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ABSTRACT: The functionality of liquid−liquid interfaces formed between two
immiscible electrolyte solutions (ITIES) can be markedly enhanced by modification
with supramolecular assemblies or solid nanomaterials. The focus of this Review is recent
progress involving ITIES modified with floating assemblies of gold nanoparticles or
“nanofilms”. Experimental methods to controllably modify liquid−liquid interfaces with
gold nanofilms are detailed. Also, we outline an array of techniques to characterize these
gold nanofilms in terms of their physiochemical properties (such as reflectivity,
conductivity, catalytic activity, or plasmonic properties) and physical interfacial properties
(for example, interparticle spacing and immersion depth at the interface). The ability of
floating gold nanofilms to impact a diverse range of fields is demonstrated: in particular,
redox electrocatalysis, surface-enhanced Raman spectroscopy (SERS) or surface plasmon
resonance (SPR) based sensors, and electrovariable optical devices. Finally, perspectives on
applications beyond the state-of-the-art are provided.
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1. INTRODUCTION

Liquid−liquid interfaces are emerging as powerful, transparent,
defect-free platforms for bottom-up self-assembly of ordered
two-dimensional (2D) and three-dimensional (3D) nano-
particle (NP) arrays.1−6 The fluidic nature of these interfaces
allows them to self-heal, permitting the preparation of robust
gold nanofilms of remarkable uniformity at room temperature,
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extending over large geometric areas (at least cm2), without the
use of specialized equipment.7 The utilization of liquid
interfaces dates back to the beginning of the 20th century.
Initially Ramsden,8 and shortly afterward Pickering,9 discovered
the stabilization of emulsions, i.e., interfaces between either two
liquids or air and liquid, by particles. Those particles underwent
assembly processes at liquid−liquid interfaces and, thus,
stabilized emulsions in a similar manner to surfactants.
Subsequently, such emulsions were called “Pickering emul-
sions”. However, the utility of this discovery remained dormant
for several decades and was only revitalized upon the
development of analytical methods capable of investigating
the emulsions mechanisms of formation and intrinsic proper-
ties.
Since the turn of the 21st century, the spontaneous

adsorption of micro- and nanoparticles at either liquid−liquid
or air−liquid interfaces1,10−12 and the invention of practical
methods of self-assembly13−15 have been the subject of much
scrutiny. Numerous industrial products and processes involve
particles immobilized at soft interfaces such as antifoam
formulations, crude oil emulsions, aerated foodstuffs, and
flotation. The immobilized particles act in many ways like
traditional surfactant molecules, but they also offer distinct
advantages. This research area is now very versatile and
multidisciplinary, combining fundamental science with large-
scale industrial applications. The topic of colloidal particles at
fluid−fluid interfaces has recently been comprehensively
reviewed by Binks.16

Nanofilms consisting of conductive NPs, for example, gold
nanoparticles (AuNPs), are of significant interest both in terms
of fundamental and applied research as they possess unique
optical, conductive, and catalytic properties. The manipulation
of the physical positions17,18 and electrochemical activity19−21

of the AuNPs within the nanofilm is possible by controllably
applying an electric field across an interface formed between

two immiscible electrolyte solutions (ITIES).17,22 An ITIES
may be formed between either aqueous−organic solvent,23,24

aqueous−superhydrophobic ionic liquid,25 or organic solvent−
ionic liquid phases.26 As ionic liquid-based ITIES have yet to be
modified with gold nanofilms, this Review will focus exclusively
on aqueous−organic solvent ITIES.
In addition to floating nanofilms, it is well-known that NPs

can be assembled on solid supports as superlattices or
superstructures.27 This field has attracted tremendous interest
over the past few decades, as highlighted by several recent
reviews covering the synthesis, optical properties, etc. of these
superlattices.28−36 In the present Review, we give a broad
overview of the challenges inherent to self-assembling NPs at
liquid−liquid interfaces, in particular with regard to AuNPs. We
comprehensively summarize the methods currently available to
study the physiochemical properties of nanofilms both in situ at
the liquid−liquid interface and ex situ after transfer of the
nanofilms to solid substrates. We also compare the two
approaches to nanofilm formation (liquid−liquid and solid−
liquid) in order to help the reader understand the enormous
breadth of this research field. However, the primary focus of
this Review is toward nanofilm-functionalized liquid−liquid
interfaces, and the Review will not cover nanofilms at solid−
liquid interfaces in depth.

2. INTERFACE BETWEEN TWO IMMISCIBLE
ELECTROLYTE SOLUTIONS

The meaning of the word “immiscible” in the abbreviation of
ITIES is multifaceted. The ITIES is first immiscible in terms of
the solvent molecules, resulting in a molecularly sharp interface
but with a dynamic microscopic roughness as “fingers” of the
aqueous phase protrude into the organic solvent and vice
versa.37 Second, the ITIES is immiscible in terms of partition of
the electrolyte ions between the two phases within a certain
range of applied potentials across the interface, known as the

Figure 1. Electrochemistry at the interface between two immiscible electrolyte solutions (ITIES). Note that the water phase is blue and the oil phase
is red in this scheme. (A) Typical cyclic voltammogram (CV) obtained by external polarization of an ITIES using a potentiostat. At high positive
potentials the polarizable potential window (PPW) is limited by aqueous cation transfer (e.g., Li+, Na+, or Mg2+), while at negative potentials the
aqueous anion limits (e.g., Cl− or SO4

2−). In theory, the PPW may be limited by transfer of organic cations and anions at positive and negative
polarizations, respectively. This is indeed the case if moderately hydrophobic salts such as tetrabutylammonium tetraphenylborate (TBATPB) are
dissolved in the oil phase. However, an extremely hydrophobic salt, such as bis(triphenylphosphoranylidene) ammonium tetrakis-
(pentafluorophenyl)borate (BATB), dissolved in the oil phase contributes minimally. (B) Photo representing a typical 4-electrode electrochemical
cell used to polarize an ITIES externally with two platinum (Pt) counter electrodes (CEs), one in each phase, and two Ag/AgCl reference electrodes
(REs), one in the aqueous phase and one in the organic reference solution (see the reviews listed in the text for more details on this solution). The
dense halogenated solvent, in this case α,α,α-trifluorotoluene (TFT), is on the bottom and yellow-colored because ferrocene is dissolved in it to
clarify the position of the ITIES in the image.
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polarizable potential window (PPW). In truth most of the
solvents are slightly miscible, e.g., the water concentration in
1,2-dichloroethane can be up to 110 mM.38 Experiments are
typically performed with mutually saturated solutions.
As the acronym ITIES suggests, both phases contain

dissolved supporting electrolyte salts in either phase, enabling
electrical conductivity. At a liquid−liquid interface the
maximum upper and lower potentials are limited by the
transfer of the supporting electrolyte ions. Thus, to obtain a
wide PPW, highly hydrophilic inorganic salts (e.g., Li2SO4, KCl,
MgSO4, etc.) are used in the aqueous phase and highly
hydrophobic salts, typically composed of bulky organic ions
such as bis(triphenylphosphoranylidene)ammonium cations
(BA+) and tetrakis(pentafluorophenyl)borate anions (TB−),
are employed in the organic phase. This means that at high
positive potentials the PPW is limited by aqueous cation
transfer, while at negative potentials the aqueous anion limits
the potential window (see Figure 1), whereas the organic-phase
electrolytes BA+ and TB− contribute minimally.39−41 Of course,
supporting electrolyte of the organic phase can be chosen so
that the ion transfer from the organic phase limits the potential
window from one or both ends. For example, the replacement
of TB− with tetraphenylborate (TPB−) results in the positive
end of the PPW being limited by transfer of TPB− from organic
to aqueous phase. A sufficiently polar organic solvent, typically
1,2-dichloroethane (DCE),41 1,2-dichlorobenzene (DCB),42,43

or α,α,α-trifluorotoluene (TFT)44 having relative permittivities
(ε) of 10.4, 10.1, or 9.2,45 respectively, is often required to
facilitate dissociation of the organic electrolyte salt as well as to
support the flow of current. However, even chloroform46,47 or
toluene,48 which have low values of ε (4.8 and 2.4,

respectively), can be used at microinterfaces, where the low
conductivity of the organic solvent is not a significant issue.
More-polar water-immiscible organic solvents have also been
used, such as nitrobenzene (ε = 34.8).49 Other highly polar
organic solvents such as acetonitrile (ε = 36.6)50,51 or
propylene carbonate (ε = 66.1)52 become immiscible with
water if a heavy loading of supporting electrolyte is employed
to force a phase separation. However, use of the latter two
approaches results in a reduction in the overall size of the PPW.
This is due to the fact that the solvation of ions is similar in
both phases because the transfer energy of even highly
hydrophilic and hydrophobic ions between phases is too
close to 0 kJ mol−1 to allow separation of the waves. As a result,
neither is suitable to form an ITIES with a usable PPW. This
discussion is not an exhaustive account of all organic solvents
used to form ITIES. For more options, see the Introduction of
the article by Kasuno et al.48

The ITIES can be controllably polarized, or electrified, by
application of a potential, either externally through the use of
electrodes immersed in both phases or through a common ion
dissolved in the organic and aqueous phases. The potential
drop spans the interface and is termed the Galvani potential
difference (ϕw − ϕo = Δo

wϕ); it can be manipulated to provide a
PPW as wide as ∼1.0 V.23,24 The width of the PPW is limited
by the discussed factors (choice of supporting electrolyte,
solvent, etc.). A typical 4-electrode electrochemical cell used to
polarize an ITIES externally is shown in Figure 1B.
According to molecular dynamics simulations and experi-

ments, the liquid−liquid interface is molecularly sharp but
rough, with fluctuation in the pico-second time scale of the
thickness of ca. 1 nm for a water−DCE interface.53−56 If the

Figure 2. Versatility of electrochemistry at the ITIES. In each of the schemes, the ITIES is polarized positively by a potentiostat. Positive polarization
of the ITIES can lead to ion transfer (IT) with the polarizable potential window (PPW) of (A) cations from the oil phase (red) to the water phase
(blue) or (B) anions from oil to water. (C) For very hydrophilic cations, facilitated ion transfer (FIT) is achieved in the presence of a suitable
ionophore species in the oil phase. Ionophores are complexing agents that shift the apparent solvation energy and are typically used to facilitate the
transfer of very hydrophilic species from water to oil within the PPW. Positive polarization of the ITIES can provide (D) a thermodynamic driving
force for interfacial electron transfer (IET) from a hydrophobic electron donor redox couple, D, to a hydrophilic electron acceptor redox couple, A.
In some instances, more driving force is required to achieve electron transfer across the ITIES, and this can be provided by (E) harvesting solar
energy using photosensitizers immobilized at the ITIES (e.g., porphyrins or semiconductors) in a process known as photoinduced interfacial electron
transfer (PIET). Negative polarization of the ITIES may impede or reverse the direction of the described charge-transfer events. The reactions at the
electrodes (marked as Ox to Red and Red to Ox), typically decomposition of the solvent or the supporting electrolytes, are not of importance as long
as the potentiostat can supply enough compliance voltage to support the current flow. As the counter electrodes are sufficiently far away from the
interface, the reaction products are not affecting the reactions taking place at ITIES within the timescale of typical experiments.
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majority of the potential drop takes place across this thin 1 nm
interface, very strong electric fields can be achieved (ca. 109 V/
m) for modest applied Galvani potential differences. However,
the potential distribution within the interfacial layer is still
poorly understood. Molecular dynamics simulations and X-ray
reflectivity measurements indicate that both the liquid−liquid
interface and the potential drop are almost molecularly sharp.
For example, the electron density profile obtained from X-ray
reflectivity shows a sharp change over a 0.2 nm distance,57 and
the electric potential difference from molecular dynamics
simulations of a slab of water−DCE−water shows a similar
sharp decrease.58 Girault and co-workers have estimated that ca.
30% of the potential drop is within the inner layer,59 while Niu
and co-workers60 argued (based on earlier work by
Schmickler61) that the potential drop at the interface is mostly
at the electric double layer of the organic phase. However,
Samec argued that this assumption is unjustified, as the
potential drop is located at the nanoscopic interface.62 The
structure of the liquid−liquid interface has been discussed by
Dryfe.63

A major distinguishing factor of electrochemistry at the
ITIES is its sheer versatility in comparison with using solid
electrodes, encompassing ion transfer (IT; Figure 2A and B),
facilitated ion transfer (FIT; Figure 2C), interfacial electron
transfer (IET; Figure 2D), and photoinduced interfacial
electron transfer (PIET; Figure 2E) processes. In-depth
discussions of the theoretical background and plethora of
possible applications of electrochemistry at the ITIES beyond
the scope of this Review are available in a series of recent
reviews.23,24,64−68

3. FUNCTIONALIZATION OF LIQUID−LIQUID
INTERFACES WITH FLOATING GOLD NANOFILMS

In this section, we discuss experimental strategies to induce the
adsorption of preformed colloidal spherical AuNPs at planar
2D liquid−liquid interfaces. A comprehensive review of the
adsorption of other nanomaterials at liquid−liquid interfaces
(beyond the scope of this Review), including both nonspherical
nanomaterials, e.g., 1D nanorods or 2D sheets, and Janus NPs
was recently provided by Booth and Dryfe.69 Additionally, the
electrodeposition of AuNPs at the ITIES has been reviewed by
Dryfe et al.70 The latter approach “decorates” the ITIES with
AuNPs, although not to the extent that gold nanofilms of
densely packed assemblies of uniformly arranged AuNPs are
formed. Another topical review by Poltorak et al. compre-
hensively detailed both in situ and ex situ functionalization of
soft interfaces with molecules, nano-objects, and nanopore
arrays.71 Very recently, both Lee et al.72 and Binks16 provided
thorough reviews on the applications of NPs adsorbed in 3D
configurations at liquid−liquid interfaces (also beyond the
scope of this Review), forming either “liquid marbles” or
colloidosomes. Liquid marbles are macroscopic 3D particle
encapsulated liquid droplets with diameters in the millimeter to
centimeter range.10,72,73 Colloidosomes are >1000-fold smaller
than liquid marbles, forming micrometer-sized particle
stabilized Pickering emulsions.72,74 On the other hand, the
formation of superlattices at solid−liquid interfaces has been
thoroughly reviewed in recent years by a number of different
authors.28−35,75,76

3.1. Thermodynamics of Nanoparticles at the
Liquid−Liquid Interface

Several key studies have outlined in detail the various forces at
play that dictate the adsorption of NPs at a liquid−liquid
interface.13,14,77−80 In this regard, Flatte ́ et al.80 provided a
particularly useful numerical model consisting of analytical
equations that describe several key contributions to the total
free energy of the biphasic system upon adsorption of NPs at
the liquid−liquid interface. The key energies identified were (i)
the energy of capillary forces, (ii) the energy devoted to
changing the solvation sphere as the NP moves from an
aqueous to an organic environment, (iii) the line tension, and
(iv) the presence of an external electric field (applicable only
for NPs adsorbed at an ITIES). Recently, Smirnov et al.52

created a very assessable calculator using the equations of Flatte ́
et al. (available online in the Supporting Information of their
article). The calculator describes the balance of the interfacial
energies at a nonpolarized liquid−liquid interface for NP
adsorption as a function of NP size, dielectric constant of the
organic solvent, surface charge of the NP, and three-phase
contact angle of the NP (θ0).
The main driving force entrapping an NP at a liquid−liquid

interface is the capillary energy, i.e., the energy a system gains if
an NP occupies a portion of the interface. Primarily, the
capillary energy is dictated by the interfacial tension (γw/o) and
θ0 (see Figure 3A for a graphical representation of the precise
meaning of θ0). On the other hand, the solvation energy acts as
a barrier to NP adsorption. As a charged NP transfers from a
more-polar to less-polar medium (so from water to oil), the
contribution of the solvation energy to the overall energetic
balance increases significantly, especially once the NP pierces
the organic side of the interface. The line tension contains all
kinds of interactions pushing NPs away from the interface,
whereas an external electric field at an ITIES can be applied to
forcibly entrap NPs at the interface (discussed vide infra).
A typical energetic profile of NP adsorption at a water−DCE

interface is demonstrated in Figure 3B(i). On the aqueous side
of the interface, approach of the NPs to the liquid−liquid
interface is impeded by an energy barrier. As the NPs cannot
reach the potential well that exists at the interface, no interfacial
assembly of adsorbed NPs takes place. However, if γw/o or θ0
are tuned (for example, by changing the organic solvent from
DCE to propylene carbonate, as shown in Figure 3B(ii)),
adsorption of NPs is facilitated. The latter is possible as the
barrier on the aqueous side of the interface has decreased,
increasing the likelihood of the NPs falling into the potential
well at the interface and becoming trapped.7,52,81

Once two or more AuNPs assemble at the liquid−liquid
interface, Coulombic repulsive and van der Waals attractive
forces exert influence on the adsorbed AuNPs. Thus, the
surface charge density (σ) of adsorbed AuNPs critically
influences their tendency to adsorb and their equilibrium
interfacial surface coverage.13,14,77,79 In the case of large
particles (typically >1 μm), their weight and associated
additional capillary forces need to be considered (not discussed
herein).
Thus, all-in-all, three main strategies have been developed to

induce AuNP adsorption at the interface by reducing the total
free energy of the biphasic system through manipulating either
(i) electrostatics (i.e., minimizing Coulombic repulsion
between interfacially adsorbed AuNPs by reducing screening
effects, decreasing σ, or applying an electric field at the ITIES),
(ii) hydrophobicities of adsorbed AuNPs (i.e., affecting γNP/w,
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γNP/o, and θ0; see Figure 3A), or (iii) interfacial tension (i.e.,
decreasing γw/o). Also, simultaneously achieving a synergistic
mix of more than one effect is common (e.g., decreasing σ and
bringing θ0 closer to 90° with one strategy). Finally, as the
adsorption of AuNPs is typically a kinetically controlled process
dictated by the AuNP’s Brownian motion,82 many of the
strategies discussed involve emulsification or vigorous shaking
of the biphasic systems to accelerate AuNP adsorption.

3.2. Experimental Strategies

Bell and co-workers2,82,83 have classified a series of chemically
diverse molecules (e.g., tetrabutylammonium nitrate and 4-
tertbutylcalix[4]arene tetraethylester (Na+) complex) that
when introduced to a biphasic system act as electrostatic
“promotors” of AuNP adsorption. A promotor must (i) contain
a hydrophobic ion of opposite charge to the AuNP, (ii) not
directly adsorb onto the AuNP (i.e., displace the original
stabilizing ligand), and (iii) induce adsorption when present at
low concentrations. Promoters induce adsorption by con-
densation of the hydrophobic ions on the organic side of the
interface, thereby screening Coulombic repulsion acting on the
portions of each AuNP submerged into the organic
solvent,2,82,83 as shown in Figure 3C(i). The latter, combined
with the attractive van der Waals forces, determines the
interparticle separation distances at the interface. Both
hydrophilic salts present at low (ppm) concentrations and
amphiphilic salts with hydrophobic ions of identical charge to
the AuNP reduce Coulombic repulsion only in the aqueous
phase. Thus, neither can act as promoters. Nevertheless, Turek
et al. demonstrated that, by increasing the ionic strength in the
aqueous phase by addition of salt, the reduction in Debye
length at the surface of each AuNP can be sufficient to induce
adsorption upon centrifugation.84

A variety of methods have been introduced to reduce σ.
Modification of AuNPs with stabilizing ligands that terminate in
carboxylic groups (e.g., 3-mercaptopropionic acid, 4-mercapto-
benzoic acid, and 16-mercaptohexadecanoic acid) allows
effective modulation of σ by pH.79,85 Indeed, such a tactic
was used to reversibly adsorb/desorb AuNPs < 10 nm in size
from the interface.85 Another approach is to introduce
“modifiers” to the biphasic system. As defined by Bell and
co-workers,2,82 a modifier tunes σ but also synergistically
modifies the surface hydrophobicity of the AuNPs (i.e.,
affecting θ0). Unlike promoters, modifiers may coordinate
with the initial ligand on the AuNP or substitute the ligand

Figure 3. Functionalization of liquid−liquid interfaces with nano-
particles. (A) Schematic representation of the position of a AuNP at a
liquid−liquid interface for a three-phase contact angle (θ0) with the
interface <90° (left), equal to 90° (center), and >90° (right). θ0 is
defined as the angle between the water−oil interface and the NP−oil
side of the tangent plane at the line of contact. γNP/w, γNP/o, and γw/o
are the interfacial energies of the NP−aqueous phase interface, NP−
organic solvent interface, and water−organic solvent interface,
respectively. The effective radius of the AuNP is r. (B) Contribution
of the components of capillary forces (Wcap, red line), solvation energy
(Wsolv, blue line), and line tension (Wline, orange line) to the overall
energy profile (Wsum, dashed black line) for a AuNP adsorbed at (i) a
water−DCE interface (γw/o ≈ 30 mN/m) and (ii) a water−propylene
carbonate (PC) interface (γw/o ≈ 3 mN/m). The excess of charge on
the AuNP (ZAuNP) was set to +400, and θ0 was set to 88°. These
calculations were carried out using Mathematica software, and the

Figure 3. continued

CDF file is available in the Supporting Information of ref 52. Adapted
with permission from ref 52. Copyright 2017 The Royal Society of
Chemistry. (C) On contact between an aqueous colloidal solution of
AuNPs and an immiscible oil phase, a few AuNPs are driven to the
interface by the reduction of interfacial energy. However, the strong
potential barrier on the aqueous side of the interface (seen at a
distance of ∼ −20 nm from the interface for the experimental
conditions, modeled with the dashed line for sum in (B(i))) keeps
most AuNPs dispersed in the aqueous phase. Thus, as shown in C(ii),
self-assembly of the AuNPs into a gold nanofilm under these
conditions is not possible. On the contrary, the addition of promoters
C(i) or modifiers C(iii) significantly reduces this potential barrier by
providing charge screening, changing the AuNPs’ surface charge
density (σ), or synergistically modifying the AuNPs hydrophobicity
(i.e., affecting θ0). Adapted with permission from ref 82. Copyright
2016 American Chemical Society.
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completely in situ; see Figure 3C(iii). Examples of modifiers
include 1-dodecanethiol,5,6 mercaptosuccinic acid in combina-
tion with tetraoctylammonium bromide,4 2,2′-dithiobis[1-(2-
bromo-2-methyl-propionyloxy)ethane] (DTBE),78 poly-N-iso-
propylacrylamide (PNIPAM),86 and tetrathiafulvalene.81

Arguably, the most widely used method of inducing
interfacial AuNP adsorption is to introduce an alcohol, such
as ethanol or methanol, to the biphasic system that
simultaneously reduces σ and γw/o, ultimately allowing θ0 to
approach the optimal 90°.5−7,17,19,20,77−79,87−91 Alcohols may
first reduce σ by competitive displacement of citrate ligands
(i.e., acting as modifiers).77,79 Additionally, water-miscible
alcohols will lower the dielectric constant of the aqueous
phase as a function of alcohol content, thereby gradually
decreasing σ.6 Experimental evidence92 and molecular dynamics
(MD) simulations93 indicate that the presence of a mutually
miscible alcohol across both phases reduces γw/o. Indeed, gold
nanofilms have also been successfully formed at pure aqueous−
pentanol interfaces.94 Also, the ITIES was modified using a
minimum amount of methanol by initially suspending the
citrate-stabilized AuNPs in a methanol solution and then
injecting this alcoholic colloidal solution directly at the ITIES
using a microsyringe;17,19,20,95 see Figure 4. Such an approach
was beneficial to prevent artifacts in ensuing electrochemical
studies.
Intensive mixing of immiscible biphasic systems of extremely

low γw/o, such as the aqueous−propylene carbonate system
(γw/o = ca. 3 mN·m−1), can directly lead to gold nanofilm
formation.95 The disadvantage of using propylene carbonate,
however, is its inability to form an electrified ITIES with a wide
PPW, thereby limiting its potential utility.
For solid−liquid interfaces, superlattice formation is

governed by size, ligand effects,96 and chain length of the
ligand.29 A narrow size distribution is essential for increasing
the degree of ordering in NP superlattices,28 and this requires
specialized synthetic methods such as digestive ripening.97 The
latter process is essentially a thermochemical step where a
ligand-exchange reaction induces the redistribution of atoms
from polydisperse NPs, leading to a very narrow size
distribution.97 This method has been widely used for a long
time, but the theoretical description of the process based on
statistical thermodynamics was only developed recently.98 The
detailed understanding of superlattice formation at solid−liquid
interfaces has yet to be replicated for the formation of
nanofilms at liquid−liquid interfaces, where, for example, higher
flexibility of the interface makes the film more tolerant to
defects.
Different strategies may be implemented to prepare nano-

crystal superlattices at solid−liquid interfaces. One approach is
to increase the concentration of nanocrystals by evaporating off
the solvent.99−101 At a critical nanocrystal concentration, this
leads to an entropy-driven self-assembly phase transition to
form an ordered superlattice known as the Kirkwood−Alder
transition.102−104 Alternatively, the solvent composition may be
altered to induce aggregation or self-assembly by decreasing the
solubility of the nanocrystals.105 The self-assembly of nano-
crystals may be influenced by applying external stimuli such as
electric, magnetic, or electromagnetic fields.106−108 This can
lead to a tilting of the orientation of anisotropic NPs.106−108

However, only recently have Yu et al. demonstrated the first use
of an external stimulus, an electric field, to reversibly drive
nanocrystal superlattice self-assembly.109

Another interesting approach is the combination of liquid−
liquid and solid−liquid methods for nanofilm formation. For
example, the “drain to deposit” method, where NPs assembled
at a liquid−liquid interface are drained to deposit the film on a
solid substrate, allows tunable formation of large-area NP films
on solid substrates.95,110,111 Other examples include NP
monolayer assembly by the Langmuir−Schaefer method112

and by the three-phase self-assembly method.113 Additionally,
bubbles (liquid−gas interfaces) can be employed for nano-
crystal formation.114

Figure 4. Functionalization of liquid−liquid interfaces with floating
gold nanofilms by precise injection of AuNPs suspended in methanol
at the interface. (A) Schematic of the capillary and syringe-pump setup
used to settle AuNPs directly at the ITIES, allowing precise control
over the AuNP surface coverage. Examples of gold nanofilms prepared
at flat water−TFT interfaces in 4-electrode electrochemical cells using
AuNPs with mean diameters of (B) 12 nm and (C) 38 nm. Flat
liquid−liquid interfaces were achieved by partial silanization of the
bottom half of the electrochemical cell glass walls. (D) Gold nanofilms
were also prepared on larger curved soft interfaces using a 2 × 4 cm
quartz cell. Adapted with permission from ref 20. Copyright 2015
American Chemical Society.
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3.3. Electrovariable Nanofilms

Uniquely, an ITIES provides the additional ability to externally
tune the electric field felt by AuNPs in close proximity to the
interface. Thus, for negatively charged colloidal AuNPs in the
aqueous phase, polarization of the ITIES negatively (i.e., the
aqueous phase is negatively charged with respect to the organic
phase) will push the AuNPs toward the interface and
potentially induce gold nanofilm formation (see Figure 5A,
left panel). On the contrary, positive polarization will repel the
AuNPs from the interface, electrostatically dragging them back
into the bulk aqueous phase and disassembling any formed gold
nanofilm (see Figure 5B, right panel).
The voltage-induced reversible adsorption and desorption of

NPs is dependent on their size and σ and has been
demonstrated for AuNPs < 2 nm in size18,115 and core−shell
gold−silver NPs ca. 16−20 nm in size (but with a 4-fold
increase in σ in comparison to pure AuNPs).116 However,
AuNPs < 2 nm in size do not form lustrous gold nanofilms.
Very recently, Montelongo et al.22 have shown that relatively
large NPs can be assembled by the electric field at a water−
DCE interface. In their study, AuNPs (16 nm in diameter) were
functionalized with 12-mercaptododecanoic acid (MDDA) in
order to protect them from aggregation by NaCl and TBATPB
used as supporting electrolytes for the aqueous and organic
phases, respectively. Nevertheless, it takes hours to induce
assembly of such AuNPs into a lustrous film, although
desorption of AuNPs from the interface can be performed in
several minutes. Reversible electric-field driven formation of
silver superlattices on solid electrodes has also been
demonstrated recently,109 so similar approaches can also be
extended to solid−liquid interfaces.

In comparison, lateral movement of larger AuNPs on the
fluidic interface may be much more accessible. Bera et al.
showed that the interparticle distance of interfacial adsorbed 2
nm AuNPs can be varied by as much as 1 nm by tuning Δo

wϕ.18

Gschwend et al. demonstrated that changes in γw/o in the
presence of a surfactant as a function of Δo

wϕ can induce rapid
lateral movement of relatively large 12 nm AuNPs from one
position on the ITIES to another, thereby behaving as
“electrovariable Marangoni shutters” (discussed in section
6.2).17

3.4. Critical Influences of Interfacial AuNP Immersion
Depth and Interparticle Spacing

The immersion depth at the interface (i.e., θ0 values) may
influence a AuNPs catalytic activity as an interfacial bipolar
electrode (discussed in section 5.1) by altering the ratio of
surface area available for electron-transfer reactions between the
water and organic sides of the interface.20 Additionally, the
potential drop across the ITIES is not uniformly spread
between the aqueous and organic back-to-back diffuse layers,
although the exact potential distribution is not fully understood,
as discussed in section 2. Thus, the rate of electrochemical
reactions taking place on the aqueous side of the interface may
benefit from a greater proportion of the potential drop taking
place there.
Charge transport along a gold nanofilm is achieved by

multiple electron tunneling events (i.e., electrons hopping
between conductive AuNPs separated by a dielectric medium).
The tunneling probability falls off exponentially with
distance.117 The latter was demonstrated by Wuelfing et
al.,118 who observed an exponential decay of conductivity as a
function of the thickness of an alkanethiol matrix separating
gold monolayer-protected cluster (MPC) cores cast onto

Figure 5. Electrovariable gold nanofilm formation by polarization of the ITIES. (A) (Left panel) On application of a negative potential at the ITIES,
the negatively charged AuNPs are electrostatically pushed to the ITIES and form a gold nanofilm. (Right panel) On application of a positive
potential at the ITIES, the AuNPs are electrostatically repelled from the ITIES and the gold nanofilm disassembles. (B) Schematic of a
demonstration device illustrating an electrovariable gold nanofilm in action by using a setup with a coin facing the liquid mirror and a currency note
at the back of the mirror. Modified with permission from Macmillan Publishers Ltd.: Nature Materials, ref 22. Copyright 2017. (C) Modified images
observed during the transition between a transmissive “window” state (when no NPs are at the interface) to a reflective “mirror” state (when NPs
assemble densely at the interface). MDDA-functionalized gold NPs with 16 nm diameter were used, and the ITIES consisted of an aqueous phase
containing 10 mM NaCl and a DCE organic phase containing 10 mM TBATPB electrolyte salt. Modified with permission to avoid copyright issues
regarding the use of coins and bank notes from Macmillan Publishers Ltd.: Nature Materials, ref 22. Copyright 2017. The real images featuring a £10
note and a coin are available in ref 22.
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interdigitated array electrodes (Figure 6A). The MPC core
separation distances in the film were easily varied by choice of
the alkanethiol monolayer chain length.118 Thus, the extreme
sensitivity of the tunneling probability to MPC core separation
distances clearly highlights the need to precisely tune
interparticle spacing to achieve truly conductive interfacial

gold nanofilms. The latter would permit a massively increased
cross-sectional area of reaction to facilitate IET by providing a
continuous conductive interfacial route for electrons to travel
from donor to acceptor molecules on either side of the
interface. Thus, electrons injected anywhere on the gold
nanofilm can be discharged at any point of contact on the
opposite side of the interface. Support for the latter mechanism
is evident from the significant increases in the rates of reaction
for biphasic H2 evolution and O2 reduction due to redox
electrocatalysis by interfacially adsorbed conductive bare or
catalytic NP decorated carbon materials (e.g., graphene or
carbon nanotubes (CNTs)).119−124 The mechanism of redox
electrocatalysis for these conductive carbon materials is
explained in detail in a recent review125 and incorporates
most of the elements of redox electrocatalysis by gold
nanofilms described vide infra in section 5.1.
Critically, for the performance of interfacial gold nanofilms as

nanoplasmonic sensors, the strength of plasmon coupling, as
well as associated hot-spots for SERS sensing, is dependent on
the distance between the AuNPs.126 Furthermore, Jain and El-
Sayed127,128 demonstrated that, as the interparticle gap
decreases, the strengthening electric field causes a near-
exponential increase in the sensitivity of the SPR frequency
shift to the medium refractive index (Figure 6B and C).
With regard to electrovariable optics, theoretical129−134 and

experimental7,90,135 studies have indicated that resonant light
reflection, allowing gold nanofilms to act as nanoplasmonic
mirrors, depends on the material of the NPs, their size, and
their interfacial surface coverage (i.e., average interparticle
spacing should be substantially less than half the AuNP size1).
In this case, the immersion depth plays a minor role in
determination of optical responses from a nanofilm. However,
this parameter is crucial to facilitate electrovariable on/off
behavior of nanoplasmonic mirrors. As discussed in section 3.1,
the deeper an NP is immersed at the liquid−liquid interface,
the higher is the energy needed to remove that NP from the
interface.
Unfortunately, key factors that are beneficial for reflective

interfacial gold mirror formation are diametrically opposed to
facilitate electrovariable on/off behavior. On the one hand, the
AuNPs must be >25 nm in size and suitably functionalized to
have as low a σ as possible in order to achieve very dense
packing at the interface. On the other hand, such large AuNPs
are typically irreversibly trapped in a potential well at the
liquid−liquid interface upon adsorption (considered in section
3.1). An obvious approach is to increase σ, causing an increase
in the electrostatic driving force for desorption to overcome the
trapping potential well. However, an increase in σ will also
likely negate the formation of a dense gold nanofilm in the first
instance. This problem has recently been partially solved by
Montelongo et al.22 through using MDDA-functionalized
AuNPs (high σ) and salt at moderate concentrations (screens
Columbic repulsions between NPs in the film). Nevertheless,
the assembly process took a long time and, thus, imaginative
approaches to find the correct balance of opposing factors are
still required to achieve rapid on/off electrovariable optics.

4. EXPERIMENTAL TECHNIQUES TO CHARACTERIZE
FLOATING GOLD NANOFILMS

4.1. Surface Tension, Capacitance, and Optical Techniques

Techniques that monitor the adsorption of AuNPs in situ are
extremely useful, in particular when multiplexed with a 4-

Figure 6. Properties of nanofilms related to the interparticle gap. (A)
Conductivity of gold monolayer protected cluster (MPC, specifically
of Au309(Cn)92) solid-state films cast onto an interdigitated electrode
surface decays exponentially as a function of the numbers of carbons in
the alkanethiolate chain. The temperature of the measurements was
either 70 (solid circle), 30 (hollow circle), or 60 °C (inverted solid
triangle). The inset schematically presents the interdigitation of
monolayer chains in the solid-state MPC films. Adapted with
permission from ref 118. Copyright 2000 American Chemical Society.
(B) The LSPR maximum of a NP dimer (for polarization along dimer
axis) increases linearly with increasing refractive index, similar to that
for an isolated NP. However, the increase has a much higher slope for
dimers with a smaller inter-NP gap. Adapted with permission from ref
127. Copyright 2008 American Chemical Society. (C) A plot of the
SPR sensitivity (i.e., the slopes of the data plotted in (B)) versus the
inter-NP gap (s, normalized by the NP diameter, D) clearly highlights
that the SPR sensitivity to the medium increases almost exponentially
with decreasing interparticle gap. Adapted with permission from ref
127. Copyright 2008 American Chemical Society.
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electrode electrochemical cell to track adsorption as a function
of applied Δo

wϕ. The voltage-induced reversible adsorption and
desorption of AuNPs < 2 nm in size, noted earlier, was
monitored by quasi-elastic light scattering (QELS);18,115 see
Figure 7A(i) for a scheme of the experimental setup. QELS
monitors the frequencies of capillary waves of a selected
wavelength at the liquid−liquid interface spontaneously
generated by thermal fluctuations. The resulting plots of γw/o
vs Δo

wϕ are known as electrocapillary curves (Figure 7A(ii)). In
the presence of AuNPs, the shape of an electrocapillary curve
changes significantly, as shown in Figure 7A(ii), reflecting
changes in the number density of AuNPs at the interface.
An alternative experimental approach to measure electro-

capillary curves is pendant drop tensiometry.136−138 This

technique has yet to be applied to monitor the adsorption of
AuNPs as a function of Δo

wϕ. Nevertheless, measurements of
γw/o for nonpolarized water−decane interfaces in the presence
of various adsorbed AuNPs clearly highlight the technique’s
suitability for future studies.139−141 Also, Hua et al.142 studied
the adsorption of 5 nm AuNPs at the toluene−water interface
using this method. The particles were functionalized with ion-
pair ligands that promote adsorption to, and desorption from,
the interface.
Electrochemical capacitance measurements at the ITIES have

highlighted an increased capacitance at negative potentials in
the presence of either citrate-stabilized 16 nm AuNPs88 or
mercaptosuccinic acid-stabilized <2 nm AuNPs.115 Because of
their negatively charged stabilizing ligands, the AuNPs are

Figure 7. Variety of methods to locate nanoparticles at the liquid−liquid interface. (A) (i) Schematic of a 4-electrode electrochemical cell configured
for either X-ray surface-scattering measurements or quasi-elastic light-scattering (QELS) interfacial tension measurements (CE1 and CE2 are made of
Pt mesh; RE1 and RE2 are Ag/AgCl reference electrodes). (ii) Electrocapillary curves generated using QELS, i.e., plots of interfacial tension
measurements of the water−oil interface as a function of the Galvani potential difference (Δo

wϕ) with AuNPs (blue) and without AuNPs (red).
Adapted with permission from ref 18. Copyright 2014 American Chemical Society. (B) Calculated specific capacitance curves (lines) are compared
to the data measured (symbols; from ref 88) for various concentrations of AuNPs in the bulk aqueous electrolyte: c1 = 0.42 nM, c2 = 0.67 nM, and c3
= 1.26 nM. “Blank” refers to the unpopulated interface. Adapted from ref 143 with permission from the Royal Society of Chemistry. Copyright 2012.
(C) Schematic of the electrochemical time-resolved surface second harmonic generation (TR-SSHG) experimental setup (CE = counter electrode,
RE = reference electrode, Aq = aqueous phase, and Org = organic phase). Adapted with permission from ref 144. Copyright 2014 American
Chemical Society. (D) SSHG intensity (symbols) and Galvani potential difference (solid black line) as a function of time at the water−DCE
interface for (triangles) Au0.9Ag0.1 NPs and (circles) Au0.6Ag0.4 NPs. Adapted with permission from ref 116. Copyright 2007 American Chemical
Society. (E) Schematics of the sample preparation for freeze-fracture shadow casting (FreSCa) cryo-SEM imaging. Reprinted by permission from
Macmillan Publishers Ltd.: Nature Communications, ref 150. Copyright 2011. (F) Operational scheme of amplitude-modulation AFM at a water−
heptane interface and images of the NP monolayers. The depth of the water layer confined by a mica container is kept <100 μm, and the cantilever is
excited by photothermal actuation (blue laser) inside the heptane drop. Adapted with permission from ref 152. Copyright 2016 American Chemical
Society.
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induced to adsorb at a negatively polarized ITIES and excess
charge density builds at the interfacial boundary. Additionally,
excess charge density may be attributable to interfacial
corrugation in the presence of adsorbed AuNPs. Marinescu et
al.143 developed a theoretical model to facilitate further
development of such capacitance-based characterization of
interfacial AuNP adsorption as a function of Δo

wϕ, with
experimental data closely matching the theory (Figure 7B). The
nonlinear optical technique surface second harmonic gener-
ation (SSHG) is a powerful surface-specific technique that may
be applied to the study of molecular species or solid
nanomaterials adsorbed at the liquid−liquid interface;144 see
Figure 7C for a scheme of the experimental setup. SSHG is
ideal for monitoring voltage-induced reversible adsorption and
desorption, as exemplified for core−shell gold−silver NPs ca.
16−20 nm in size (Figure 7D).116 The surface specificity of
SSHG arises from the vanishing of the second-order nonlinear
susceptibility in centrosymmetric media within the electric
dipole approximation.145

4.2. Physical Position and Three-Phase Contact Angle of
the Nanoparticles

To understand the measured conductive, catalytic, or plasmonic
activity of a gold nanofilm, the physical positions of individual
AuNPs within the nanofilm need to be determined with
nanometer accuracy in terms of interparticle spacing and θ0
values. The characterization of AuNPs on solid supports is
dominated by electron and scanning probe microscopy
techniques (i.e., scanning/transmission electron microscopy
(SEM/TEM) and scanning probe microscopy (SPM), such as
atomic force microscopy (AFM) and scanning tunneling
microscopy (STM)). However, the motion of AuNPs on a
fluidic interface makes such in situ analysis at liquid−liquid
interfaces exceptionally difficult. Ex situ analysis, for example,
by SEM/TEM, via transferring the gold nanofilms to solid
supports may cause alteration of the initial microstructure,
leading to the formation of drying artifacts and, finally, to
incorrect interpretation of the obtained data.
Recent reviews have provided an overview of common

techniques applied to determine θ0 values of various nanoma-
terials at fluidic interfaces.146,147 Techniques such as capillary
rise methods, surface-pressure isotherms, or drop-shape analysis
measure macroscale interfacial properties related to θ0 through
theory and therefore are indirect. The drawback of these
techniques is an inability to analyze the distribution of θ0 values.
Only a single average θ0 value can be extracted, and it relies on
assumptions that tend to break down at the nanoscale.
However, using optical microscopy to observe floating particles,
Snoeyink et al.148 obtained the distribution of θ0 with good
statistics for 1 μm polystyrene spheres at the interface of
water−glycerol and water−decane.
One promising technique designed to overcome these issues

is freeze-fracture shadow casting (FreSCa) cryo-SEM.149,150

This technique was used to image ca. 100 nm AuNPs in situ at
water−decane interfaces and additionally determine θ0 values.
As the name suggests, the AuNP-functionalized liquid−liquid
interface is frozen in a liquid propane jet with a speed of up to
106 K s−1 , and then cracked open and imaged. The key is that
the interface acts as a weak fracture plane that is preferentially
exposed on fracturing; see Figure 7E. Techniques that trap
AuNPs in gels, followed by analysis with SEM or AFM, have
also been developed.151 However, potential drawbacks of both
FreSCa cryo-SEM and gel-trapping techniques are the

deformation of the interface due to the freezing/gelling process
and difficulties providing statistically significant individual data
points to evaluate the distribution of θ0 values at the interface.
Costa et al. successfully imaged SiO2 NP monolayers self-

assembled at a water−heptane interface with an unprecedented
lateral resolution of <10 nm using amplitude-modulation
AFM;152 see Figure 7F for a scheme of the experimental
setup. The development of such real-space in situ imaging
techniques will allow in-plane structural information, such as
the interparticle spacing, to be gathered on a localized area of
the interface. This is in sharp contrast to reciprocal techniques,
such as X-ray reflectivity (discussed vide infra), where structural
information is averaged over the finite size of the radiation
beam and nonperiodic isolated AuNP aggregates or defects in
the nanofilm may not be easily detected.

4.3. X-ray Reflectivity and Scattering

Several techniques based on scattering of X-rays from liquid−
liquid interfaces are capable of determining in situ both in-plane
and out-of-plane structural information on floating gold
nanofilms.18,135,153,154 X-ray reflectivity measurements identify
variations in electron density perpendicular to the liquid−liquid
interface;57,155 the experimental setup is identical to that for
QELS, as shown in Figure 7A(i). Schlossman and co-workers
showed that the resulting electron-density profiles allow the
precise interfacial location of a monolayer of 2 nm AuNPs to be
determined with subnanometer resolution as a function of
Δo

wϕ.18 Under experimental conditions that induce very dense
arrangements of AuNPs at the liquid−liquid interface, for
example, upon lateral compression,153 X-ray reflectivity
measurements provide evidence for the formation of interfacial
bi- or trilayers of AuNPs.
Grazing-incidence small-angle X-ray scattering (GISAXS)

reveals the 2D ordering of the AuNPs within the gold nanofilm;
for example, changes in the lattice spacing or interparticle
separation distance as a function of Δo

wϕ18 or solution ionic
strength135 have been demonstrated. Typically, X-ray scattering
experiments have been combined with other techniques to gain
deeper insights. Schlossman and co-workers18 combined
insights from X-ray reflectivity, GISAXS, electrocapillary curves,
and molecular dynamics (MD) simulations (all as a function of
Δo

wϕ) to demonstrate that hydrophobic TB− anions in the
organic phase condense onto the surface of very positively
charged AuNPs coated with trimethylammonium-terminated
ligands at the aqueous−organic interface. Snapshots of the MD
simulations at various time periods are shown in Figure 8. This
is strong experimental proof of the concept that TB− acts as a
promoter, as described by Bell and co-workers for the case of
tetrabutylammonium (TBA+) cations condensing onto the
surface of very negatively charged AuNPs.2,82 Schlossman and
co-workers18 showed that the small 2 nm AuNPs were drawn
across the interface into the low-polarity organic phase by
shielding their charge with hydrophobic counterions. Mean-
while, Velleman et al.135 utilized X-ray reflectivity, grazing-
incidence X-ray diffraction (GIXRD), and optical reflectance
(discussed vide infra) as complementary techniques to
independently verify the decrease in interparticle spacing and
increase in AuNP surface coverage with increasing ionic
strength in either the aqueous or organic phase.

4.4. Optical Reflectivity and Scattering

Optical reflectivity measurements have been used to investigate
propagating SPR due to strong plasmon coupling in densely
packed interfacial gold nanofilms.89,91,156 Using a pseudo-
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Kretschmann configuration, Cohanoschi et al. highlighted that a
103 times enhancement of the interfacial fluorescence of dyes is
possible at water−xylene interfaces at the surface plasmon
resonance angle (θSPR) in the presence of interfacial gold
nanofilms. The enhancement was attributed to the electric field
enhancement in the plasmonic hot-spots and the reduction of
the fluorescence lifetime of dye molecules in close vicinity to
the metal surface.156 θSPR is the angle of the incident light
hitting the interfacial gold nanofilm that leads to a minimum
(or dip) in reflectance at a specific wavelength. Also using a
pseudo-Kretschmann configuration (see Figure 9A(i)), Hojeij
et al. produced clear experimental evidence of the dip in
reflectance beyond the critical angle due to SPR absorption by
the interfacial gold nanofilm, closely matching theoretical
calculations;89 see Figure 9A(ii) and (iii).
SPR is also sensitive to changes in refractive index of the

medium (discussed in detail in section 5.2 vide infra), measured
as the change in reflected light passing through a prism and
reflected off of the back of the interfacial gold nanofilm. The
“back” of the interfacial gold nanofilm can refer to the oil side
or water side depending on the density of the chosen oil phase.
Thus, a low-density oil phase such as toluene will be on top of
the water phase and, when illuminated from the bottom, water
is at the back of the interfacial gold nanofilm, and vice versa for
a high-density oil phase such as TFT. Therefore, SPR-based
nanoplasmonic sensors based on interfacial gold nanofilms
using a pseudo-Kretschmann configuration are envisioned.
Girault and co-workers developed a setup with robotic arms

to change the angle of incident light hitting the interfacial gold
nanofilms, shown in Figure 9B. The latter setup has been used
to generate optical reflectivity data, allowing the quantification

of the influence of a host of variables (AuNP size, interfacial
surface coverage and light wavelength, polarization and angle of
incidence, presence of surfactant, and applied Δo

wϕ) on the
effectiveness of variously prepared interfacial gold nanofilms to
act as nanoplasmonic mirrors.17,90

Smirnov et al.7 probed the optical extinction and reflectance
of interfacial gold nanofilms that encapsulated the entirety of an
oil droplet using an integration sphere (Figure 9C). Addition-
ally, they imaged gold nanofilms in situ with μm resolution with
optical microscopy revealing the formation of microscale cracks
and wrinkles. Comparison of SEM and TEM images obtained
with transfer of the nanofilm on a solid substrate shows similar
features, confirming that the structure of the film can stay more
or less intact during the transfer.7

Furthermore, Velleman et al.135 used a commercial
reflectivity probe positioned at 90° to the liquid−liquid
interface (see Figure 9D) to monitor the red-shift in SPR
reflectance maxima as a result of enhanced plasmonic coupling
between AuNPs due to decreasing interparticle spacing with
increasing ionic strength in either the aqueous or organic phase
(allowing calibration of a so-called “plasmonic ruler”).
As detailed in section 3.4, decreasing the interparticle gap in a

gold nanofilm causes a near-exponential increase in the
sensitivity of the responses of SPR and SERS-based nano-
plasmonic sensors, as well as an exponential increase in the
conductivity of the gold nanofilm. Thus, the creation of
calibrated plasmonic rulers using easily accessible optical
spectroscopic techniques, as described by Velleman et al.,135

provides a precise guide to tune the interparticle gaps through
addition of salt, applying an electric field, etc. in real time. The
latter will be hugely beneficial to tune the strength of
homogeneous plasmonic hotspots, necessary to optimize the
responses of nanoplasmonic sensors using floating gold
nanofilms and also as a guide to predicting the conductivity
of floating gold nanofilms. Most recently, Velleman et al.157

further demonstrated the reduction of interparticle distance
between AuNPs in the nanofilm in situ at a water−DCE
interface as a function of pH, which led to a 20- to 40-fold
increase of Raman intensity. Moreover, these changes were
monitored in real time.157

4.5. Electrochemical Techniques

Scanning electrochemical microscopy (SECM) at liquid−liquid
interfaces can be used to probe the local conductivity or
potentially characterize redox electrocatalysis reactions taking
place at an interfacial gold nanofilm. The working principle of
SECM involves the continuous recycling of a redox mediator,
either in the aqueous or organic phase, between the tip of a
biased micro- or nanoelectrode and the surface of the interfacial
gold nanofilm; see Figure 10A. If a microelectrode (biased
positively to oxidize the mediator) approaches an area of the
interface that is nonconductive, a gradual decrease of the
measured current is observed due to confinement of the
semispherical diffusion field at the surface between the
microelectrode and the liquid−liquid interface (Figure
10A(i)). The latter causes a depletion of the reduced species
and accumulation of oxidized species, and it is called “negative
feedback”. A nonconductive interface can mean simply the
absence of AuNPs at that local area on the interface or the
presence of AuNPs with such a large interparticle spacing that
charge transport cannot propagate across the interfacial gold
nanofilm. The latter was shown by Fang et al., who observed
negative feedback until a sufficiently large AuNP surface

Figure 8. Molecular dynamics (MD) simulation of nanoparticles at
liquid−liquid interfaces. Time-sequence snapshots of the submersion
of a AuNP from an aqueous (top) to an organic (bottom) electrolyte
phase accompanied by the exchange of loosely bound Cl− ions (blue)
in the aqueous phase for condensed organic TB− ions (red) in the
organic phase. Adapted with permission from ref 18. Copyright 2014
American Chemical Society.
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coverage (and therefore small interparticle distance) was
reached to allow charge transport across at least μm2-sized
portions of the interfacial gold nanofilm;90 see Figure 10B. For
these conductive densely packed interfacial arrays of AuNPs,

the measured current increased on approaching the interface as
the oxidized species were reduced by the AuNPs (Figure
10A(ii)). The latter is called “positive feedback”, and the
conductive gold nanofilm is recharged by electron injection

Figure 9. Reflectance measurements from a liquid−liquid interface functionalized with a nanofilm. (A)(i) Schematic of the experimental setup to
measure surface plasmon resonance (SPR) at a gold nanofilm floating at a liquid−liquid interface using a pseudo-Kretschmann configuration. (A)(ii)
Calculated and (A)(iii) experimental SPR curves for a gold nanofilm floating at a water−DCE interface for an excitation wavelength of 544 nm (full
line, 16 nm Au film; dotted line, 13 nm Au film). Adapted from ref 89 with permission from The Royal Society of Chemistry. Copyright 2010. (B)
Image of an experimental setup with robotic arms to investigate the angular dependence of the laser reflectance from interfacial gold nanofilms. The
setup consists of robotic arms, a laser light source, various optical components, and a detector, all of which move simultaneously as the angle of the
laser incident to the gold nanofilms is varied. Adapted from ref 17 with permission from The Royal Society of Chemistry. Copyright 2017. (C)
Reflectance and extinction spectra acquisition for interfacial gold nanofilms in situ by UV−vis−NIR with a white integrating sphere. Sample (with
the gold nanofilm coating the organic droplet) reflectance spectra were obtained at a single gold nanofilm interface on one side of the quartz cell.
Sample extinction spectra were measured through two gold nanofilms at opposite walls of the quartz cuvette. Q, w, org, and NF are acronyms for
quartz, water, organic solvent, and gold nanofilm. Adapted from ref 7 with permission from The Royal Society of Chemistry. Copyright 2016. (D)
Schematic describing the self-assembly of AuNPs at a water−DCE interface when either NaCl or TBATPB was added to the aqueous or organic
phase, respectively. The assembled floating gold nanofilm was analyzed by X-ray reflectivity and diffraction to obtain structural information, as well as
by optical reflectance to study the plasmon coupling between the AuNPs. Adapted from ref 135 with permission from The Royal Society of
Chemistry. Copyright 2016.
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from another redox species in the opposite phase at any point
on the gold nanofilm (i.e., at a considerable distance from
where the microelectrode is positioned). Although as yet not
demonstrated for redox electrocatalysis with gold nanofilms, in
a related study, SECM has been used to monitor photoinduced
water oxidation at ITIES functionalized with nanosized bismuth
vanadate (BiVO4) crystals.

158

Ion-transfer voltammetry can also be also used to roughly
estimate the surface coverage of the nanofilms. NPs adsorbed at
the interface reduce the available surface area for IT, effectively
blocking the surface.20 As discussed by Amatore et al.,159 a
blocking layer at the electrode surface leads to a decreased
apparent standard rate constant for the electron-transfer
reaction (kapp

0 = k0(1 − θ), where θ is the surface coverage of
the blocking porous layer). The same approach is true for the
nanofilm covering the ITIES; see Figure 10C. Hence, a simple
estimation of the apparent standard ion-transfer constant for
the transferring ion by the method of Nicholson allows
estimation of the surface coverage if the rate constant on the
clean surface is known;20 see Figure 10D. Other techniques
successfully used to characterize the coverage of porous layers
on solid electrodes, like chronoamperometry,160 also could be
utilized at liquid−liquid interfaces for IT reactions.

4.6. Summary

A summary of the main experimental techniques used to probe
AuNP adsorption at liquid−liquid interfaces, and the resulting
properties of gold nanofilms formed at liquid−liquid interfaces,
is provided in Table 1.
For solid−liquid interfaces, electrochemical capacitance

measurements are useful to probe the nanofilm porosity.161

SSHG is well-known from metal island films162 and has been
utilized for designing a nonlinear plasmonic nanoruler with
high sensitivity.163 Surface probe techniques are much easier to
employ for films assembled at solid−liquid interfaces, with
techniques like SEM, TEM, STM, and AMF used routinely.
Additionally, spectroscopic techniques have been widely
utilized to characterize optical properties of superlattices.
More specialized techniques such as liquid cell transmission
electron microscopy (LC-TEM) have been utilized to follow
NP self-assembly in situ.164 Both grazing-incidence (GISAXS)
and small-angle X-ray scattering (SAXS) have been widely used
for investigation of NP superlattices. They also allow statistical
determination of superlattice grain size and size distributions
over larger areas than accessible with electron microscopy due
to systematic mapping of the sample.165 SAXS measurements
were also used for spatial mapping of the grain size, orientation,
uniformity, strain, or crystal projections and polymorphs.165

SAXS measurements of NPs have been recently reviewed.166

Figure 10. Electrochemical methods used to characterize nanofilms at liquid−liquid interfaces. Schemes of scanning electrochemical microscopy
(SECM) experiments with (A) (i) negative feedback at a bare water−oil interface and (ii) positive feedback at a floating gold nanofilm at a water−oil
interface. (B) SECM approach curves with a Pt microelectrode (radius, a = 10 μm; RG = 7) to a water−[heptane/DCE] interface in the presence of
different AuNP surface coverages. The oil phase contained 2 mM DMFc and 2 mM BATB. The translation rate was 1 μm·s−1. Adapted with
permission from ref 90. Copyright 2013 American Chemical Society. (C) Schematic representation of the cross-sectional view of the ITIES partially
occupied by a gold nanofilm. The lines show the diffusion profiles of ion concentration. Adapted with permission from ref 20. Copyright 2015
American Chemical Society. (D) Ion-transfer CVs (IR compensated) of 25 μM tetramethylammonium cations (TMA+) in the aqueous phase at a
water−TFT interface (i) without a gold nanofilm and (ii) with a gold nanofilm composed of 12 nm AuNPs. The apparent standard ion-transfer
constant (kapp

0 ) for TMA+ was calculated by the method of Nicholson, allowing estimation of the interfacial AuNP surface coverage (θ). Adapted with
permission from ref 20. Copyright 2015 American Chemical Society.
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For example, GISAXS was utilized to follow swelling of the film
in the presence of volatile organic compounds.167

5. APPLICATIONS OF FLOATING GOLD NANOFILMS

5.1. Redox Electrocatalysis

As described in a recent review, electrocatalysis is catalysis of
electron transfer at the electrode surface (catalyzed by the
electrode material itself or by a catalyst attached to the
electrode surface), while redox electrocatalysis is catalysis of
electron transfer between two redox couples, catalyzed by a
floating conductive catalyst.125 Electrocatalysis and redox
electrocatalysis are topics of pivotal importance impacting a
huge variety of fields ranging from corrosion science, fuel cell
and battery research, electro-organic synthesis, and electro-
analytical sensor development to wastewater purification.125,168

To optimize the performance of NPs toward electrocatalysis, a
burgeoning area of research concerns support-induced
effects.169,170 For example, the supporting material for AuNPs
can deeply affect their activities, as exhibited for AuNPs
supported on carbon and on titania in the CO oxidation
reaction.171

Electrochemistry of catalytic interfacial gold nanofilms at the
ITIES has several distinguishing features in comparison to
electrochemical studies of AuNPs on solid electrode surfaces.
Most strikingly, the electrocatalytic activity of interfacial
adsorbed AuNPs can be studied in a contactless manner, free
from the influence of an underlying support. Just as with solid
electrodes, the ITIES allows direct measurement of the
electrocatalytic impact of gold nanofilms by measurement of
charge transfer across the interface corresponding to electron-
transfer events. At solid electrode interfaces the rate of an
electrocatalyzed reaction is controlled by varying the electrode
potential and concentrations of oxidized to reduced species

initially present in solution. The degree of freedom of this
system is 1, as the system is fully characterized by the mass
balance equation (Ox + e− ⇔ Red) and the Nernst equation,

= +
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where E is the electrode potential, E0 is the standard redox
potential of Ox/Red, a is the activity (where the activity is
related to the concentration, c, by a = γc/c0, taking into account
the activity coefficient, γ, which becomes 1 for infinite dilution,
and where c0 is the standard concentration 1 mol L−1), and R,
T, and F are the gas constant, temperature, and Faraday’s
constant, respectively. Attractively, the ITIES has in fact two
degrees of freedom, as five variables are interconnected by two
mass balance equations and the Nernst equation.172 The first
mass balance equation concerns Ox/Red species in the aqueous
phase, and the second concerns Ox/Red species in the organic
phase, resulting in Ox1

w + Red2
o
⇔ Red1

w + Ox2
o, where

superscripts w and o refer to aqueous and organic phases,
respectively. Thus, the Nernst equation for IET across the
ITIES is172
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where Δo
wϕET

0 is the standard redox potential for the IET
reaction: Δo

wϕET
0 = [EOx2/Red2

0 ]SHE
o

− [EOx1/Red1
0 ]SHE

w , where

superscript 0 refers to the standard value and SHE refers to
standard hydrogen electrode scale.
This IET reaction can take place also without catalysts, but a

gold nanofilm deposited at the interface may be utilized to
significantly enhance the reaction rate. Effectively, the AuNPs

Table 1. Summary of Experimental Techniques Applied to the Characterization of AuNP Adsorption at Liquid−Liquid
Interfaces and the Properties of the Resulting Floating Gold Nanofilms

experimental technique information/measurement results ref

quasi-elastic light scattering (QELS) monitoring the adsorption of AuNPs to the ITIES as a function of applied Δo
wϕ (electrocapillary curve) 18, 115

pendant drop tensiometry 136−140,
142

electrochemical capacitance 88, 115, 143

surface second harmonic generation
(SSHG)

116, 145

freeze-fracture shadow casting (FreSCa)
cryo-SEM

in situ determination of θ0 for AuNPs adsorbed at a liquid−liquid interface 149, 150

gel-trapping techniques followed by SEM
or AFM

151

amplitude modulation atomic force
microscopy (AFM)

in situ real-space determination of interparticle separation for AuNPs adsorbed at a liquid−liquid
interface

152

X-ray reflectivity in-plane in situ reciprocal-space determination of interparticle separation for AuNPs adsorbed at a
liquid−liquid interface; precise determination of AuNP out-of-plane shifts as a function of Δo

wϕ
18, 153

grazing-incidence small-angle X-ray
scattering (GISAXS)

18

grazing-incidence X-ray diffraction
(GIXRD)

135

molecular dynamics (MD) simulations simulation of AuNP adsorption at a liquid−liquid interface, e.g., probing the influence of organic
electrolyte counterion condensation on the surface of an AuNP during adsorption

18

reflection measurements in pseudo-
Kretschmann configuration (prism) or
with robotic arms

angular dependence of reflectivity from floating gold nanofilms at a liquid−liquid interface at a given
wavelength; determination of θSPR

17, 89−91,
156

UV−vis−NIR spectroscopy with an
integration sphere

reflectivity and extinction spectra vs coverage of the interface; monitoring red- and blue-shifts of SPR and
SPC extinction bands to determine in situ the interparticle separation for AuNPs adsorbed at a liquid−
liquid interface

7

commercial reflectivity fiber probe 135

scanning electrochemical microscopy
(SECM)

conductivity measurements of floating gold nanofilms at the ITIES; probing catalytic properties of NPs
adsorbed at the liquid−liquid interface

90, 158

ion-transfer (IT) voltammetry ion permeability; estimation of the surface coverage of AuNPs at the ITIES 20
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act as conductive bipolar electrodes facilitating catalysis via
direct IET (through Fermi level equilibration)20,173 between a
lipophilic electron donor and a hydrophilic electron acceptor,
or vice versa (see Figure 11). Finite-element method
simulations have also been used to study this process.174,175

Moreover, the AuNPs provide a catalytic surface to further
negate the kinetic barriers to IET at bare liquid−liquid
interfaces. Additional thermodynamic driving force can then
be provided by adjusting Δo

wϕ to establish further control over
both the rate of a reaction and the direction of electron transfer
across the interface. As a proof-of-concept, interfacial gold
nanofilms were shown to effectively catalyze IET between a
lipophilic electron donor redox couple, ferrocenium cation/
ferrocene, and a hydrophilic electron acceptor redox couple,
ferri-/ferrocyanide;20 see Figure 12A. The peak-to-peak
separation for IET reduced significantly from >90 mV in the
absence of the gold nanofilm (Figure 12B) to between 65 and
70 mV in its presence (Figure 12C). Additionally, a clear shift
of the ratio of the forward and reverse peak current toward
unity was observed in the presence of the gold nanofilm.
Furthermore, dissolved oxygen (O2) in the aqueous phase was
reduced to H2O2 and H2O by IET from either the lipophilic
electron donor redox couple decamethylferrocenium cation/
decamethylferrocene,19 as shown in Figure 12D and E, or 1,1′-
dimethylferrocenium cation/1,1′-decamethylferrocene.21 Re-
cently, redox electrocatalysis of O2 reduction was also utilized
to study Pt NP impacts upon a microscopic liquid−liquid
interface, extending the NP impact studies to collisions at
liquid−liquid interfaces.176

Beyond gold nanofilms, redox electrocatalysis of energy-
related reactions such as the biphasic O2 reduction reaction
(ORR)38,177−205 and biphasic hydrogen evolution reaction
(HER)185,201,206−217 has also been demonstrated numerous
times by immobilization of catalytic NPs ranging from
inorganic nanomaterials (e.g., Pt,185 MoS2,

208 Mo2C,
210

Cu2CoSnS4,
213 etc.) to carbon-supported nanocomposites

(e.g., Cu NPs on carbon nanotubes)215 at the ITIES.
Furthermore, redox photoelectrocatalysis of the water oxidation

reaction (WOR) has been achieved by immobilization of
BiVO4 semiconductor NPs at the ITIES.158 These burgeoning
areas of redox (photo)electrocatalysis of energy-related
reactions by ITIES functionalized with nanomaterials (beyond
gold nanofilms) are very exciting current avenues of research
and as such have been the subject of two recent comprehensive
reviews by Peljo et al.125 and Poltorak et al.71

NP superlattices formed at solid−liquid interfaces can be
utilized for electrocatalysis as well as for heterogeneous
catalysis, as reviewed by Boles et al.33 and by Henry.218 For
example, Au nanocrystals were found to be highly active for
oxidation of CO when assembled on metal oxide surfaces,219

most likely due to the contact electrification.220−222 Binary
superlattices containing Au−Fe3O4 and Pt−CeO2 and their
pairs have been employed for CO oxidation223 and methanol
decomposition,224 respectively. Curiously, electrocatalysis uti-
lizing superlattices has not been explored in detail. Instead,
significant attention has been focused on NPs supported on
carbon and on single NP electrochemistry.225 However, recent
examples demonstrated binary Pd−Pt superlattices for electro-
catalytic O2 reduction,226 as well as AuNP superlattices for
electrochemical detection of microRNA-21 utilizing toluidine
blue as a hybridization indicator.227 Additionally, polyelec-
trolyte/AuNP hybrid films have been utilized for NO
sensing,228 as well as similar layer-by-layer films of IrO2

particles for O2 evolution.
229,230 On the other hand, NP arrays

have been utilized for multivariable gas and vapor sensing using
a panoply of techniques ranging from impedance spectroscopy
to optical methods measuring the reflected light.231

5.2. Nanoplasmonics

Localized surface plasmon resonance (LSPR) occurs when the
incident light frequency impacting a AuNP is resonant with the
collective oscillation of the conduction band electrons.126 LSPR
leads to a marked enhancement in the local (near-field)
electromagnetic field at the surface of the AuNP in comparison
to the incident light. Yang et al. have used a three-dimensional
finite-difference time domain (3D-FDTD) method to clarify
the LSPR-based optical properties of AuNPs adsorbed at the

Figure 11. Mechanism of interfacial redox electrocatalysis by floating gold nanofilms. Equilibration of the Fermi level of the electrons in a single
AuNP within a gold nanofilm (EF

NP) adsorbed at a liquid−liquid interface with those of two redox couples in solution, a hydrophilic electron acceptor
species ( ) in the aqueous phase and a hydrophobic electron donor species ( ) in the organic phase. The AuNP is charged during this process by
, for example, ferrocene (Fc). The AuNP acts as an interfacial reservoir of electrons, and the final position of EF

NP (a turquoise line for Δo
wϕ = 0 V

and a red line for Δo
wϕ = 0.3 V, respectively) is determined by the kinetics of both the oxidation half-reaction on the organic side of the interfacial

gold nanofilm and the reduction half-reaction on the aqueous side (for example, O2 reduction). IET between the two redox couples via the
conductive AuNP, and the provision of a catalytic surface in the specific case of O2 reduction, significantly enhance the kinetics of IET. The standard
redox potentials of all redox couples are expressed versus both the standard hydrogen electrode (SHE) and absolute vacuum scale (AVS),
respectively, and the organic phase is TFT. Adapted from ref 19 with permission from Elsevier. Copyright 2016.
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water−oil interface, including near-field distribution and far-
field absorption.232 In the case of a AuNP adsorbed at a liquid−
liquid interface, the presence of an underlying substrate (i.e.,

the oil phase) distorts the distribution of the plasmon field

around the AuNP (see Figure 13(i−iv)). The latter is due to

Figure 12. Experimental evidence of interfacial redox electrocatalysis by floating gold nanofilms. (A) Possible mechanisms, each leading to a
measurable current across the ITIES when an electron-donor species ( , such as the ferrocenium cation/ferrocene redox couple, Fc+/Fc) is present
in the organic phase and an electron-acceptor species ( , such as ferri-/ferrocyanide, [FeIII(CN)6]

3−/[FeII(CN)6]
4−) is present in the aqueous

phase: (i) bimolecular IET, (ii) a homogeneous electron transfer−ion transfer (ET-IT) mechanism, and (iii) interfacial redox electrocatalysis with
the floating gold nanofilm acting as a bipolar electrode. The orange arrow indicates the ET reaction with a rate constant, k0. Adapted with permission
from ref 20. Copyright 2015 American Chemical Society. CVs of ET between the oil-solubilized Fc+/Fc redox couple and the aqueous
[FeIII(CN)6]

3−/[FeII(CN)6]
4− redox couple, with various ratios between Fe2+ and Fe3+ investigated, both (B) in the absence and (C) in the presence

of an interfacial gold nanofilm. Scan rate for all CVs was 10 mV s−1, and the organic phase was TFT. Adapted with permission from ref 20. Copyright
2015 American Chemical Society. (D) Mechanism of O2 reduction in the aqueous phase by charging a floating gold nanofilm with an electron donor
(such as decamethylferrocene, DMFc) in the organic phase. The gold nanofilm acts as a barrier-free shortcut for IET to the aqueous phase. Adapted
from ref 19 with permission from Elsevier. Copyright 2016. (E) CVs provide clear evidence of IET between DMFc and aqueous O2 via the floating
gold nanofilm due to the appearance of a significant current wave at Δo

wϕ = 50 mV under aerobic conditions only. The scan rate was 25 mV s−1 in all
cases, and the organic phase was TFT. Adapted from ref 19 with permission from Elsevier. Copyright 2016.

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00595
Chem. Rev. 2018, 118, 3722−3751

3737



the change of the dielectric function at one side of the AuNP

causing the LSPR to be either red- or blue-shifted.7,232−237

It is important to distinguish that “localized” in LSPR refers
to the plasmonic response of separate, noninteracting AuNPs
only. This is typically the case for AuNPs dispersed in a
colloidal solution or for a hypothetical situation where a single
AuNP adsorbs at a liquid−liquid interface, as modeled by Yang
et al. in Figure 13(i−iv).232 However, each AuNP in a gold
nanofilm inevitably interacts with its neighboring AuNPs, and
thereby all AuNPs in a gold nanofilm affect each other’s
plasmonic responses. Thus, the optical response of a film of
NPs contains two plasmon peaks. The first one refers to
extinction peaks of out-of-plane (transverse) AuNP plasmon
oscillations for interacting AuNPs adsorbed at a water−oil
interface, known simply as surface plasmon resonance (SPR)

bands. The second one corresponds to in-plane (longitudinal)
propagating plasmon oscillations that give rise to the
appearance of additional coupling-mode extinction peaks and
is called the surface plasmon coupling (SPC) band. Usually the
SPC band is red-shifted in comparison to the SPR band. Figure
13B demonstrates the presence of both SPR and SPC bands in
calculated absorbance spectrum for a dimer of interacting
AuNPs at the water−DCE interface. Further, a series of works
carried out by the group of Prof. Kornyshev revealed a high
correlation between theoretically predicted133 and experimen-
tally obtained135 absorbance and reflectance spectra for
nanofilms at liquid−liquid interfaces. A significant number of
articles focus on the plasmonics of NP superlattices at solid−
l iquid interfaces,238 as highlighted in recent re-
views.31,33−35,76,239−241 The basic physics and applications are
similar to those at liquid−liquid interfaces; however, nano-
plasmonics at solid−liquid interfaces is a field of its own and is
covered in detail, for example, by Gwo et al.34

The hot-spots formed between plasmonically coupled
AuNPs experience hugely enhanced electromagnetic fields.
Indeed, the study by Yang et al. concluded that, in hot-spots
between adjacent AuNPs in an interfacial gold nanofilm, the
efficiency of Raman scattering was enhanced in excess of 107−
109-fold upon excitation with a laser of appropriate wave-
length.232 Such a phenomenon is known as surface-enhanced
Raman spectroscopy (SERS),242 an analytical method capable
of providing molecular fingerprint information with ultrahigh
surface sensitivity.
The SPR and SPC extinction bands observed for AuNPs

represent both light absorption and scattering by the AuNPs.
Reflection can be considered as a special case for light scattered
along the specular direction. Furthermore, the AuNPs
characteristic SPR wavelengths shift with changes of the
medium refractive index. Thus, as the introduction of analyte
molecules influences the bulk refractive index of the AuNPs
environment, the resulting shifts in SPR maxima position are
the basis of SPR sensors.243 Both extinction (i.e., transmission
expressed in log units) and reflectance measurements have
been used to monitor shifts in the SPR maxima position on
introduction of an analyte, with Kedem et al. demonstrating
that reflectance measurements are more sensitive due to the
dominance of absorption in transmission spectroscopy.244

Thus, using interfacial gold nanofilm sensors, the resulting
SERS- or SPR-based nanoplasmonic sensors have the potential
to facilitate the identification of single molecules attached, or
located in close proximity, to the AuNP surface. The defect-free
nature of the interface allows the creation of gold nanofilms
with an exceptionally homogeneous distribution of hot-spots,
which are difficult to achieve using either bottom-up or top-
down approaches on solid substrates. This key feature
maximizes the reproducibility of the resulting SERS- or SPR-
based nanoplasmonic sensors. Prospective floating gold nano-
film-based SERS and SPR sensors will be discussed in more
detail in section 6.1. However, superlattice formation of SERS-
active NPs at solid substrates has already been demonstrated,
and SERS is actually one of the main applications of AuNP
nanofilms at solid−liquid interfaces.34,113,245 Additionally,
three-phase self-assembly, utilizing both solid−liquid and
liquid−liquid interfaces, can also be performed for preparation
of SERS substrates of high Raman enhancement factors.113

Figure 13. Distortion of the distribution of the plasmon fields around
AuNPs floating at a liquid−liquid interface. (A) Finite-difference time
domain (FDTD) calculated SERS electromagnetic enhancement
distribution in the yz-plane at the frequency of LSPR for various
interfacial positions of a AuNP: (i) 2 nm above the interface, (ii) 2 nm
submerged into the oil, (iii) 2 nm remaining in water, and (iv) 2 nm
below the interface. The dashed line represents the water−oil
interface. (B) Calculated absorption spectra of AuNP dimers (red
line) at the water−DCE interface and the corresponding electric-field
distribution for three peaks (SPR “water mode”, SPR “oil mode”, and
SPC “coupling mode”). Adapted from ref 232 with permission from
the PCCP Owner Societies. Copyright 2013.
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5.3. Optical Applications

A series of theoretical studies129−134 have shown that coupling
between localized surface plasmons of AuNPs in an interfacial
gold nanofilm leads to significant reflection of light from the
interface. The latter is perhaps surprising as only a monolayer
of AuNPs is required to achieve this nanoplasmonic mirror
effect. When incident light strikes strongly coupled interfacial
AuNPs, light is scattered with phase coherence from AuNP to
AuNP (in contrast to plasmonically noncoupled single AuNPs
that scatter light in random directions according to Mie
theory). This results in a very high reflection coefficient for an
interfacial gold nanofilm, with reflection dominating over
transmission and being dependent on the wavelength of the
incident light.
From a practical point-of-view, Smirnov et al.7 have shown

that the size of the AuNPs is critical. Small AuNPs (<15 nm in
diameter) are capable of effectively absorbing the incident light,
whereas larger AuNPs (>25−30 nm) are more suited for liquid
mirror applications due to efficient reflection of light (in
agreement with theory).7 The larger AuNPs absorb very little
light due to being low dissipation materials that facilitate long-
lived plasmons.130 By comparison, NPs of aluminum, for
example, would absorb significant amounts of light at the
interface via dissipation of surface plasmons.130 Thus, the

reversible electrovariable movement of AuNPs both to and
from the interface (on and off mirrors) and in-plane of the
interface (shutters) as a function of Δo

wϕ lays the foundations
for a host of potential technological applications of interfacial
gold nanofilms in the realm of optics.

5.4. Plasmonic Photocatalysis

The topic of plasmon-enhanced photoreactions with floating
gold nanofilms is not explored in detail in this Review.
However, it is worth mentioning briefly, as conflicting reports
have emerged regarding whether photocurrents at porphyrin-
sensitized liquid−liquid interfaces can be significantly enhanced
by devising protocols that incorporate plasmonic metallic NPs
into the photoactive interfacial films.17,91,246 Insights from such
studies may potentially find applications in future artificial
photosynthesis systems.247,248 The underlying fundamental
reasons for any enhanced photocurrents are as yet unresolved,
with electrocatalytic and/or plasmonic factors needing to be
considered. Nagatani et al.246 and Schaming et al.91 observed
increased photocurrents that may be attributed to increased
absorption due to surface plasmons and light-trapping effects,
improved charge separation due to a localized intense
electromagnetic field, or perhaps electron-storage effects that
alter the Fermi level of the interfacial gold nanofilm.
Alternatively, the photocurrents may actually decrease, as

Figure 14. Current state-of-the-art surface-enhanced Raman spectroscopy (SERS) studies utilizing liquid−liquid interfaces. (A) Schematic
representation of the detection process for epinephrine (EP) by a 2D surface-enhanced resonance Raman spectroscopy (SERRS) platform. The
sample contains EP in serum (so an aqueous solution), to which AuNPs modified with α,β-nitriloacetic acid and Fe(NO3)3 are added. The modified
AuNPs capture the EP and self-assembly (due to addition of ethanol) at the water−cyclohexane interface. The self-assembled gold nanofilms,
enriched with the target EP analyte, are transferred to a silicon substrate for ex situ SERRS analysis. Adapted with permission from ref 264. Copyright
2017 American Chemical Society. (B) A gold nanofilm was formed at the water−toluene interface by addition of 1-dodecanethiol (DDT) and TMA+

ions to the biphasic cell. In situ SERS analysis at the liquid−liquid interface demonstrated that the interfacial morphology of the gold nanofilm was
closely linked to its chemical environmental (e.g., in the presence of TMA+ alone, with varying amounts of DDT present, etc.). Adapted with
permission from ref 275. Copyright 2015 American Chemical Society. (C) Reflection spectra of AuNP mats under increasing strain. The AuNP mats
were prepared by transferring a floating gold nanofilm formed at a water−hexane interface to a flexible PDMS substrate. (Left) Uniaxial stretch
parallel to optical polarization and (Right) biaxial uniform stretch with unpolarized light. The discrepancy in intensity is due to the curved film on the
lens surface. Adapted from ref 261 with permission from AIP Publishing. Copyright 2012. (D) An aqueous phase containing AuNPs and a heavy
metal ion target analyte (e.g., Hg2+) are placed in contact with an oil phase containing a dissolved polyaromatic ligand (PAL). Shaking creates a
biphasic emulsion, causing all aqueous and organic species present to self-assemble at the common liquid−liquid interface. After assembly, Hg2+ can
be detected sensitively by SERS through its effects on the in situ SERS signals from the PAL molecules attached to the AuNPs surface adsorbed at
the interface. Adapted with permission from ref 274. Copyright 2014 Wiley-VCH.
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observed by Gschwend et al.,17 as the surface area of the
liquid−liquid interface becomes blocked with AuNPs, reducing
the interfacial concentration of excited porphyrin molecules.
Thus, some key questions remain unresolved. Which of the
noted possible factors dominate the enhanced photoresponses
seen by Nagatani et al. and Schaming et al.? Do the
observations of Gschwend et al. negate all of the possible
beneficial electrocatalytic or plasmonic attributes of the
interfacial AuNPs? Each of the three studies to date introduced
AuNPs to the electrochemical cell using very different
experimental protocols, and therein likely lays the discrepancies
between these preliminary studies.

6. PERSPECTIVE APPLICATIONS OF FLOATING GOLD
NANOFILMS AT THE ITIES

6.1. Surface-Enhanced Raman Spectroscopy

A series of SERS-active solid electrode substrates, e.g.,
electrically contacted lithographic nanohole and nanopore
arrays,249,250 periodic particle arrays prepared by nanosphere
lithography on transparent conductive oxides,251,252 or colloidal
silver nanoparticle (AgNP) and AuNP aggregates on
conductive electrodes,253,254 are suitable for electrochemical
SERS (EC-SERS) applications. EC-SERS involves immersing
these suitable SERS substrates in electrolyte solution and
establishing an electrochemical double layer at the substrate/
electrolyte interface, the potential drop across the layer can be
controlled externally by a potentiostat.255−257 The ultimate goal
of EC-SERS is to monitor structural changes of molecules in
situ as they are subjected to an electric field and in some cases
undergo redox processes. The insights from such experiments
have tremendous potential, for example, we may improve our
understanding of how a molecule’s redox activity is influenced
by its immobilization chemistry.258,259 The precipitous
improvement in Raman instrumentation has now reached a
point that the time resolution for spectra acquisition is
comparable or even shorter than the charging time of the
double layer capacitance for both reversible and irreversible
electrochemical processes.260 The significance of this milestone
cannot be understated as it means structural molecular
information on transient intermediate species in electro-
chemical reactions can be directly probed in situ, for example,
during proton-coupled electron-transfer reactions. The struc-
tural information gained from EC-SERS measurements can give
insights that indicate potential induced (i) adsorption or
desorption of molecules, (ii) molecular reorientation of
molecules, (iii) rearrangement of the electrochemical double
layer, or (iv) electrochemical reduction or oxidation.255

To date, strategies to achieve EC-SERS at interfacial gold
nanofilm functionalized ITIES are rare. Virtually all SERS
studies involving liquid−liquid interfaces only take advantage of
their inherent ability to facilitate defect-free self-assembly of
floating gold nanofilms (with uniform distribution of plasmonic
hot-spots) and not the ability to controllably apply a potential
difference across the ITIES. For example, nanoplasmonic SERS
sensors to detect epinephrine in serum, Cu2+, Hg2+, rhodamine
6G, malachite green, p-aminothiophenol, and p-nitrothiophenol
have been developed by either transferring floating gold
nanofilms to silicon wafer, glass, paper, or PDMS substrates
(for example, see Figure 14A),261−270 or by their in situ analysis
at nonpolarized water−oil interfaces (for example, see Figure
14B).2,271−275 The use of flexible PDMS substrates261,262 is a
particularly interesting strategy to vary the interparticle spacing

using an external mechanical strain applied in a reversible
manner (Figure 14C), thereby modulating the gold nanofilms
plasmonic responses (e.g., toward applications in stretchable
optical color filters).
The biphasic nature of SERS sensors created using floating

gold nanofilms circumvents any issues regarding solubility
limitations of the analyte. Both hydrophilic and hydrophobic
analyte may easily come in contact with, and become
preconcentrated by attaching to, interfacial AuNPs during
emulsification by sonication. Thus, simultaneous multiphase
analyte detection is possible.272 Additionally, tailored detection
strategies can be developed to facilitate large SERS enhance-
ments involving oil-based hydrophobic ligands binding hydro-
philic target aqueous analytes (such as heavy metal ions) at the
liquid−liquid interface during emulsification.274 Ideally, as
shown in Figure 14D, interfacial metal−ligand binding and
attachment of the metal−ligand complexes to the interfacial
AuNPs occur simultaneously.
In this perspective section, we denote experiments that

combine an external manipulation of Δo
wϕ with a potentiostat

and simultaneous SERS measurements in situ at the ITIES as
EC-SERS@ITIES. The only report to date of EC-SERS@ITIES
is that by Booth et al.276 In that study, citrate-stabilized AgNPs
were reversibly adsorbed and desorbed from the ITIES for a
finite number of cycles by varying Δo

wϕ negatively and
positively, respectively. Upon AgNP adsorption at negative
potentials, a sharp increase in the SERS intensity of the
lipophilic organic cation BA+ was detected. This observation
corresponds very well with that by Bera et al.18 (described vide
supra) of organic counterion condensation onto highly charged
AuNPs overcoming the electrostatic barrier presented by the
low-permittivity organic material at the ITIES during potential-
induced adsorption events. Thus, EC-SERS@ITIES can be
used to sensitively detect organic ions of opposite charge to the
stabilizing ligand on interfacially adsorbed plasmonic NPs.
Many other possibilities of EC-SERS@ITIES have yet to be

explored. For example, certain charged species (i.e., ions) in
either the aqueous or organic phase can be transferred
reversibly over and back across the ITIES by varying Δo

wϕ.
Each ion will undergo IT at a signature formal ion-transfer
potential (Δo

wϕ0′) that is a measure of the Gibbs energy of
transfer for that ion expressed on the voltage scale and depends
heavily on the charge and chemical structure of the ion.23 Thus,
certain ions in a mixture can be selectively transferred over and
back across the ITIES by matching the applied Δo

wϕ with the
Δo

wϕ0′ for that ion. Therefore, in theory, the SERS signal for the
selected ion undergoing IT will be transiently enhanced as it
traverses the ITIES through the hot-spots between interfacial
AuNPs in the floating gold nanofilms. Indeed, Smirnov et al.
have demonstrated that the presence of an interfacial gold
nanofilm does not impede IT for model ions such as
tetramethylammonium cations (TMA+).20 Further strategies
may be explored that combine the demonstrated ability to
achieve electrocatalysis at gold nanofilms with the plasmonic
enhancement at the hot-spots between the AuNPs. For
example, the redox-active dye Nile Blue is a very popular
probe in EC-SERS studies as its oxidized form undergoes
resonant excitation at 633 nm, giving a strong SERS signal, but
its reduced form is nonresonant, leading to a weak SERS
signal.255 Thus, the oxidized and reduced forms of this species
are readily distinguishable by SERS. As a proof-of-concept, the
analogous EC-SERS@ITIES experiment may involve the
reduction of the oxidized form of Nile Blue in the aqueous

Chemical Reviews Review

DOI: 10.1021/acs.chemrev.7b00595
Chem. Rev. 2018, 118, 3722−3751

3740



phase via AuNP-mediated IET from an electron-donor species
in the oil phase (such as DMFc). The thermodynamics of IET
would be controlled by external application of Δo

wϕ by the
potentiostat and the disappearance of the oxidized dye signal
monitored in situ by SERS.

6.2. Electrovariable Optics

As noted in section 3.3, to date, only one study has been
published that demonstrates clearly the experimental observa-
tion of reversible adsorption/desorption of gold nanofilms
composed of relatively large AuNPs (e.g., in the size range of
10−60 nm) by tuning Δo

wϕ.22 However, there are several
examples of the reversible stimuli-induced self-assembly of NPs
on 2D interfaces. Sashuk et al. reported the dynamic self-
assembly of amphiphilic and uncharged NPs dispersed at an
air−water interface in response to changes in the gradient of
γw/o.

277 The gradient was changed by either adding or removing
organic solvent on the fluid interface, causing the NPs to
compress into local dense spots. Once the gradient of γw/o
dissipated, the compressed AuNPs disassembled.277 Ding et al.
dynamically tuned the distance between the AuNPs in a
floating gold nanofilm (and hence the nanofilm’s optical
properties) by rapid, repeatable expansion and contraction of
PNIPAM nanocoatings on the AuNPs at different temper-
atures.86 Meanwhile, as discussed, Bera et al. have definitively
shown that the dynamic lateral movement of AuNPs at the
interface is possible by tuning Δo

wϕ,18 a much more convenient
external stimulus to employ in possible electrovariable optical
devices than the introduction/removal of solvent or varying
temperature.
Recently, Gschwend et al. have created so-called “electro-

variable Marangoni shutters”.17 The concept harnesses known

changes in γw/o that can be reversibly induced at the liquid−
liquid interface as a function of Δo

wϕ in the presence of an
anionic surfactant (sodium dodecyl sulfate (SDS)) that
undergoes IT. The interplay of adsorption−desorption and
IT as a function of Δo

wϕ causes instabilities or Marangoni-type
movements (i.e., mass transfer along an interface between two
fluids due to a surface-tension gradient).278−280 The AuNPs in
the gold nanofilm are swept up in these Marangoni-type
movements, always moving to regions of higher γw/o. Indeed,
the AuNPs may be induced to either reversibly crowd around
the periphery of the interface (leading to the shutter being off
with the majority of the interface nonreflective) or spread
uniformly across the interface (leading to the shutter being on
and the interface being highly reflective) as a function of
Δo

wϕ;17 see Figure 15. The distribution of the electric field at
the ITIES is critically dependent on the shape and position of
the Pt CEs on either side of the liquid−liquid interface. As a
result, by manipulating the latter, further enhanced control over
the spatial regions on the interface where the Marangoni effects
are felt strongest, and thus where the AuNPs can be induced to
assemble more densely, will be possible.
A major factor when designing electrovariable optics based

on dynamic self-assembly of NPs will be response time to the
external stimulus (i.e., the applied electric field especially, but
also perhaps temperature or light).134 With regard to the
reversible adsorption and desorption of gold nanofilms from
the ITIES, the response time will be limited by the rate of
diffusion of AuNPs in the bulk liquid toward the interface and
back off again. Thus, the time constant for observable on/off
behavior could be tens of minutes depending on the
concentration and diffusion coefficient of the AuNPs in the

Figure 15. Electrovariable Marangoni shutters with floating gold nanofilms at the ITIES. (A) Silanized four-electrode electrochemical cell in a quartz
rectangular cuvette with large Pt-mesh aqueous and organic CEs, and an extremely flat and smooth water−TFT interface (critical for reflectance
measurements). (B) Monitoring the intensity of light reflected from the center of a water−TFT interface (black line) as a function of Δo

wϕ, varied by
cyclic voltammetry (CV; red line). The light was incident on the water−TFT interface at 66°, i.e., below the critical angle for total internal reflection
(TIR). The black star on the CV represents a positive Δo

wϕ, with the current increasing at this point positively due to the transfer of residual metal
cations to the oil phase. After this point Δo

wϕ was scanned to more negative values, immediately causing a dip in the current negatively as metal
cations transferred back from the oil into the water phase. The blue and pink stars represent two progressively more negative potentials in the middle
of the PPW as Δo

wϕ was scanned negatively. At very positive Δo
wϕ and at Δo

wϕ values spanning the center of the PPW (i.e., the region between the
black and pink stars), the AuNPs were seen to be distributed around the perimeter of the quartz cuvette. Thus, a low reflectance was measured in this
potential range (also seen by eye in a video snapshot, bottom-left image). Once Δo

wϕ was scanned to a very negative value (red star), the anionic
surfactant SDS transferred from the water to oil phase, leading to a large negative increase in current. Immediately, AuNPs were seen to migrate to
the center of the water−oil interface, rapidly accumulating and causing a huge increase in reflectance (seen by eye in top-right image). Once more,
after this point Δo

wϕ was switched in the positive direction, causing the SDS to move back from the oil to the water phase, producing a positive
current. The increased reflectance was maintained until all SDS ions were transferred back into the water phase (yellow star). Finally, as Δo

wϕ was
scanned positively to Δo

wϕ values once more in the center of the PPW (dark red star), the system returned to its initial state with the AuNPs again
crowded around the periphery of the quartz cuvette and the reflectance greatly diminished (seen by eye in bottom-right image). Adapted from ref 17
with permission from The Royal Society of Chemistry. Copyright 2017.
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bulk phase and their size.134 Such response times may be
suitable for niche applications, e.g., windows in large buildings
that gradually become more or less reflective to help equalize
the temperature at a desired level as the intensity of sunlight
rises and drops during the day. Realistically, however, for more
general applications the time constant for observable on/off
behavior needs to be reduced to second, or ideally millisecond,
regimes. In this regard, the near instantaneous on/off behavior
observed by Gschwend et al.17 for lateral movement of the
AuNPs across the fluidic interface is hugely encouraging. Thus,
building on this initial premise of combining interfacial gold
nanofilms and charged surfactant at an ITIES, rapid-response
electrovariable optics for mirror and filters applications will be
within reach in the short term.
A more traditional approach has been to deposit a nanofilm

on a solid transparent conductive electrode to obtain a mirror
and then strip the metal to obtain a window.281 In this case, 100
s was required to obtain 90% of the maximum reflectance for an
optimized system.282 Another approach for decreasing the time
constant for electrotunable reflecting nanoshutters was recently
proposed by Kornyshev et al.,134 who showed theoretically that
fast switching within subsecond time scales from mirror to
window could be obtained by electrically induced rotation of
2D arrays of nanocuboids tethered to a transparent conductive
electrode.

7. CONCLUSIONS AND OUTLOOK

To conclude, the practical utility of floating gold nanofilms is
already being realized in the analytical chemistry community for
SERS sensor applications. However, approaches to date have
broadly been limited in scope to using liquid−liquid interfaces
for bottom-up self-assembly purposes only. Major advances in
SERS and SPR sensors can be made by simultaneously
harnessing the aspects of AuNP self-assembly and controllably
applying electric fields at the gold nanofilm-functionalized
ITIES. In this way, for example, the electrocatalytic properties
of AuNPs can be utilized in conjunction with their nano-
plasmonic properties to create truly unique sensors in a new
branch of SERS we call EC-SERS@ITIES. Immediate
applications of floating gold nanofilms in rapid-response
electrovariable optic devices are now within reach thanks to
pioneering simulation studies and recent experimental break-
throughs.
To fully realize the potential of functionalizing ITIES with

nanomaterials, some fundamental scientific questions and
practical considerations remain to be addressed.283 For
example, precisely where at the water−oil interface is the
potential drop located? To describe the electrovariable
assembly of nanomaterials at the ITIES, can we develop a
combined theory of the interplay of forces on nanomaterials at
the ITIES as a function of the strength and polarity of an
applied electric field?283 Currently, experimental observations
of electrovariable NP assembly/disassembly at the ITIES are
primarily described with empirical rules and formulas. The
realization of such a combined theory would have major
implications for the development of smart window technology
in particular. Can we develop new techniques to probe the
three-phase contact angles of interfacial adsorbed NPs <100 nm
in size in situ at the ITIES? Although several techniques are
now available in this regard, as described in section 4.2, greater
resolution of the three-phase contact angle in situ at the ITIES
remains a challenge. The relative influences of the plasmonic
and electrocatalytic properties of gold nanofilms at the ITIES

on photoinduced electron-transfer events remains an open
question, as described in section 5.4. If fully understood, can
the plasmonic features of gold nanofilms be harnessed to
develop efficient solar-energy conversion devices based on the
interaction of AuNP nanofilms at the ITIES and light-absorbing
species such as porphyrins?
Finally, while this Review is limited to discussing mainly

simple round-shaped AuNPs, the potential utility and impact of
ITIES functionalized with gold (or any other metal) nanorods,
nanotriangles, nanocubes, core−shell NPs, Janus NPs, carbon-
supported NPs, semiconductors, etc. for electrocatalytic,
nanoplasmonic, and electrovariable optic applications has
barely been scratched and represents an exciting research
avenue for the future.
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Micheaĺ D. Scanlon: 0000-0001-7951-7085
Evgeny Smirnov: 0000-0001-7930-7758
Pekka Peljo: 0000-0002-1229-2261

Notes

The authors declare no competing financial interest.

Biographies
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ABBREVIATIONS

AFM = atomic force microscopy
Ag/AgCl = silver/silver chloride
AgNP = silver nanoparticle
AuNP = gold nanoparticle
AVS = absolute vacuum scale
BA+ = bis(triphenylphosphoranylidene)ammonium cations
BATB = bis(triphenylphosphoranylidene)ammonium
tetrakis(pentafluorophenyl)borate
BiVO4 = bismuth vanadate
CE = counter electrode
CNT = carbon nanotube
DCB = 1,2-dichlorobenzene
DCE = 1,2-dichloroethane
DDT = 1-dodecanethiol
DMFc = decamethylferrocene
DTBE = 2,2′-dithiobis[1-(2-bromo-2-methyl-propionyloxy)-
ethane]
ε = relative permittivity
EC-SERS = electrochemical surface-enhanced Raman spec-
troscopy
EC-SERS@ITIES = electrochemical surface-enhanced
Raman spectroscopy in situ at the interface between two
immiscible electrolyte solutions
EF
NP = Fermi level of the electrons in a single gold

nanoparticle within a gold nanofilm
EP = epinephrine
ET-IT = electron transfer−ion transfer
Fc = ferrocene
[FeIII(CN)6]

3−/[FeII(CN)6]
4− = ferri-/ferrocyanide

FIT = facilitated ion transfer
FreSCa cryo-SEM = freeze-fracture shadow casting cryogenic
scanning electron microscopy
FTDT = finite-difference time domain
γw/o = interfacial energy of the water−organic solvent
interface
γNP/w = interfacial energy of the NP−aqueous phase interface

γNP/o = interfacial energy of the NP−organic solvent
interface
GIXRD = grazing-incidence X-ray diffraction
GISAXS = grazing-incidence small-angle X-ray scattering
HER = hydrogen evolution reaction
IET = interfacial electron transfer
IT = ion transfer
ITIES = interface between two immiscible electrolyte
solutions
kapp
0 = apparent standard ion transfer constant
LC-TEM = liquid cell transmission electron microscopy
LSPR = localized surface plasmon resonance
MD = molecular dynamics
MDDA = 12-mercaptododecanoic acid
MPC = monolayer protected cluster
NP = nanoparticle
ORR = oxygen reduction reaction
PAL = polyaromatic ligand
PC = propylene carbonate
PDMS = polydimethylsiloxane
PIET = photoinduced interfacial electron transfer
PNIPAM = poly-N-isopropylacrylamide
PPW = polarizable potential window
Δo

wϕ = interfacial Galvani potential difference
Δo

wϕ0′ = formal ion-transfer potential
QELS = quasi-elastic light scattering
RE = reference electrode
σ = surface charge density
SAXS = small-angle X-ray scattering
SDS = sodium dodecyl sulfate
SECM = scanning electrochemical microscopy
SERS = surface-enhanced Raman spectroscopy
SERRS = surface-enhanced resonance Raman spectroscopy
SEM = scanning electron microscopy
SHE = standard hydrogen electrode
SPC = surface plasmon coupling
SPM = scanning probe microscopy
SPR = surface plasmon resonance
SSHG = surface second harmonic generation
STM = scanning tunneling micrscopy
θ = surface coverage
θ0 = three-phase contact angle of the nanoparticle at the
water−oil interface
θSPR = surface plasmon resonance angle
TB− = tetrakis(pentafluorophenyl)borate anions
TBA+ = tetrabutylammonium cations
TBATPB = tetrabutylammonium tetraphenylborate
TEM = transmission electron microscopy
TFT = α,α,α-trifluorotoluene
TIR = total internal reflection
TMA+ = tetramethylammonium cations
TPB− = tetraphenylborate anions
TR-SSHG = time-resolved surface second harmonic
generation
UV−vis-NIR = ultraviolet−visible−near-infrared
Wcap = capillary forces
Wline = line tension
Wsolv = solvation energy
Wsum = overall energy profile
WOR = water oxidation reaction
ZAuNP = excess of charge on the gold nanoparticle
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