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Abstract—Alcohol consumption is the number one risk factor for morbidity and mortality among young people. In late adolescence and
early adulthood, excessive drinking and intoxication are more common than in any other life period, increasing the risk of adverse
physical and psychological health consequences. In this paper, we examine the feasibility of using smartphone sensor data and
machine learning to automatically characterize and classify drinking behavior of young adults in an urban, ecologically valid nightlife
setting. Our work has two contributions. First, we use previously unexplored data from a large-scale mobile crowdsensing study
involving 241 young participants in two urban areas in a European country, which includes phone data (location. accelerometer, Wifi,
Bluetooth, battery, screen, and app usage) along with self-reported, fine-grain data on individual alcoholic drinks consumed on Friday
and Saturday nights over a three-month period. Second, we build a machine learning methodology to infer whether an individual
consumed alcohol on a given weekend night, based on her/his smartphone data contributed between 8PM and 4AM. We found that
accelerometer data is the most informative single cue, and that a combination of features results in an overall accuracy of 76.6%.
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1 INTRODUCTION

A LCOHOL consumption is the number one risk factor for mor-
bidity and mortality among young people in many countries

in the developed world. Heavy drinking and related incidents
in public on weekend nights are a concern for city councils,
policy makers, and a nuisance for the general public [1], [2].
In late adolescence and early adulthood, excessive drinking and
intoxication is more common than in any other life period [3].
In addition, such behavior carries a significant risk of adverse
psychological, social, and physical health consequences, includ-
ing academic failure, unplanned pregnancy, sexually transmitted
diseases, suicide attempts, violence, and accidents [3].

Advances in both alcohol epidemiology and human geography
have recently provided initial evidence on young people’s going
out and drinking behaviors in urban contexts. It is known that
young adults consume alcohol both indoors (home, bars, or night-
clubs) and in outdoor public places such as parks or openly on
the streets [4], [5]. However, detailed knowledge on youth alcohol
consumption habits, such as the types and frequency of alcohol
they consume and the specific places where they drink, as well
as contextual factors driving their consumption is still limited. To
examine drinking habits, most studies in alcohol research have
relied on self-reported retrospective assessments, which involves
participants recalling their consumption in the past. This setting
has three limitations. First, self-reported data on past alcohol
consumption is prone to recall biases [6]. Studies have found that
people forget to report up to half of their actual consumption [7].
Second, the environment in which drinking happens often differs
from the one under which the self-assessment of drinking happens.
Third, the collected data is limited by study design, focusing on
single aspects of this complex phenomena.

There is a recent push to study alcohol consumption patterns

using mobile phones [8] to increase research validity and reliabil-
ity and widen the understanding of contextual factors. In partic-
ular, smartphones, which can seamlessly collect a wide range of
sensor data (location, motion, proximity), event logs (including all
phone applications), and media (photos, audio, video) in everyday
settings [9], offer a promising alternative to improve the ways in
which drinking-related phenomena can be captured and studied.
This is further complemented by the increasing use of wearable
devices, such as body-worn devices, as means to monitor physical
activity and promote self-reflection based on behavioral data [10].

In this paper, we examine the feasibility of using smartphone
sensor data to automatically classify drinking behavior of young
adults in an urban, real nightlife setting. The data was col-
lected as part of a large-scale mobile crowdsensing study, called
Youth@Night, to capture and examine the nightlife patterns of
youth populations in Switzerland. Our goal is to study the dis-
criminative power of smartphone-derived cues related to nightlife
physical motion, location, connectivity, and application usage, to
automatically infer whether a person has had any alcoholic drink
that night. We focus our study on weekend nights (Friday and
Saturday) as it has been shown that social drinking principally
occurs on weekend nights, when most people do not have any
work obligations or study responsibilities the next day [7]. We
conducted our study by analyzing data collected from over 240
young people in two major cities in Switzerland, as a case study
of a developed western country. Our research questions are the
following:

RQ1: Is it possible to infer whether a person has consumed
alcohol from smartphone sensor and log data in an un-
controlled, real-life setting?

RQ2: If so, which features are more predictive of alcohol con-
sumption?
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The contributions of the paper are the following:
1) Using a large-scale mobile crowdsensing study, we collected
self-reported data on alcoholic drinks (type, size and alcohol
volume) along with information gathered by phone sensors and
application logs to examine the relationship between alcohol
consumption and associated contextual features (motion, location,
connectivity, and application usage). The study was conducted
with a total of 241 participants aged 16–25 years old in two Swiss
cities (Zurich and Lausanne), where each participant contributed
data through over multiple weekend nights, resulting in a total
of 2,934 user nights. We believe that the developed methodology
provides an attractive alternative opportunity to monitor in-situ
alcohol intake for experts specializing in alcohol research.
2) As a second contribution, we examined the relationship between
alcohol consumption and various features extracted using smart-
phone sensor data using a penalized logistic regression model.
Further, we build a machine learning methodology to infer the
binary state of alcohol consumption for single user nights (i.e.,
whether a participant consumed any alcohol in a given night),
and determine what are the most informative phone-derived cues.
We found that accelerometer data is the most informative single
cue, and that a combination of features results in an accuracy of
76.6%. To contextualize these findings, we explored the role of
two potential confounding variables – going out (home vs. away)
and gender – on the reported alcohol consumption and found
that these two variables alone cannot explain the more nuanced
notions of drinking behavior observed in our data. This opens up
a number of opportunities for alcohol researchers to pose new
research hypotheses.

The paper is organized as follows. We begin with a review
of related work (Section 2). Next, we outline the design of the
mobile application and the field study as part of the data collection
framework (Section 3). All the collected data and subsequent
filtering is reported in Section 4. We then describe the data pre-
processing pipeline and feature extraction from the collected data
(Section 5). After the feature extraction phase, we performed both
regression analysis (Section 6) and automatic inference of alcohol
consumption (Section 7). Section 8 contextualizes the regression
and inference results and examines the role of going out behavior
and gender on the reported alcohol consumption. Finally, we
discuss and conclude with a summary of our findings and possible
research directions for future work in Section 9. In the rest of
the paper, “weekend nights” refers to Friday and Saturday nights
between 8PM until 4AM.

2 RELATED WORK

Given the multifaceted nature of our research questions, we
review the related work along the following two domains: alcohol
epidemiology and ubiquitous computing.

2.1 Alcohol Epidemiology
Alcohol use is commonly considered a social activity, especially
among adolescents and young adults, where peers are seen as
the most consistent and strongest factor in the initiation and
maintenance of alcohol use in adolescents and young adults [11].
Recent in situ studies suggest that young adults tend to drink more
alcohol when in company than alone [12], that the number of
persons present tended to be higher in heavier drinking nights [13]
and that the higher the number of drinks consumed at a given
time during the course of the evening [14]. Other factors such as

gender, composition of the group, activities, or drinking norms are
also known to influence alcohol use among groups of peers [15],
[16]. To our knowledge, no previous study has investigated the
link between engaging in alcohol use and an automatic measure
of social context.

Only a few studies have investigated the link between alcohol
use and the number of drinking locations visited. For example, in a
study of persons arrested for driving while intoxicated, Wieczorek
et al. found that multi-location drinkers had higher blood alcohol
levels at arrest than those who drank at a single location [17]. More
recently, Dietze and colleagues reported that about two third of
young adults visited at least 2 different locations, while 39% drank
in only one location on their last big night out [18]. However, since
these studies endorsed a public health perspective, they focused
on the potential harms related to the quantity of alcohol consumed
through self-reported data. To the best of our knowledge, ours
is a first study which examines the link between automatically
measured mobility and drinking behavior.

Self-reported data is potentially prone to recall biases. In the
alcohol research literature, it has been shown that people forget
to report about half of their actual consumption. In Switzerland,
each person drinks about 3.4 liters of pure alcohol annually as per
the survey data, while the alcohol sales data indicate an average of
6.8 liters of alcohol consumption per person annually [7]. In [7],
the authors reported statistically significant differences between
self-reported retrospective alcohol consumption and mobile phone
based self-reports among young people. As a result, the feasibility
to automatically characterize drinking behavior using smartphone
data presents unique opportunities to study the urban nightlife of
young adults.

2.2 Mobile Phones and Ubiquitous Healthcare

In ubiquitous computing, few groups worldwide have collected
mobile phone sensor data that is at the same time rich, longi-
tudinal, and covers a large population. One of the earliest work
was done as part of the MIT’s Reality Mining initiative [19].
Nokia Mobile Data Challenge showed the feasibility of collecting
continuous smartphone data from close to 200 users over the
period of a year [9].

Research has also started to examine the role of smartphones
and wearable devices to monitor health-related variables. In these
domains, the recognition of stress levels has been an area of active
research. In StressSense, the authors identified stress rate from
human voice recorded using smartphones with an accuracy of
76% and 81% resp. in outdoor and indoor environments [20].
Another stress related study was conducted using five days of
data from 18 participants in [10]. Using features derived from
a variety of in-built smartphone sensors including accelerometer,
mobile phone usage (call, SMS, location and screen events), their
method achieved an accuracy of 75% in classifying the stress
levels of participants (under stress or not). Recently, the authors
have developed a stress model (called cStress), to establish a
gold standard for continuous stress assessment in the mobile
environment [21].

Another application which has received attention in ubiquitous
healthcare research is the detection of smoking gestures [2], [22],
[23]. In [22], the authors conducted a study with six participants,
all wearing activity monitor devices in their wrists, to automati-
cally detect puffing and smoking behavior. The authors developed
a detection model incorporating temporal and high-level smoking
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topographic features. In a similar work, Parate et al. proposed a
machine learning pipeline to capture changes in arm orientations
to detect smoking gestures in real-time [23].

In the field of alcohol consumption detection, there have been
relatively few works. In [24], the authors proposed a phone-
based system to detect the gait anomalies of walking under the
influence of alcohol. Based on accelerometer data from three
participants, the authors extracted gait features to differentiate
intoxicated walking patterns from regular patterns. In the domain
of drunk driving detection, a study on early detection of drunk
driving using a smartphone placed inside the vehicle was described
in [25]. Using accelerometer readings, the authors developed a
mobile application to detect whether the driving patterns match
with the cues for drunk driving gathered from real driving tests
(such as lateral acceleration, lane positioning, speed control, etc.).
To support people with alcohol addiction, Wang et al. proposed
SoberDiary, a phone-based support system to help users monitor
and and manage their alcoholic intake and remain sober in their
daily lives [26]. The study was conducted on 11 clinical patients
over 4 weeks, using a Bluetooth-enabled breathalyzer which was
paired with their smartphones. The authors found SoberDiary
system helped patients reduce their alcohol consumption.

In [27], we present a first analysis of the Youth@Night data,
focusing on in-situ and self-reported survey data to examine
places, social context and nightlife activities of young people.
In contrast, in this work we present a computational analysis of
previously unexplored mobile sensor and logs data to infer alcohol
consumption in an urban, ecologically valid nightlife setting,
which to the best of our knowledge is a novel idea. Note that
the sensor and logs data was not used in [27].

3 DATA COLLECTION FRAMEWORK

In this section, we describe our data collection framework and
the various types of data collected. We conducted a large-scale
field study to collect a large amount of real-life behavioral and
mobile sensor data originally described in [27]. Our data collection
methodology was approved by the ethical review board of Vaud
and Zurich cantons, respectively for the cities of Lausanne and
Zurich in Switzerland.

3.1 Mobile Application Design
As described in [27], to collect data for the Youth@Night study,
we developed two Android-based smartphone applications: a sur-
vey logger and a sensor data logger application. The survey logger
was designed to allow participants to respond to various in-situ
surveys including reporting their drink consumption, while the
sensor logger was designed to collect sensor and log data in a
non-intrusive and privacy-preserving manner. Below, we describe
these two applications.

3.1.1 Drink Logger
As part of the survey logger application, the drink logger module
was designed to allow participants to report their drink consump-
tion in real-time on weekend nights (Friday and Saturday) from
8PM to 4AM (the next morning.) The participants were asked
to document their drinks (alcoholic and non-alcoholic), as they
consume them during the night. In addition to in-situ reporting,
the participants also had the opportunity to report forgotten drinks
retrospectively any time during the night as part of the application
design. Figure 1 shows the primary user interface of the drink

Fig. 1: Screenshots of the drink logger mobile application

logger application. The application was designed to facilitate users
to report their alcohol consumption in a survey-based format. We
report the list of survey questions in Section 3.3. Since the focus
of the paper is to characterize drinking behavior, we are only
describing the drink logger module. We refer the readers to [27]
for a detailed description of the different survey modules of the
survey logger application.

3.1.2 Sensor Logger
We developed a second mobile application to collect different
types of mobile sensors and log data. It was designed to run as
a background process without any user interaction. As with the
survey logger application, all data was recorded only during the
weekend nights from 8PM until 4AM in a non-intrusive manner.
By design, it did not appear in the list of running applications on
the user’s device. So, if users wanted to close the service they had
to manually terminate the application. We describe the type of data
collected using the sensor logger in Section 3.3.

3.2 Field Study

For our field study, we recruited 241 participants across two major
cities known for their nightlife activities in Switzerland, namely
Zurich (German-speaking region) and Lausanne (French-speaking
region). All participants are young, aged between 16 and 25 years
(Note that the minimum age to purchase alcohol in Switzerland
is 16 years). Before the study began, participants were asked
to install the two applications on their own smartphones and
contribute data for 10 weekend nights. During a weekend night,
participants were asked to document every drink (alcoholic and
non-alcoholic) using the drink logger application; at the same time,
we collected sensor data and app logs using the sensor logger. All
participants were informed of the different data types collected for
the study, as well as on all other aspects of the data collection.

3.3 Data Types

In this section, we describe the data types collected in our study.

3.3.1 Drink Survey Data
This data was collected using the drink logger module of the
survey logger application. This survey was designed to let users
report their alcoholic and non-alcoholic beverages. Users were
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asked to answer this survey any time during a weekend night,
with an automatic reminder every hour prompting users if they
wanted to report a new drink. While answering the survey, users
were asked to describe the attributes of their current drink, that
include the type of drink (beer/cider, wine/champagne, whisky,
tea/coffee, fruit juice, water, etc.), the size of the drink (small,
medium and big), and the alcohol quantity (light, medium, strong,
and alcohol-free). The list of the drink attributes were selected
based on existing literature on alcohol consumption [28].

It is common for users to forget reporting every consumed
drink. As a result, we designed an additional survey for users to
report any forgotten drinks, which otherwise should have been
reported using the drink survey. As with the drink survey, this
survey could be answered any time during the weekend night from
8PM until 4AM, with an automatic reminder every hour prompting
users to add their forgotten drink. In this survey, users were asked
to indicate only the number of forgotten drinks per drink type.
As a result in this survey, we have no information of the drink
attributes (other than the drink type), as in the drink survey.

3.3.2 Sensor Data
In addition to collecting the participants’ self-reported alcohol
consumption, we also collected data from various mobile sen-
sors and application logs using the sensor logger application
(Section 3.1). The data types included accelerometer, application,
battery, bluetooth, location, screen and wifi logs. Table 1 lists all
data types, along with their respective sampling rate. Sampling
rate for various sensors was optimized using experimentation to
optimize battery life, following prior work [9]. We conducted
internal tests to select sampling rates for different sensors which
would not drain the battery more than 50% during eight hours
of data collection (8PM-4AM), assuming that the battery was
fully charged before the start of a night. Participants were sent
reminders during weekends to charge their phones six hours before
the night began. For user safety and convenience, the sensor
sampling was terminated completely when the battery level fell
below 20%. All the experiments done during the app design phase
were conducted using Samsung ACE 3 and Samsung Galaxy S3
phones running Android version 4.3. Note that due to the diversity
of phone vendors and mobile versions (eight mobile vendors and
51 model versions in our study), it is difficult to optimize the
battery profiles for all possible devices during an “in-the-wild”
crowdsensing study [29], [30].

In addition to collecting the survey and sensor data, we
interviewed 40 participants about their nightlife experiences, in-
cluding their experiences with the data collection by the mobile
application, as reported in [27].

4 DATASET

In this section, we describe the data collected as part of the “in-
the-wild” field study.

4.1 Collected Dataset
We ran our field study from September to December 2014. We
collected a total of 2,546 drink surveys and 942 forgotten drink
surveys, while at the same time we gathered over 8 million sensor
data records from 241 participants from the two Swiss cities. For
the rest of the paper, we conduct our analysis on a user-night.
A user night indicates a night-out per user. If the field study run
for m nights, where for each night we have n participating users,
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Fig. 2: Distribution of participants contributing data to the field study.
Numbers in red indicate users who reported consuming alcohol on
a specific night, while in blue we show the participants who had
reported no consumption of alcohol throughout the night.

the total number of user-nights will be mn. In our analysis, we
collected data from 2,934 user-nights from the 241 participants.
On average, a participant contributed data for 12 nights, with more
than half contributing 14 nights or more. The maximum number
of nights contributed by a single user is 30.

The data collected provides numerous opportunities to explore
different angles of drinking behavior. In this paper, we used a
subset of the data to analyse and infer drinking behavior. We plan
to explore other angles of drinking activity as part of future work.

4.2 Data Filtering
In our data, we observe that many user nights miss one or more
sensor data type. This is inevitable given the real-time and in-situ
nature of our study; similar trends have been reported in previous
large-scale mobile data campaigns [31]. In [31], using data col-
lected over five months in a real world setting, the authors reported
that the availability of GPS data ranges on average between 5–
30% of the time for a mobile device. Table 1 lists the number of
user nights with missing records for all sensor data types. Missing
sensor data can be attributed to a variety of reasons. First, in
our study, we have encountered a significant diversity of mobile
devices – eight mobile manufactures (including, Samsung, HTC,
Sony, LG, Huawei, etc.) and 51 different model versions. Different
phone manufactures and model versions behave differently even
when they are running the same version of Android OS. As a
result it is non-trivial to control for phone sensor biases including
sampling rate heterogeneity and instability [32]. Second, the
Youth@Night participants were instructed to use their phones in
a normal way following their usual practices. So, it was common
for participants to run out of battery, switch off their smartphones,
terminating the sensor logger altogether, selectively disabling
GPS or wireless interfaces (WiFi and Bluetooth) due to battery
constraints, forgetting their phones at home or devices proactively
going to power saving mode, etc. Furthermore, for each weekend
night, the sensor data collection began at 8PM (Section 3.1), so
it is likely that the participants were running out of battery more
often. Third, for participants safety and convenience, the sensor
sampling was terminated completely when the battery level fell
below 20% (Section 3.3.2).
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(a) Raw Location Traces (b) Stay Points

Fig. 3: Heatmap showing spatial distribution of raw location traces (left) and stay-points (right) of participants. Zurich (north-east of the
country) and Lausanne (south-west) are clearly represented in the map. Many other places in the country were also visited. Red color indicates
high density of stay-points, while blue represents low density. For scale purposes, note that the driving distance between Lausanne (southwest
red spot of the map) and Zurich (center north red spot of the map) is about 220 km (according to Google Maps). Best viewed online in color
and high-resolution.

Sensor Data Group Description Sampling Rate
% User Nights with
Available Records in

Raw Data

% User Nights with
Available Records in

Filtered Data

Accelerometer Set of acceleration values along three axes 10 seconds continuously
every minute at 50Hz 76.18% 99.51%

Application List of all background applications Once per minute 38.24% 99.31%

Battery Battery charging status Whenever a change in
battery status is detected 76.24% 100%

Bluetooth List of bluetooth devices in range Once every 5 minutes 75.66% 98.52%

Location Set of location estimates using GSM or GPS 1 minute continuously
every 2 minutes 55.69% 100%

Screen Status of the phone screen (on/off) Whenever the screen state
is changed 69.33% 92.78%

WiFi List of all visible WiFi hotspots Once every 5 minutes 65.13% 93.67%

TABLE 1: List of all types of sensor and log data collected during the study (in alphabetical order). The last two rows indicate the percentage
of user-nights with available data in the raw and filtered data respectively.

Due to inherent sparsity, we filtered the data to select only
those user-nights for which sufficient sensor data is available. Con-
sequently, for our analysis and inference framework (Sections 5,
6 and 7), we select only those user-nights which satisfy the
following three criteria: a) the participant had responded to either
the drink or the forgotten drink survey at least once during a given
night; b) the participant had at least one data sample for any sensor
data type during the night; and c) the participant had at least one
stay-point based on location sensor logs. (A stay-point is a stable
location defined in detail in Section 5.5.)

As a result of filtering, we are left with 1,011 user-nights
from 160 users consisting of 12 Fridays and 11 Saturdays nights
between September and December 2014. In Figure 2, we show the
distribution of participants for each night, in addition to showing
the overall participation rate. We observed 12 weekend nights
where we had more than 50 participants contributing data with
drinking events to our study. Figure 3 shows the spatial movement
of the participants based on their accumulated stay-points and
individual location traces, plotted at the country level. The study
participants restricted their movements mostly to the two studied
cities – Lausanne and Zurich; but sometimes they also spent their
nights in neighbouring cities as a reflection of real-life mobility.
Even after filtering, the data contains user-nights with missing
data for some of the sensor data types. In Table 1, we show
the percentage of user-nights with available data in the raw and
filtered data. For instance, 64 user-nights have missing WiFi sensor

logs in the filtered dataset. It points towards the challenges of in-
situ studies. For the subsequent analysis (pre-processing, feature
extraction, regression analysis and classification tasks), we use the
filtered 1,011 user-nights dataset, unless otherwise stated.

5 FEATURE EXTRACTION AND ANALYSIS

In this section, we describe the preprocessing of data and the
procedure for extraction of features. As mentioned in the previous
section, our unit of analysis is a user-night. Consequently, we
aggregated all the data informing different aspects of phone usage
per user on a nightly level. Table 3 lists all the different features
extracted. Features were selected based on prior work that could
potentially characterize levels of drinking activity [10], [31], [33],
[34], [35], [36]. Note that, the feature extraction process is driven
with the objective to test the feasibility of inferring a binary state
of alcohol consumption using features extracted from raw phone
sensor data, without inferring first any mid-level representation
from phone sensors. Below, we describe each data type and list all
the extracted features.

5.1 Accelerometer Logs
Using the sensor logger, we obtained accelerometer data every
minute for 10 seconds, with a sampling rate of 50Hz resulting in
a total of 500 readings per minute. Each individual reading con-
tained the raw acceleration values along the three axes (xi, yi, zi).
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Fig. 4: Plots showing the histograms for a) Acceleration, b) Resultant Acceleration, and c) Relative Resultant Acceleration for both night types.

Id Category Total Apps Top-3 Apps
C1 Systems/Native 39 Contacts, Accueil TouchWiz, Parametres
C2 Communication 12 Messages, InCallUI, S Voice
C3 Entertainment 8 Youtube, Musique, Shazam
C4 Social 5 Whatsapp, Facebook, Snapchat
C6 Travel 5 Maps, Mobile CFF, SBB Mobile
C5 Other 28 Chrome, Internet, Recherche Google
C7 Below100 1,200 Alben, Applications actives
C8 Y@N 3 Y@N-Enquete, Y@N-Studie, Y@N-Study

TABLE 2: Categorization of mobile applications. Apps in multiple languages appear due to the multi-region nature of the study.

Given the raw readings, we computed basic features including
signal magnitude area (SMAi), raw acceleration (ai), resultant
acceleration (ari ), and relative resultant acceleration with respect
to the previous reading (arri ). Note that feature names are taken
from previous literature [33], [37].

We define each scan per minute as a segment. Our data con-
tains a total of 391,717 segments. To transform the raw readings
per segment, we further computed basic summary statistics (mean,
standard deviation, min., max.) over each segment, in addition to
calculating the angle between the gravity (g) vector and the vector
containing the average acceleration value for each axis ([x̄ ȳ z̄]).
To obtain the aggregated features per user-night, we generated
histograms of segment features, as described in Table 3. In total,
we generated a total of 79 acceleration features (all variants of five
basic features.) Most of the features extracted from accelerometer
logs are derived and adapted from prior work [33], [34], [38].
For instance, the SMA feature is designed to distinguish between
static and dynamic activities, while the angle provides cues to
inform phone’s tilt and orientation. Figure 4 shows the distribution
of raw acceleration, resultant acceleration and relative resultant
acceleration for both alcoholic and non-alcoholic user-nights.

Accelerometer data has widely been used to recognize physical
activities of users ranging from standing, sitting, walking, jogging,
and climbing [33], [34], [38]. We are not inferring categories of
physical activity, as we did not collect physical activity labels
as part of the field study. To complement the existing features,
we plan to extract spectral based features (e.g., energy, spectral
entropy, etc.) from accelerometer data as part of future work.

5.2 Application Logs

There have been numerous studies which have examined mobile
applications logs to understand user context ranging from location,
temporal and social context [39], [40], [41]. In this subsection, we

extract features to explore the role of mobile application usage (in
terms of spatial and social context) on alcohol consumption. Ap-
plication usage might be informative of drinking-related activity
as it has been shown that differentiated usage of apps occur in real
life depending on where and with whom the phone users are.

Through the sensor logger, we scanned the list of all running
applications every minute (Table 1). For each scan, we obtained a
list of up to 50 applications. It is important to note that, as opposed
to dedicated apps developed to monitor application usage [41], our
sensor logger was designed to gather only the list of currently
running apps. As a result, our analysis of application logs is
limited to understand fine-grained application usage behavior
(e.g., time spent on Facebook, number of messages and pictures
shared using Whatsapp, etc.). In our dataset, we observed a total
of 1,299 unique applications, with Whatsapp being the most
frequently used application. Running applications can either be
native (i.e., pre-installed by the device manufacturers), default
Android apps or user-installed apps. As noted earlier, due to
the multi-region nature of our study, the mobile interface was
designed in three different languages. Consequently, apps having
the same functionality appear in different names due to the
translated interface e.g., Telephone and Telefon both refer to
the Android application handling the call activity in English and
French interface respectively.

Application Categorization: To deal with the diversity of appli-
cations, we manually coded the top 100 applications (based on
their usage frequency) into eight categories (Table 2) which are:
System/Native, Communication, Entertainment, Social, Travel,
Other, Below100, and Youth@Night (in short Y@N, our app for
this study). Similar app categorization systems were used to group
mobile apps in the literature [40], [41]. In Table 2, we show the
total number of applications classified in a given category, in ad-
dition to showing the Top-3 apps for that category. The Below100
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Fig. 5: Plots showing the histograms for a) Percent of times the phone was in the vertical position inferred using accelerometer logs, b)
Normalized Count 1 of “Social” applications (C4 category), c) Number of unique Bluetooth devices in range, d) Number of unique WiFi
access points, e) Total number of stay-points, and f) Percent of times the phone screen was on inferred using screen logs for both alcoholic and
non-alcoholic user-nights.

category accounts for applications that were not frequently used
by the participants in the study, while Y@N denotes applications
designed for our study. Note that the Y@N category contains
only the drink logger application; the sensor logger app, being a
daemon service, did not appear in the list of running applications.
Applications falling under Y@N category also belongs to the Top
100 applications. Note that each application was assigned to the
closest possible category, though an application in principle could
belong to multiple categories.

For each user-night, in addition to the basic features (e.g., num-
ber of records or scans, count of unique applications, duration),
we generated a set of three additional count features using the
categorized applications. First, for all the applications obtained
per scan, we increment their respective category count (Count
1). Second, we examined the top-3 applications (based on their
recency order) in a scan and increment their respective category
count (Count 2). Note that while returning the list of running apps,
the Android API returns the list in order of recency, i.e., the most
recently app used is returned first, and so on. Using the Android
API, we have no means to examine for how long an app has been
used, thus we used the recency order as a proxy to understand
temporal app usage. For the last and third count feature (Count
3), we count the number of times an app category has improved
its rank (based on the recency order), with respect to the previous
scan. For Count 3, we look at only the top-3 applications and
their respective categories. We increment the count only if there is
an improvement in the rank with respect to the previous rank.

For each count feature, we also added their normalized count
version as features. Count normalization was performed based on
the number of scans in a user-night. In total, we generated a set of
52 features using application logs (Table 3).

For all eight categories, we do not observe any significant
differences for all count features between alcohol and non-alcohol
user-nights. To illustrate it, in Figure 5b, we show the distribution
of normalized count (Count 1) for “Social” applications (C4
category) across several bins for both types of user-nights.

5.3 Battery Logs
The battery sensor returns a set of values whenever a change in
the battery status is detected. Via this sensor, we obtained a set of
features including battery status, level, temperature, and whether
the phone was plugged to a power source. The battery can be in
one of five states (charging, discharging, full, not charging, and
unknown), depending on its power status [42]. Using the battery
logs, we generated 10 features as summarized in Table 3.

5.4 Bluetooth and Wifi Logs
From the Bluetooth and WiFi sensors, we obtain the list of the
nearby Bluetooth (BT) devices and WiFi access points (APs)
respectively. For these sensors, the scan was performed every 5
minutes. For every scan, we compute the list of features as de-
scribed in Table 3. All the generated features are self-explanatory
and are computed based on prior work [35], and correspond to a
total of 6 features (Table 3).
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Feature Group Features (Dimensions) β

Accelerometer

Number of records (1) .
Hist. of angle between g vector and X, Y, and Z-axis (6x3) +5.86× 10−1

Hist. of std. dev. of acceleration along X, Y and Z-axis (6x3) +1.20
Hist. of mean, median and max resultant acceleration (6x3) +4.59

Hist. of mean, median and std. of relative resultant acceleration (6x3) +8.12× 10−1

Hist. of signal magnitude area (SMA) (6) .

Application

Number of records (1) .
Count of apps in different categories (8x2) +4.22× 10−2

Count of Top-3 apps per category (8x2) +8.45× 10−1

Relative ranking of Top-3 apps per category (8x2) +1.84
Duration between the first and last scan (1) −3.51× 10−5

Count of unique and total apps (2) .

Battery

Number of records (1) −2.12× 10−4

Count of various battery status (5) +3.91× 10−2

Min. and Max. level of battery (2) −2.49× 10−3

Difference between min. and max. battery levels (1) −5.17× 10−3

Plug time (1) −1.49× 10−1

Bluetooth (BT)

Number of records (1) −1.98× 10−3

Number of unique BT IDs in range (1) +1.26× 10−1

Number of BT scans (1) −6.07× 10−3

Percent of empty BT scans (1) +2.74× 10−1

Location

Number of stay-points (1) +1.81× 10−1

Sum of duration at stay-points (1) .
Sum of travel distance between consecutive stay-points (1) +1.17× 10−7

Sum of travel time between consecutive stay-points (1) .
Hist. of computed speed (8) +7.93

Screen

Number of records (1) +5.87× 10−3

Percent of time screen was on (1) −2.49
Screen count after midnight (1) .

Duration of screen events (on/off ) (2) +1.64

WiFi Number of records (1) −8.7× 10−4

Number of unique visible WiFi hotspots (1) +9.02× 10−3

TABLE 3: List of all features extracted (organized by feature group) for each user-night. For each feature, β refers to the coefficient estimate
of the penalized logistic regression (PLR) model.

Bluetooth device density has often been used as a proxy to
the social context of the user’s environment e.g., being alone or in
the vicinity of a nearby group of people [40], [43]. When a large
number of BT devices are detected, it likely signals the presence of
people in the surrounding. Analysing BT logs becomes relevant to
our work as we are interested in understanding the social context
of participants and how it might potentially impact their drinking
behavior. In our study, participants encountered an average of 9.6
unique BT devices and 128 WiFi APs in a typical user-night.
For alcohol user-nights, 12.3 BT devices and 162 WiFi APs were
encountered, while for non-alcohol user-nights only 3.95 devices
and 59.3 WiFi APs were detected on average. Figure 5c and
Figure 5d shows the distribution of BT devices and WiFi APs,
respectively for both alcoholic and non-alcoholic user-nights.

5.5 Location Logs
The location sensor returns the set of location estimates using
either GPS sensor or network-based (estimated using a lookup
of cell tower and WiFi access points), depending on which
sensor was available at the time of sampling. Location data was
collected continuously for one minute, every two minutes. For
every data point, we collect the location coordinates (longitude
and latitude) and provider information (GSM-based or network-
based). Additionally, the sensor logger also listened “passively”
for any location requests made by other mobile applications and
services (such as Maps) and recorded the location without actually
initiating a location fix and consequently not draining the battery
further. In our analysis, we have estimated the location using both
the “active” and “passive” data sources. As a result, some of the
location updates might have resulted in coarse grain estimates.

For each user-night, we extracted the sequence of stay-points
using location pairs (longitude and latitude). A stay-point is a
region (radius of d meters) where a user has stayed for a given
duration of time (t minutes). It is a standard unit of analysis for
place extraction [31]. In our analysis, we have used d = 200
meters and t = 5 minutes, which is similar to the ones reported in
prior work [36]. Stay-points are extracted independently for each
user. Using stay-points, we extracted a series of features, such
as the duration of stay at stay-points, travel distance, and time
between consecutive stay-points (Table 3). Additionally, we also
computed user speed using the location data. The total number of
extracted location-related features is 12.

In this paper, we have not extracted any semantic features
from location data i.e., to estimate if the participant were hang-
ing out at a bar or sitting at home. Location data would play
a dominant role if the semantic label of places were known.
However, automatically extracting semantic place labels from raw
location traces involves multiple research challenges including
noisy and missing location data (see Figure 6), and collection
of manual place annotations [44], [45]. To avoid collection of
such labels, an alternative would be to use location services like
Google Places API, to extract meta information about places. In
urban areas (where the Youth@Night study took place), reverse
geocoding the location data would result in a list of possible
candidate places, and disambiguating them to locate actual places
participants had been to constitutes a research challenge [46].
Errors in place disambiguation mechanisms could potentially lead
to wrong places being discovered e.g., a bar next to a grocery store.
Due to these research challenges, we plan to extract semantic place
attributes as part of future work.



9

Time of the Day

21:00 00:00 03:00

A
lc

o
h

o
l 
U

s
e

r 
N

ig
h

ts

0

1

2

3

4

5

6

7

8

9

10

Time of the Day

21:00 00:00 03:00

N
o

n
-A

lc
o

h
o

l 
U

s
e

r 
N

ig
h

ts

0

1

2

3

4

5

6

7

8

9

10

Fig. 6: Stay-points for a random selection of 10 alcoholic and non-alcoholic user-nights. A rectangle bar indicates a stay-point, and black dots
indicate the raw location traces.

Mobility using Location Logs: In a user-night, on average a
participant had stayed on 3.8 stay-points, with the mean stay
duration of 2.1 hours in a given stay-point. For alcohol user-nights,
a participant spent an average of 1.6 hours per stay-point, while for
nights where alcohol was not consumed, a user spent an average
of 3 hours per stay-point. We also observe significant differences
with respect to the number of stay-points between nights spent
consuming alcohol (4.5) and otherwise (2.5). Figure 5e shows
the distribution of total number of stay-points across several bins
for both alcoholic and non-alcoholic user-nights, which highlights
the role of mobility on alcohol consumption. To contextualize
these results and further understand the role of mobility, we
examined the distance travelled between consecutive stay-points.
We found that on average a participant travelled a distance of
3.7kms (resp. 1.4kms) in an alcoholic user-night (resp. non-
alcoholic nights). These findings suggest potential links between
mobility and drinking behavior. Besides, these results complement
our understanding of the physical mobility of participants with
respect to our previous work, where we conducted a first analysis
of visited place categories using self-reported check-in data [27].

In Figure 6, we show the stay-points for a random selection
of 10 alcoholic and non-alcoholic user-nights. In the figure, a
rectangle bar indicates a stay-point, and black dots indicate the raw
location traces. It was not always the case that we continuously
obtained location traces for the entire user-night, as evident in
Figure 6. For most user-nights, we observe missing location data
for parts of the night. For some user-nights, the data was received
only for few minutes (see non-alcoholic user-nights 7 and 10).
These findings point towards the inherent missing data in our
collected dataset and the subsequent challenges involved in using
the data for an inference task.

5.6 Screen Logs

Using the screen logs, we measured any change in the state of the
screen i.e., whether the screen was on or off. Using these logs,
we computed a set of five features following [10] (Table 3). The
Android API only provides the information when the state of the

mobile screen changes from on to off and vice-versa. Using this
information, we computed the percent of time the screen was on
(or off ) by normalizing it based on the time difference between
the first and last screen events in a given user-night.

We found that on average, participants had their mobile screen
on for 15.6% of the time, indicating some form of interaction with
their mobile devices. When examining differences between user-
nights, we found that for alcohol user-nights (resp. non-alcoholic
nights), a participant kept their screen on for an average of 14.4%
(resp. 18.3%) of times (see Figure 5f for a visual comparison).

5.7 Ground-truth Alcohol Consumption

Finally, in order to obtain the ground-truth data on alcohol con-
sumption i.e., whether a participant had drunk alcohol during a
user-night, we rely on a combination of “in-situ” drink survey and
“retrospective” forgotten drink survey data as opposed to a purely
retrospective survey method (Section 3.3.1). The retrospective
survey was designed to help participants report forgotten drinks
during a specific user-night only, as opposed to longer recall
periods as is the case with most alcohol epidemiology studies.
In [6], considering 1 day as the reference recall period, the study
showed a significant decrease in reported alcohol intake with
increasing recall period (between 2-7 days). Furthermore, in our
data 73% of drink survey responses were in-situ (Section 4.1).

Participants reported their drinks or forgotten drinks using the
drink logger application. Participants reported both alcoholic and
non-alcoholic beverages. If a participant reported consuming both
types of drinks, we consider the night as alcoholic user-night. If
a participant had not reported a consumed drink using the drink
survey i.e., while consuming it in-situ, but reported it the next day
using the forgotten drink survey, we considered those user-nights
in our analysis as well.

In total, 67% of user-nights have reported alcohol consump-
tion, while 33% of user-nights have no alcohol consumption.
This imbalance signals potential biases of participants towards
reporting mostly alcohol-related activities. After the in-situ data
collection was over, we conducted a series of qualitative interviews
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(b) Walking

Fig. 7: Plots showing the histograms for a) Stationary, and b) Walking
inferred using location logs for both night types.

with 40 participants to gain insights of their nightlife experience
(Section 3.3). During the interviews, some of the participants men-
tioned perceiving our study as an “alcohol study” where they did
not consider reporting consumption of non-alcoholic beverages
(e.g., water, juice, etc.). This is interesting given the fact, that
the instructions given to participants clearly stated them to report
both alcoholic and non-alcoholic drinks (i.e., without any bias.)
Few other interviewees concluded that they were only allowed to
report if they had bought the drinks themselves. Such narrations
provide insights into the ways a “drink” was contextualized by
participants. Furthermore, they offer a starting point to reflect the
observed reporting bias. Detailed analysis of interviews will be
reported as part of social science research.

6 REGRESSION ANALYSIS

In this section, we perform regression analysis of different feature
groups. To examine the relationship between alcohol consump-
tion and feature groups, we employ penalized logistic regres-
sion (PLR) [47]. PLR measures the relationship of a binary
response variable (consuming alcohol or not) as a function of
the explanatory predictor variables (set of features derived from
sensors and log data, as described in the previous section). In
contrast with traditional logistic regression, PLR guards against
collinearity amongst features via regularization. Regularization is
implemented using the LASSO technique, which performs feature
selection by forcing some of the coefficient estimates to zero,
thereby increasing the interpretability of the model.

Precisely, we fit a generalized linear model with LASSO
regularization (α = 1) over a grid of 10,000 regularization
parameter (λ) values, ranging from 10−5 to 105. To choose the
optimal λ that minimizes the error rate (λMIN ), we used a 10-
fold cross-validation technique for each PLR model. All predictor
variables were standardized before fitting the model to increase
model interpretability and compare the relative importance of
(post-shrinkage) coefficient estimates. To conduct our regression
analysis, we have used the glmnet library in R programming
language. glmnet provides statistical routines to fit a generalized
linear model for different penalties including L1 (LASSO) and
the library is ideally suited for most data distributions, including
sparse data [48].

6.1 Results
For each feature group, we fit the penalized logistic model
involving all features of that group against the binary alcohol

consumption variable in a user-night. Table 3 shows the results of
the PLR models, where we report the coefficient estimates (β) for
each feature group. As λ varies, the number of coefficients in the
fitted model also vary. In Table 3, we are reporting the β estimates
at λMIN (λMIN is the value of λ that gives the minimum mean
cross-validated error.). For feature sets involving multiple dimen-
sions (e.g., histogram of mean relative acceleration), we report
the maximum β value for that feature set. Due to regularization,
features with zero coefficients are reported blank in Table 3.

We found that, while most features have either a positive or
negative relationship with alcohol consumption, some features
have zero β values (e.g., histogram of signal magnitude area, sum
of duration at stay-points, screen events after midnight, etc.) Fea-
tures with zero β values suggest that either these features do not
possess any significant relationship with the alcohol consumption
or these features are correlated with other significant predictive
feature(s) within the same feature group. The accuracy of the
PLR models ranges from 77% to 69% with accelerometer data
obtaining the best predictive performance. While evaluating the
accuracy of each PLR model, no cross validation was used, so the
baseline accuracy of each model stands at 67% (Section 5.7).

Most of the regression results presented in Table 3 corroborates
with the exploratory analysis reported in Section 5. For acceler-
ation logs, the standard deviation of raw acceleration values (ai)
along the Y-axis has a positive relationship, and the maximum
of the resultant acceleration values (ari ) also has a positive asso-
ciation with alcohol consumption. When examining the features
extracted using location logs, we found that the number of stay-
points (Figure 5e) and computed speeds are positively associated
with alcohol consumption. The percent of time the mobile screen
was on is negatively associated with alcohol consumption with
β-value of −2.49 (Figure 5f).

Amongst all features within all feature groups, user speed
computed using location logs has the highest absolute β value
(7.93). To further understand the role of user speed, we exam-
ined the distribution of user speeds for both alcoholic and non-
alcoholic user-nights. A participant was considered stationary if
the computed speed was below 1 km/h, while a participant was
assumed to be walking if the speed was in the range of 2–5
km/h [49]. In Figure 7, we show the percentage of time (as a
fraction of a user night) when the user was stationary or walking
for both night types. For more than 65% (resp. 33%) of non-
alcoholic (resp. alcoholic) user-nights, a participant was stationary
throughout the night, shown in Figure 7a. Note that we did not
include the stationary or walking labels as features in the inference
task (Section 7). In Figure 7, we have shown their respective
distributions for illustrative purposes only.

7 INFERENCE OF DRINK STATUS

In this section, we investigate the problem of classifying whether
a study participant consumes alcohol in a given user-night.

7.1 Classification Method
For automatically classifying the alcohol consumption status as a
binary classification task, we use Random Forests. Random forest
represents a tree-based supervised learning method for classifica-
tion, which guards against overfitting of the model to the training
data [50]. In our analysis, we set the number of trees to N = 500.
From a practitioner point of view, it has been recommended to
use atleast 1,000 trees as a starting point [51], although at the
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Feature Group Accuracy Precision Recall Feature Combination Accuracy Precision Recall
Accelerometer 75.8% 74.0% 78.7%
Location 68.5% 68.2% 68.0% A+L 76.3% 74.5% 79.2%
WiFi 65.2% 65.1% 64.1% A+L+W 76.4% 74.7% 79.1%
Bluetooth 64.2% 64.4% 62.0% A+L+W+B 76.6% 74.8% 79.6%
Screen 61.1% 60.2% 63.2% A+L+B+W+S 76.6% 74.9% 79.3%
Apps 61.1% 60.7% 60.5% A+L+B+W+S+Ap 76.4% 74.7% 79.0%
Battery 58.8% 58.8% 56.3% A+L+B+W+S+Ap+Ba 76.4% 74.7% 79.1%

TABLE 4: Classification accuracy, precision and recall metrics of alcohol consumption using each data type and using different combination
of data types.

cost of increasing the computational time for the experiments.
For our experimental setting, the computational time was not a
bottleneck. We conducted our random forest classification using
randomforest-matlab package in Matlab.

7.2 Performance Evaluation

Each user-night is represented by a feature vector from one or
multiple feature groups. Since the user-nights are imbalanced
(67% of user-nights have reported alcohol consumption, and 33%
of user-nights have no alcohol consumption), we randomly sub-
sample the majority class (i.e., alcohol consumption user-nights)
to build 10 different balanced datasets. By training and evaluating
the classifiers on balanced datasets, we target a classifier predicting
binary alcohol consumption. For each balanced set, we use the 10-
fold cross-validation approach. To guard against the case where
the data of one user was distributed between both the training and
the test sets, the 10-folds were created based on disjoint users (as
opposed to the user-night). The final classification accuracy and
its associated precision and recall metrics are averaged over 10
balanced sets. Using the above experimental setting, the baseline
accuracy for our classification task is 50% (i.e., random guess).

7.3 Results

To highlight the contribution of each feature group, we first report
the classification accuracy using each feature group separately in
Table 4. Table 4 also reports their respective precision and recall
scores. As can be seen, accelerometer data is the most informative
feature among all features types, with 75.8% accuracy. Features
extracted using location logs are the second best feature with an
accuracy of 68.5%. Next, we see that Wifi and Bluetooth logs
are also discriminant with the number of unique WiFi access
points and nearby Bluetooth devices observed during a user-night
selected as the most important features (see Figure 5d and Fig-
ure 5c). Furthermore, features extracted using screen, application,
and battery logs are relatively less good features.

Table 4 also reports the classification accuracies along with
precision and recall of alcohol consumption using a combination
of different feature groups. Using all the feature groups, we
obtained an overall accuracy of 76.4%, which is a modest increase
over the accuracy achieved using just accelerometer features
(75.8%). Accelerometer features when combined with location
features achieve similar accuracy compared to all the features
combined. To conclude, we have investigated alcohol consumption
status as a binary classification task. Using a similar methodology,
operationally it might be feasible to infer the amount of alcohol
intake, although the performance of such a model is an open-
ended research question, but worth exploring as an extension of
the present work.

8 ROLE OF GOING OUT AND GENDER ON DRINK-
ING EVENTS

To contextualize and reflect on the results, in this section we
discuss the role of two potential confounding variables – going
out and gender – on the reported alcohol consumption.

8.1 Role of Going Out on Drinking Behavior
For many people, consuming alcohol is inherently a social ac-
tivity [12], [52], which typically happens outside the home en-
vironment in pubs, bars, nightclubs, etc. In the previous sections
(Sections 6 and 7), it has been shown that accelerometer, location,
bluetooth, and wifi are the top feature groups predictive of alcohol
consumption. Accelerometer features are associated with users’
physical activities (e.g., standing, sitting, etc.); location features
inform the physical mobility of users; Bluetooth and WiFi features
can inform the social context of users’ environment (e.g., alone
or in a group). Given the discriminative nature of these feature
groups to characterize alcohol consumption, it can be argued
that the list of features extracted for the inference model are
in fact capturing participants’ social and physical activity, and
only indirectly informing drinking behavior. In this subsection,
we examine the role of going out behavior (i.e., going away from
home) together with alcohol consumption.

As part of the study protocol when the participants docu-
mented their drinks, we also asked them to report the place
(e.g., home, bar, restaurant, etc.) where they were having their
drink [27]. Using this self-reported information, we know the type
of place where the participants were at the time of reporting drinks.
A participant could be at multiple venues during a night. To handle
this case, if participants had reported at least one place outside
their home during a user-night, they were considered as gone out
for the night; and if participants had reported staying at home
through out the night, they were considered as staying at home.

Out of 1,011 user-nights, participants reported place infor-
mation for 629 (62.2%) user-nights. In Table 5, we show the
total number of user-nights of drinking contrasted with going out
behavior. Out of 629 user-nights, participants had gone out for
441 (70%) user-nights, while they had stayed at home for 30% of
nights. If a participant had gone out, it was highly likely that they
had consumed alcohol (82.8% of user-nights). On the other hand,
while staying at home, for 44.7% (84) of user-nights, participants
consumed alcohol at home, supporting the increasing trend of
home drinking [53]. In [53], the authors examined the potential
reasons of why people drink at home. Using focus groups spanning
different age groups, the authors reported that cost, convenience,
safety, and social occasions are the key reasons of drinking at
home. In the same study, for young people aged 16–25 years old
(the age group of our study participants), social occasions was
found to be the principal reason for home drinking. Given that
the likelihood of consuming alcohol at home (44.7%) and not
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consuming alcohol away from home (17.2%) is not negligible, it
is fair to say that the extracted features might be capturing more
nuanced notions of drinking behavior, and not just informing the
social and physical context of users.

As stated earlier that the focus of this paper is on using the
physical location as derived from location traces. Future work
will investigate the role of semantic place location on alcohol
consumption e.g., knowing that if a participant was in a bar, the
likelihood of consuming alcohol would be higher, when compared
to participant being in a shopping mall.

8.2 Role of Gender on Drinking Behavior
As stated in Section 2.1, it is known that gender plays a deter-
minant role in alcohol use. In [15], using 16 population surveys
across 10 countries, the authors found that males drank more
frequently and consumed more alcohol when compared to fe-
males. Similar findings were reported in another large-scale study
conducted amongst an adolescent population in Europe [54]. To
inspect the potential gender differences on alcohol consumption,
in this section we present results of reported alcohol consumption
differentiated by gender as observed in our study.

From a total of 160 users studied in this paper (Section 4.2),
gender information is available for 159 participants. In our study
we observed a fairly balanced gender ratio with 85 males (53.45%)
and 74 females (46.55%). Males contributed towards a total of
502 user-nights, and females provided slightly higher number of
507 user-nights. In Table 6, we report the total number of user-
nights by each gender and their reported alcohol (and non-alcohol)
consumption. Of all the user-nights reported by the female cohort,
62.5% (resp. 37.5%) of them were reported with alcohol (resp.
non-alcohol) consumption. On the other hand, males reported
72% of nights with alcohol consumption, which is higher when
compared to the female population. These results show that gender
alone cannot explain the patterns observed in Sections 6 and 7.

9 DISCUSSION AND CONCLUSIONS

In this paper, we have examined the feasibility of collecting and
using smartphone sensor data to automatically characterize basic
drinking behavior of young adults (drinking/not drinking) in an
urban, in-the-wild nightlife setting. To reflect on these findings,
we get back to the research questions posed at the beginning of
the paper.
RQ1: Is it possible to infer whether a person has consumed alcohol
from smartphone sensor and logs data in an uncontrolled, real-life
setting? Table 3 and 4 provide evidence to suggest the feasibility
of characterizing and classifying drinking behavior (as a binary
state) using smartphone data. From an alcohol epidemiology point
of view, we believe our study produced promising results. In
this domain, there is a recent push to study alcohol consumption
patterns using mobile phones to increase research validity and
reliability and to widen the understanding of contextual factors [8].
Smartphones, which can collect a wide range of sensor data
(activity, location, proximity), event logs (including all phone
applications), and media (photos, audio, video), offer a promising
alternative to improve the way in which drinking-related phenom-
ena can be studied. Furthermore, the recurrent use of retrospective
surveys, which induces recall biases, can be potentially reduced
using smartphones.
RQ2: Which features are more predictive of alcohol consumption?
Table 3 and Figure 5 highlight the discriminative power of physical

Alcohol Consumption
Negative Positive

Going Out
Negative 104 84
Positive 76 365

TABLE 5: Alcohol Consumption vs. Going Out Behavior.

Alcohol Consumption
Negative Positive

Gender
Female 190 317
Male 141 361

TABLE 6: Alcohol Consumption vs. Gender

activity (accelerometer), physical mobility (location) and social
context (WiFi and Bluetooth) features as partly predictive of
alcohol consumption. Furthermore, we found that features derived
from accelerometer data are the most informative data type,
achieving an accuracy of over 75%. The best combination of
features produced an accuracy of 76.6%.

With the increasing availability and acceptability of wrist-worn
wearable devices (like Jawbone, Fitbit, Apple Watch), which em-
bed accelerometers inside them, our findings points to potentially
interesting ways to track drinking behavior and promote self-
reflection based on behavioral data. As potential applications, near
real-time information on consumption could potentially influence
alcohol intake, assisting users in their decision-making to drink
further or not. It has already been shown that self-monitor and
real-time feedback can help reduce alcohol consumption and
heavy drinking [26]. For real-time detection, the classification task
would have to infer the likelihood of alcohol consumption upto
the present time in a night, which would involve some form of
dynamic time-based models. We plan to pursue this direction in
future work. Finally, consumption information could be integrated
into potential future systems of epidemiological research at the
population level.

The data collected as part of the study provide numerous
opportunities to explore different angles of drinking behavior. In
this paper, we studied one aspect of drinking behavior. Alcohol
use is context dependent, so from a scientific point of view,
understanding the temporal aspects of consumption and how
it affects intake is an area of future exploration. We are also
interested in exploring how the social context and mobility cues
affect drinking behavior. Does increased mobility or large social
groups increases the likelihood of consumption? We believe our
dataset would facilitate to empirically test these hypotheses, some
of which are currently analysed using questionnaires [12], [13].
We plan to explore these angles of drinking activity as part of
future work.
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