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Abstract— We propose a multi-robot tracking method to
provide state estimates that allow a group of robots to maintain
a formation even when the communication fails. We extend
a Gaussian Mixture Probability Hypothesis Density filter to
incorporate, firstly, absolute poses exchanged by the robots,
and secondly, the geometry of the desired formation. Sensory
detections, information about the formation, and communicated
data are all combined in the extended Gaussian Mixture
Probability Hypothesis Density filter. Our method is capable
of maintaining the state estimates even when long-duration
occlusions occur, and improves awareness of the situation when
the communication rate is slow or sporadic. The method is
evaluated using a high-fidelity simulator in scenarios with
a formation of up to five robots. Experiments confirm the
ability of the filter to deal with occlusions and refinement
of the state estimate even when poses are exchanged at a
low frequency, resulting in drastic reduction of the chance of
collisions compared to a tracking-free implementation.

I. INTRODUCTION

Cooperative navigation is a critical feature for multi-robot

systems. The ability to navigate in a formation enables

a team of robots to perform activities not possible for

single robots. To keep a desired formation geometry, it

is necessary that each robot maintains a good estimate of

the poses of the other robots, called the formation state.

Since a robot role in the formation is usually associated

to its unique identification number (ID), the robots must

be capable of distinguishing each other. To realize an

ID-based formation, multiple solutions have been proposed

in the literature. In [1], robots perform teammate detection

using combination of a LIDAR and a camera, where the

camera also provides the identity of the neighboring robot.

In [2], robots recognize themselves by extracting color blobs

from a camera image. Both approaches aim at localizing

a single local leader distinguishable by a marker. In [3],

a follower vehicle maintains a formation with two leaders

using acoustic ranging. The distinction between the leaders

is ensured by an appropriate time-multiplexing scheme of

the acoustic relative positioning signals. ID-dependent graph-

based formation is achieved in [4]. Robots use a dedicated

infrared range-and-bearing system and exchange messages

containing robot IDs. In [5], agents in a formation localize
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using bearing-only measurements but are constrained to move

with the motion type that is known by all agents a priori.

To the best of our knowledge, none of the existing multi-

robot tracking methods attempts to improve estimates of the

robot poses based on specification of the desired formation

shape or velocity. To obtain the states and the IDs, the robots

either communicate with each other, or extract information

from the sensors. We introduce a feedback loop between the

formation controller and the state estimator by including

knowledge about the desired formation geometry in the

Gaussian Mixture Probability Hypothesis Density (GM-PHD)

filter [6]. The use of such filter allows us to combine data from

multiple information sources without the need to use heuristic

methods for data association. Moreover, a GM-PHD filter

does not fix the number of tracks a priori, therefore additional

data regarding a target can be incorporated seamlessly [7].

The PHD filter estimates the number of targets and their

states from a sequence of noisy measurements sets in the

presence of detection uncertainties and false positives [6].

By representing approximation of the posterior density using

Gaussian mixtures, the GM-PHD filter alleviates the compu-

tational intractability associated with the optimal multi-target

Bayes filters. In spite of the multiple advantages, the GM-

PHD filter has a reduced ability to maintain track continuity

when detections are missed. To overcome such difficulties, we

propose to extend the GM-PHD with Formation Information

resulting in the FI-GM-PHD filter. The FI-GM-PHD consists

of two main components: i) the inception step incorporates

poses of the robots exchanged via communication, when

such information is available, ii) the coalition step integrates

the expectation of the formation state based on the desired

formation geometry. The expected formation state is either

improving the current estimate or generating a new one, de-

pending on the dissimilarity between the estimated formation

state and the projected formation state.

This paper builds on our previous work on on-board relative

localization system based on LIDAR measurements [8].

Our goal is to provide reliable robot pose estimates to be

used when communication is of low rate or when it fails.

For safety reasons, such backup system is necessary for

establishing cooperative multi-robot navigation in human-

populated environments [9], which is the long-term goal of

this work. We consider ID-less [8] multi-robot tracking for

formation control. It is important that the desired formation

geometry is maintained, but since the robots are homogeneous,

they can assume any role (target position). Roles are important

to determine the range and the bearing that the robot has to

maintain with respect to the other robots in the formation.



Thus, for the estimates to be used in an formation control

algorithm, a role assignment procedure finds a permutation

that assigns the estimates to the roles. The problem of role

assignment has been addressed previously using potential

fields [10], market-based algorithm [11] and the Hungarian

algorithm [12]. It was also applied in the context of graph-

based formations [4]. While most of the works consider

a static case, we assign the roles dynamically when the

formation is navigating through the environment.

The main contribution of this work is to complete the

ID-less method presented in [8] with a tracking component

based on a FI-GM-PHD filter.

The paper is organized as follows. Section II reviews

the GM-PHD filter and Section III introduces the FI-GM-

PHD filter. Section IV explains how the estimates obtained

from the FI-GM-PHD are used in the formation control

algorithm. Results from high-fidelity simulations are presented

in Section V, followed by conclusions in Section VI.

II. BACKGROUND

Multi-object tracking methods estimate the states of mul-

tiple objects and their number from a sequence of multiple

noisy measurements. The existing approaches include non-

Bayesian methods, such as Nearest Neighbor (NN) [13],

Bayesian estimators, such as Multiple Hypothesis Track-

ing (MHT) [14] and statistics-based approaches such as

Random Finite Set (RFS) theory [15]. Using RFSs is

an optimal approach to multi-target tracking and a direct

generalization of the single-target Bayes filter, but it is

computationally intractable. A practical alternative is the

Probability Hypothesis Density (PHD) filter, which propagates

only the first-order statistical moment, called intensity, of the

posterior multi-target state, but involves multiple integrals

that have no closed solutions for the general case.

A. The Gaussian Mixture PHD filter

The GM-PHD filter [6] admits a closed form solution

to the PHD recursion. Under linear, Gaussian assumptions

on the target dynamics, the posterior intensity at time k is

a Gaussian mixture of the form:

vk(x) =

Jk
∑

i=1

w
(i)
k N (x;m

(i)
k , P

(i)
k ) (1)

where each Gaussian component i is associated with a weight

w
(i)
k , Jk is the number of Gaussian components representing

the intensity and N (·;m,P ) denotes a Gaussian density with

mean m and covariance P .

The GM-PHD filter involves four steps: 1) prediction,

where the previous intensity evolves according to the motion

model and where new targets can appear; 2) update, where

the intensity is updated with the acquired measurements;

3) selection, including merging and pruning, to reduce the

number of Gaussian components and; 4) state extraction.

1) Prediction: The predicted intensity at the time k is a

Gaussian mixture of the form:

vk|k−1(x) = vS,k|k−1(x) + γk(x) (2)

where vS,k|k−1(x) is the survival intensity:

vS,k|k−1(x) = pS,k

Jk−1∑

i=1

w
(i)
k−1N (x;m

(i)

k|k−1, P
(i)

k|k−1) (3)

with pS,k being the probability of survival, and γk(x) is the

birth intensity with Jγ,k components:

γk(x) =

Jγ,k∑

i=1

w
(i)
γ,kN (x;m

(i)
γ,k, P

(i)
γ,k) (4)

The components of the survival intensity are computed

from the previous intensity components according to a lin-

ear Gaussian motion model with m
(i)
k|k−1 = Fk−1m

(i)
k−1 and

P
(i)
k|k−1 = Qk−1 + Fk−1P

(i)
k−1F

T
k−1 where Fk−1 is the state tran-

sition matrix and Qk−1 is the process noise covariance. The

mean values of the birth intensity components, m
(i)
γ,k, represent

places, where new targets are likely to appear.

2) Update: Given a set of measurements Zk, the posterior

intensity is updated as follows:

vk(x) = vT,k(x) +
∑

z∈Zk

vD,k(x; z) (5)

vT,k(x) =

Jk|k−1∑

i=1

(1− pD,k)w
(i)
k|k−1

N (x;m
(i)
k|k−1

, P
(i)
k|k−1

) (6)

vD,k(x, z) =

Jk|k−1∑

i=1

w
(i)
k (z)N (x;m

(i)

k|k(z), P
(i)

k|k) (7)

where pD,k is the probability of detection. Intuitively, vT,k(x)
is the missed-detection term, where the weight of each

Gaussian component of the predicted intensity is discounted

according to pD,k. The vD,k(x; z) term, one for each

measurement z ∈ Zk, is the detection term, which provides

closed form expressions for computing the means, covariances

and weights of vk from those of vk|k−1 when a new set of

measurements arrives. The equations for w
(i)
k , m

(i)
k|k and P

(i)
k|k

depend on the observation matrix, Hk, the observation noise

covariance Uk and the expected clutter level, κk(z). For the

complete expressions of w
(i)
k , m

(i)
k|k and P

(i)
k|k, please refer

to [6].

3) Selection: To keep the problem tractable, components

with weak weights are pruned: I = {i = 1, ..., Jk|w
(i)
k > T}.

All Gaussian components close to each other are merged into a

single Gaussian. At first, a Gaussian component with the high-

est weight is selected j = argmaxi∈Iw
(i)
k . Then, all Gaussian

components within the Mahalonobis distance U from j form

a set L = {i ∈ I|(m
(i)
k −m

(j)
k )T (P

(i)
k )−1(m

(i)
k −m

(j)
k ) ≤ U} of

Gaussian components that are merged into one component:

w̃
(l)
k =

∑

i∈L

w
(i)
k , m̃

(l)
k =

1

w̃
(l)
k

∑

i∈L

w
(i)
k m

(i)
k (8)

P̃
(l)
k =

1

w̃
(l)
k

∑

i∈L

w
(i)
k (P

(i)
k + (m̃

(l)
k −m

(i)
k )(m̃

(l)
k −m

(i)
k )T )

Finally, the number of Gaussian components is truncated to

Jmax components with the highest weights.

4) State extraction: The means of the Gaussian compo-

nents are the local maxima of the posterior intensity vk.

Extraction of multi-target state estimates comes down to

selection of the Gaussian means that have weights greater

than a threshold TSE .



Algorithm 1 THE INCEPTION STEP

1: given {w
(i)
τ,k

,m
(i)
τ,k

, P
(i)
τ,k

}
J
τ,k
i=1

, {w
(i)
k|k−1

,m
(i)
k|k−1

, P
(i)
k|k−1

}
Jk
i=1

2: step 1 (Prediction for inceptions)
3: for j = 1, ..., Jτ,k

4: w
(j)

k|k−1 = w
(j)
τ,k ∗

pτ,k
(1−pD,k)

5: m
(j)

k|k−1 = m
(j)
τ,k

6: P
(j)

k|k−1 = P
(j)
τ,k

7: end for

III. GM-PHD FILTER WITH FORMATION INFORMATION

The FI-GM-PHD filter consists of two steps, the inception

step and the coalition step, for supplementing additional

Gaussian components to the intensity.

A. Inception of the Communicated Data

Even when communication between the robots is possible,

it may suffer of message losses, be of low rate or break

occasionally. The inception step encodes the communicated

data as a Gaussian mixture and adds it to the predicted

intensity. The inception probability pτ,k reflects the confidence

about quality of the available communication and can be

assessed online, based, for example, on the rate of incoming

information. When communication is not available, pτ,k = 0.

The intensity of inception RFSs at time k is a Gaussian

mixture of the form:

τk(x) =

Jτ,k
∑

i=1

w
(i)
τ,kN (x;m

(i)
τ,k, P

(i)
τ,k) (9)

where Jτ,k is the number of Gaussian components, with the

weight w
(i)
τ,k, the mean m

(i)
τ,k and the covariance P

(i)
τ,k. The new

predicted intensity for time k is modified from Eq. (2) and

added as shown in Algorithm 1:

vk|k−1(x) = vS,k|k−1(x) + γk(x) + pτ,kτk(x) (10)

The inception intensity adds the hypothesis provided by the

other robot, locally increasing the intensity analogously to the

birth. The inception intensity is not suitable for the update

step, because if only a fraction of the robots is exchanging the

information, then performing the update would delete from

the output the tracks of the robots that did not communicate.

Shaping of the inception RFSs requires a mapping between

the state forming the intensity map and the communicated

data. For example, if a state of the observed robot consists of

its position and velocity, this information is to be extracted

from the communicated message and encapsulated into m
(i)
τ,k

of a single Gaussian component. The weight w
(i)
τ,k is the

confidence of a target robot existing at m
(i)
τ,k. Depending on

the application, it can inform about the condition of the

communication link, i.e. delays, message corruption etc. The

covariance P
(i)
τ,k reflects the quality of the data, it is small for

ground truth information and experimentally determined if

the information is obtained from the self-localization system

of the target robot. There is no need to associate the pose

messages with the existing Gaussian components, as the PHD

filter does not require further data association.

Algorithm 2 THE COALITION STEP

1: given {Φ(i)
ζ,k,m

(i)
ζ,k, P

(i)
ζ,k}

J
ζ,k
i=1

, {w(i)
k ,m

(i)
k , P

(i)
k }

Jk
i=1

2: n = 0
3: for i = 1, ..., Jζ,k

4: Φ
(i)
ζ,k = Φζ,0

5: for j = 1, ..., Jk

6: d
(i,j)
k =divergence((m

(j)
k , P

(j)
k ), (m

(i)
ζ,k, P

(i)
ζ,k))

7: if Φ
(i)
ζ,k > Φζ,min

8: 1) (Coalesce components)

9: Φ
(j)
k = f((d

(i,j)
k )−1)

10: m̄
(n)
k := Φ

(j)
k m

(i)
ζ,k + (1− Φ

(j)
k )m

(j)
k

11: P̄
(n)
k := P

(j)
k (1−Kζ,PΦ

(j)
k )

12: w̄
(n)
k := w

(j)
k (1 +K

(j)
ζ,wΦ

(j)
k )

13: n := n+ 1
14: 2) (Update budget)

15: Φ
(i)
ζ,k = Φ

(i)
ζ,k − Φ

(j)
k

16: end if
17: end for
18: 3) (Novelty)

19: if Φ
(i)
ζ,k > 0 :

20: m̄
(n)
k := m

(i)
ζ,k

21: P̄
(n)
k := Kη,PP

(i)
ζ,k

22: w̄
(n)
k := Φ

(i)
ζ,k

23: n := n+ 1
24: end if
25: end for
26: J̄k = n

27: return {w̄(n)
k , m̄

(n)
k , P̄

(n)
k }

J̄k
n=1

B. The Expected Formation State

Given the pose xi,k = (xi,k, yi,k, αi,k) of the robot Ri,

the expected position of the robot Rj based on the desired

formation geometry is:
[

hx
ij,k

h
y
ij,k

]

=

[

cos(αi,k) −sin(αi,k)

sin(αi,k) cos(αi,k)

] [

bxij
b
y
ij

]

+

[

xi,k

yi,k

]

(11)

where bij is a bias, i.e. known desired spacing between the

robot Ri and Rj . The collection of the expected positions with

respect to the robot Ri of all the other robots in the forma-

tion is denoted by {hk := {hx
ij,k, h

y
ij,k}, | j = 1, ...,∆; j 6= i},

where ∆ is the number of robots in the formation and

|hk| = ∆− 1.

C. Coalition of the Expected Formation States

The coalition step extends the GM-PHD filter with an

additional block, added after the update step. It combines the

intensities obtained during the update step with the coalition

intensity derived from the expected formation states. Thus,

the Gaussian components constituting the coalition intensity

serve as an outline of where the tracked robots are to be

expected. The expected states hk are approximated using

Gaussian mixture of the form:

ζk(x) =

Jζ,k
∑

i=1

Φ
(i)
ζ,kN (x;m

(i)
ζ,k, P

(i)
ζ,k) (12)

where Jζ,k = |hk| is the number of Gaussian components with

the mean m
(i)
ζ,k, the covariance P

(i)
ζ,k and the budget Φ

(i)
ζ,k. In

particular, the mean intensity is mζ,k = [hx
k, h

y
k, 0, 0]T .







and the weight wτ,k = 0.7. To reduce the impact of the

coalition intensity when communicated data is available,

Pζ,k = diag([0.5, 0.5, 1.0, 1.0]T ).

A. Performance Evaluation

The tracking performance measure is the difference be-

tween the ground truth pose xj of the target and its estimated

pose x̂j , corrected by taking into account the absolute self-

localization error eiL of the detecting robot Ri (see Fig. 4):

e
ij
T = ‖x̂j − xj‖ − eiL (14)

The formation error is evaluated using an average difference

between the desired distances between the robots and the

actual distances:

eD =
2

∆(∆− 1)

∑∆
i=1

∑∆
j=i

∣

∣

∣
‖xi − xj‖ − ‖bxyij ‖

∣

∣

∣
(15)

B. Scenarios

The aim of the following scenarios is 1) to show the ad-

vantage of the FI-GM-PHD filter when long-term occlusions

occur; 2) to use the obtained position estimates in a closed

loop with the formation controller; 3) to test fusion of the

information from tracking and communication when the latter

is unreliable. The pose of the virtual leader is evolved by a

central node and communicated to all robots every time step.

In each experiment we perform 10 sequential runs.

1) Open-Loop Tracking: The dataset has been collected

while three robots follow the virtual leader on a figure eight

trajectory in a line formation (see Fig. 5). Each run lasts 110 s.

The same dataset is used to evaluate and compare the standard

GM-PHD filter and the FI-GM-PHD filter. The formation

is maintained using self-localization poses communicated

between the robots.

2) Tracking for Formation Control: Five robots R0 −R4

forming a cross shape with a bias bx12 = 0.8 (see Fig. 5) move

on an ellipsoidal trajectory around a wall. The robots R3 and

R4 use solely the estimated positions, while R0, R1 and R2

use the communicated positions. Each run lasts 180 s.

3) Tracking with Limited Communication: In the first

experiment (Case A) the robots move in a formation using

positions communicated at a low frequency of 10δ (1 s). In the

second experiment (Case B) the communicated information

is fed into the the FI-GM-PHD tracker upon reception

(every 10δ) using the inception step. Detection and tracking

runs every time step δ. The five robots R0 −R4 form a cross

shape with a bias bx12 = 1.0. Each run lasts 180 s.

C. Results

1) Open-Loop Tracking: Fig. 6 (Left) shows the trajectories

of the robots and the position estimates obtained by the

detecting robot R0 from the standard GM-PHD tracker. The

GM-PHD filter does not have a mechanism that could deal

with missed detections over a long duration: due to occlusion

of robot R2, in this scenario R0 is only capable of maintaining

the track of robot R1 (in yellow). The GM-PHD filter is

also sensitive to appearance of clutter caused by distorted

detections (Fig. 7, e.g. t = 20 s). The FI-GM-PHD method

(Fig. 6 right) maintains the tracks of both robots R1 and R2,

Fig. 6: Scenario 1. Trajectories of the robots, measurements

(red) and estimates (yellow and cyan). (Left) Standard

GM-PHD filter. (Right) FI-GM-PHD filter.

Fig. 7: Scenario 1. Tracking error of the GM-PHD filter in

the x-dimension. The self-localization error eiL of Ri is in

brown, the error of tracking the robot Rj , e
ij
T , is in green.

dij is the ground truth distance between Ri and Rj , d
ij
E is

the distance between Ri and its estimate of Rj , d
ij
C is d

ij
E

corrected by subtracting the self-localization error. The lack

of plots for x̂2 indicates absence of the track and the tracking

error is infinite.

Fig. 8: Scenario 1. Tracking error of the FI-GM-PHD filter

in the x-dimension. The tracking error e
ij
T is in green.

and reduces impact of the clutter (Fig. 8). For the detected

tracks, both methods have similar average error of 1 cm mean

and variance of up to 8 cm.

2) Tracking for Formation Control: Fig. 9 (top) shows

the trajectories, where R3 and R4 use solely the estimates

provided by the FI-GM-PHD tracker. Although the formation

error is within acceptable bounds, lower than half the

robot diameter (see Fig. 9 bottom), we observe that certain

conditions may cause a small drift of the robot (e.g., robot R4).

Even small inaccuracies in the formation shape caused by

using estimates in place of the actual states, with time can

increase the misprint of the expected formation state. Sharp

turns can cause inconsistency in the role assignment and

when five robots are involved, occlusions occur in abundance.

Nevertheless, during re-assignment of the coalition intensity

budget, the FI-GM-PHD method puts a high emphasis on all

the detections, therefore the expectation of the formation state

is subject to continuous correction and the robots can recover.

3) Tracking with Limited Communication: In Case A, the

shape of the formation becomes distorted and the robots tend

to oscillate around their desired positions in the formation,




