Hσ

{
g(σ)+

〈
λ̂
k
,σ
〉

+ ρ
2‖Az

k+1 − b− σ‖2Hσ
}

4: λk+1 = λ̂
k

+ ρ(b−Azk+1 + σk+1)

5: αk+1 = (1 +
√

1 + 4(αk)2)/2

6: λ̂
k+1

= λk + αk−1
αk+1 (λk − λk−1)

until termination condition is satisfied

As demonstrated in the numerical examples in Section 7,
the scheme can, depending on the particular problem in-
stance, lead to a significant performance improvement (i.e.,
reduce the number of iteration needed for the algorithm
to converge). On the other hand, currently there is no
proof of convergence of zk to z∞ in general Hilbert spaces,
although the authors expect that such a result should hold
and are currently investigating it.

7. EXAMPLES

For illustrative purposes, we run the algorithm on two
systems, a small system with two states and one input
and a linearized model of a quadrocopter with 12 states
and 4 inputs. We are interesting in the generated times
T k as k tends to infinity (denoted as T∞), as well as
the number of iterations that the algorithm needs for
convergence. In order to do this, we sample a set of feasible
initial conditions and solve the corresponding problems.
The stepsize is set to the median of the allowed interval,
i.e., at β = 1/‖Ā‖22. The termination criterion is simply
set as ‖xk − xk−1‖ ≤ 10−4.

7.1 Two states, one input system

Consider the following system defined as

A =
[

1.988 −0.998
1 0

]
, B =

[
1.125

0

]
,

xi+1 = Axi +Bui,
with constraints

‖x‖∞ ≤ 3, ‖u‖∞ ≤ 8

and Q = I, R = 10I.
The system is simulated for 862 different initial conditions
x0. In Figure 1 the distribution of T∞ = maxk{T k} is
depicted. We see that T∞ never exceeds 12. In Figure
2 the distribution of the iterations needed from AMA to
reach the specified accuracy is presented. Many problems
converge within less than 500 iterations, while a few
need around 4000. The mean was computed to be 1280
iterations. Although the iterations are cheap to compute,
we can state that AMA does not perform that well in
terms of the number of iterations. The distribution of the
iterations needed in case we use FAMA is illustrated in
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Fig. 1. Histogram of T∞ = maxk{Tk} for 862 initial conditions of
the 2 state system sampled from a normal distribution centered
around (1,−2) with standard deviation 0.5.
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Fig. 2. Number of iterations needed for convergence for 862 in-
stances of the 2 state system using AMA. The mean value of
iterations is depicted with the black dashed line.
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Fig. 3. Number of iterations needed for convergence for 862 in-
stances of the 2 state system using FAMA. The mean value of
iterations is depicted with the black dashed line.

Figure 3. The acceleration is significant, with problems
solved up to 17 times faster than when using AMA. The
average speedup is 5.2 times.

7.2 Quadcopter system

The next system we consider is a quadcopter linearized
in a hovering equilibrium. The system has 12 states which
correspond to position, angle and the corresponding veloc-
ities. There are 4 inputs corresponding to the 4 propellers.
There are box constraints in all states and inputs, mainly
ensuring the validity of the linearized model.

We simulate 64 different initial conditions sampled from
a normal distribution centered around the origin with
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Fig. 5. Evolution of the sequence Tk defined in (8).

standard deviation 0.5, which would roughly correspond
to deviations of ≈ 30◦ in terms of angles and angular
velocities. A histogram of T∞ = maxk{T k} is presented in
Figure 4. We can observe that the values are significantly
larger than those of the previous system. Accelerating
by means of FAMA was not particularly useful in this
case due to the oscillatory behavior of the method near
the termination threshold. There are ways to remedy this
behavior, e.g., the use of an adaptive restarting scheme
as suggested in O’Donoghue and Candes (2013); this is
a topic of further investigation. Lastly, we would like to
illustrate the time evolution of the sequence T k for a
specific instance of the problem, in Figure 5. It is worth
mentioning that T k was updated in total 7 times in
322 iterations, which means that the KKT matrix was
factorized only 7 times. For the rest of the iterations, we
only needed to perform a forward-backward substitution.

8. CONCLUSION

We have presented a method to solve the infinite-time
constrained LQR problem using the alternating minimiza-
tion method (AMA) and its accelerated version. Future
work will investigate another acceleration techniques (e.g.,
adaptive restarts, preconditioning), more efficient numer-
ical implementation, the use of other splitting techniques,
and extensions to broader problem classes (e.g., tracking).

ACKNOWLEDGEMENTS

The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP/2007-2013)/
ERC Grant Agreement n. 307608.

In addition, the authors would like to thank Jean-Hubert
Hours and Ye Pu for fruitful discussions.

REFERENCES

Attouch, H. and Soueycatt, M. (2008). Augmented La-
grangian and Proximal Alternating Direction Methods
of Multipliers in Hilbert spaces. Applications to Games,
PDE’s and Control. Pacific Journal of Optimization 5.

Bauschke, H. and Combettes, P. (2011). Convex Analy-
sis and Monotone Operator Theory in Hilbert Spaces.
Springer.

Boyd, S. and Parikh, N. (2011). Monotone operators.
EE364b Course Notes.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J.
(2011). Distributed Optimization and Statistical Learn-
ing via the Alternating Direction Method of Multipliers.
Found. Trends Mach. Learn.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimiza-
tion. Cambridge University Press.

Bruck, R. (1977). On the weak convergence of an ergodic
iteration for the solution of variational inequalities for
monotone operators in Hilbert space. J. Math. Anal.
Appl.

Combettes, P. and Pesquet, J.C. (2011). Fixed-Point
Algorithms for Inverse Problems in Science and Engi-
neering, chapter Proximal Splitting Methods in Signal
Processing. Springer.

Eckstein, J. and Bertsekas, D. (1992). On the Douglas-
Rachford splitting method and the proximal point algo-
rithm for maximal monotone operators. Math. Program.

Esser, J. (2010). Primal Dual Algorithms for Con-
vex Models and Applications to Image Restora-
tion, Registration and Nonlocal Inpainting. URL
http://books.google.ch/books?id=EVkHcgAACAAJ.

Goldstein, T., O’Donoghue, B., and Setzer, S. (2012).
Fast Alternating Direction Optimization Methods. URL
ftp://ftp.math.ucla.edu/pub/camreport/cam12-35.pdf.

Kalman, R. (1960). Contributions to the theory of optimal
control. Boletin de la Sociedad Matematica Mexicana.

Moradifam, A. and Nachman, A. (2011). Convergence
of the alternating split Bregman algorithm in infinite-
dimensional Hilbert spaces. ArXiv:1112.1960.

O’Donoghue, B. and Candes, E. (2013). Adaptive Restart
for Accelerated Gradient Schemes. Foundations of
computational mathematics.

O’Donoghue, B., Stathopoulos, G., and Boyd, S. (2012). A
splitting method for optimal control. IEEE Transactions
on Control Systems Technology.

Passty, G. (1977). Ergodic convergence to a zero of the
sum of monotone operators in Hilbert space. J. Math.
Anal. Appl.

Primbs, J.A. (2001). The analysis of optimization based
controllers. Automatica, 37, 933–938.

Scokaert, P. and Rawlings, J.B. (1998). Constrained
Linear Quadratic Regulation. IEEE Transactions on
Automatic Control.

Stathopoulos, G., Korda, M., and Jones, C.N. (2014).
Solving the infinite-horizon constrained LQR prob-
lem using splitting techniques. Technical report,
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