ÉCOLE POLYTECHNIQUE

FÉDÉRALE DE LAUSANNE

brought to you by 🗓 CORE

I LIVI IIIOUCIIIIS OI CIICISY UISSIPALIOII III SIVINS

Andrea Gerbino^{1,2}, A. De Pastina¹, F. Gallaire³, C. Meinhart⁴, and Luis Guillermo Villanueva¹

- 1. EPFL School of Engineering Mechanical Engineering Advanced NEMS Lab
- Sapienza Università di Roma, Dipartimento di Ingegneria Meccanica e Aerospaziale 2. 3.
 - EPFL School of Engineering Laboratory of fluid mechanics and instabilities
- University of California Santa Barbara, Department of Mechanical Engineering 4

Abstract

- Suspended Microchannel Resonator [1], [2], [3]
- Development of a 3D coupled fluid-structure interaction model to extract Quality Factor as function of fluid dynamic viscosity
- Comparison between numerical, theoretical [1] and experimental [2] results
- Good match between experimental and numerical Q for first two modes
- Decreasing Q for increasing viscosity in contrast with theory

Fig. 1: Fluid-structure interaction is defined on the internal walls of the channel; a fixed constraint is imposed to the rigid channel (x<0). The cantilever is let free to vibrate (x>0). Linearized Navier-Stokes and Solid Mechanics equations are solved in COMSOL. The solid transfers momentum to the fluid, which sends back stresses to the cantilever, affecting its motion.

FEM model

- 3D eigenfrequency study in COMSOL Multiphysics®
- Device symmetry is exploited (fig.2a)
- Both 1-way-coupling and 2-way-coupling simulations are performed . .

 $Q_{Comsol} = \frac{Im[\lambda]}{2Re[\lambda]}$

- where $\boldsymbol{\lambda}$ is the complex eigenvalue The quality factor is scaled according to the analytical model proposed by Sader
- in [1], in function of the Reynolds number β :

$$Q = F(\beta) \frac{\rho_c}{\rho_f} \left(\frac{h_c}{h_f}\right) \left(\frac{b_c}{b_f}\right) \left(\frac{L}{h_f}\right)^2, \qquad \beta = \frac{\rho_f q}{h_f}$$

• Parameters studied: compressibility $(\gamma = \left(\frac{\omega L}{c}\right)^{-1})$ is the normalized acoustic wavenumber), dynamic viscosity, off-axis placement Zo, Poisson ratio, mode number

Fig.2a: COMSOL Model (half geometry) of Device A [1]: hr=8 μ m, hc=12 μ m, br=16 μ m, bc=33 μ m, L=204 μ m, L=210 μ m, cantilever length= 210 μ m, Zo=0.06.

In green the elastic domain, in blue the fluid domain. Zo is the off-axis placement of the fluidic channel with respect to the beam neutral axis.

Fig.2b: Cross-section of half geometry of Device A [1] (symmetry boundary condition is exploited)

Fig. 6: Comparison of Normalized Quality Factor F(B) as a function of Reynolds Number between theoretical [1], [2], [3], experimental [1], [2] and numerical results for Device A (h_f =8 µm, h_c =12 µm, b_r =16 µm, b_c =33 µm, L=204 µm, L_c =210 µm, cantilever length=210 µm, Zo=0.06, normalized wavenumber γ =0.12, Poisson's ratio=0.25) for Mode 1. Viscosity spans from to 1 mPa s to 1000 mPa s and is inversely proportional to Reynolds Number.

References

[1] E. Sader et al., "Energy dissipation in micronuluic beam resonators: Dependence on 650, 215, 2010
[2] E. Sader et al., "Energy dissipation in microfluidic beam resonators: Dependence on mode number", J. Fluid Mech., 108, 114507, 2010
[3] E. Sader et al., "Energy dissipation in microfluidic beam resonators: Effect of Poisson's ratio", Physical Review, E 84, 026304, 2011

Fig. 7: Comparison of Normalized Quality Factor F(B) as a function of Reynolds Number between theoretical [1], [2], [3], experimental [1], [2] and numerical results for Device A ($h_f=8$ µm, $h_c=12$ µm, $b_f=16$ µm, $b_c=33$ µm, L=204 µm, L_c=210 µm, cantilever length=210 µm, Zo=0.06, normalized wavenumber γ =0.12, Poisson's ratio=0.25) for Mode 2. Viscosity spans from to 1 mPa s to 1000 mPa s and is inversely proportional to Reynolds Number.

> Andrea Gerbino Advanced NEMS Lab andreagerbino@gmail.com

Theoretical model [1]

- 2D theoretical model is only due to fluid motion and viscous forces, through the rate-ofstrain tensor **e**, defined as: $E_{ij} = \frac{1}{2} (\partial_j v_i + \partial_i v_j)$
- Quality factor is computed as:

Theoretical Normalized Quality Factor $F(\beta)$ for Fig. 4: various normalized off-placements Zo of the channel in the compressible case (γ =0.0337) for Lc=L; the theoretical model predicts an increasing $F(\beta)$ for increasing viscosity (decreasing β) and lower $F(\beta)$ for higher off-placements of the channel with respect to the beam neutral axis. For Z₀<0.2 this effect is stronger for β<10.

Fig. 5: Theoretical Normalized Quality Factor E(B) for various rigid lead channel lengths L_c in the compressible case (γ =0.0337) and Z_0=0.1; the theoretical model predicts a surprisingly different behavior when Lc=0. The local maxima and minima of F(B) are strongly affected by Lc.

Conclusions

- Good agreement between experimental and numerical results for $\beta \in (1, 1000)$ for first two modes
- Contrasting behavior at high viscosities between theoretical and numerical results (β <1)
- Dependence of Q on Z₀, L_c, compressibility, Poisson's ratio and mode number for $\beta < 1$.
- Need of improvement of 2-waycoupling modelling

The authors would like to thank SNSF for the funding provided via the project PP00P2 144695 .