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ABSTRACT 

Ultra-High Performance Fiber Reinforced Concretes (UHPFRC) have demonstrated 

their potential to contain the explosion of maintenance costs (Economy and 

Environment) for civil engineering structures, due to their extremely low permeability 

associated with the outstanding mechanical properties. Substitution of Embodied-

Energy (EE)-costly components of UHPFRC such as clinker and steel fibers, is the next 

step towards sustainability, to make it even more efficient and more environment-

friendly. In this study, a strain hardening UHPFRC mix with two main modifications 

has been developed in which (1) 75% of steel fibers have been replaced by ultra-high 

molecular weight polyethylene (UHMWPE, henceforth referred to as PE) fibers and 

(2) 50% volume of cement type CEM I have been replaced with limestone filler.

The effect of the fiber orientation and the specimen thickness on the mechanical

properties of such mixes have been investigated. The mechanical properties have been

investigated using direct tensile test, and 4-point bending test. Finally, the dramatic

effect of fiber orientation on the ultimate strength and deformability has been

demonstrated. Moreover, the results confirm that the specimen thickness affects the

deformation capacity of the specimens. Finally, improvements in terms of reduction of

EE of the proposed mixes, are highlighted.

Keywords: UHPFRC, Mechanical response, Strain Hardening, UHMW-PE fibers, 

Embodied Energy  

1. INTRODUCTION

Current UHPFRC, for structural applications in new constructions and rehabilitation of 

existing structures, are almost exclusively based on steel fibers. A few notable 

investigations have been conducted on using UHPFRC with synthetic fibers for 

structural applications. The synthetic fibers are mostly used in UHPFRC for facade 

elements with complex shapes (Chen and Chanvillard, 2012). Considering the fact that 

more than 50% of the EE and GWP impact of the UHPFRC is from the steel fibers 

contribution (Stengel and Schießl, 2008), replacing the steel fibers with synthetic fibers 

has a considerable effect on reducing the EE of this material. 
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Beginning as early as the 1990s, interest in creating a synthetic fiber reinforced 

concrete material with tensile ductility has been gaining ground. The first attempts to 

employ synthetic fibers in concrete in order to achieve a strain hardening composite 

were performed by Li (1993). He used micromechanics theory with the aim of 

obtaining evenly distributed multiple microcracks under tension, the widths of which 

were smaller than durability related limits. ECC (Engineered Cementitious Composite) 

was the result of his research; a material with PE or PVA fibers, around 4.5 MPa tensile 

strength and 5% strain hardening capacity. 

Kunieda et al. (2007) and Kamal (2008) tried to develop a material with the advantages 

of both UHPFRC and Strain Hardening Cementitious Composites (SHCC), with high 

performance PE fibers. They achieved UHP-SHCC material with a dense matrix, 

significant strain hardening capacity (close to 1%), relatively high compressive 

strength (83 MPa) compared to normal SHCC (20.2 MPa), and tensile strength of 4.5 

MPa. 

This trend was continued by Ranade et al. (2013) using PE fibers in High-Strength, 

High-Ductility Concrete (HSHDC). They achieved an ultimate tensile strength of 14 

MPa at 3.5% deformation and compressive strength of 160 MPa. 

However, the tensile specimens used in all these studies were small, narrow and thin 

(12 mm thick and 30 mm wide in the central part), which, due to the better fiber 

orientation and the de-airing performance of the mix, is likely to overestimate the 

tensile performance compared to application with thicker (30 to 50 mm) and wider 

layers, which are common in rehabilitation of structural members or new constructions. 

In this paper, first of all, an improved cementitious material reinforced with PE and 

steel fibers has been developed. In order to make the new material more 

environmentally friendly when compared to the normal strain hardening UHPFRC, half 

of the cement has been replaced by limestone filler and 75% of steel fibers have been 

replaced by PE fibers. In the second step, the effect of fiber orientation and the 

specimen thickness of such mixes on mechanical properties have been investigated 

using direct tensile and 4-point bending tests. 

 

2. MATERIAL DESIGN 

 

Packing density is the key concept for obtaining Ultra high-performance cementitious 

composites. Maximizing the packing density with the help of different grain classes 

reduces the voids in the matrix, which had to be filled with water at fresh state. 

Therefore, more excess water to lubricate the solid particles and enhance the 

workability is made available. Hence, increasing the packing density can improve the 

overall workability-strength performance of the cementitious material by opening up 

the possibility of using low W/B ratios with a wide range of fibrous mixes. 

The Compressible Packing Model (CPM) (De Larrard, 1999) basically considers the 

energy required to compact a mix of several monosized particle classes. It also 

considers the loosening effect on large particles by interstitial small ones, and the wall 

effect within assemblies of small particles near a large one like a fiber or a container 

wall. Sedran (1999) generalized the CPM to consider the interaction of grain classes 

with arbitrary Particle Size Distributions (PSD).  

In this study, the generalized CPM model was implemented in the MATLAB software. 

Five different powders including cement, two types of limestone filler, silica fume and 



sand were used in the mixes. More than 20 mix designs were modeled. Finally, 40 x 40 

x 160 mm prism specimens, of the five mixes with highest packing densities were cast 

in the laboratory and the final mix was chosen based on the 3-point bending 

performances. The mixture proportions of a normal strain hardening UHPFRC and the 

final mix are given in table 1 and table 2 respectively. Moreover, figure 1 shows the 

particle size distribution of the solid materials used in the formulation of the matrix 

together with that of the final mix. The packing density of the final mix is 0.78. 
 

Table 1. A normal SH-UHPFRC mixture proportion (Denarié et al., 2011) 

Component Cement Silica fume Fine Sand Water HRWRA Steel fiber 

[kg/m3] 1'200 150 600 200 45 353 
 

Table 2. The mixture proportions of the final mix (PE18) 

Component Cement Silica fume Betocarb-SL Betoflow-D Fine Sand Water HRWRA 

[kg/m3] 547.5 191.5 183 419 589.6 178 28.7 
 

 
Figure 1. Particle size distribution of the components and the final mix 

 

The fibrous mix includes 1% volume steel fiber and 2% volume PE fiber. The 

physical/mechanical properties and geometry of these fibers are given in table 3.  
 

Table 3. Geometry and mechanical/physical properties of the fibers 

Type 
Volume 

fraction 
Diameter Length 

Elastic 

Modulus 

Tensile 

strength 

Specific 

gravity 

 [%] [µm] [mm] [GPa] [MPa]  

Steel 1 200 10 200 2000 7.85 

UHMPE 2 16 10 130 3000 0.97 

 

Table 4 shows the 3-point bending performance and compressive strength of the final 

mix. After casting, the specimens were sealed with a plastic cover for 4 days at room 

temperature of 20 ± 5°C. This was followed by an elevated thermal curing for 3 days 

at 85°C under 95 % RH. The specimens were then kept unsealed at room temperature 

of 20 ± 5°C before testing at 14 days. 
 

Table 4. The average MOR and compressive strength of 40 x 40 x 160 specimens 

MOR [MPa] Compressive strength [MPa] 

30.6 170.4 
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3. EXPERIMENTAL PROGRAM 

 

3.1 Specimen preparation 

The experimental program was designed in a way to investigate the effect of fiber 

orientation as well as specimen thickness on the mechanical properties. 

- Inspired from Wuest et al. (2009) and Ferrara et al. (2011), in order to study the fiber 

orientation effect, two square plates of 580 x 580 x 30 mm were cast with the material 

poured from one end to the other, without joints. Figure 2a illustrates the casting 

procedure. Afterward, three dumbbell specimens (560 mm long) for the direct tensile 

test and two 500 x 100 mm specimens for the 4-point bending test were cut from each 

plate with a waterjet machine; one set parallel to the direction of casting and the other 

set perpendicular to the direction of the casting. Figure 2b and 2c show the position of 

the specimens that were cut from the 580 x 580 mm plates. In order to avoid surfacing, 

the top surfaces of the two plates were covered immediately after pouring with a wood 

panel to which Controlled Permeability Formliner (CPF) - Zemdrain® sheets were 

attached,  to guarantee a flat and uniform upper surface after setting. 

   
(a) (b) (c) 

Figure 2. the specimens to study the fiber orientation effect; (a) the casting 

direction, (b) the specimens parallel to the casting direction and (c) the specimens 

perpendicular to the casting direction 

- With a view to investigating the effect of specimen thickness on the mechanical 

properties, three specimens of 500 x 200 x 50 mm and three specimens of 500 x 200 x 

10 mm were cast. From each of them, one dumbbell specimen (490 mm long) and one 

490 x 95 mm specimen were cut with waterjet for the direct tensile and 4-point bending 

tests respectively.  

To limit as far as possible the stress concentrations, Neuber’s (1969) solution was 

adapted to the geometry of the dumbbell specimens. There are three types of tensile 

specimens with geometry and gauge length as shown in figure 3. Type I is 560 mm 

long, 30 mm thick and 50 mm wide. It has one LVDT at each side (4 in total) in order 

to check the eccentricities in both directions to avoid bending effects while loading. 

The gauge lengths of the LVDT are 300 mm and 200 mm for this specimen. Type II is 

490 mm long, 50 mm thick and 50 mm wide, with the similar installation of LVDTs as 

the specimen type I, and with the gauge lengths of 345 mm and 220 mm in opposite 

directions. Type III is 490 mm long, 10 mm thick and 50 mm wide and has two LVDTs 

in one direction with a gauge length of 220 mm. 



Thermal curing was applied to all specimens. The specimens were sealed after casting 

with plastic for 4 days at room temperature of 20 ± 5°C. This was followed by elevated 

thermal curing for 3 days at 85°C under 95 % RH. The specimens were then kept 

unsealed at room temperature of 20 ± 5°C before testing at 14 days. 

 
 

(a) (b) 

Figure 3. The dumbbell specimen geometry for the tensile testing (a) specimen type 

I and (b) specimens type II and III (all dimensions in mm) 

 

3.2 Experimental setup 

Direct tensile tests were performed under quasi-static uniaxial loading under 

displacement control with a stroke rate of 0.4 mm/min. The dumbbell specimens were 

gripped on their faces in a fixed-fixed type of end constraints using hydraulic clamping 

system. 

The 4-point bending tests on the plates were done following Denarié (2015). The tests 

were performed under displacement control at a stroke rate of 0.5 mm/min. The support 

span of flexural loading was 420 mm and the loading span was 140 mm. The force was 

measured by the load cell of the testing machine, and the mid-span deflection was 

recorded using two LVDTs placed at mid-span, attached to a measuring frame fixed to 

the middle axis of the specimen, on the support points, during the test. 

 

4. RESULTS AND DISCUSSION 

 

4.1 Fiber orientation effect 

The results of the direct tensile tests on dumbbell specimens that were cut parallel and 

perpendicular to the direction of casting are presented in figure 4. The results are 

presented in the stress-displacement format in order to be able to show the post-

cracking behavior. The gauge length for this set of data is 300 mm. 

As the results show, the fiber orientation has a strong effect on the mechanical 

properties of the material. The ultimate strength of the specimens that were cut 

perpendicular to the casting direction is reduced by around 30% and the deformation 

capacity is decreased by around 50% when compared to that of the specimens cut 

parallel to the casting direction. Increasing the fibers inclination angle with respect to 

the direction of principal stresses, reduces their overall performance in the composite 

and thus decreases its ultimate strength as well as its deformability; for stiff fibers and 

likewise also for flexible ones. 

The 4-point bending behavior of the two types of specimens is presented in figure 5. 

According to this set of data, the results of the 4-point bending tests follow the same 

trend as that of the direct tensile tests on ultimate strength and deformability, and 

soundly confirm the important effect of fiber orientation on the mechanical properties 

of these materials. 



 

  
Figure 4. direct tensile test results of 

dumbbell specimens cut parallel and 

perpendicular to the casting direction 

(gauge length is 300 mm) 

Figure 5. 4-point bending behavior of 

500x100x30 plates that were cut 

perpendicular and parallel to the 

casting direction 

 

4.2 Specimen thickness effect 

The 4-point bending responses of the 10 mm and 50 mm thick specimens are shown in 

figure 6. In this figure, the force is scaled so that it is comparable with the results of the 

30 mm thick specimens, by multiplying the actual force by (30/specimen thickness)2, 

as the bending strength is expected to vary with the square of the specimen height. 

The deformability of the specimens is increased by decreasing the thickness whereas 

the ultimate load is not affected. Additionally, the results of the direct tensile tests, 

which are presented in figure 7, fairly verify this trend. The position of the extent of 

the hardening zone is shown with vertical lines for each specimen thickness in this 

figure. 

  

 

Figure 6. 4-point bending behavior of 

10 mm and 50 mm thick plates 

Figure 7. direct tensile test results of 

10mm and 50mm thick dumbbell 

specimens (gauge length is 220 mm) 

 

Regarding the ultimate strength, decreasing the specimen thickness reduces the 

distance that an air bubble has to travel in order to leave the fresh material. Thus, the 

thinner specimens should generally show a higher mechanical performance due to 

their less void content. However, in this case, it seems that the dense network of the 

PE fibers entraps the air bubbles and slows down the de-airing of the material at the 
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fresh state. In addition, no obvious difference can be seen between the bottom surface 

of the specimens with 10 mm and 50 mm thick. Accordingly, assuming that 

decreasing the thickness does not improve the de-airing behavior of such a material, it 

can be concluded that the specimen thickness does not affect the ultimate strength of 

such mixes to a large extent. 

 

5. CONCLUSIONS 

 

 A SH-UHPFRC mix with reduced Embodied Energy has been developed in which, 

50% of cement is replaced by limestone filler and 75 % of steel fiber is replaced by 

PE fibers.  

 After Table 5, 60% reduction in the EE in the new mix compared to a normal strain 

hardening UHPFRC as well as reduction of 300 kg/m3 in the dead weight of the 

material were achieved.  

Table 5. Comparison of EE between a normal SH-UHPFRC and the new mix 

   SH-UHPFRC New mix 

Total EE  [MJ/m3] 28'830 11'390 

Specific weight [kg/m3] 2'550 2'250 

 

 Fiber orientation and specimen thickness have a considerable effect on the 

mechanical properties. The specimen thickness mostly affects the deformability of 

the specimen. Likewise, the fiber orientation affects the ultimate strength as well as 

deformation capacity.  

 Currently, most of the research results in the field of PE fiber reinforced 

cementitious material are based on the JSCE (2008) tensile specimen preparation 

methodology. This methodology with a thin and narrow (12 mm thick and 30 mm 

wide) specimen overestimates the tensile performance of the material, with respect 

to its potential performance in structural applications wherein less favorable fiber 

orientation is encountered. 
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