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Abstract

In this paper, we present an emulator of a building-
energy performance simulator. Previous work on em-
ulators for this application has largely focused on lin-
ear models. Since the simulator itself is a collection of
differential equations, we expect non-linear models to
be better emulators than linear models. The emulator
we present in this paper is based on Gaussian-process
(GP) regression models. We show that the proposed
non-linear model is 3-4 times more accurate than lin-
ear models in predicting the energy outputs of the
simulator. For energy outputs in the range 10-800
kWh/m?, our model achieves an average error of 10-
25 kWh/m? compared to an average error of 30-100
kWh/m? from using linear models. In addition to be-
ing very accurate, our emulator also heavily reduces
the computational burden for building designers who
rely on simulators. By providing performance feed-
back for building designs very quickly (in just a few
milliseconds), we expect our approach to be particu-
larly useful for exercises that involve a large number
of simulations, e.g., Uncertainty Analysis (UA), Sen-
sitivity Analysis (SA), robust design, and optimisa-
tion.

Introduction

This paper presents Gaussian process regression mod-
els to emulate building-energy performance simula-
tors. In building performance simulation, the use
of emulators (regression models) has previously been
explored to represent experimentally-observed rela-
tionships (e.g., exterior convective heat transfer) and
complex or computationally expensive simulations
(Rastogi, 2016, ch. 2).

Despite the unsuitability of linear models for emulat-
ing an inherently non-linear simulator, the literature
is dominated by linear models. This is primarily be-
cause linear models are easier to train and interpret.
Therefore, the use of non-linear methods must be jus-
tified by substantially better performance. For en-
ergy outputs in the range 10-800 kWh/m?, our model
achieves an average error of 10-25 kWh/m? compared
to an average error of 30-100 kWh/m? from using
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linear models. Thus, non-linear models are on av-
erage 3 times more accurate than linear models. We
also introduce and discuss the results of an automatic
method that is used to select relevant inputs. This
method is called Automatic Relevance Determination
(ARD) which, in addition to reducing the complexity
of a model, also establishes the relevance of inputs in
predicting the output variables.

A review of the literature suggests a consensus that
emulators are most useful in applications that rely
on distributions of outputs obtained from hundreds
of simulations using Monte Carlo (MC), e.g., Uncer-
tainty Analysis (UA), Sensitivity Analysis (SA), and
parametric design exploration (de Wit, 2001; Mac-
donald, 2002; Hopfe, 2009; Eisenhower et al., 2012;
Hygh et al., 2012; Amiri et al., 2015; Nault et al.,
2015; Nault, 2016). Recently, non-linear models have
been proposed for predicting building energy use and
other thermal quantities, e.g., Artificial Neural Net-
works (ANNs), Support Vector Machines (SVMs),
and Gaussian process regression (Kalogirou, 2006;
Zhao and Magoules, 2012; Rastogi, 2016). Gaussian
process regression has been proposed for optimisa-
tion (Wood et al., 2015; Wood, 2016; Gilan and Dilk-
ina, 2015), optimal glazing design (Kim et al., 2013),
model calibration (Monari, 2016; Heo and Zavala,
2012; Burkhart et al., 2014), and operational control
(Yan et al., 2013).

Most, of these proposals have, however, remained
theoretical. To the best of our knowledge, none
of the prominent building simulation programs of-
fers a regression model as a replacement for the
main simulator (e.g., ESP-r, EnergyPlus, IDA ICE).
Experimentally-derived regression relations are used
in sub-components of the simulators, e.g., Percent-
age People Dissatisfied (PPD) models, but models
relating ‘final’ outputs to ‘raw’ inputs are not offered
(e.g., indoor temperature calculated from wall con-
struction, building layout, etc.).

Simulators and Emulators

Given a set of building-design parameters and
weather data', the simulator outputs a quantity of
interest (e.g., energy used for space heating/cooling).
In this paper, we are interested in predicting annual

1Human factors and simulator parameters were not varied
in our study.

Proceedings of the 15th IBPSA Conference
San Francisco, CA, USA, Aug. 7-9, 2017

1701
https://doi.org/10.26868/25222708.2017.448



BUILDING
SIMULATION 2017

INTERNATIONAL
BUILDING
PERFORMANCE
SIMULATION
ASSOCIATION

energy-consumption which can be obtained by inte-
grating the output of the simulator over time. We
denote this quantity by a scalar y which takes non-
negative values. The vector of inputs, denoted by x,
includes the building properties, environmental con-
ditions, and human interactions, as well as (free) tun-
ing parameters in the components of a simulator.
The simulator can be represented by a non-linear
function f, that outputs y given an input vector x:

y = fs(x). (1)

We wish to design an emulator that can predict the
value of y as accurately as possible:

7= fe(x), (2)

where f.(-) is the emulator. To achieve this, we can
choose a function f, in the set of functions F that
minimises a cost function, e.g., Mean Square Error

(MSE),
fo = arg min Efy - Je(x)), (3)

where the expectation is taken with respect to the dis-
tribution p(y,x) of the input-output pairs that occur
in practice.

Unfortunately, p is unknown, but we can approximate
the above expectation by collecting observations gen-
erated from p. For example, a building-design expert
can collect N inputs x,, for n = {1,2,..., N}, where
X, denotes an instance of x. She can do this in prac-
tice by collecting many basic building designs and
weather data from a variety of locations. The outputs
yn can then be obtained by running a simulation on
inputs x,,. Thus, the cost in Equation (3) may be es-
timated by using a sample approximation over these
observations (sample mean of squared errors).

We use the standard training-testing framework,
which is a common practice in statistics and ma-
chine learning (Hastie et al., 2009). Under this frame-
work, we split the NV observations into two mutually-
exclusive sets. We use the first set of observations to
estimate f:

Ntrain
o 1 3
r = i n -~ Je T ’ 4
fe = arg min Nooo n§:1 [Yn — fe(xn)] (4)

where Ni¢,q:n, denotes the number of observations in
the first set (the fraining set). The second set is used
to assess the goodness-of-fit of the estimator, e.g., by
computing the cost,

where Ni.s: denotes the number of observations in
the second set (the test set). By construction,
N = Ntrain + Ntest-

This training-testing framework is the backbone of
statistical machine-learning. The cost obtained on an
unseen test observation-set provides a faithful mea-
sure of the emulator’s performance in the real world.
The degree of faithfulness depends on the size and
quality of the training and testing data sets. A large
amount of training data (Ny.q,) would imply a bet-
ter estimate of fe*, i.e., close to the optimal f7, while
a large amount of testing data (Nges:) would give us
a good estimate of the emulator’s performance in the
real world.

Good-quality datasets faithfully represent the true
data distribution p(x,y) (assuming it exists), but
they are not easy to collect because the true distri-
bution is usually unknown. However, for building-
performance simulations, we can rely on design ex-
perts who can attempt to collect such datasets, e.g.,
by running Building Performance Simulation (BPS)
on realistic building designs and weather conditions.
In this work, we used this method. Note that our
method is not fail-proof and the data might still con-
tain a systematic bias. Another important point dur-
ing such data collection is to include all input vari-
ables which are expected to be relevant in the mod-
elling of the output. However, too many inputs might
make it difficult to obtain a good fit (due to the curse
of dimensionalily), therefore we need to be careful
about our selection. Overall, considerations such as
these are important to ensure that the quality of the
dataset is adequate for a faithful model-fitting.

Model-Based Emulators

For a linear model, we have f. = 8Tx where 8 is
a real-valued vector of the same size as x. The set
of functions F is the set of all linear functions. The
solution obtained by minimising Equation (4) is usu-
ally called the Ordinary Least-Squares (OLS) solu-
tion. In practice, x might be collinear, e.g., when two
entries in x represent the same underlying variable.
This gives rise to ill-conditioning and might make 3
explode to infinity. In such situations, it helps to im-
pose a distribution over 8. In this work, we employ
a Gaussian distribution: 8 ~ N(0, X) where X is a
covariance matrix.

We propose to use a non-linear model obtained by a
non-linear transformation of the inputs:

fe(x) = 8T @(x), (6)

where ®(x) is an M-length vector containing var-
ious non-linear transformations. That is, ®(x) =
[$1(%), ¢2(x), ..., dar(x)]T where each ¢; is a dif-
ferent non-linear function. This is referred to as
the basis-function model in machine learning. As
an example, the polynomial basis-function for a
scalar z defines ®;(x) = 2'1, therefore ®(x) =
[1,z,2%,...,2M =17, A linear model can be obtained
as a special case by setting ®(x) = x.
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Gaussian Process and Kernels

We use the Gaussian process regression framework to
estimate the function f. that minimises Equation (4).
Gaussian process regression uses Bayes’ rule to com-
pute the posterior distribution over f. given outputs
yn (Rasmussen and Williams, 2006, ch. 2). This ap-
proach works directly in the space of f. and avoids
both a direct estimation of 8 and a direct specifica-
tion of ¢(x). Instead, a ‘kernel’ function specifies the
inner products of ¢ as:

k(x;, Xj) - ¢(Xz‘)T > ¢(xj), (7)

where x; and x; are two inputs in our observation
set. In practice, a kernel function is easier to specify
than ¢, even though it could be unintuitive.

A variety of models can be obtained this way, e.g., a
linear model is obtained by using the linear kernel:

k(x;,x;) = x] 2x;. (8)

In this paper, we will compare the linear model to the
following nonlinear model which is obtained by using
a Squared Exponential (SqE) kernel function:

1
S(x x) T B (x - x5)|,

2
(9)
where ajzc > 0 is the signal variance. This kernel is also

referred to as the Radial Basis Function (RBF) kernel
in the context of Artificial Neural Network (ANN).

k(x;,x;) = ajzc exp | —

Input-Variable Selection

Nonlinear models are powerful and flexible, which is
good when we have a large data set of good quality,
but otherwise nonlinear models might ‘over-fit’; i.e.,
they might fit to the noise instead of the signal. To
avoid this, one solution is to reduce the complexity of
the model (number of input or explanatory variables).
In this paper, we use an automatic variable selection
method called ARD (Rasmussen and Williams, 2006,
sec. 5.1). In this method, we set 3 to be a diagonal
matrix with each diagonal entry X, = 1/I; where
I[; > 0, and then estimate 1 = [I1,15,... 5] Asl; —
oo (or 1/1; — 0), the importance of the corresponding
input dimension z; goes to 0. We use the log-marginal
likelihood of the GP regression model to estimate 1
and other parameters of the kernel (Rasmussen and
Williams, 2006, Eq. 2.30). We call this type of models
the ARD models.

We compare these models to those in which there is
no variable selection, i.e., we set all [; to one value
I. We call these models isotropic (ISO) models since
this choice makes the Gaussian distribution on g an
isotropic Gaussian distribution.

List of Models

Table 1 lists all the models we compare in our exper-
iments. The first model is the ‘Mean’ model which

Tuable 1: List of models compared in this study.

Model Description
Mean Mean of the outputs y,
Lin-ISO Linear model with ISO
Lin-ARD Linear model with ARD
NonLin-ISO SqE kernel with ISO
NonLin-ARD SqE Kernel with ARD

uses the sample mean of the outputs in the training
set as the prediction. This model ignores all the in-
puts and is expected to perform significantly worse
than the models that use them. We compare the
baseline to the two versions of linear models and non-
linear models each, as shown in Table 1. We expect
ARD to be more useful for non-linear models com-
pared to linear models. This is because there is less
danger of over-fitting with linear models.

The Automatic Relevance Determination (ARD) pro-
cedure may or may not establish the practical rele-
vance of the input variables, because it only deter-
mines their relevance in predicting the output vari-
ables. This procedure is affected by the estimation
procedure and the amount of data, e.g., the minimiser
might get ‘stuck’ in a local minimum due to poor ini-
tialisation. This is more likely when we do not have
enough data to estimate the marginal likelihood.

Dataset Description

The case studies are based on abstract representa-
tions of typical buildings, taken from the United
States Department of Energy (USDOE) Commercial
Buildings Reference Database (Deru et al., 2011) (re-
ferred to as the ‘USDOE’ series after this). Details
about how the data were produced can be found
in Rastogi (2016, sec. 4.2 and B.4). The buildings
were modelled without Heating, Ventilation, and Air
Conditioning (HVAC) systems, in EnergyPlus v8.5
(NREL and USDOE, 2015). The weather data used
are described in Rastogi (2016, sec. A.5 and B.4).
Seventeen different building types, distinguished by
usage, were simulated (e.g., hospitals, apartments).
In addition to a different usage profile or programme,
each type had a different layout and arrangement of
rooms. Further variety was introduced by using three
wall construction profiles for each building type.

Using the USDOE database and weather data from
several climates (regions) worldwide, we obtain a to-
tal of N = 88242 input-output pairs. Each input
X, contains 28 dimensions, i.e., 28 input variables,
which are described in Table 2. We used two out-
puts, ye?*"9 and y<°°"9  the ideal heating and cool-
ing energy consumption respectively. Both these out-
puts were obtained by summing the respective hourly
loads over one year to give the ideal heating or cool-
ing energy consumption. The distribution of these
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Figure 1: Distribution of the outputs y***""9 for heat-
ing loads and y<°®"™9 for cooling loads. The weight
of the distributions is skewed towards lower values
because we selected, unintentionally, more moderate
climates (climates that need less cooling/heating or
none) than extreme ones (need more heating, cooling,
or both). Each building produces a slightly different
distribution by itself  all simulations are plotied to-
gether here.

outputs is shown in Figure 1. We fit two separate
regression models for /€79 and yc°oin9  although
it is also possible to use one model to predict both
the outputs.

Even though our dataset contains multiple building
and weather types, we only train one emulator. It is
possible to train different models for each type, but
then the amount of data for each type will be substan-
tially smaller. There are other issues, e.g., deciding
which model to use during testing, or how to capture
correlations between different subtypes. Using one
powerful non-linear model, that can capture complex
dependencies in the data, avoids all these issues. Such
an approach performs much better than simple linear
models, as we show in this paper.

All inputs and outputs were standardised, i.e., we
computed their means and standard deviations, sub-
tracted the mean and then divided by the standard
deviation. This way all the inputs and outputs lie
within the same range, which improves the robust-
ness of the numerical procedures used during esti-
mation. The original data and results shown in this
paper may be downloaded from https://doi.org/
10.5281/zenodo.291858. The code may be down-
loaded from https://github.com/paragrastogi/
GPregressionInBS.

Results

We now compare the models shown in Table 1 using
the training-testing framework discussed earlier. In
our first experiment, we investigate the effect of the
amount of training data on prediction quality. We
expect all models to perform badly when the amount
of training data is limited. As the amount of data

is increased, we expect nonlinear models to perform
better than linear models.

To estimate the real-world performance of a model,
we set aside about 60% of the 88,242 observations
(simulations) for testing (Niest = 52,945) and use
parts of the remaining data set to train the model.
Note that the test set is always ‘left out’, i.e., a model
never uses the data in the test set for training and
is completely unaware of it. The test data is fairly
large and therefore we expect it to produce a faith-
ful estimate of the real-world prediction error of the
model. We present the Root Mean Square Errors
(RMSEs) on the test set, which are obtained by tak-
ing the square root of Equation (4).

The training dataset size Ny, varies from 50 to
4000. For a given training size Nipqin, we draw
that many training observations from the large over-
all training set and use it to train a model. We then
predict the left-out test data using the trained model
and compute RMSE. We repeat this process 100 times
to obtain an empirical distribution of the RMSE esti-
mate. This gives us a confidence estimate which can
be used in a significance test.

Figure 2 shows the results for heating loads in the left
column and cooling loads in the right column. Fig-
ures 2a and 2b show the evolution of RMSE as a func-
tion of the size of training data for heating and cool-
ing loads respectively. Each curve in the plots shows
the performance of a model from Table 1. The thick
line shows the median of the RMSE distribution while
the shaded area around the thick line shows the 25th
and 75th percentiles. As Ni,.q:n increases, all models
perform much better than the ‘Mean’ model, which
only uses the mean of the output from the training
data and completely ignores the inputs. The linear
models, for example, are about 256% better, while the
non-linear models are 50-75% better (depending on
the type of nonlinear model). This comparison is sim-
ilar to how the R? is calculated for a fit to data. If
a model performs worse than a mean of the train-
ing data, i.e., a horizontal line fit, then it should be
discarded.

Figures 2c and 2d show the empirical distributions of
(the absolute value of) prediction errors for two differ-
ent training set sizes, Nypqin = 100 and 4, 000 respec-
tively. These errors correspond to one of the 100 runs
shown in Figures 2a and 2b. The errors obtained by
using the larger training set are much smaller than
those obtained by using a smaller training dataset,
as expected. With more training data, we are consis-
tently able to reduce larger values of error. Figures 2e
and 2f show a similar comparison between linear and
nonlinear models. The nonlinear model too decreases
the number of larger mistakes.

Overall, the performance of the linear models is uni-
formly worse than that of the non-linear models. As
expected, when the amount of data is small, the
performance of the linear and non-linear models is
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comparable. However, the error curves for the lin-
ear model plateau very quickly and the performance
does not improve with the amount of data increased.
This shows that the linear models are not adequate
for modelling the complex nonlinear data, and are
unable to use the information present in the data.
On the other hand, the non-linear models continue
to improve as the amount of data is increased. Be-
tween the two nonlinear models, the model with ARD
performs significantly better. This shows that reduc-
ing the number of features improves the performance.
This is also expected since a nonlinear model with too
many features might overfit, and reducing the feature
dimensionality reduces this problem.

We now discuss the relevance of features found by us-
ing the ARD method on the Gaussian process (GP)
regression model with a nonlinear kernel (SqE). Re-
call that as 1/l; — 0, the relevance of the feature x;
reduces (compared to other features and assuming
that the range of features are roughly in the same
order of magnitude). As discussed earlier, the selec-
tion of features is affected by the estimation proce-
dure and the amount of data. We present results for
Nirain = 4,000 since the model performance seems
to plateau around this training data size (Figures 2a
and 2b). To see the artifacts (inconsistencies) intro-
duced by the estimation procedure, we plot the em-
pirical distribution of 1/I;, obtained from the 100 runs
for Nipain = 4,000. For irrelevant variables, we ex-
pect 1/1; to be nearly zero most of the time.

Figure 3 contains empirical estimates of the distribu-
tion of 1/I; for a feature. The name of the feature is
shown in the title and its description is in Table 2.
The distribution is estimated over a 100 values and
normalised (scaled to 0-1). Both x and y axis are lim-
ited to 0-1 for easy visualisation. We show only those
inputs which take a non-zero value at least 20% of
the time. We now discuss the consequences of these
results.

Only two inputs, Window-to-Wall Ratio and
Window-to-Floor Ratio, are consistently significant,
for both models. The Internal Heat Gain variable
(sumihg) is significant in the heating model but miss-
ing in the cooling model. Also in the heating model,
the influence of mean sunlit percentage (msunp) is
small, though consistent, while that of the volume-
to-wall-area ratio (form-factor or ff) is occasionally
moderate. The median and Inter-Quartile Range
(IQR) of Dry Bulb Temperature (TDB), medtdb
and igrtdb, are weakly significant for cooling mod-
els, though not for heating. While the significance
of Window-to-Wall Ratio (WWR) and Window-to-
Floor Ratio (WFR) is not surprising, the presence
of both in a single fit is unexpected, given their
high correlation (Rastogi, 2016, fig. 4.3). The domi-
nance of these variables could be because the build-
ings we chose are more driven by envelope (fenestra-
tion) loads. The IQR of TDB in a year tends to be

moderately correlated with its median (Rastogi, 2016,
fig. 4.3). We guess that the solar parameters are miss-
ing because their effect is well accounted for by the
envelope ratios: WWR and WFR. Overall, the dom-
inance of building parameters (WWR, WFR, and In-
ternal Heat Gain) is not surprising in what is largely
a sample from commercial buildings with medium to
high fenestration ratios. The almost complete rejec-
tion of all climate parameters és surprising, however,
and we expect may be different in a data set domi-
nated by residential buildings.

Discussion

Emulators are fast-response surrogates for simulators,
delivering comparable results in a fraction of the time.
A typical BPS run (i.e., a building design with one set
of weather data and operating conditions) may take
from a few minutes for very simple models, to hours
for reasonably detailed ones. In addition, the accu-
racy of the ‘predicted’ energy use of a design depends
on the accuracy of the inputs, and whether the pa-
rameters of the simulator have been set appropriately.
Even if all fixed inputs (like building properties) are
known with perfect accuracy, and the tuning param-
eters of a simulator are set to some ideal values, the
presence of random inputs like weather and human
factors means that the simulator can not deliver ex-
act (accurate) predictions. A standard approach to
accounting for the effect of random inputs is to use
MC analyses, but this usually requires a large number
of BPS runs, significantly increasing the computation
time. For such computationally-intensive tasks, em-
ulators can be much faster while being reasonably
accurate.

Building simulation is essentially a solution of several
interconnected partial and ordinary differential equa-
tions, feeding human preference models and being
fed by empirical models for individual components,
so it cannot reasonably be expected to conform to
a linear regime. We do not support the idea of large
databases of pre-simulated cases being emulated with
linear regressors, where a new design problem may
be ‘located’ and its energy use estimated. We argue,
instead, that the benefits and performance of a non-
linear emulator outweigh the costs of training it on
anything from a few dozen to a few hundred simu-
lations (depending on the complexity of the simula-
tion model and design exercise, usually indicated by
the number of building and environmental parame-
ters used as input variables). The response from a
query would be instantaneous during a design explo-
ration or MC exercise.

Emulators also heavily reduce the computational bur-
den for building designers who rely on simulators. For
example, the emulator can first be trained with ob-
servations from the simulator using a wide variety of
building designs and weather data. This pre-trained
model can then be used by building designers for
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Figure 2: Plots on the left show resulls for the heating loads and on the right show results for the cooling
loads. Figures a and b show the Root Mean Square Error (RMSE), plotted against the size of the lraining
data set. The lines indicate median errors, and the filled areas are bounded by the 25th and 75th percentiles.
The non-linear models outperform linear models, and the predictions improve with size of training data set.
Figures ¢ and d compare the empirical estimates of distributions of absolute errors, |e| = |y; — fe(x;)], for
Nirain = 100 and 4,000. We see that a large training data size reduces larger values of error. Figures e and
f compare the same for the linear and non-linear models, where we see that the nonlinear model makes fewer

Errors.
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ure 3a) and cooling (Figure 3b) loads. A wvalue of 1/1; close to zero, for a particular input, indicates that that
input was not involved in determining the prediction of the model. A significant input is one for which at least
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the variable code (see Table 2 for an explanation of the variable codes). The histogram is obtained from the 100

runs over training-data subsets of size Nypgin = 4,000.

exploration of new designs by predicting the perfor-
mance of new buildings very quickly. The emulators
respond almost instantaneously to a query, regardless
of the complexity of the building design being probed,
which is not the case for a simulator. The Energy-
Plus simulations that constitute the training/testing
data for this paper each took between 15 seconds and
9 minutes on a laptop. The training of a regression
model with, e.g., 4000 inputs takes far longer (be-
tween 1 and 3 hours, depending on the type of re-
gression model used). Clearly, the effort of training
a regression model is not justified in the case of a
handful of simulations (e.g., when the user is check-
ing a design for compliance with local energy laws).
However, the user of a hypothetical future regression-
model-based design exploration system need not con-
cern themselves with the effort of training it. Since
the regression model can sit on a remote server to be
queried, the user is only interfacing with the emula-
tion as if they were working in a building simulation
program.

In the development of emulators so far, BPS has been
used as the ‘ground truth’, which means that the
emulators are trained to faithfully reproduce the re-
sponses of the simulator (Rastogi, 2016, ch. 2). We
do not, as yet, have well-developed case studies with
measured data to compare the performance of emula-
tors against simulators. While it is clear that neither
simulators nor emulators can model reality ezactly,
emulators can be retrained when better data becomes
available while simulators cannot. In this sense, em-
ulators are both fast and flexible. Calibrating a sim-
ulator using real data is a manual process whose con-
duct depends on the judgement of the user, and is
not comparable to retraining a regression model.

Conclusion

In this paper, we presented non-linear and linear
Gaussian process regression models for emulating
(Obps. We showed that nonlinear models achieve
RMSE values that are 3-4 times lower than those of
linear models. Finally, we discussed the results from
using fits in which the input variables are selected
using the ()ard method.

Gaussian process regression offers a promising and
flexible approach to creating emulators for building
performance simulation. We have built upon previous
work (both ours and from the literature), to present
alternatives to classical linear regression in the form of
Gaussian process regression. The proposed regression
models, though more expensive to train than linear
models, give more accurate predictions. We expect
to further refine these and other regression methods
in future studies for use in emulating BPS. The de-
velopment of easy-to-use regression modules for BPS
programs, which help a user to probe and customise
a regression model for their design problem, is ongo-
ing. We also plan to test Gaussian process regression
and other machine learning approaches, like ANN and
random forests, on larger data sets with many more
features.

The use of emulators greatly eases the process of
quantifying uncertainty and sensitivity in building
simulation, an argument we have previously sum-
marised in Rastogi (2016). The effort needed to sim-
ulate enough data for training may be lessened by us-
ing a combination of a large variety of automatically-
sampled random inputs, e.g., weather, and a man-
ageable number of manually-created ‘design variants’,
e.g., 5-6 combinations of building properties. This is
how the data used in this study was generated. In
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future work, we expect to increase the features used
in the model to account for more aspect of the build-
ing. The emulators may also be extended to deliver
time series of temperatures, energy, etc., which may
be more informative in making decisions. These emu-
lators are envisioned as part of a larger project to use
emulators for machine-assisted design exploration.
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Table 2: Initial inputs, codes, and units.

Group Quantity Statistic Name Code Units
O U-value Average Average U-value of envelope uval W/m2K
E Thermal Mass Sum Sum of thermal storage capacity tmass  MWh/K
A
= Envelope Ratio Ratio of window area to wall area WWR
4 Ratios Ratio of window area to floor area WFR
M

Massing Ratio Form Factor (Volume / Wall Area) b
Roof Ratio (Roof / Wall Area) rr
A Shading Average Average sunlit percentage of envelope msunp %
=
5 Ifiltration Annuz.ﬂ sum of energy gained from in- sinfg GWh
2 Sum filtration
Annual sum of energy lost to infiltra- sinfl
tion
Internal Heat Gain Annual sum of Internal Heat Gain sumIHG GWh
Degree Days Sum Annual sum of cooling degree days cdd v
Annual sum of heating degree days hdd -day
Dry Bulb Average Annual average of dry bulb tempera- avgtddb
Temperature ture °C
(Hourly) Median Median dry bulb temperature medtdb
=
= IQR Inter-quartile range of dry bulb tem- iqrtdb
= erature
= p
3 Dew Point Average Annual average of dew point tempera- avgtddb
@) Temperature ture °C
(Hourly) Median Median dew point temperature medtdb
IQR Inter-quartile range of dew point tem- igrtdb
perature
Global Horizon- Average Annual average of global horizontal ir- avgghi
tal  Irradiation radiation MWh/m?
(Hourly) Sum Annual sum of global horizontal irradi- sumghi
ation
IQR Inter-quartile range of global horizontal iqrghi
irradiation
Direct Nor- Average Annual average of direct normal irradi- avgdni
mal Irradiation ation MWh/m?
(Hourly) Sum Annual sum of direct normal irradia- sumdni
tion
IQR Inter-quartile range of direct normal ir- iqrdni
radiation
Humidity Average Annual average of relative humidity avgrh o
4]
(Hourly) Median Median relative humidity medrh
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