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• Good agreement between 

experimental and numerical 

results for β∈(1,1000) for first two

modes

• Contrasting behavior at high 

viscosities between theoretical 

and numerical results (β<1)

• Dependence of Q on Z0, Lc, 

compressibility, Poisson’s ratio 

and mode number for β<1.

• Need of improvement of 2-way-

coupling modelling

Fig. 7: Comparison of Normalized Quality Factor F(β) as a function of

Reynolds Number between theoretical [1], [2], [3], experimental [1], [2]

and numerical results for Device A (hf=8 μm, hc=12 μm, bf= 16 μm,

bc=33 μm, L=204 μm, Lc=210 μm, cantilever length=210 μm, Z0=0.06,

normalized wavenumber�=0.12, Poisson’s ratio=0.25) for Mode 2.

Viscosity spans from to 1 mPa·s to 1000 mPa·s and is inversely

proportional to Reynolds Number.

Fig.2a: COMSOL Model (half geometry) of Device A [1]: hf=8 μm, hc=12 μm, bf=16 μm, bc=33 μm, L=204

μm, Lc=210 μm, cantilever length= 210 μm, Z0=0.06.

In green the elastic domain, in blue the fluid domain. Z0 is the off-axis placement of the fluidic channel

with respect to the beam neutral axis.

Fig.2b: Cross-section of half geometry of Device A [1] (symmetry boundary condition is exploited)

Fig. 6: Comparison of Normalized Quality Factor F(β) as a function of

Reynolds Number between theoretical [1], [2], [3], experimental [1], [2]

and numerical results for Device A (hf=8 μm, hc=12 μm, bf=16 μm, bc=33

μm, L=204 μm, Lc=210 μm, cantilever length=210 μm, Z0=0.06,

normalized wavenumber � =0.12, Poisson’s ratio=0.25) for Mode 1.

Viscosity spans from to 1 mPa·s to 1000 mPa·s and is inversely

proportional to Reynolds Number.

• 3D eigenfrequency study in COMSOL Multiphysics®

• Device symmetry is exploited (fig.2a)

• Both 1-way-coupling and 2-way-coupling simulations are performed

• The quality factor is extracted as:

������� = 
�[λ]2��[λ]
where λ is the complex eigenvalue.

• The quality factor is scaled according to the analytical model proposed by Sader

in [1], in function of the Reynolds number β:
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Theoretical model [1]
• 2D theoretical model is only due to fluid motion and viscous forces, through the rate-of-

strain tensor e, defined as: ��� = �
� ���� + ����

• Quality factor is computed as:

• Strong effect of:

Fig. 3:

2D theoretical model;

Euler-Bernoulli beam

equations imposed as

boundary conditions on

the top and bottom wall;

x is the coordinate along

the length of the beam, z0

is the off-placement of

the channel with respect

to the beam neutral axis

[1].
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• Suspended Microchannel Resonator [1], [2], [3]

• Development of a 3D coupled fluid-structure interaction model to

extract Quality Factor as function of fluid dynamic viscosity

• Comparison between numerical, theoretical [1] and experimental [2]

results

• Good match between experimental and numerical Q for first two modes

• Decreasing Q for increasing viscosity in contrast with theory

Fig. 1: Fluid-structure interaction is defined on the internal walls of the

channel; a fixed constraint is imposed to the rigid channel (x<0). The cantilever

is let free to vibrate (x>0). Linearized Navier-Stokes and Solid Mechanics

equations are solved in COMSOL. The solid transfers momentum to the fluid,

which sends back stresses to the cantilever, affecting its motion.
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• Parameters studied: compressibility ( � = *,
'

�
is the normalized acoustic

wavenumber), dynamic viscosity, off-axis placement Z0, Poisson ratio, mode

number.

Fig. 5: Theoretical Normalized Quality Factor F(β)

for various rigid lead channel lengths Lc in the

compressible case ( � =0.0337) and Z0=0.1; the

theoretical model predicts a surprisingly different

behavior when Lc=0. The local maxima and minima

of F(β) are strongly affected by Lc.
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• compressibility [1]

• channel off-placement Z0 [1]

• Poisson’s ratio [3]

• mode number [2]

Fig. 4: Theoretical Normalized Quality Factor F(β) for

various normalized off-placements Z0 of the channel in the

compressible case (�=0.0337) for Lc=L; the theoretical

model predicts an increasing F(β) for increasing viscosity

(decreasing β) and lower F(β) for higher off-placements of

the channel with respect to the beam neutral axis. For

Z0<0.2 this effect is stronger for β<10.
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