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École Polytechnique Fédérale de Lausanne, Switzerland
2)Laboratory of Computational Science and Modelling (COSMO), Institute of Materials,
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Machine learning promises to accelerate materials discovery by allowing computational efficient property
predictions from a small number of reference calculations. As a result, the literature spent a considerable
effort in designing representations that capture basic physical properties so far. In stark contrast, our work
focuses on the less-studied learning formulations in this context in order to exploit inner structures in the
prediction errors. In particular, we propose to directly optimize basic loss functions of the prediction error
metrics typically used in the literature, such as the mean absolute error or the worst case error. We show that
a proper choice of the loss function can directly improve the prediction performance in the desired metric,
albeit at the cost of additional computations during training. To support this claim, we describe the statistical
learning theoretic foundations and provide numerical evidence with the prediction of atomization energies for
a database of small organic molecules.

I. INTRODUCTION

Estimating the ground state energy of molecules and
crystals is one of the most fundamental topics in compu-
tational quantum mechanics. The traditional approach
is to use the density functional theory (DFT)1,2 which
solves Schrödinger’s equations with extremely expensive
calculations. Recently, there is a great deal of interest in
the materials design using machine learning at quantum
chemistry level based DFT data. This research vein has
been supported with strong preliminary evidence that we
can simulate relatively large systems, containing thou-
sands of atoms with accurate prediction performance.
As a result, a considerable effort has gone into build-

ing machine learning models for purpose of representing
the atomic data. In particular, the existing literature, to
out knowledge, mainly focuses on the design of kernels
along with the so-called “descriptors” or “fingerprints”,
e.g., bond lengths, bond angles, etc, to tailor the ma-
chine learning procedures to capture subtle differences
in atomic environments. The resulting machine learning
frameworks often use a kernel ridge regression or neural
networks with impressive prediction performance.
In stark contrast, our work emphasizes the learning

formulations, i.e., the loss functions, which have received
very little attention in the same context. To go beyond
the root mean squared error (RMSE) metric, we provide
learning theoretic arguments to motivate loss functions
to improve predictions in the mean absolute error (MAE)
and max absolute error (MaxAE) metrics.
MAE had been cited in the very early forecasting lit-

erature as a primary measure of performance for fore-
casting models3 and has recently come to our attention
due to its robustness. MaxAE, on the other hand, is an
upper bound for both RMSE and MAE and reflects the
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prediction with the highest inaccuracy.

In the sequel, we represent the state of a molecule by
a sequence {(rk, zk)}Kk=1, where rk ∈ R

3 is the position
of k-th nuclei and zk is its charge. This physical state
is translated into a vector-like representation x ∈ R

n,
which is usually required to be invariant with respect to
permutational, rotational, reflectional and translational
symmetries4.

The paper is organized as follows. Section II discusses
the statistical learning perspective of ground state energy
regression problem, including regularized M-estimators,
cross-validation method and kernel trick. Section III
gives the mathematical details of basic convex optimiza-
tion and numerical methods to approximate a solution of
our novelly proposed models used in predicting ground
state energy. Finally, in Section IV, we provide con-
crete numerical evidence with an already designed kernel
for the prediction of atomization energies for a database
of small organic molecules and improve the usual kernel
ridge regression (KRR) at the expense of more computa-
tion.

Notation. The n-dimensional Euclidean space is de-
noted by R

n. The transpose and the inverse of a positive
definite matrix K are denoted by K⊤ and K−1, respec-
tively. Some common norms of a vector x ∈ R

n are
denoted as follows. We define the ℓ1-norm as ‖x‖1 =
∑n

i=1 |xi|; the ℓ2-norm as ‖x‖2 =
√

∑n
i=1 |xi|2; and the

ℓ∞-norm as ‖x‖∞ = max16i6n |xi|. Finally, 〈·, ·〉 and ‖·‖
denote respectively generic inner product and norm in a
Hilbert space.

II. LEARNING THEORY BASICS FOR REGRESSION

This section provides a learning theoretic background
in support of the following basic claim.

Given an atomic representation, different learning for-

mulations introduce different structures in the materials
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predictions. By choosing an appropriate learning formu-

lation, we can optimize the relevant prediction metric.

A. Regression for atomization energies

We consider the following learning setting. Suppose
that we observe a set of sample pairs {(xi, yi)}ni=1 of dif-
ferent molecule representations xi ∈ X ⊆ R

d with the
corresponding atomic energy yi ∈ Y ⊆ R. Based on this
data, we wish to estimate a function f(x) → y for pre-
dicting atomization energy of new molecules. In what
follows, we show that such an important feat is possible,
given sufficient amount of training data.
It is important to quantify the quality of a predictor,

which is often measured in terms of a test error computed
over a test data {(x̄j , ȳj)}Nj=1. In practice, one typically
considers three types of testing errors, MAE, MaxAE,
and RMSE, which are defined as follows:

MAE =
1

l

l
∑

j=1

|f(x̄j)− ŷj | =
‖f(x̄)− ȳ‖1

l
,

MaxAE = max
j∈{1,...,l}

|f(x̄j)− ŷj | = ‖f(x̄)− ȳ‖∞,

RMSE =

√

√

√

√

1

l

l
∑

j=1

|f(x̄j)− ȳj |2 =

√

‖f(x̄)− ȳ‖22
l

.

Here f(x̄) = [f(x̄1), . . . , f(x̄l)]
⊤ and ȳ = [ȳ1, . . . , ȳl]

⊤.
The above metrics and their corresponding utilities are

intuitive to the informed reader. For instance, RMSE
metric looks at the average prediction error in the Eu-
clidean distance, whereas MaxAE cares only about the
worst case error. The metric MAE takes the other end of
the spectrum and decreases the impact of outlier errors
in the average as compared to RMSE. Hence, different
applications may focus on any one of these prediction
metrics.
The above regression framework can be categorized as

a supervised learning problem and thus it has strong sup-
port from statistical learning theory5–7, which will be in-
troduced in what follows.

B. Supervised learning

In statistical learning theory, we typically assume that
all the elements from the test data and the train data are
independently and identically drawn according to a prob-
ability distribution (but one should keep in mind that the
i.i.d. assumption can be further relaxed). We measure
the performance of a function in terms of the expected
loss/risk with respect to a loss function ℓ : R×R → R+,
see6,7 for its precise definition. In what follows, for ease

of presentation, we simply identify the expected risk as
the test error over the test data {(x̄i, ȳi)}li=1, defined as

R(f) =
1

l

l
∑

i=1

ℓ(f(x̄i), ȳi). (1)

Such an argument will not cause any trouble when the
test data size is sufficiently large. It is easy to see that
MAE or RMSE is equivalent to R(f) with a suitable loss
function. Note that MaxAE can not be directly linked to
(1), but in the latter case, one can consider generalizing
the definition of risk.
In this setting, one natural benchmark is the function

f⋆ that minimizes the risk over all possible (i.e., mea-
surable) functions. Often times, however, we have to
restrict our search to some hypothesis space F of func-
tions from R

d to R to exploit additional structures, such
as smoothness, in the problem or to save on computation
associated with the training procedure. The canonical
example is the Kernel-based, linear prediction, the space
of functions fω(x) =

∑p
j=1 ωjφj(x). Such an approach

is also supported by many examples of consistency hy-
pothesis spaces, i.e., inff∈F R(f) = R(f⋆).7 We will talk
about how to choose a suitable hypothesis space in the
later subsections.

C. Regularized M-estimators

With the given hypothesis space, a natural idea for
finding a good predictor is to solve the expected risk mini-
mization, inff∈F R(f). However, as the expected risk can
not be known exactly, the expected risk minimization is
replaced with the empirical risk minimization.
Directly minimizing the empirical loss can lead to an

effect called overfitting, wherein we fit the training data
extremely well (i.e., with low error), yet we obtain a
model that produces very poor predictions on future test
data whenever the test inputs differ from the training in-
puts. There exists an important solution to the overfit-
ting problem, the regularized M -estimators8 (also called
as the regularized empirical risk minimizations5), i.e.,

f̂λ ∈ argmin
f∈F

{Rλ
n(f) := Rn(f) + λΩ(f)}. (2)

Here, λ ∈ R+ is a regularization parameter, Ω is a regu-
larizer and the empirical risk Rn(f) is defined as

Rn(f) =
1

n

n
∑

i=1

ℓ
(

f(xi), yi
)

.

The regularizer Ω imposes certain properties on the
underlying function. A very common property is the
smoothness of the underlying function, which is espe-
cially required for performing atomization energies re-
gression. Let’s consider the case where f is represented
via radial basis functions (RBFs) {φk}k∈N, i.e.,

f(x) =
∑

k∈N

ωkφk(x).
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As radial basis functions are themselves smooth, impos-
ing smoothness on f can be done by making the magni-
tude of weights ‖ω‖2 =

∑

k∈N
ω2
k be decayed. Weight de-

cay implicitly leads to smoothness with RBF basis func-
tions because rapid changes in the slope of f (i.e., high
curvature) can only be created in RBFs by adding and
subtracting basis functions with large weight. Consider-
ing a Hilbert space governed by RBFs, the magnitude of
weight can be thought as the norm of f in this space.
This type of regularizer is called ridge regularizer. In
this paper, we mainly focus on ridge regularizer, but one
should keep in mind that our approach still applies for a
general regularizer.
In order to control the complexity of the solution and

to ensure generalizing well, the regularization parameter
λ needs to be tuned in practice. We will discuss this
after presenting statistical results for the regularized M-
estimators.

D. Statistical results

A key tool for analyzing statistical results for the reg-
ularized M -estimators is the error decomposition. To
introduce the error decomposition, we introduce an aux-
iliary function fλ, defined as the solution of the regular-
ized expected risk minimization,

fλ ∈ argmin
f∈F

{Rλ(f) := R(f) + λΩ(f)}.

A simple calculation shows that the excess risk of the

estimator f̂λ can be decomposed as (e.g.9)

R(f̂λ)− R(f⋆) 6 Esam + Eapp, (3)

where

Esam = R(f̂λ)− Rn(f̂λ) + Rn(fλ)− R(fλ),

Eapp = R
λ(fλ)− R(f⋆).

We provide a proof for the above formulation in the ap-
pendix.
The first term Esam in the error decomposition above

is a random variable depending on the training set, the
function class F, and the regularized parameter λ. It is
called sample error. It measures the effect of minimizing
the regularized empirical risk instead of the regularized
expected risk. Typically, it can be controlled by a term
which is decreasing with respect to both the train size
and the regularization parameter λ.
The second term Eapp in the error decomposition above

is deterministic. It only depends on the function class F
and the regularization parameter λ. It measures how well
the solution of the regularized expected risk minimization
can be used to approximate f⋆. Typically, it is increasing
with respect to the regularization parameter λ.

The regularization parameter λ hence controls an im-
portant trade-off in prediction performance (i.e., gener-
alization), which has been extensively discussed in the
literature5,10. An optimal trade-off based on the best
choice of λ results in an excess risk that scales between
the inverse and the inverse square root of the number of
training data8,11,12. The following two examples provide
statistical results for the estimators given by (2) with the
square-norm penalty, considering two different learning
problems.

Example II.1 Consider the setting of non-parametric
regression with the square loss over a reproducing ker-
nel Hilbert space (RKHS) F as those in13,14. It has
been shown15 that KRR, i.e., (2) with the square-norm
penalty, has the following upper bounds for the excess
risk,

E[R(f̂λ)− R(f⋆)] .
c1
nλγ

+ c2λ
2ζ .

Here, γ ∈ [0, 1] is related to the capacity condition of F
and ζ ∈ [1/2, 1] is related to the regularity of the tar-

get function f⋆. The optimal error bound O(n−
2ζ

2ζ+γ ) is

achieved when λ∗ ≃ n− 1
2ζ+γ . The best choice of λ is de-

pending on the unknown distribution parameters ζ and
γ, and it is unknown. We thus choose the regularized
parameter λ∗ by using the cross-validation methods in
practice.

Example II.2 Consider the setting of non-parametric
classification over a RKHS F with the hinge loss as that
in11,12, or more general, a loss function with bounded gra-
dient. Using the tools from Rademacher complexity16,
one can prove that the solution of (2) with the square-
norm penalty has the following upper bounds on the ex-
cess risk:

E[R(f̂λ)− R(f⋆)] .
c1√
nλ

+ c2λ
β .

Here, we assume that the approximation error satisfies
Eapp . λβ , for some β ∈ (0, 1]. The best attainable error

bound from the above estimates is of order O(n− β
2β+1 ),

and it is achieved when λ∗ ≃ n− 1
2β+1 . Using a more in-

volved technique, it has been shown in, e.g.12, the er-
ror bound can be further improved to O(n−α), where
α ∈ (0, 1] is a parameter depending on the data distribu-
tion and the hypothesis space F.

E. Cross-validation methods

Unfortunately, the best choice of λ depends on the
data distribution, and in practice, we have to use cross-
validation (CV)17. In CV, we divide the training set into
K roughly equal parts (called folds). For each k-th fold
we fit the model with a candidate parameter λ to the
other K − 1 parts, using a specific algorithm for solving
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(2) either with MAE, MaxAE or RMSE. This gives the
regression coefficient ck(λ) to compute the validation er-
ror Ek(λ). The cross validation error is then computed
as

CV(λ) =
1

K

K
∑

k=1

Ek(λ),

and we choose λ∗ to minimize the CV error.

F. Kernel trick

In this subsection, we discuss kernel methods, a com-
mon approach for atomization energies regression which
is based on choosing the hypothesis space F as a RKHS
generated by a kernel. The kernel trick is to map the
original representation x ∈ R

d to a representation in a
Hilbert space F, called the feature space, by a feature
map ψ : x 7→ ψ(x) in such a way that

〈

f, ψ(x)
〉

= f(x)
for all function f ∈ F. In other words, we map the data
into a higher (possibly infinite) dimension space such that
in this space, the predictor f can be determined by a
linear expression. We then define the kernel function
K(x,x′) =

〈

ψ(x), ψ(x′)
〉

. One can think of K as specify-
ing similarity between instances and of the feature map
ψ as mapping the domain set X into a space where these
similarities are realized as inner products. The main ad-
vantage of such trick is that it implements linear separa-
tors in high dimensional feature spaces without having to
specify points in that space or expressing the feature map
ψ explicitly. Problem (2) restricted to F now becomes

f̂λ ∈ argmin
f∈F

1

n

n
∑

i=1

ℓ
( 〈

f, ψ(xi)
〉

, yi
)

+ λΩ(f). (4)

Although F can be infinite dimensional, solving (4) is
equivalent to solving an optimization problem in finite-
dimensional setting due to the following theorem.

Theorem II.3 (Representer theorem18) Suppose

that F is the feature space corresponding to the feature

map ψ defined on X . Then problem (4) with ridge

regularizer possesses a solution of the following form

f̂λ(x) =
n
∑

i=1

c♮iK(x,xi),

where c♮ = [c♮1, . . . , c
♮
n]

⊤ ∈ R
n.

Let the training matrix K =
[

K(xi,xj)
]

16i,j6n
, and Ki

be the i-th row of K. Using the representer theorem,
a simple calculation as shown in the appendix, we can
see that solving the problem (4) with ridge regularizer is
equivalent to solving the following optimization in finite
dimensional setting

min
c∈Rn

1

n

n
∑

i=1

ℓ

(

c⊤Ki, yi

)

+
λ

2
c⊤Kc. (5)

Example II.4 (Two common kernels) Gaussian
kernel: K(x,x′) = exp(−‖x − x′‖22/2σ2). Laplacian
kernel: K(x,x′) = exp(−‖x − x′‖1/σ). Intuitively, the
Gaussian or Laplacian kernel sets the inner product in
the feature space between x and x′ to be zero if the
instances are far away from each other (in the original
domain) and close to 1 if they are close. The parameter
σ and the corresponding norms determine what we mean
by “close”.

G. The SOAP-Average kernel

Different kernel such as Gaussian kernel or Laplacian
kernel has been used widely in materials science commu-
nity and has led to reasonable predictors. However, it
is crucial to keep in mind that the way that the simi-
larity between atomic configurations is measured will in-
fluence the quality of the predictor in kernel regressions.
Smooth Overlap of Atomic Positions (SOAP)4 based ker-
nels19,20 have been reported among the best performing
kernels for predicting electronic structure properties of
materials and molecules. For this paper, we will use the
SOAP-Average kernel to measure the structural similar-
ity between the molecules by combining the similarity
measures of local environments.
Within the SOAP formalism, the local environment of

the i-th atom within a molecule A, i.e., the abstract de-
scriptor of the arrangement of atoms in its vicinity, will
be denoted by XA

i . The set of all atoms of species α of
molecule A is denoted by Aα. The local density of i-th
atom of species α is then constructed as the superposi-
tion of Gaussian functions of variance σ2 centered on this
atom. A cutoff distance of rc is imposed via a smooth
function to set the size of the local environment.

ραXA
i
(r) =

∑

j∈Aα

exp

(

− (r− rij)
2

2σ2

)

frc(|rij |), (6)

where rij is the Euclidean distance between atom i-th
and atom j-th. The SOAP kernel is then defined as the
overlap of two local atomic neighbor densities, integrated
over the set SO(3) of all three dimensional rotations, as
follow

k̃
(

XA
i ,XB

j

)

=

∫

SO(3)

∣

∣

∣

∣

∑

α

∫

R3

ραXA
i
(r)ραXB

j
(R̂r) dr

∣

∣

∣

∣

2

dR̂.

(7)
In practice this kernel can be computed efficiently by
first expressing the density on spherical harmonics basis
21. The similarity measure Cij(A,B) between the local
environments XA

i and XB
j of the molecules A and B is

then determined by the SOAP average kernel function as

Cij(A,B) =
k̃
(

XA
i ,XB

j

)

√

k̃
(

XA
i ,XA

i

)

k̃
(

XB
j ,XB

j

)

. (8)
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In order to extract a single similarity measure from the
matrix of pairwise environment similarities C(A,B), the
SOAP-Average19 kernel combines the similarity informa-
tion from the local kernels into a global similarity mea-
sure by taking average of all environment pair similarity
values after raising them to the power ζ. As the normal-
ized environment similarity values ranges between 0 and
1, 1 being identical: for value of ζ > 1, higher similarity
values naturally get higher weight in the averaged value.

Kζ(A,B) =
1

NM

N
∑

i=1

M
∑

j=1

Cij(A,B)ζ (9)

where, N and M is the number of atoms in molecule A
and B respectively. This kernel can be applied to both
molecules and crystals while combining a detailed and
systematic description of atomic structures with a large
degree of adaptability through its hyper-parameters.

H. Multiple kernel learning

The choice of the kernel is critical to the success of
the algorithm but in standard frameworks it is left to the
user. While different kernels will lead to predictors with
different qualities, all of them can be weighted to obtain
a unique kernel as the input for classical kernel-based
learning algorithms to get a much better predictor. This
is called the problem of learning kernels in which one
learns an optimal convex combination

K =

m
∑

j=1

βjKj , βj > 0,

m
∑

j=1

βj = 1,

of m given kernels K1, . . . ,Km. Methods to find the
optimal weights were proposed in22–24.

I. Error decomposition

The above subsections demonstrate that a solution for
the minimization problem (5) with an appropriate regu-
larization parameter λ and a suitable kernel has a good
generalization performance. In general, Problem (5) is

solved via an optimization procedure. Let f̂λ,ǫ be an ǫ-
approximated solution of (5). A similar argument as that
for (3), one can show that the statistical/generalization

error of f̂λ,ǫ can be estimated as:

R(f̂λ,ǫ)− R(f⋆) 6 ǫ+ Esam + Eapp,

where

Esam = R(f̂λ,ǫ)− Rn(f̂λ) + Rn(fλ,ǫ)− R(fλ),

Eapp = R
λ(fλ)− R(f⋆).

The term ǫ is called optimization error, while the other
two terms are called as sample error and approximation
error respectively. Similar estimations on Esam and Eapp
as those in Subsection IID can be developed using tools
from probability theory and approximation theory, which
should be studied in the future. In the coming section,
we focus on the optimization error, i.e., we study opti-
mization procedures for solving (5).

III. CONVEX OPTIMIZATION OF ENERGIES
REGRESSION

A. The basics of convex optimization

Statistical learning problem of molecules’ energies re-
gression explained in the previous section is modeled
generically as the following composite convex optimiza-
tion problem, considered as a sum a a data-fitting term
and an explicit penalty term,

Ψ⋆ := min
c∈X⊂Rn

{Ψ(c) := g(c) + h(Mc)}, (10)

whereX is convex, M is n×mmatrix, g and h are convex
functions. While in most cases, finding an exact solution
of (10) is impossible, we try to find an approximated
solution, i.e., given a tolerance ε > 0, design methods in
order to obtain c ∈ X such that Ψ(c)−Ψ⋆ 6 ε.
Before review efficient numerical methods to approxi-

mate an optimal solution c⋆ of (10) as well as required
assumptions on h and g in the next sections, it is worthy
to note that (10) covers the classical kernel ridge regres-
sion. Traditional approach to determine the regression
coefficient c♮ of a predictor f based on Representer the-
orem II.3 is to approximate it by the following

c⋆ = (K+ λIn)
−1y, (KRR)

where y = [y1, . . . , yn]
⊤ and In is the n × n identity

matrix. Simple calculations show that c⋆ is a solution to
the following ridge-regularized least square minimization
problem, considered as a particular instance of (10),

min
c∈Rn

1

2
‖Kc− y‖22 +

λ

2
c⊤Kc. (ℓ2)

This optimization problem however might have more
than one solution than c⋆.
Being inspired by the interests in MAE and MaxAE

within the materials science community, we are looking
for new kernel-based models that could improve these
metrics while still keep RMSE in the same order of mag-
nitude as (KRR). This can be done by exploring the
inner structure of these metrics. For instance, to adapt
the MAE, instead of using ℓ2-loss function, we propose
the use of ℓ1-loss function.

Example III.1 (Ridge ℓ1-loss regression) In this
model, we estimate regression coefficient c♮ as follows

min
c∈Rn

‖Kc− y‖1 +
λ

2
c⊤Kc. (ℓ1)
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Our second model deploys the ℓ∞-norm loss function to
adapt the structure of MaxAE.

Example III.2 (Ridge ℓ∞-loss regression) We esti-
mate regression coefficient c♮ as follows

min
c∈Rn

‖Kc− y‖∞ +
λ

2
c⊤Kc. (ℓ∞)

Both (ℓ1) and (ℓ∞) lie beyond the effective methods of
linear algebra and smooth optimization and we need
deeper numerical methods to approximate their solu-
tions. Most common ones are first-order methods. These
methods obtain reasonable accuracy numerical solutions
by using only first-order oracle information from the ob-
jective, such as gradient estimates. They can also handle
the non-smooth variants by making use of the proximal
mapping principle. Main advantages of these methods
are their scalability and nearly dimension-independent
convergence rates. Coupled with recent demand for
low-to-medium accuracy solutions in applications, these
methods indeed provide a critical trade-off between the
complexity-per-iteration and the iteration-convergence
rate along with the ability to distribute and parallelize
computation.
Assumption 1. We assume that ∇g is Lg-Lipschitz
continuous, i.e.,

(∀c1 ∈ R
n)(∀c2 ∈ R

n) ‖∇g(c1)−∇g(c2)‖ 6 Lg‖c1−c2‖.

B. A primal first-order method

Generally, h can be non-smooth and hence we will need
more efforts to deal with (10) due to the presence of the
matrix M. However, in the case when this matrix is
identity, i.e.,

Ψ⋆ := min
c∈Rn

{Ψ(c) := h(c) + g(c)}, (11)

where g satisfies Assumption 1, we can solve it efficiently
by different versions of proximal-gradient method. Its
motivation is to use the linear approximation of smooth
g and simply include the nonsmooth term h in an explicit
fashion

ck+1 = argmin
c∈R

n
g(ck)+∇g(ck)⊤(c−ck)+

1

2αk
‖c−ck‖22+h(c),

(12)
with the step-size αk 6 1/Lg. This optimization problem
is the update rule of the proximal-gradient method

ck+1 = proxαkh
(ck − αk∇g(ck)), (13)

where the proximal operator is defined as

proxh(c̄) = argmin
c∈R

n
h(c) +

1

2
‖c− c̄‖22. (14)

If we simply set the step-size αk = 1/Lg in the proximal
gradient method, we will get the following convergence
rate

Ψ(cN )−Ψ⋆ = O
(

N−1
)

, (15)

which implies that in order to obtain an ε-approximated
solution, we need O(ε−1) iterations. This rate can be up-
graded to O(N−2) by making use of an extra-momentum
step and hence O(ε−1/2) iterations will be needed to get
an ε-approximation. The full version is the following:

Algorithm 1 Fast iterative shrinkage-thresholding algo-
rithm (FISTA)25

1: Inputs: ĉ1 = c
0
∈ R

n, t1 = 1.
2: for k = 1, 2, . . . , N − 1 do

c
k = proxαkh

(ĉk − αk∇g(ĉk)),

tk+1 = 0.5

(

1 +
√

1 + 4t2k

)

ĉ
k+1 = c

k +
tk − 1

tk+1

(

c
k
− c

k−1)
.

3: end for

4: return c
N .

Example III.3 (Proximal operators) . Given γ > 0
and c̄ ∈ R

n.

1. Proximal operator of ℓ1-norm ‖ · ‖1: Solving

argmin
c∈R

n
‖c‖1 +

1

2γ
‖c− c̄‖22

is equivalent to solving following n convex problems
in dimension 1

min
c∈R

|c|+ 1

2γ
|c− c̄|2.

Elementary computations shows that this problem
has an analytical solution given by τγ(c̄), where τ
is the shrinkage operator defined by τγ(c) = (|c̄| −
γ)+ sign(c̄).

2. Proximal operator of ℓ∞-norm ‖ · ‖∞: Solving

ĉ = argmin
c∈R

n
‖c‖∞ +

1

2γ
‖c− c̄‖22

can be done as follow:

(a) Compute c̃, the projection of γ−1c̄ onto the
unit ball {‖c‖1 6 1}26.

(b) Apply27 to obtain ĉ = c̄− γc̃.

C. A primal-dual first-order method

When incorporating with a non-identity matrix M in
(10), the proximal-gradient methods can not be used.
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In these cases, a primal-dual method is necessary. This
method and its versions are based on the representing h
using its Fenchel conjugate function h∗ which is defined
as

h∗(d) = sup
c∈Rn

c⊤d− h(c).

Using Fenchel conjugaison, we can represent h as follow

h(Mc) = sup
d∈Rn

(Mc)⊤d− h∗(d).

One of the methods used to constructs approximations
to a solution to (10) is the following

Algorithm 2 Accelerated Primal-Dual method28

1: Inputs: c1 ∈ R
n, d1

∈ R
n, c1ag = c

1, d1
ag = d

1, c̄1 = c
1.

2: for k = 1, 2, . . . , N − 1 do

c
k
md = (1− β

−1
k )ckag + β

−1
k c

k
,

d
k+1 = proxτkh

∗(d
k
−Mc̄k),

c
k+1 = c

k
− ηk(∇g(ckmd) +M

⊤
d
k+1),

c
k+1
ag = (1− β

−1
k )ckag + β

−1
k c

k+1
,

d
k+1
ag = (1− β

−1
k )dk

ag + β
−1
k d

k+1
,

c̄
k+1 = θk(c

k+1
− c

k) + c
k+1

.

3: end for

4: return c
N
ag and d

N
ag.

Like the proximal-gradient method, the primal-dual
method requires the computation of proximal operator of
Fenchel conjugate function which can be deduced from
the proximal operator of the original function itself due
to27. Simply set βk = k+1

2 , θk = k−1
k , ηk = 3k

4η and

τk = 1
η for η = 2Lg + 2‖M‖(N − 1) +

N
√

13(N−1)

2D̃
with

D̃ > 0, the rate that a primal-dual method can achieve
is only

Ψ(cNag)−Ψ⋆ = O
(

N−1
)

.

IV. NUMERICAL EXPERIMENTS

A. GDB9 data set

GDB9 data set29 consisting of chemical representa-
tions and the internal energies U0 (Hartree) at absolute
zero temperature of 133884 small organic molecules. We
divide this data set into two parts: training set con-
tains 100000 molecules and testing set contains 33884
molecules. Building upon the data from recently pub-
lished paper20 discussing the SOAP-Average kernel based
predictions for this database, three kernel matrices K2,
K3 and K4 were computed on training set using (9)
with three different local environment sizes, rc ∈ {2, 3, 4}
Angstrom, aiming to capture the atomic interactions at

different scales. These three kernels matrices are then
weighted as follow

K =
256

273
K2 +

16

273
K3 +

1

273
K4.

We use portions of this matrix to predict U0 for 33884
molecules in testing set using (KRR), (ℓ1) and (ℓ∞).

B. Computational complexity

As (KRR) requires an inverse operation of an n × n-
matrix and the multiplication of an n × n-matrix and
an n-coordinates vector, its best known complexity is
O(n2.373). Generally, both models (ℓ1) and (ℓ∞) with
SOAP-Average kernels could be solved numerically by
standard optimization approaches such as Algorithm 2.
The complexity of this method is the complexity of the
computation of proximal operator. In our case of soft-
threshold, its complexity is onlyO(n) and hence the over-
all complexity of the method isO(nN) withN is the total
number of iterations.
Being stated that primal-dual method iteratively

builds an approximation solution with the rate of
O(1/N), relatively slow in particular for such an ill-
conditioned kernel like SOAP-Average kernel. In order
to accelerate the convergence’s speed, we propose two
techniques concerning models (ℓ1) and (ℓ∞).
Preconditioning. Main idea is replacing it by a small

perturbation parameter ρ, i.e., setting M = K + ρIn
and then making the change of the variable d = Mc to
reformulate (ℓ1) as

min
d∈Rn

‖d− y‖1 +
λ

2
d⊤M−1d, (16)

while (ℓ∞) becomes

min
d∈Rn

‖d− y‖∞ +
λ

2
d⊤M−1d. (17)

These problems can be solved efficiently and quickly
by FISTA (Algorithm 1) with the overall complexity
O(n2.273 + nN). However, within a convergence rate of
O(1/N2) of FISTA, our approach will reach a solution in
predefined tolerance within reasonable small total itera-
tions N , and hence it does require a computation cost
not much more than (KRR).
Dual formulation. Another trick to avoid matrix in-

verse calculation is using the dual formulation of (16)
and (17), says

min
d∈Rn

g∗(d) +
1

2λ
d⊤Kd, (18)

where g∗ is Fenchel conjugate function of either ‖ · −y‖1
for (ℓ1) or ‖ · −y‖∞ for (ℓ∞). This dual formulation can
be solved efficiently by FISTA. By duality27, the origi-
nal coefficient is then recovered by cN = −λ−1dN . We
note that the computational complexity of the proximal
operator of g∗ is the same as that of of g. The total
computational complexity in this case is only O(nN).
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C. Cross-validation

The tuning parameter λ is selected by using 10-folds
cross-validation by screening 15 values on a base-10 log-
arithmic grid from 10−9 to 100. This procedure will be
parallelized.

D. Simulation results

Different training sets 100, 500, 1000, 5000, 10000,
25000, extracted from training set of 100000 molecules,
are used to predict U0 using (KRR), (ℓ1) and (ℓ∞) for
molecules in testing set and then compute the metrics:
MAE, MaxAE and RMSE. The results, recorded in Ta-
ble I, show that (ℓ1) improves significantly MAE in com-
parison with (KRR) while (ℓ∞) achieves a better MaxAE
than (KRR). The bold values are the best accuracies.

KRR/ℓ2 ℓ1 ℓ∞
training size = 100
MAE 8.16 8.16 8.16
MaxAE 75.65 75.68 75.68
RMSE 10.86 10.86 10.86
training size = 500
MAE 3.76 3.22 4.79
MaxAE 68.30 49.56 54.00

RMSE 5.01 4.37 6.26
training size = 1000
MAE 2.50 2.06 2.47
MaxAE 61.83 51.13 49.58

RMSE 3.47 2.97 3.42
training size = 5000
MAE 1.10 0.92 2.25
MaxAE 62.08 59.38 41.78

RMSE 1.60 1.39 2.92
training size = 10000
MAE 0.72 0.59 0.76
MaxAE 69.18 61.58 45.04

RMSE 1.14 1.03 1.12
training size = 25000
MAE 0.40 0.34 0.40
MaxAE 45.53 48.54 44.39

RMSE 0.74 0.82 0.73

TABLE I. Prediction errors (kcal/mol).

V. CONCLUSIONS

We present novel settings together with efficient algo-
rithms to approximate a numerical solution for molecules’
energies prediction via statistical learning theory. We
also perform numerical advantages of our approach with
two new models: ridge ℓ1-loss minimization and ridge
ℓ∞-loss minimization.
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APPENDIX

In this appendix, we provide the proofs for some of the
elementary inequalities in this paper.

A. Proof of (3)

We have

R(f̂λ)− R(f⋆) 6 R
λ(f̂λ)− R(f⋆)

= [R(f̂λ)− Rn(f̂λ) + Rn(fλ)− R(fλ)]

+ [Rλ
n(f̂λ)− R

λ
n(fλ)] + [Rλ(fλ)− R(f⋆)]

6 [R(f̂λ)− Rn(f̂λ) + Rn(fλ)− R(fλ)]

+ [Rλ(fλ)− R(f⋆)]

= Esam + Eapp,

where for the inequality, we used the fact that Rλ
n(f̂λ) 6

Rλ
n(fλ) since f̂λ is a solution for (2).

B. Proof for (5)

Due to the representer theorem, instead of solving opti-
mization problem (4) with respect to functions f , we find
the weights of the predictor, a vector c♮ in a finite dimen-

sional space. For f̂λ(x) =
∑n

i=1 c
♮
iK(x,xi), we have that

for all i,

ℓ(f̂λ(xi), yi) = ℓ

( n
∑

j=1

c♮jK(xi,xj), yi

)

= ℓ

( n
∑

j=1

c♮jKij , yi

)

= ℓ

(

(c♮)⊤Ki, yi

)

,

and since

〈

f̂λ, ψ(x)
〉

= f̂λ(x) =
n
∑

i=1

c♮iK(x,xi)

=

n
∑

i=1

c♮i
〈

ψ(x), ψ(xi)
〉

=

〈

ψ(x),

n
∑

i=1

c♮iψ(xi)

〉

,

we have f̂λ =
∑n

i=1 c
♮
iψ(xi) and hence,

‖f̂λ‖2 =

〈

n
∑

i=1

c♮iψ(xi),

n
∑

i=1

c♮iψ(xi)

〉

=
n
∑

i,j=1

c♮ic
♮
j

〈

ψ(xi), ψ(xj)
〉

=

n
∑

i,j=1

c♮ic
♮
jK(xi,xj)

= (c♮)⊤Kc♮.

The problem (4) with ridge regularizer now becomes

min
c∈Rn

1

n

n
∑

i=1

ℓ

(

c⊤Ki, yi

)

+
λ

2
c⊤Kc.


