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ABSTRACT: Pore volume is one of the main properties for the
characterization of microporous crystals. It is experimentally
measurable, and it can also be obtained from the refined unit cell
by a number of computational techniques. In this work, we assess the
accuracy and the discrepancies between the different computational
methods which are commonly used for this purpose, i.e, geometric,
helium, and probe center pore volumes, by studying a database of
more than 5000 frameworks. We developed a new technique to fully
characterize the internal void of a microporous material and to
compute the probe-accessible and -occupiable pore volume. We
show that, unlike the other definitions of pore volume, the occupiable
pore volume can be directly related to the experimentally measured
pore volumes from nitrogen isotherms.

■ INTRODUCTION

The internal void volume is an important characteristic of
microporous materials, as it will determine their permeability to
guest molecules, the adsorption capacity, and many other
properties that can be engineered for the industrial applications
that involve the use of these material, such as gas separation,1

gas storage,2 catalysis,3 or drug delivery.4 The field of
microporous materials used to be dominated by zeolites, but
recently, studies on new classes of microporous materials have
been published. Examples include metal organic frameworks
(MOFs),5 covalent organic frameworks (COFs),6 zeolitic
imidazolate frameworks (ZIFs),7 porous polymer networks
(PPNs),8 etc. For each of these classes, a large number of
different materials can be obtained by combining different
ligands and nodes, leading to millions of frameworks, each with
different topologies, pore shapes, and chemistries. For example,
at present, over 10000 MOFs and related porous materials have
been synthesized,9 and large databases of computationally
predicted structures are rapidly expanding.10−12 All the main
applications for porous materials involve the adsorption of
guest molecules in the pores. For this reason, it is of critical
importance to correctly characterize the pore volumes of these
materials as this is the first, and often the only, step to
characterize a material.
The internal void volume of a porous material can be

determined computationally from the crystal structure.13,14

This theoretical value of the pore volume can be compared with
the experimental pore volume derived, for example, from the
nitrogen uptake at low temperature.15 The comparison of the
two values can give some insight into the characteristics of the
synthesized crystal. For example, if the experimentally
measured void volume is smaller than the computed one, this
can be symptomatic of an incomplete desolvation (solvent
molecules still trapped inside the pore), limited permeability at
the surface, or defects in the crystal. In addition, deviations of
the theoretical pore volume from the experimental one can also
indicate that the synthesized material is a poor representation
of the ideal crystal structure.
In this paper, we review a number of different methods

employed to compute the void fraction.13,14,16−18 We show
that, because of the different assumptions, each method
computes a (slightly) different portion of the volume. For
some particular cases, these differences can be large and, more
importantly, the theoretical pore volume cannot be compared
with the experimental pore volume. One of the reasons for
these differences is that the definition of pore volume depends
on the type of probe that is used to compute it. To address this
issue, we introduce the “probe-accessible and -occupiable
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volume”. It represents the internal free space of the material
where a spherical probe can have access and that it can occupy.
We will highlight why this measurement can be meaningfully
compared with experimental data.
To illustrate the importance of this concept of probe-

occupiable volume, we introduce a simple but representative
model of a microporous material to test our algorithm. Then
we investigate the discrepancies in the values of the volume as
computed by different methods for a set of more than 5000
three-dimensional MOFs from the Cambridge Structure
Database (as refined in the CoRE MOF database19). Finally,
we demonstrate some of the practical consequences by
considering a sample of 10 structures, for which we can
directly compare the computed pore volume with available
experimental data.

■ METHODS
Experimental Measurement of the Pore Volume. The internal

free volume of a microporous material can be experimentally measured
by determining the maximum loading of a gas in the pores of the
material. Nitrogen is commonly used for this purpose because of its
small size and because it weakly interacts with the framework. In
addition, its normal boiling point is sufficiently low (77 K) that
condensation at the exterior of the pores is avoided before the full
saturation inside the pores. The pore volume is obtained under the
assumption of validity of the Gurvich rule:20,21 the density of the
saturated nitrogen in the pores is assumed equal to its liquid density
regardless of the shape of the internal void network and, because of the
weak interactions, regardless of the chemistry of the framework. The
pore volume (vpore) and the void fraction (θ) are computed from

ρ
=v

n
pore

N
ads,satd

N
liq

2

2 (1)

θ ρ= vpore cryst (2)

where vpore is commonly expressed in cubic centimeters per gram of
crystal, nN2

ads,satd is the specific amount of nitrogen adsorbed (g of

nitrogen/g of crystal), and ρN2

liq and ρcryst are the densities of the liquid
nitrogen (0.808 g/cmliq

3) and of the material, respectively. The
commonly used protocol to determine the pore volume involves
measuring the nitrogen uptake just before it starts to condense outside
the material, i.e., 0.9P/P0,

21 with P0 being the saturation pressure of the
probing gas (1 atm for pure N2). To compare this pore volume with a
theoretical value obtained from the crystal structure, it is important to
realize that this experimentally measured value does not consider all
the small interstices between the atoms where the nitrogen molecule
cannot fit, nor the nonaccessible pores, i.e., the pores connected only
by channels too narrow for a nitrogen molecule to enter.
Computational Methods To Assess the Pore Volume from

the Unit Cell. To compute the pore volume of a microporous crystal
from the knowledge of the atomic structure of the unit cell, there are a
number of different methods that are currently employed.13,14,16−18

Each one computes slightly different portions of the full internal
volume, as shown in Figure 1.
Here we propose a list of precise definitions to distinguish the

volume computed with each method. For all these definitions, the pore
volume can be further characterized either as accessible (Ac, part of an
accessible network) or as nonaccessible (NAc, isolated pocket).
(1) Geometric pore volume (Gm). The Gm is defined as all the

volume of the unit cell which is not overlapping with the atoms of the
crystal. In Figure 1, this is the nonblack area.
(2) Probe center pore volume (PC). The PC is defined as the

volume that the center of a spherical probe can occupy. In Figure 1,
this is the sum of the dark green area (for pores that are accessible
from the outside) and dark orange area (for pores that are
nonaccessible from the outside).

(3) Helium pore volume (He). In the definition of the PC volume,
we assume hard-sphere interactions between the probe atoms and the
atoms of the pore. In the definition of the helium pore volume, these
hard-core interactions are replaced by a more realistic intermolecular
potential, which makes this volume dependent on the temperature
assumed for the calculation. In Figure 1, the He volume is represented
by the same colors as the PC volume (dark green and dark orange).

(4) Probe-occupiable pore volume (PO). This is a definition which
we introduce here to ensure that the theoretical pore volume matches
the pore volume obtained experimentally from the nitrogen isotherms.
The experimental definition assumes that we can take the bulk density
of the gas and compute the volume from the number of adsorbed gas
molecules per unit volume. This volume, however, has no notion of
atoms and should be defined as the entire volume enclosing all the
adsorbed gas atoms. Therefore, in Figure 1, this volume has to include
the light green (for accessible pores) and light orange (for
nonaccessible pores) areas in addition to the dark green and dark
orange areas. If we have a system with large pores, the difference
between the Gm and PO volumes is small, but for micropores,
however, this difference can be significant.

These pore volumes can be multiplied by the density of the material
to be converted to the corresponding void fractions. The frameworks
are assumed rigid, i.e., considering the atoms frozen in their
crystallographic positions.

For the geometric pore volume (Gm), we assume that the atoms
can be approximated as spheres with a conventional radius, depending
on the atom type and which represents their electron cloud, i.e., the
van der Waal (vdW) radius. The analytical calculation of the Gm pore
volume needs to consider all the many-body overlaps between the
atoms. Consequently, the most efficient solution to obtain the
geometric pore volume is to perform a Monte Carlo test. A number of
points, randomly displaced in the unit cell or taken on a 3D grid, are
evaluated: if a point is overlapping with an atom, i.e., the distance of
the point with that atom is less than its vdW radius, then a value of 0 is

Figure 1. Qualitative two-dimensional model of the unit cell of a
microporous material, permeable to a spherical probe (red). Each
color corresponds to a different category of volume. In the table, the
color coding is explained and a summary of which portions of the
volume are considered for each method is given: geometric pore
volume (Gm), accessible and nonaccessible probe center pore volume
(Ac-PC, NAc-PC), accessible and nonaccessible probe-occupiable pore
volume (Ac-PO, NAc-PO), and solvent-free Connolly volume.
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assigned to that point. A value of 1 is assigned otherwise. Therefore,
the Gm void fraction θGm of the crystal from N sample points is
obtained as

θ =
∑

N

valueN

Gm
1

(3)

Consequently, the geometric pore volume can be obtained by dividing
the void fraction by the density of the framework (eq 2). In this
measurement, the volume inside the large pores is summed together
with all the small interstices in the framework, which are too narrow to
be effectively occupied by a guest molecule. Hence, the value
computed in this way will always be an upper bound for the volume
that a probe can effectively access.
The probe center pore volume (PC), often named simply “pore

volume”,14,17 considers the shape of the probe used for the
measurement, conventionally spheres with a radius of 1.32 Å for
helium and 1.86 Å for nitrogen.19,22 In this definition, it is important to
recall that even the nitrogen molecule is treated as a spherical probe, as
shown in Figure 2.

For this calculation, the same Monte Carlo test is performed, but
this time the radius of the framework’s atoms is taken as the sum of the
atomic radius plus the probe radius. The obtained void fraction then
represents the portion of the volume which is occupiable by the
centers of the probe (Figure 3).
It is also important to note that the PC pore volume for a probe of

zero radius corresponds to the Gm pore volume.

A third solution is to compute the helium pore volume (He).
Similarly to the Gm pore volume, a collection of sampling points are
considered, but instead of assigning a value of 0 or 1 depending on the
overlap with atoms, this time the Boltzmann factor (BF), related to the
insertion of a helium atom, is computed:

=
−⎛

⎝⎜
⎞
⎠⎟

E
K T

BF exp int

b (4)

Eint is the energy of interaction of the helium atom with the atoms of
the framework, as computed using, for example, the Lennard-Jones
potential (see the Supporting Information). Similarly to the previous
cases, the void fraction θHe (and therefore the pore volume) is
computed as the average over all the sample points:

θ =
∑

N

BFN

He
1

(5)

It is worth noting that this measurement is influenced by the force field
and the temperature used. It is therefore important to use a consistent
choice to compare different sets of results.17 We need to stress that the
He void fraction, in the way it is measured, does not correspond to the
amount of helium that can saturate in the pores. The physical meaning
of the He void fraction is linked to the probability of a single helium
atom to be adsorbed in the framework at a certain temperature, which
is chosen to be 298 K by convention.17

At this point, it is important to recall that none of the previously
summarized methods to compute the pore volume exactly match with
the pore volume we obtain from the nitrogen isotherms. To arrive at a
definition of pore volume that can be directly compared to
experiments, we introduce the probe-occupiable pore volume (PO),
and we propose an algorithm to compute it. We use the term
“occupiable” to define the portion of the space that can be spanned by
the probe, which should not be confused with the term “accessible”
(Ac), which defines the pores where the probe can have access.

Accessible versus Nonaccessible Channels. In these Monte
Carlo simulations, we are probing a number of points within the unit
cell to measure the void fraction (and therefore the pore volume) of
the bulk material. However, it is also important to know if the detected
free space is accessible from the outside, i.e., if a cavity forms a
multidimensional network where a guest molecule can enter at the
solid/gas interface and diffuse. The same analysis allows detection of
whether a solvent molecule is able to exit the pores and a synthesized
crystal can be effectively desolvated.

This concept of accessibility is obviously related to the size of the
molecule, represented as a spherical probe, which we are interested to
evaluate. Once we compute the PC volume, we can further categorize
this internal space as accessible (Ac-PC) or nonaccessible (NAc-PC)
by considering whether it composes a multidimensional network along
the periodic boundaries. This is illustrated in the two-dimensional
example of Figure 3: the central channel (A) is accessible to the probe,
while the other one (B) is not, because the PC pore volume does not
form a continuous path. The accessibility test can be performed by
doing a percolation analysis along the edges obtained from the
Voronoi decomposition24 or analyzing a grid of points.25,26

The same concept can be applied to compute the Ac-PO (as
presented in the next section) or the Ac-He pore volume. In the
second case, one needs to first assume an energy cutoff for the
helium−framework interactions, which defines the regions that are
diffusively inaccessible on an experimental time scale (e.g., 15 kbT).
Then one must consider the regions of the volumes where the
interaction energy is lower than the cutoff to perform a percolation
analysis.27 For what concerns the Gm volume, the calculation
considers a dimensionless probe, and therefore, we do not have any
practical interest in analyzing its accessibility.

Algorithm To Compute the Occupiable Pore Volume. In this
section, we propose an algorithm to obtain the experimental pore
volume from our definition of the accessible and occupiable volume
(Ac-PO) and in general to fully characterize the internal volume of a
microporous material.

Figure 2. N2 spherical model of radius 1.86 Å (3.72 Å diameter)
compared to the van der Waals representation of the same molecule
(using the Lennard-Jones σ value and the N−N distance of the
TraPPE model).23

Figure 3. Two-dimensional example of the probe center pore volume
calculation. The periodic unit cell is duplicated in the x directon. The
radius of the framework’s atoms (black) is expanded by the radius of
the red probe (light green and light orange). The remaining area is
what we define as the probe center pore volume (dark green and dark
orange). The framework is composed by two channels: channel A
(green), which is accessible, and channel B, which is nonaccessible
(orange). Channel B is too narrow for the probe to pass from one side
to the other and can be referred to as an isolated pocket.
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(1) Let us consider a set of N sample points, randomly selected
within the unit cell.
(2) For each point, we compute its distance to the framework’s

atoms: if this distance is smaller than the atomic radius, the sample
point is categorized as ”overlap”; if it is larger than the sum of the
atomic and probe radii, it is categorized as PC. For each point assigned
to the PC volume, we compute the distance δ between the point and
the surface of the PC volume, defined as

δ = − −d r rprobe atom (6)

with d being the distance to the closest atom, rprobe the radius of the
spherical probe, and ratom the vdW radius of the closest atoms of the
framework (Figure 4). In addition, we use a percolation algorithm14 to
further classify the sample point as Ac-PC or NAc-PC.

(3) For each sample point left, we compute the distance for all the
Ac-PC marked points, and if one of these distances is closer to the Ac-
PC surface than the probe radius, or

δ< + rdistance probe (7)

the uncategorized point will be considered as part of the now defined
“accessible extended volume” (light green in Figure 1). The inclusion
of δ in eq 7 improves the speed and the accuracy of the algorithm (at
the same number of sample points), because in this way also the
internal points of the Ac-PC volume give some information on the
position of its surface.
(4) The same test is performed for the NAc-PC points: in the case

of success, uncategorized points will be marked as belonging to the
“nonaccessible extended volume” (light orange in Figure 1).
(5) If none of the previous tests are true, the sample point belongs

to what we define as the “narrow volume” (pink in Figure 1).
It follows that the PO volume is given by the summation of the

probe center and the extended volume. Figure 1 presents all the
different categories of volume with color coding for an illustrative two-
dimensional model.
With these definitions, we marked as “narrow” the entire volume

that cannot be touched by the probe because it is hindered by the
framework. This can be the case for a narrow channel (pink, Figure 1)
or the small interstices between the atoms of the crystal (pink, Figure
4). Moreover, the overlap volume added to the narrow volume gives
what is commonly defined in biochemistry as the ”solvent-free
volume” or ”Connolly” volume18 (Figure 1).
Computational versus Experimental Pore Volumes. Now that

we have fully characterized the pore volume inside a microporous
framework, we can couple the computational results with experimental
measurements. Under the assumption of the Gurvich rule, the
experimental 77 K nitrogen’s pore volume can be compared with the
Ac-PO pore volume computed from the unit cell, using a spherical N2
probe. The nitrogen’s NAc-PO pore volume could also be measured

experimentally with smaller probing molecules, e.g., helium,28 or with
positron annihilation lifetime spectroscopy (PALS).29 The measure-
ments with these techniques are not as frequently used. An alternative
to nitrogen is argon as the probing molecule at 87 K. Despite the
higher cost of Ar, it can be preferred due to the smaller size and the
enhanced diffusion rate at 10 K higher temperature.30 By selecting for
the calculations a probe radius that corresponds to the gas used in the
experiments, we are able to directly compare our theoretical
calculations with the experimental data.

We stress once more that for these methods the thermal vibrations
of the atomic positions are not taken into account, and for the Ac-PO
calculation, we use hard-sphere potentials for which the effective
volume does not depend on the temperature. These assumptions hold
for the experimental conditions (i.e., 77 K for nitrogen adsorption).
Moreover, we do assume that the crystal structure does not change
upon adsorption of nitrogen (e.g., pore swelling or ligand rotation).
For cases where the diameter of the channel is very similar to the
diameter of the probe, further investigations are needed.31 A small
distortion of the framework or a different choice of the parameters can
drastically change the amount of Ac and NAc volume detected, an
effect which has similarly been shown in the context of noble gas
uptake.32

Software and Parameters. In this section, we illustrate how the
different pore volumes are determined in the different software
packages that compute pore volumes.

The Poreblazer package13 computes the Gm and He pore volumes
using sample points lying on a grid with a 0.2 Å bin size.

The Zeo++ package14 gives the Gm and PC volumes, the first one
being obtained by setting the radius of the spherical probe to 0. In this
software, the number of sample points specified in the input is
randomly displaced in the unit cell.

The PLATON package16 computes the PO volume using a grid of
points. Points belonging to the PC pore volume are first detected, and
then their neighbor points are considered. Contrary to Zeo++, this
software does not distinguish between Ac and NAc volumes. Also, one
should pay attention to the terminology: in this software, the authors
define as “accessible” volume what here we define as “occupiable”
volume.

The Raspa package33 (which is mainly used for Monte Carlo and
molecular dynamics simulations) provides the He pore volume
considering a specified number of sample points in random positions
of the unit cell.

The algorithm we proposed in this work to compute the Ac-PO
volume and fully characterize the internal pore volume has been
implemented as an extension of Zeo++.14

In our calculations, the He volume is computed at 298 K (25 °C),
which is the typical temperature condition of most previous
calculations.17 We used the Lennard-Jones potential to describe the
dispersion interactions, applying the Lorentz−Berthelod mixing rules
and considering a cutoff distance of 12.8 Å; beyond that, the potential
is set to 0. Parameters for the framework and for helium were taken
from the universal force field (UFF)34 and from Hirschfelder,35

respectively. Concerning the ”hard sphere” calculations (Gm, PC, and
PO) and for all the software packages (Poreblazer, Zeo++, and
PLATON), the Lennard-Jones σ values from UFF were used as the
diameter of the framework atoms, to be consistent with the He
calculations. A kinetic radius of 1.86 Å was considered for nitrogen.22

■ RESULTS AND DISCUSSION

3D Model for the Full Characterization of the Pore
Volume. To illustrate the difference between the various
approaches, we applied our algorithm on a three-dimensional
model which is able to represent qualitatively the characteristics
of a microporous material, inspired by the two-dimensional
example reported in Figure 1. The model has one accessible
pore and one nonaccessible pore, with a narrow channel (i.e.,
with a diameter smaller than the probe’s diameter) connecting
the two. The model is built with a large number of spheres lying

Figure 4. Calculation of δ from eq 6 shown in a two-dimensional
model. The color coding is consistent with that reported in Figure 1:
the atoms (which correspond to the overlap volume) in black, the
probe in red, the accessible probe center volume in dark green, the
accessible extended volume in light green, and the narrow volume in
pink.
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on a grid to represent the framework, leaving free space that
corresponds to pores and channels (Figure 5, top).

In this simplified model of a porous framework, we can really
distinguish between all the different categories of internal
volume listed in Figure 1: the result from the analysis with
500000 sample points is shown in Figure 5 (bottom) using the
same color coding for the points.
To assess the convergence of the method, we run our

algorithm for different numbers of sample points. From the
results shown in Figure 6, it is immediately evident how the
conventionally computed void fraction based on the Ac-PC

method is considerably smaller than the void faction computed
with the Ac-PO method. The Ac-PO calculation is converged
to 0.1% of the void fraction with 10 points per cubic angstrom.
Within our algorithm, to measure the PO void fraction, we
need first to accurately locate the surface of the PC volume and
expand this volume by the length of the probe radius. To
minimize the error associated with a poorly sampled PC
surface, one should increase the number of sample points, albeit
with a significant computational cost. Nevertheless, in real
frameworks, we can consider it reasonable to use a convergence
within 1% of the void fraction to compare the calculated values
with experimental data.

Comparison of Different Pore Volume Definitions
with Experimental Data for HKUST-1. The triclinic unit cell
structure of HKUST-1 (CSD code FIQCEN) was considered
to compute the void fraction with the different methods. Water
solvent molecules were removed from the original deposited
structure.19 No NAc volume was detected. The resulting void
fraction and computational time are reported as a function of
the number of samples per cubic angstrom that were used for
the calculation (Table 1).

We use as the experimental value for the void fraction
0.678,21 which is the highest value we could find in the
literature for the desolvated crystal. Lower values were reported
in the literature, from 0.590 to 0.660.36−40 The computed Ac-
PO void fraction converges to a value which is close to the
experimental result, while the Ac-PC void fraction is
significantly smaller. The PO void fraction computed with the
CALC_SOLV routine in PLATON is 0.654: this result was
obtained in 165 s with a minimum grid spacing (0.14 Å). These
settings give 365 samples per cubic angstrom, and it is the most
accurate sampling that the program can manage. The Gm void
fraction of 0.708 is similar to the Ac-PO value, meaning that the
percentage of narrow volume is negligible. On the other hand,
the He calculation gives a value of 0.764, which overestimates
the experimental void fraction. It is surprising to note that using
a different parametrization for the Lennard-Jones interactions,
i.e., UFF’s34 instead of Hirschfelder’s35 parameters for helium,
we obtain an He void fraction of 0.947, which disagrees with
the experimental and Ac-PO values. This evidence motivated a
deeper analysis of the physical and mathematical meaning of
the He calculation.

Helium Void Fraction. The He calculation is very
commonly used to compute the void fraction.41,42 As we
demonstrated in the previous section, its value depends

Figure 5. Section of the 3D model (top) and analysis of the pore
volume using 500000 points (bottom). For the color coding, refer to
Figure 1; overlap points were omitted. The probe has a diameter of 2
Å. The diameters of the accessible and narrow channels are 3 and 1.5
Å, respectively.

Figure 6. Assessment of the Ac-PC, NAc-PC, Ac-PO, and NAc-PO
void fractions in the three-dimentional model presented in Figure 5 for
an increasing number of sample points per cubic angstrom. Numerical
data are provided in Table S2 (Supporting Information).

Table 1. Assessment of the Ac-PC and Ac-PO Void Fractions
in the FIQCEN Structure (HKUST-1 with a Triclinic Unit
Cell) for an Increasing Number N of Sample Pointsa

Ac-PC Ac-PO N N/Å3 CPU time (s)

0.240 0.606 4571 1 2
0.250 0.649 22851 5 9
0.250 0.656 45702 10 28
0.249 0.658 68553 15 55
0.250 0.660 91404 20 90
0.248 0.663 228510 50 475
0.248 0.664 342765 75 998
0.249 0.665 457020 100 1702

aThe CPU time refers to a 3.60 GHz Intel processor: for this
framework the time needed for the calculation is proportional to
∼N1.5.
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strongly on the force field parameters used to model the
helium−framework interactions, and it can lie far off the
experimental value. Therefore, we analyze the underlying
mathematical reason for this variability. First, we study the
case of a helium atom interacting with a carbon atom, using the
Hirschfelder−UFF parameters to represent their interaction at
different distances. The potential and the Boltzmann factor
(BF) for different He−C distances are shown in Figure 7.

We can now compare the He calculation to the Gm
calculation (in this diatomic model, the Gm and Ac-PO
volumes are equivalent). For the He calculation, the BF is the
value assigned for every He−C distance, while, for the Gm
calculation, we assign a value of 0 for a He−C distance inferior
to the carbon’s radius (equivalent to half the Lennard-Jones’s σ
for carbon) and a value of 1 elsewhere (see the dashed blue line

in Figure 7). Therefore, the void fraction is the integration of
these values over the entire volume considered. He and Gm
coincide exactly in the case when the two integrals are equal,
i.e., when there is a match between the cyan and purple areas in
Figure 7. The BF depends on the set of parameters used and on
the temperature assumed in the calculation. Indeed, the
common choice of the temperature of 298 K is just a
convention, and its variation can drastically affect the He
calculation, as shown in Figure 7. Moreover, the He void
fraction is not strictly restricted to be smaller than 1, since also
the BF can take values larger than 1, especially for the
framework’s atom with a large Lennard-Jones ε parameter. In
UFF, for example, the ε values for aluminum, silicon, and
phosphorus are ca. 5, 4, and 2.5 times the carbon’s value, which
may give unrealistic contributions larger than 1 for part of the
pores.
To see for which types of pores the Gm and He void

fractions show the largest differences, we extended our analysis
to cylindrical and spherical pores and a reticular structure. We
modeled the framework with a smeared continuous distribution
of carbon atoms. The details are reported in the Supporting
Information. Figure 8 shows the comparison between the Gm
and He void fractions in these models. We observe for all three
pore shapes that the Gm void fraction is greater than the He
void fraction for small pores, while for bigger pores the He void
fraction becomes greater. This is due to the fact that for smaller
pores the BF for helium is always less than 1, because of the
unfavorable interaction between the particle and the frame-
work. For bigger pores, the BF can assume values larger that 1,
and in such cases, the He void fraction systematically
overestimates the experimental void fraction. A similar trend
for the He vs Gm curve is observed for the three types of pores
in Figure 8, with the main difference being the value of the
intersection with the bisector, which is therefore dependent on
the geometry of the pore.
The Ac-PO volume is expected to be similar to the Gm

volume, with the notable difference that it collapses to 0 for
small pores, i.e., for

< +L r r2( )probe atom (8)

CoRE MOF Screeening. Our model calculations show that
the differences between the He and the Gm void fractions are
not negligible and can be interesting to see how these model
calculations compare with the void fractions for the
experimental MOF structures. A set of 5109 MOF structures
were investigated from the CoRE MOF database: 4764
frameworks were modified by the authors (solvent removal
and other adjustments described in the paper),19 and the
remaining 345 frameworks were downloaded directly from the
Cambridge Structural Database,43 without any further manip-
ulation. The results of computing the He and Gm void fractions
for these structures are shown in Figure 9.
For most materials, the trend is mostly similar to the reticular

model presented in the previous section. One can notice that
for many materials the void fraction computed using the He
method is higher than the Gm void fraction, when the Gm
method should compute an upper bound value for the void
fraction. The most extreme example for this overestimation is
the structure LOFZUB:44 this framework contains aluminum
and phosphorus, which have a particularly high Lennard-Jones
ε. On the other side, a few frameworks appear to have the
opposite trend, showing a moderate Gm void fraction but a
lower He void (highlighted in yellow in Figure 9). Interestingly,

Figure 7. One-dimensional representation of the Lennard-Jones
potential and the associated Boltzmann factor as a function of the
C−He distance (system shown on the top). The Boltzmann factor
(blue solid line) function is compared to the factor associated with the
occupiability of the space, i.e., 1, everywhere outside the carbon’s van
der Waals radius (blue dashed line). In the bottom figure, the
sensitivity of the Boltzmann factor to the arbitrary value of the
temperature is investigated. Notice that doubling or halving the
temperature corresponds to respectively halving or doubling the value
of ε for the Lennard-Jones interaction.
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all of them have a similar chemistry; i.e., the ligands of these
structures are based on CN and CC bonds. These kinds of
ligands are particularly thin and simple, resulting in weaker
dispersion forces, which explains the low He void fraction.
Using our algorithm, we computed the Ac-PO void fraction

for all the frameworks considering a probe of 1.86 Å (N2) and
using 100000 sample points. The results are compared with the
Gm and He void fractions in Figure 10.
As expected, the value of the Ac-PO void fraction is always

smaller than that of the Gm void fraction. This behavior is more
pronounced for very dense materials, where the atoms of the
framework create many small interstices (narrow volume) that
are excluded for the calculation of the Ac-PO void fraction.
Also, for many structures, the void fraction collapses to 0,
meaning that, under the assumption of a rigid framework, these
crystals are completely impermeable to the probing sphere. The
material labeled SETPEO is a prominent example: the 0.71
geometric void fraction of this material can be decomposed to a
7% narrow volume, with 64% of the volume nonaccessible to
the nitrogen probe (the 29% remaining is the volume occupied
by the atoms). For this material, we can expect, if not a
complete impermeability, a slow diffusion of nitrogen inside the
activated crystal. Moreover, methanol is used as the solvent for
the synthesis, and given the size of methanol, we can expect the
impossibility of a complete desolvation, as effectively
reported.45

If we compare the He and nitrogen Ac-PO volume fractions,
it is interesting to note the systematic overestimation of the
pore volume which affects the He method. There are three
reasons for this: the helium probe is smaller, the nonaccessible
volume is not excluded, and, most important, it is possible for
the BF to be higher than 1. The structures with the opposite
trend, where the void fraction is underestimated by the He

method, are again the ones characterized by CN and CC
ligands (shown in Figure 9) .

Comparison with Experimental Data for 10 MOFs. We
studied in detail 10 different MOFs (including HKUST-1) to
obtain some insights into the practical consequences of the
differences in pore volume that are computed by the different
methods and their agreement with experimental data.21,46−54

All the frameworks investigated have accessible channels for
nitrogen, and no NAc pore volume was detected. Figure 11
shows that the PO method leads to the best agreement among
the different methods. These results emphasize that the value
for the PC pore volume (sometimes simply defined as “pore
volume”) leads to a significant underestimation of the
experimental pore volume. Another consideration is that for
these 10 structures the total Gm void fraction is close to the PO
void fraction, meaning that in these samples the narrow volume
is a negligible percentage of the Gm pore volume.
The He void fraction is close to the experimental value if we

use Hirschfelder’s Lennard-Jones parameters for helium,
noticing however a systematic but relatively small over-
estimation. Nevertheless, the same calculation employing the
He parameters from UFF shows a much larger overestimation
of the void fraction, even with nonphysical values greater than 1
for SNU-30 and UTSA-62.
In four materials, the experimental volume is more than 10%

lower than the computed value (PCN-46, SNU-30, UTSA-34,
and UTSA-64). We attribute this difference to some
incomplete desolvation or pore shrinking after the removal of
the solvent. At this point, it is important to note that the
computational pore volumes are based on structures from the
CoRE MOF database in which solvent molecules are removed
computationally, keeping the rest of the crystal structure
unchanged.19 In some cases, this procedure is unrealistic, and

Figure 8. Geometry of the pore for the different three-dimensional models: comparison of the Gm (green) and He (red) void fractions versus the
characteristic length L of the pore and direct comparisons of the two values of the void fraction for pores with different dimensions.
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the most evident example is SNU-30, where the computed void
fraction is 8 times the measured value. The authors of its
synthesis already reported a big discrepancy between the
experimental and computed surface areas, which was attributed
to the shrinking of the evacuated pores.

■ CONCLUSIONS
In the present work, we compared different methods that are
used to compute the pore volume of a crystalline microporous
material from its crystal structure. We show that these methods
use different definitions of the pore volume, and we show that
in particular for micropores these differences can be quite
significant. These volumes are referred to in this work using a
consistent nomenclature, i.e., the geometric (Gm), the helium
(He), the probe center (PC), and the probe-occupiable (PO)
methods. For the last two, it is meaningful to further identify
the volume as accessible (Ac) or nonaccessible (NAc).
The main conclusion of this work is that the accessible

probe-occupiable (Ac-PO) pore volume gives the closest
representation of the experimentally measured pore volumes
for all types of pores. The other methods show systematic
deviations. The geometric (Gm) calculation leads to a value for
the pore volume which is an upper limit for this quantity, while
the probe center (PC) calculation considerably underestimates
the experimental value. The helium (He) void fraction was

shown to be very dependent on the parameters and on the
reference temperature assumed for the calculation.
In addition, we have presented a novel algorithm to fully

characterize the internal volume of a crystal and assess its Ac-

Figure 9. Comparison of the Gm and He void fractions for the
materials from the CoRE MOF database.19 Some out-trend materials
are highlighted. LOFZUB has a remarkably higher value for the He
void fraction compared to the Gm void fraction (upper inset: Al,
orange; P, cyan; O, red). Other structures show a high porosity
combined with a systematic underestimation of the void fraction by
the He calculation. These frameworks, characterized by CN- and
CC-based ligands (C, gray; N, blue), are highlighted in yellow.
Some of them are shown: PIYZAZ (a), KECRAL10 (b), YEQRER (c),
YARYEV (d), YEQRER (e), EBEMEF (f).

Figure 10. (Top) Gm void fraction compared with the Ac-PO void
fraction for a 1.86 Å nitrogen probe. For the materials nonpermeable
to the probe, the Ac-PO void fraction collapses to 0. (Bottom)
Comparison of the He and Ac-PO void fractions.

Figure 11. Void fraction as computed with the different methods
shown and compared with experimental data. The structures were
computationally desolvated as reported in the CoRE MOF database.19

A list with the references for the experimental values is provided in the
Supporting Information.
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PO pore volume. This extension is now implemented in the
freely available Zeo++ code (www.zeoplusplus.org). The
algorithm takes into account both the solvent accessibility
and solvent occupability of the internal pore cavity, and
therefore, its result can be meaningfully compared with the
measurement of the pore volume, as obtained from the
nitrogen uptake. The comparison between the experimental
data and the Ac-PO void fraction allows detection of
discrepancies due to low crystallinity, poor desolvation, and
pore shrinking in the real material.
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