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Abstract—Exact synthesis is the problem of finding logic net-

works that represent given Boolean functions and respect given

constraints. With exact synthesis it is possible to find optimum

networks, e.g., in size or depth; consequently, it primarily finds

application in logic optimization. However, exact synthesis is

also very helpful in logic synthesis applications necessitating

complex constraints that are present in the hardware primitives

or the logic representations for which the synthesis has to be

performed. Conventional heuristic logic synthesis algorithms are

not considering such constraints. They still can be employed to

optimize networks, but they cannot guarantee that optimized

networks meets all requirements.

Being faced with a logic synthesis application that seeks for

low-depth majority-based networks with limited fan-out for small

functions, we demonstrate how state-of-the-art exact synthesis

algorithms can be adapted and used to find logic networks

that match these constraints. To emphasize the need for exact

synthesis, we also demonstrate how conventional logic synthesis

either fails to find constraint-satisfying logic networks or yields

networks of inferior quality.

I. INTRODUCTION

The aim of exact synthesis is to find logic networks that

represent given Boolean functions under a set of constraints.

Exact synthesis is of great relevance when considering logic

optimization, since it is able to find optimum networks.

Depending on the design and application, optimality is sought

with respect to different objectives, e.g., size or depth. Exact

synthesis is a special case of the Minimum Circuit Size

Problem [1], which asks whether a Boolean function g can be

realized by a network of size at most r; it is considered an

intractable problem [2]. Due to its complexity, exact synthesis

is tipically used to solve problems of limited size, i.e., functions

with about 8 variables.

Exact synthesis plays a key role in logic synthesis appli-

cations that need to take into account complex constraints.

Many beyond-CMOS technologies have been studied in the

last decade as replacement or enhancement for CMOS. Some

examples are Quantum-dot Cellular Automata (QCA, [3]) or

spin-based devices, such as Spin Wave Devices (SWD, [4]) and

Spin Torque Majority Gate (STMG, [5]). A broad variety of

technologies has resulted in many and diversified constraints

which need to be taken into account by novel logic synthesis

tools. As an example, several emerging nanotechnologies do

not have an efficient inversion implementation or have limited

fan-out capabilities. Some technologies have more than one

constraint that needs to be respected at the same time. These

constraints are often present due to restrictions in the hardware

primitives or the logic representations for which the synthesis

has to be performed. Classical heuristic logic synthesis tools

are not taking into account such constraints. They could be

used in the optimization process, but they may lead to solutions

which do not meet all the requested constraints. Moreover, no

solution may exist if constraints are too tight and heuristic

optimization algorithms cannot identify this.

In this paper, we illustrate the use of exact synthesis for

logic synthesis applications that deal with many and diversified

technological constraints. We consider small multi-outputs

functions (i) based on majority that necessitate (ii) limited-depth

and (iii) restricted fan-out for each node. These requirements

are motivated by an application in industrial project in which

these small functions are the result of a pre-partitioning process.

We demonstrate that state-of-the-art exact synthesis algorithms

can be adapted to solve complex constraint-problems. Exact

synthesis algorithms can be implemented in different ways [6],

[7], [8]. We use a Boolean Satisfiability (SAT) formulation

based on [9]. Majority Inverter Graphs (MIGs, [10], [11]) are

used as underlying logic representation to our exact synthesis. A

MIG is a data structure for Boolean function representation and

optimization based on 3-input majority 〈xyz〉 and inversion. To

highlight the importance of exact synthesis for these constraint

problems, we demonstrate that conventional synthesis tools are

not able to find optimum circuits that meet all the constraints

or produce circuits with lower quality. Furthermore, exact

synthesis is useful in understanding if a solution exists or if

the given constraints are too restrictive.

II. EXACT SYNTHESIS

In this section, we describe the SAT formulation proposed by

Knuth [9] to find the area-optimum normal Boolean network for

functions g1, . . . , gm which depend on n variables. This SAT

encoding has been inspired by the work of Kojevnikov et al. [7]

and Éen [12]. Recently, the formulation has been extended by

Soeken et al. [13] for combinational delay optimization.

Given a function g of n inputs x1, . . . , xn, a Boolean network

is defined as a sequence of 2-inputs gates (xn+1, . . . , xn+r),
where for each gate i:

xi = xj(i) ◦i xk(i) (1)
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Fig. 1. Example of Boolean network, x4 = x1 ∧ x2 and x5 = x3 ⊕ x4.

with n < i ≤ n + r. In other words, the two inputs of each

gate i are previous gates or inputs. The ◦i represents one of the

16 binary operations. A Boolean function g is called normal

if g(0, . . . , 0) = 0. If all the gates of a Boolean network are

normal, then the network represents a normal Boolean function.

For a normal Boolean network, each 2-input gate can represent

8 out of the 16 possible binary functions.

Knuth’s idea is to verify if it is possible to realize functions

g1, . . . , gm with a normal Boolean network of size r. In

the following, variables and clauses proposed by Knuth are

illustrated.

Variables: Let r be the number of gates, m be the number
of outputs, and n be the number of inputs. Then, the variables
used for the SAT formulation are:

xit : t
th

bit of xi’s truth table

ghi : [gh = xi]

sijk : [xi = xj ◦i xk] for 1 ≤ j < k < i

fipq : ◦i (p, q) for 0 ≤ p, q ≤ 1, p+ q > 0

(2)

with 1 ≤ h ≤ m,n < i ≤ n + r, and 0 < t < 2n. For each

gate xi, the variable xit represents the value of tth bit in the

truth table. Each output variable ghi is true if the function

gh is represented by the gate xi. The select variable sijk
encodes the children of node xi. The variable is true if gates

xj and xk are the children of gate xi. In this scenario, ◦i is

one of the 8 normal 2-input Boolean functions. The variable

fipq encodes the operation of gate xi. This is true if for the

input assignment (p, q), the operation xi evaluates to true. It

is important to highlight that this method works for normal

Boolean functions. If a function is not normal, we find the

optimum network for the inverted function. At the end, we

invert the output node in order to obtain the original function.

The normal property allows Knuth to ignore xi0 and fi00 for

each i.

In the following, we illustrate an example taken from [13]

to explain this SAT formulation and, in particular, the variables

assignment. We consider the network shown in Fig. 1, with

inputs x1, x2 and x3, therefore n = 3. In this example, r = 2,

x4 = x1 ∧x2 and x5 = x3⊕x4. The gate index i ranges from

4 to 5. Variable xit encodes the truth table for each function

of the multi-outputs network. Since n = 3 and since we know

that g(0, . . . , 0) = 0 (g is normal), the truth table bit t ranges

from 1 to 2n − 1 = 7.

t = 7 6 5 4 3 2 1

x4t = 1 0 0 0 1 0 0

x5t = 0 1 1 1 1 0 0

Since we are considering a multi-output network, each gate

could be an output. Two out of the four output variables are

assigned to 1, since g1 = x4 and g2 = x5.

g14 = 1, g15 = 0, g24 = 0, g25 = 1

There are three select variables for i = 4 and six for i = 5.

For each gate, only one select variable is equal to 1. For

instance, variable s412 = 1, since x1 and x2 are children of

node x4.

k = 2 3 4

s41k = 1 0

s42k = 0

s51k = 0 0 0

s52k = 0 0

s53k = 1

Finally, the AND and XOR operations are encoded in the fipq
variables. For this example:

p, q = 0,1 1,0 1,1

f4pq = 0 0 1

f5pq = 1 1 0

Clauses: In order to have a working algorithm, some clauses

need to be added:

• a main clause that describes how truth tables are computed
for each gate, depending on children (sijk) and operation
(fipq):

(

sijk ∧ (xit ⊕ ā) ∧ (xjt ⊕ b̄) ∧ (xkt ⊕ c̄)
)

→ (fibc ⊕ ā) =

(s̄ijk ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c) ∨ (fibc ⊕ ā)) (3)

• a clause to constrain each output value to be the same as

the one of the gate it points to;

• a clause to state that each output is realized by one gate

in the network;

• and a clause to have two inputs for each gate.

In addition to the mandatory clauses listed above, some

auxiliary clauses can be added to reduce the solving time of

the SAT solver. More details about both clauses formalization

and additional clauses can be found in [9], [13].

III. CONSTRAINTS ENCODING

In this section, we illustrate how state-of-the-art exact

synthesis algorithms can be adjusted to solve constraint-

problems. Knuth’s algorithm is used to find the optimum

normal Boolean network for functions g1, . . . , gm. In our case,

we make use of MIGs as data structure for exact synthesis.

Some changes to the original algorithm are then necessary in

order to extend our analysis to 3-input majority gates. Further,

some additional constraints need to be considered both for the

maximum depth and for the maximum fan-out. We demonstrate

that Knuth’s algorithm can be adapted to work with 3-input

majority gates, and to limit depth and fan-out for multi-ouputs

networks.



A. 3-input Majority Gates Constraint

Here, the extension to 3-input gates and the restriction to

only majority gates is illustrated.

The xit and ghi variables are used in the same way as

proposed by Knuth. They encode the truth table and the output

gates, respectively. Since we are working with 3-input gates,

both the sijk and fipq need to be reexamined. Each select

variable should consider three different children, here called

xj , xk, and xl. The select variables sijkl is true if the operands

of gate xi are xj , xk, and xl. In a similar way, the function

variables should take into account the 3-input operations. The

variable fipqu is true if the operation of gate xi is true under

the input assignment (p, q, u).
In order to restrict the 3-input operations to only normal

majority functions, a list of all 3-input majority truth table has

been considered. Being p, q, and u the 3 inputs, each gate

may realize 〈pqu〉, 〈p̄qu〉, 〈pq̄u〉 or 〈pqū〉. Since the majority

operator can behave as AND or OR using constant inputs,

also all normal truth tables with constant 1 or 0 have to be

considered. In this scenario, also ab, āb, ab̄, and a+ b have to

be taken into account as possible normal majority operations.

The total number of allowed operations is then equal to 8.

However, the variables fipqu allow for a representation of all

128 normal 3-input functions. For each gate i, the operation

variable oiw is true if the operation of gate i is w, where w is

one of the 8 possible normal majority operations.

Two clauses need to be added. First, a given fipqu implies a

different operation w. For instance, if for gate i it holds that:

p, q, u = 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

fipqu = 0 0 1 0 1 1 1

then the operation 〈pqu〉 is implemented. Being 〈pqu〉 the
operation with w = 1, then the following constraint is added:

(oi1 → (f̄001 ∧ f̄010 ∧ f011 ∧ f̄100 ∧ f101 ∧ f110 ∧ f111))

= (ōi1 ∨ (f̄001 ∧ f̄010 ∧ f011 ∧ f̄100 ∧ f101 ∧ f110 ∧ f111))
(4)

For each gate i, (4) is added for each operation w. Further,

clause
∨8

w=1 oiw ensures that each gate realizes at least one

of the 8 operations.

Both Knuth’s algorithm and the one presented in [13] work

with normal Boolean network with 2-inputs gates. Previous

work has considered 3-input gate [14]. A dedicated MIG

encoding could have been considered, as in [15]. Neverthless,

here the aim is to demonstrate that existing algorithms can be

adapted to solve complex constraints problem. In our case, we

easily adjust existing algorithms, without changing clauses and

with minor changes in the variables encoding.

B. Depth Constraint

We need to constrain the maximum depth of the network.

The SAT solver should check whether there exists a MIG with

r gates that can realize functions g1, . . . , gm with a depth less

or equal to ∆. All input arrival times are considered be 0. For

each gate i, a variable di takes into account the depth of gate xi

with n < i ≤ n+ r. Each variable di has a value in the range

x1
x3

x1 x2
x3

x4

x5
g1

g2

Fig. 2. Example of MIG. Bubbles represent complementation of the edge

0 ≤ di ≤ (i− n). The idea is the same as the one proposed

in [13], and the depth variable is encoded using the order

encoding [9]. In this encoding, each value x in 0 ≤ x ≤ M

is represented by a bitstring of length M . In particular, it is

represented by x ones followed by (M − x) zeros. To make

use of order encoding, each depth variable is a bitstring and it

is encoded as dℓi , where 1 ≤ ℓ ≤ (i− n).
The minimum delay of gate xi is the maximum delay of

its children raised by 1. All inputs have a delay of 0, then for
j, k, l ≤ n the dℓi variable has value equal to 0. The added
clauses are:

j−n
∧

ℓ=1

(s̄ijkl ∨ d̄
ℓ
j ∨ d

ℓ+1

i )∧

k−n
∧

ℓ=1

(s̄ijkl ∨ d̄
ℓ
k ∨ d

ℓ+1

i )∧

l−n
∧

ℓ=1

(s̄ijkl ∨ d̄
ℓ
l ∨ d

ℓ+1

i )

(5)

The clause ḡhi ∨ d̄∆i ensures a depth ≤ ∆, by assigning 0 to

the ∆th bit in the order bitstring.

C. Fan-out Constraint

To constrain the maximum fan-out of each node, we make

use of cardinality constraints. The cardinality constraint over

a set of Boolean variables is a constraint on the number of

variables that can have values equal to 1. In particular, we

implement the cardinality constraint as proposed in [16].

In our case, the constraint is on the fan-out of each node

to be at maximum Φ. Select variable sijkl encodes that gates

xj , xk, and xl are the children of node xi. To consider the

fan-out of node i, we need then to take into account nodes

with index larger than i: si+1jkl, . . . , si+njkl. Among all these

select variables we need to force a constraint on the ones that

use i as children. In other words, all the select variables of

index larger than i, in which j or k or l is equal to i. Also

the output variables ghi need to be considered for this fan-out

count.

Fig. 2 shows an example of MIG exact synthesis. x1, x2 and

x3 are the inputs of the network, and n = 3. As in the previous

example, r = 2; x4 = 〈x1x2x3〉 and x5 = 〈x4x̄1x3〉. The gate

index i ranges from 4 to 5. Variable xit encodes the truth table

for each output of the multi-outputs function. Further,

g14 = 1, g15 = 0, g24 = 0, g25 = 1



There is only one select variables for i = 4, which is s4123.

There are three select variables for node 5. For this gate, only

one select variable is equal to 1: s5134 = 1, since x1, x3, and

x4 are children of node x5. Finally, the two different majority

operations are encoded in the fipqu variables. For this example:

p, q, u = 0,0,1 0,1,0 0,1,1 1,0,0 1,0,1 1,1,0 1,1,1

f4pqu = 0 0 1 0 1 1 1

f5pqu = 1 0 0 1 1 0 1

Only one operation variable oiw is equal to 1 for each node.
For the depth, each variable dℓi has 1 ≤ ℓ ≤ (i− 3). It follows
that for node 4, the depth variable consists of only 1 bit. dℓ5
is made of 2 bits, and it can have depth value of 0, 1, and
2. The fan-out constraint on node 4 consists of a cardinality
constraint of type:

s5124 + s5134 + g14 + g24 ≤ Φ (6)

where all nodes that use 4 as child are considered.

IV. EXACT ALGORITHMS

This section describes the implemented exact synthesis

algorithm. It also illustrates three alternatives to the main

algorithm.

The algorithm finds a MIG, if this exists, that satisfies all

the constraints discussed in Section III. The names of the

variables are the ones used in previous sections. The input of the

algorithm is the n-inputs m-outputs function g represented as

truth tables obtained from the MIG that needs to be optimized.

The algorithm starts by trying to find a solution using r = m

(assuming that each output represents a different function). If

a solution exists for r gates, the algorithm returns a MIG that

meets all the requirements, otherwise it looks for a solution

with larger size. The algorithm increases the number of gates

until the upper bound is reached. If no solution can be found

up to the upper bound, it can be concluded that no network

exists that meets all the constraints. Let m be the number of

outputs, an upper bound for the number of gate r is 13m.

This result is obtained considering that each output could be

represented as a tree, with no sharing edges between them.

Each tree has one gate on the first level, 3 gates on the second

level and 9 gates on the third one, thus 13 gates at most.

The algorithm is described as function FindMIG() in Alg. 1.

First, the SAT solver is instantiated (line 2 in Alg. 1). Then, the

algorithm adds all the variables discussed in Section II and III;

they include the variables from Knuth’s formulation, but also

variables dℓi and oiw. All clauses are then added (lines 4–12).

The main clause is the one which encodes the truth table of

the circuit (3); this is added for each bit t of each truth table.

Other clauses consist of both necessary and additional clauses

proposed in [13]; depth, operations, and fan-out clauses are the

ones discussed in Section III. The fan-out clause constraints

the fan-out of each node i of the network.

Alternative implementations to Alg. 1 are possible. All

algorithms take into account the same constraints, however,

they may show different performances. We rewrite Alg. 1 by

1 Function FindMIG(g, ∆, Φ, r)

2 set S ← SATSolver();
3 AddVariables(S, g,∆,Φ, r, );
4 foreach 0 < t < 2n do

5 AddMainClause(S, g, t);
6 end

7 AddOtherClauses(S, r);
8 AddOperationClause(S, g, r);
9 AddDepthClause(S,∆);

10 foreach n < i ≤ n+ r do

11 AddFanOutClause(S,Φ, i);
12 end

13 if Solve(S) then

14 return MIG;

15 else

16 return FindMIG(g,∆,Φ, r + 1);
17 end

Algorithm 1: Function ‘FindMIG()’

making use of Counter-Example-Guided Abstraction Refine-

ment (CEGAR). The idea is to overapproximate the solution

space by discarding several clauses, thereby decreasing solving

time of the SAT solver. Alg. 2 illustrates one CEGAR version

of Alg. 1. Alg. 2 does not add the main clause (3) which

encodes the multi-output function g. In this way, the SAT

solver may find a solution which does not coincide with g

for all inputs assignment t. If this is the case, a refinement of

the solution is pursued (lines 13–15). In order to ensure the

same functionality, the main clause (3) is added for the first

bit t of the truth table that does not agree with g. The updated

problem is solved again by keeping the state of the SAT solver

active (incremental SAT). This procedure is repeated until

the truth tables coincide. During this refinement process, two

possibilities emerge:

1) The SAT solver converges to a solution which respects

the functionality;

2) The SAT solver is not able to find a solution which

respects the new clauses. In this case, the size r is

increased and a new solution is searched.

CEGAR can also be applied to abstract the fan-out clauses.

First, a solution without fan-out constraints is found; then, the

algorithm checks whether a gate i exists that does not respect

the fan-out constraint. If it exists, the fan-out constraint is

added only for gate i, which has fan-out > Φ. The algorithm

is not reported here, since it is similar to Alg. 2.

Both CEGAR methods can also be applied at the same

time. We call this method DoubleCEGAR (DCEGAR) and it

is shown in Alg. 3. In this approach, both the truth table and

fan-out clauses are not added in the main function. If a solution

of size r exists, the functionality is checked (line 8). If the

functionality is respected, then the algorithm ensures that also

the fan-out constraint is met (line 9). If both are respected, the

MIG is returned (line 10). Otherwise, first the algorithm tries

to meet the truth table constraint (lines 15–18) and then the

fan-out one (lines 12–13). The algorithm works in a similar

way as Alg. 2; if at some point the SAT solver cannot find a



1 Function FindMIG CEGAR(g,∆, Φ, r)

2 set S ← SATSolver();
3 AddVariables(S,∆,Φ, r);
4 AddOtherClauses(S, r);
5 AddOperationClause(S, g, r);
6 AddDepthClause(S,∆, r);
7 foreach n < i ≤ n+ r do

8 AddFanOutClause(S,Φ, i);
9 end

10 while Solve(S) do

11 if Functionality Respected(g) then

12 return MIG;

13 else

14 set t← first bit which does not respect

functionality;

15 AddMainClause(S, g, t);
16 end

17 end

18 return FindMIG CEGAR(g,∆,Φ, r + 1);

Algorithm 2: Function ‘FindMIG CEGAR()’

1 Function FindMIG DCEGAR(g,∆, Φ, r)

2 set S ← SATSolver();
3 AddVariables(S,∆,Φ, r);
4 AddOtherClauses(S, r);
5 AddOperationClause(S, g, r);
6 AddDepthClause(S,∆, r);
7 while Solve(S) do

8 if Functionality Respected(g) then

9 if All Fanouts() ≤ Φ then

10 return MIG;

11 else

12 set i← node with fan-out > Φ;

13 AddFanOutClause(S,Φ, i);
14 end

15 else

16 set t← first bit which does not respect

functionality;

17 AddMainClause(S, g, t);
18 end

19 end

20 return FindMIG DCEGAR(g,∆,Φ, r + 1);

Algorithm 3: Function ‘FindMIG DCEGAR()’

solution due to the new clause, then the algorithm searches for

a solution with size r + 1.

V. RESULTS

In this section, first, we demonstrate how conventional logic

synthesis tools are not suitable for complex constraints-problem;

then, we illustrate results obtained with the different algorithms

proposed in Section IV. Finally, we discuss the feasibility of

our method on larger functions.

We developed a C++ program1 to implement Alg. 1. The

implementation uses one of the SAT solvers implemented in

ABC [17]. Motivated by our industrial application, for these

experiments we used the maximum depth ∆ = 3 and the

maximum fan-out Φ = 3. We applied our approach to small

1The code is available online: github.com/eletesta/cirkit-addon-mign-sat

arithmetic benchmarks and to some small hwb [18] circuits.

The ‘HWB34’ benchmark is a multi-output function containing

both hwb3 and hwb4. To emphasize the key role of exact

synthesis for complex constraint-problems, we demonstrate

that classical logic synthesis tools may fail in finding a solution

that meets all the constraints. Results are shown in Table I. We

optimized circuits using ABC depth optimization (‘clp; sop;

fx; strash; resyn2’). The results are shown in the first part of

Table I; only two circuits out of six meet the depth constraint.

The ‘FO viol.’ column represents the number of nodes that

violate the fan-out constraint, thus with fan-out > Φ; for the

‘ADDER2x2’ benchmark, also the fan-out constraint is not

respected. The second block of Table I shows results obtained

by analyzing each output separately. Each function has been

depth-optimized using exact synthesis proposed in [15]. This

approach leads to results that meet our depth constraint, but it

is time consuming, since all outputs are analyzed separately.

Further, this does not optimize the network considering the

common nodes and it does not take into consideration the

fan-out constraint. Copies of nodes with fan-out > Φ have

been produced. For this case, the runtime is the sum of the

runtimes necessary for each output; the manual work needed

to separate and reunite the whole circuit are not taken into

account. The third block of Table I shows the results achieved

using our exact algorithm approach, disregarding the fan-out

constraint. Also in this case, copies of nodes with fan-out > Φ
are introduced. Table I shows that the better results are the

ones obtained with the exact method implemented in Alg. 1,

therefore considering all the constraints (both depth and fan-

out). In this case, there are no nodes with fan-out larger than

Φ. As an example, ADDER2x2 leads to a better result when

also fan-out constraint is added. For this benchmarks, both the

exact solutions (disregarding and considering fan-out) lead to

a depth equal to 3 and size equal to 6. But for the first case, a

copy of one node needs to be introduced since its fan-out is

larger than Φ; producing in this way a size of 7.

We applied the four alternatives of Alg. 1 to the same circuits;

results are listed in Table II. The first algorithm is the one

without CEGAR approach. The second one is Alg. 2, while the

third one is the one in which the CEGAR method is applied

not considering the fan-out clause. DOUBLE CEGAR is the

last method in Table II. The runtimes of the four methods are

similar. This is not surprising, since the number of inputs in

the considered benchmarks is small. It is important to highlight

that we are not optimizing the depth, but just constrain it to be

≤ ∆. For the BITCOUNTER3, exact solutions with different

depths are found. An extension that considers multi or all exact

solutions can be easily included in the algorithm.

The constraints used so far are motivated by an industrial

application in which each small function is part of a larger

function; and each function should meet the depth and fan-out

requirements. To validate the feasibility of this method, we

map networks using LUTs of different size; then we apply the

SAT-based method on each LUT. We are interested in finding



TABLE I

CLASSICAL HEURISTIC AND EXACT SYNTHESIS COMPARISON

Classical Heuristic ABC Exact [15] - separated outputs Exact - no fan-out Alg. 1

Benchmark I/O Depth Size FO viol. Time [s] Depth Size FO viol. Time [s] Depth Size FO viol. Time [s] Depth Size Time [s]

ADDER 2x2 4/3 4 11 1 0.14 3 7 1 0.42 3 6 1 1.15 3 6 0.56

MULT 2x2 4/4 3 8 — 0.14 3 12 — 0.75 3 8 — 76.84 3 8 68.92

BITCOUNT3 3/2 4 8 — 0.14 2 3 — 0.09 3 3 — 0.00 2 3 0.05

HWB3 3/1 2 3 — 0.13 2 3 — 0.00 2 3 — 0.00 2 3 0.05

HWB4 4/1 4 8 — 0.14 3 5 — 0.25 3 5 — 0.25 3 5 0.23

HWB34 4/2 4 11 — 0.14 3 7 — 0.84 3 6 — 2.16 3 6 1.97

TABLE II

COMPARISON OF DIFFERENT EXACT ALGORITHMS

Alg. 1 - All clauses Truth Table CEGAR Fan-out CEGAR DCEGAR

Benchmark I/O Depth Size Time [s] Depth Size Time [s] Depth Size Time [s] Depth Size Time [s]

ADDER 2x2 4/3 3 6 0.56 3 6 0.73 3 6 1.33 3 6 0.93

MULT 2x2 4/4 3 8 68.92 3 8 77.58 3 8 76.01 3 8 94.26

BITCOUNT3 3/2 2 3 0.05 3 3 0.05 3 3 0.05 3 3 0.05

HWB3 3/1 2 3 0.05 2 3 0.05 2 3 0.05 2 3 0.05

HWB4 4/1 3 5 0.23 3 5 0.30 3 5 0.24 3 5 0.41

HWB34 4/2 3 6 1.97 3 6 4.93 3 6 2.22 3 6 2.24

TABLE III

SAT-BASED ALGORITHM ON LUTS FROM EPFL BENCHMARKS

3-LUTs 4-LUTs 5-LUTs 6-LUTs

Benchmark #LUTs # SAT % # TO #LUTs # SAT % # TO #LUTs # SAT % # TO #LUTs # SAT % # TO

adder 41 41 100 0 185 185 100.0 0 343 342 99.7 1 399 379 95.0 20

arbiter 64 64 100 0 285 285 100.0 0 395 395 100.0 0 419 419 100.0 0

bar 8 8 100 0 8 8 100.0 0 14 14 100.0 0 13 8 61.5 5

cavlc 65 65 100 0 216 216 100.0 0 190 185 97.4 5 139 115 82.7 24

ctrl 24 24 100 0 34 34 100.0 0 26 23 88.5 3 24 19 79.2 5

dec 8 8 100 0 24 24 100.0 0 32 32 100.0 0 40 40 100.0 0

i2c 76 76 100 0 159 159 100.0 0 151 149 98.7 2 145 124 85.5 21

int2float 45 45 100 0 68 68 100.0 0 55 54 98.2 1 40 30 75.0 10

log2 166 166 100 0 986 984 99.8 2 1620 1485 91.7 135 1932 1428 73.9 504

max 47 47 100 0 115 115 100.0 0 142 142 100.0 0 155 154 99.4 1

mem ctrl 132 132 100 0 723 721 99.7 2 927 921 99.4 6 948 857 90.4 91

mult 132 132 100 0 784 782 99.7 2 1190 1115 93.7 75 1303 1099 84.3 204

priority 30 30 100 0 53 53 100.0 0 61 61 100.0 0 61 61 100.0 0

router 21 21 100 0 25 25 100.0 0 27 27 100.0 0 25 25 100.0 0

sin 142 142 100 0 700 699 99.9 1 958 910 95.0 48 915 751 82.1 164

sqrt 192 192 100 0 1754 1752 99.9 2 4574 4394 96.1 180 5505 4654 84.5 851

square 112 112 100 0 493 491 99.6 2 615 565 91.9 50 692 571 82.5 121

voter 79 79 100 0 194 192 99.0 2 206 192 93.2 14 215 177 82.3 38

Average 100.0% 99.9% 96.8% 86.6%

#LUTs is the total number of unique LUTs; # SAT is the number of LUTs which are satisfiable; % is the precentage of SAT over the total
number of LUTs; #TO is the number of LUTs that are not finished before the timeout.

how many LUTs can be realized as MIGs that meet all the

given constraints for depth and fan-out.

We applied this method on circuits from the EPFL bench-

marks,2, using LUT size k = 3, 4, 5, 6, respectively. The LUTs

and the functions they represent are obtained from CirKit3 using

the command ’xmglut’. The SAT-based method is applied on all

the unique LUT functions, using a maximum depth ∆ = 3 and

a maximum fan-out Φ = 3. The experiments were performed

2lsi.epfl.ch/benchmarks
3github.com/msoeken/cirkit

on a computer with Intel Xeon Processor E5-2680 v3, @

2.5 GHz, 64 Gb RAM, using a timeout of 1 minute for each

LUT function. Table III shows the results; in particular it lists

the total number of unique LUTs, the satisfiable LUTs and the

total timeouts for each LUT size k. Results show that when

3-LUTs are used to map the circuit, all the functions can be

realized with circuits of ∆ ≤ 3 and Φ ≤ 3, and with a runtime

≤ 1 minute. For LUTs of larger size, some timeouts are present

and not all the LUTs can be finished in less than 1 minute. No

conclusions can be drawn on the satisfiability of functions that



were not concluded in 1 minute: they could be both satisfiable

or unsatisfiable. In the worst case scenario (i.e. all timeouts are

UNSAT), results for 6-LUTs show that on average 86.6% of

LUTs can be realized with the given constraints. In general, a

high number of LUTs from EPFL benchmarks can be realized

with circuits that meet all the constraints; we are then confident

that our method could produce good results when considering

partitioned functions.

VI. CONCLUSION AND FUTURE WORK

We demonstrated that existing exact synthesis algorithms

can be easily adjusted to solve complex constraints problems.

We implemented an algorithm that takes into account all

the different constraints and we demonstrated that classical

heuristic logic synthesis tools may lead to a solution which

does not meet all the requirements. Further, we implemented

different versions of the same algorithm.

In this work, we mainly took into consideration small circuits.

It is important to highlight that in our target technology, the

idea is to partition the functionality into smaller blocks. Each

small block should match our constraints on depth and fan-

out. Future work will investigate more the results on larger

functions and it will consist of a mapping algorithm able to

build circuits based on smaller blocks that have limited depth

and limited fan-out for each node.
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