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Abstract.
In order to have a better closure for magnetohydrodynamic (MHD) equations,

a common approach is to obtain the ion fluid pressure tensor by directly computing
the moments of an ion distribution function, obtained by a Particle-in-cell (PIC)
solver of the Vlasov or Boltzmann equation. This is the so-called hybrid approach.
Long MHD simulations are required for problems such as investigating the
properties of the sawtooth cycle. In such long hybrid simulations, collisions
are required to relax the distribution function after violent MHD events, and
to obtain the self-consistent neoclassical transport. In this paper, we present a
new approach to ion self-collisions, based on temperature- and velocity-shifted
Maxwellian distributions. It is shown that the approach emulates the effect of the
background reaction, without the need to explicitly implement it. Arbitrariness
in the choice of the closest Maxwellian is removed. The model compares very well
with binary collision Monte-Carlo simulations. The practical implementation as a
Fokker-Planck module in a hybrid kinetic/MHD simulation code is discussed. This
requires an additional manipulation in order to conserve energy and momentum.
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1. Introduction

Although purely fluid models of the plasma dynamics
are intrinsically limited by the closure problem, this
issue can be partly overcome by coupling the fluid
magnetohydrodynamic (MHD) dynamics to an ion
kinetic solver. The moments of the ion distribution
function can be used to close the momentum equation.
This results in models such as that of refs. [1, 2],
where electrons evolve as a fluid, while the ions are
evolved kinetically. The XTOR-K code [3] implements
such a hybrid model: it consists of a two-fluid MHD
solver based on the XTOR-2F code [4], self-consistently
coupled to a 6D nonlinear kinetic particle-in-cell (PIC)
full-f solver. The particle trajectories are integrated
along their gyromotion by means of a Boris-Buneman
scheme [5], thus, all finite Larmor radius (FLR)
effects and the associated nonlinearities are taken into
account.

The hybrid approach allows efficient modelling of
MHD instabilities while retaining important kinetic
effects, such as the resonances between the bounce
motion of suprathermal particles and the MHD modes.
More specifically, it allows a study into the effect of
suprathermal ions in burning plasmas, such as the
alpha particles resulting from fusion reactions or the
fast particles generated by the heating systems, on the
MHD dynamics. The fast particles can modify the
stability of preexisting instabilities, e.g. sawteeth [6]
and Alfvén eigenmodes [7], or trigger new instabilities,
e.g. the fishbone instability [8]. The detail of the
full non-linear dynamics can only be investigated using
numerical tools. In Ref. [6], the sawtooth period τs is
estimated to be in the range 50s < τs < 140s for ITER
ignited discharges. It is important to determine the
sawtooth period in ITER with more precision because
it is known that longer sawtooth periods increase the
risk that the sawtooth crash triggers a neoclassical
tearing mode (NTM) [9, 10], an instability detrimental
to the overall plasma confinement.

On such long time scales, the effect of collisions
becomes important. First, collisions are responsible
for the neoclassical effects, which have an impact on
the dynamics of tearing modes [11]. Second, collisions
allow relaxation of the ion distribution function after a
sawtooth crash, which may cause significant deviations
with respect to a Maxwellian. Finally, collisions are
also responsible for the thermalization of the alpha
particles, which adopt a slowing down distribution.
This paper discusses the implementation of an ion self-
collision operator in the XTOR-K code.

There has been a lot of effort in developing models
for simulating collisions in plasmas. Among numerous
others, two popular methods applicable to long time
simulations are the Takizuka-Abe binary collision
method [12] (hereafter denoted by TA algorithm) and

the δf with evolving background method of Brunner
et al. [13]. Both methods allow to model accurately
the effect of the deviation δf with respect to the
background Maxwellian distribution, while conserving
energy and momentum. The δf method is not adapted
to the XTOR-K case, since the latter evolves the
total distribution function f . The TA method has
the drawback that it is not well adapted to the
parallel environment of XTOR-K. Indeed, in XTOR-
K, the particle positions and velocities are initialized
on each process and then remain on their initialization
process until the end of the simulation. In other
words, the parallelization is done by domain cloning, as
opposed to domain decomposition. The TA algorithm
implements binary collisions with particles in the
neighborhood of a target particle, which requires to
sort all the particles according to their positions and
reaffect them to different processes, an operation that
is very expensive in communications, CPU time and
memory.

Instead, we have decided to take the simpler
approach of Langevin collisions on a Maxwellian
distribution. A priori, such an approach suffers from
the fact that it is not momentum/energy conserving,
and that it does not properly take into account the
reaction on the background plasma (herafter simply
denoted background reaction) from collisions with
δf . In this paper, we show how to cure these
flaws by properly choosing the Maxwellian, and how
to implement the resulting algorithm in the parallel
environment of XTOR-K. The paper is organized as
follows. In section 2, the algorithm we propose to
treat self-collisions is detailed in a local in space, 3-
dimensional in velocity space framework. It is then
justified with a few examples in sections 3, 4 and 5, by
comparison to analytical formulæ as well as to the TA
algorithm. In section 6, the issue of the implementation
of the Fokker-Planck module in the XTOR-K code is
investigated. Section 7 discusses the possible pitfalls of
the implementation. Finally, conclusions are drawn in
Section 8.

2. Self collision algorithm

The general kinetic equation for the distribution
function of a species a with collisional Coulomb
interaction is

dfa
dt

=
∑
b

Cab[fb, fa], (1)

where the sum is on all species b and the collision
operator is the Landau operator given by [14, 15]

Cab[fb, fa] = Γab ×
∂

∂va
·
∫
U(u) ·

(
fb
ma

∂fa
∂va
− fa
mb

∂fb
∂vb

)
d3vb, (2)
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where Γab = Z2
aZ

2
b e

4Λ/(8πε20ma), Λ is the Coulomb
logarithm, u = va − vb and U(u) = (1− uu/u2)/u.

From now on, unless specified otherwise we
consider only self-collisions and drop all species indices
a and b. The Landau operator can be rewritten in the
form of a Fokker-Planck operator as

C[f, f ] = − ∂

∂v
·
[
Ff − 1

2

∂

∂v
·
(
Df
)]
. (3)

The friction F and diffusion D are given by

F =
Z4e4Λ

2πε20m
2

∂h

∂v
, (4)

D =
Z4e4Λ

4πε20m
2

∂2g

∂v∂v
, (5)

and h, g are the Rosenbluth potentials [16],

h(v) =

∫
f(v′)

1

|v′ − v|
d3v′ (6)

g(v) =

∫
f(v′)|v′ − v|d3v′. (7)

The effect of the collision operator (3) on the
distribution function can be computed with particles
using a Langevin formulation rather than directly in
the continuum. We adopt the following so-called Euler-
Maruyama scheme,

∆v = F(v)∆t+ d(v)Ng

√
∆t, (8)

with ddT = D and Ng a random number drawn from
a Gaussian distribution with unit variance. Recall
that a stochastic equation of the form dx = f(x)dt +

g(x)dw(t), where W (t) =
∫ t

0
dw(t′) designates the

Wiener process, does not have any meaning per
se. This is essentially because the Wiener process
is not differentiable and advances by an infinity of
infinitesimal jumps, hence one does not know whether
g(x) should be evaluated with the value of x before
or after the jump (or a combination of the two).
This ambiguity leads to the famous Itō/Stratonovich
controversy, the solution to which is exposed with
remarkable clarity in reference [17]. We use the Itō
rule, which corresponds to the simple choice where
d(v) is evaluated with the value of v before the kick.
Such a choice leads to the evolution of the distribution
converging to Eq. (3) in the limit ∆t → 0 and N →
∞ [17, 18].

The difficulty of evaluating F and D lies in the fact
that the Rosenbluth potentials cannot be computed
analytically for arbitrary distributions. Since they
are known for Maxwellian distributions, we restrict
ourselves to the case where the distribution function
is the sum of a shifted Maxwellian and a small
perturbation:

f = fM (T,V) + δf. (9)

Note that we do not constrain the momentum and
energy, carried by δf , to vanish. In this case the

collision operator, which is bilinear in f , is linearized
to give

C[f, f ] = C[fM (T,V), δf ] + C[δf, fM (T,V)], (10)

since C[fM (T,V), fM (T,V)] = 0, and the remaining
nonlinear term is neglected under the assumption
|δf/fM | � 1.

The first term in Eq. (10) represents scattering
of δf from a Maxwellian background while the second
term represents the background reaction of δf on the
Maxwellian, which is essential to ensure the properties
of energy and momentum conservation. In other
words, the first term represents the action of the
Maxwellian on a test particle, and the second term
ensures that all momentum and energy lost by the
test particle is transferred to the bulk. The first
term is easy to implement because the Rosenbluth
potentials, hence F and D, are known for Maxwellian
distributions. However only approximate forms are
known for the background reaction [19, 13], and
they are not straightforward to implement in a full-f
algorithm.

The main point of the present work is that it
is possible to conserve energy and momentum by
implementing only the first term. However, instead
of choosing fM (T,V) as the background Maxwellian,
we choose fM (T + δT,V + δV), where δT and δV
are chosen so as to enforce energy conservation. In
a full-f framework, the implemented collision operator
becomes

C[f, f ] ' C[fM (T + δT,V + δV), f ]. (11)

By expanding the shifted-temperature Maxwellian,
fM (T + δT,V + δV) ' fM (T,V) + δfM , we see that

C[f, f ] ' C[fM (T,V), δf ] + C[δfM , fM (T,V)], (12)

where we have again neglected a nonlinear term. This
expression is similar to Eq. (10) except that δfM
instead of δf is used in the background reaction
term. Obviously, the two are different, otherwise we
would have f = fM (T + δT ), which would mean
that δf would vanish. However, despite the difference
between δf and δfM , we will use Eq. (11) for its
simplicity of implementation as well as for its energy
and momentum conservation properties. Before testing
this approach in relevant situations, we now detail
the method to obtain the effective temperature and
velocity

Teff ≡ T + δT (13)

Veff ≡ V + δV. (14)

First, the quantities are normalized: temperature
and density to their initial (or reference) values T0,
n0, velocity to v0 =

√
2T0/m, energy to T0, time

to t0 = 4
√

2πε20m
1/2T

3/2
0 /(n0Z

4e4Λ), F to v0/t0 and
D to v2

0/t0. The diffusion D has the form D =
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D⊥(1 − ṽṽ/ṽ2) + D‖ṽṽ/ṽ
2, whereas F(ṽ) = F (ṽ)ṽ/ṽ

with ṽ ≡ v −V, therefore Eq. (8) is rewritten

∆v = F
ṽ

ṽ
∆t+

√
D⊥∆tNge1 +√

D⊥∆tNge2 +
√
D‖∆tNge3, (15)

where the three Ng represent three independent
calls to the Gaussian, e3 = ṽ/ṽ and (e1, e2, e3) is
orthonormal. Defining X ≡ ṽ/

√
T , the friction and

diffusion coefficients for collisions on a Maxwellian with
temperature T and velocity shift V read [16]

F (v;T,V) = − 1

T

φ(X)

X2
(16)

D‖(v;T,V) =
1

2
√
T

φ(X)

X3
(17)

D⊥(v;T,V) =
1

2
√
T

[
erf(X)

X
− φ(X)

2X3

]
(18)

φ(x) ≡ erf(x)− 2√
π
xe−x

2

. (19)

During a collision step, the velocity increment is
∆v = F ṽ/ṽ∆t + Q, where Q represents the diffusion
terms and has the properties 〈Q〉 = 0 and 〈Q2〉 =
(2D⊥ + D‖)∆t, the mean being understood in an
ensemble average sense. Hence, the average energy
variation 〈∆E〉 ≡ 〈(v + ∆v)2 − v2〉 is

〈∆E〉 = G(v;T,V)∆t+ F 2∆t2 (20)

G(v;T,V) ≡ 2ṽF (ṽ) + 2D⊥(ṽ) +D‖(ṽ). (21)

The quantity G(v;T,V) is, in an ensemble average
sense and to lowest order in ∆t, the energy variation
of a particle with velocity norm ṽ.

Similarly, the average momentum variation 〈∆P〉
is

〈∆P〉 = H(v;T,V)∆t (22)

H(v;T,V) ≡ ṽ
ṽ
F (ṽ). (23)

For energy and momentum to be conserved, the
average over the distribution function of G and H must
vanish. Therefore, we define the effective temperature
Teff and the effective velocity shift Veff as the
solution to the system (G(T,V),H(T,V)) = 0, where
G(T,V) ≡ 〈G(ṽ;T,V)〉f , H(T,V) ≡ 〈H(ṽ;T,V)〉f ,
the mean 〈·〉f being now understood as an average on
the distribution function f .

Numerically, Teff and Veff are found by means of
a Newton algorithm, given that the Jacobian of the
system depends on the partial derivatives of F , D⊥
and D‖ with respect to T and V, which are known
analytically. The expressions for G, H and their partial
derivatives are provided in Appendix A. Because the
Newton algorithm converges very rapidly, a limited
amount of sums on the distribution are required at each
time step. Since Teff and Veff do not change much

between two time steps and a very good precision is
not required in its evaluation, the Newton iterations
converge typically in one to three iterations.

The approach using Teff and Veff has two
advantages, in addition to conserving energy and
momentum by definition. First it does not require any
speculation on the form of the background reaction
term, and bypasses the problem of its practical
implementation. Second, it removes the arbitrariness
in the definition of the closest Maxwellian function to
compute the coefficients of the first term of Eq. (10).
Indeed, in a full-f framework, one could decide to take
δf = f − fM (T,V), where T is given by the variance
of the distribution and V is its average velocity, but
this can lead to very large errors if there is a small
number of very fast particles which make a small
contribution to the number distribution function and
to the momentum but a large contribution to the
energy. Instead, one could take for the Maxwellian the
distribution that minimizes the norm ‖f − fM (T,V)‖,
but then the definitions of T , V and δf depend on
the choice of the norm. In our approach, this issue
is removed. In section 5, it will be shown that in
the aforementioned case where the distribution is the
sum of a Maxwellian bulk and of fast particles with a
large contribution to the energy, our algorithm finds
an effective temperature which is very close to the
temperature of the bulk.

Even when Teff and Veff are used, there is still a
variation in the total energy and momentum after the
collision step, which is due to the fact that we neglected
the ∆t2 error introduced by the friction, and to the PIC
noise. The ∆t2 error is a systematic positive error and
can be eliminated by applying a particle dependent
correction δF to the friction, given by the condition
(F +δF )2∆t2 +2δF ṽ∆t = 0. Therefore, the correction
to the friction is

F ← − ṽ

∆t

(
1−

√
1 +

2F∆t

ṽ

)
. (24)

The sign of the solution to the quadratic equation is
chosen so that the correction vanishes in the limit of
∆t = 0. If ∆t is too large, this correction may not
be applicable for the particles with a small velocity ṽ,
since F < 0. When this is the case, the correction
is simply not applied to these particles, which does
not affect the results significantly if the fraction of
such particles is small. In the present work, we
take 0.01 < ∆t < 0.1, sufficiently small so that the
correction can always be applied. Finally, in order
to ensure energy conservation exactly, and to correct
any momentum generated in the process, we apply the
following transformation to the velocity at the end of
each time step:

v′ ← 〈v〉f +

√
V
V ′
(
v′ − 〈v′〉f ′

)
, (25)
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Figure 1. Comparison between the Teff algorithm, the binary collision algorithm of Ref. [12], and the analytical formula of Ref. [20].
The parameters are as follows: a) nb/na = 0.1, Tb/Ta = 2, b) nb/na = 0.5, Tb/Ta = 2, c) nb/na = 1, Tb/Ta = 2, d) nb/na = 0.1,
Tb/Ta = 0.5, e) nb/na = 0.5, Tb/Ta = 0.5, f) nb/na = 1, Tb/Ta = 0.5.

where V = 〈v2〉 − 〈v〉2 denotes the variance of
the distribution, and primed (resp. unprimed)
quantities refer to quantities taken after (resp. before)
the collision step. This ensures exact energy and
momentum conservation. Other models use this
renormalization, see e.g. ref. [21]. The difference
with ref. [21] is that the latter conserves energy
and momentum without properly taking into account
the background reaction, contrary to our approach.
In addition. since Eq. (25) is always applied, the
usefulness of Eq. (24) to correct the friction is
questionable. However, in some cases, the sytematic
positive error introduced by the friction causes

√
V/V ′

in Eq. (25) to be always smaller than 1, leading to
a non-physical energy transfer between one part of the
distribution and the other. This can lead to large errors
(see section 5), so that the correction to the friction
must be implemented as well.

The following three sections test the algorithm
described above, hereafter denoted Teff algorithm, in
three different cases, by comparing it to analytic
formulæ and to the Takizuka-Abe binary collision
algorithm. Before turning to the results, we make a
short comment on the relative numerical performance
of the two methods. For the present study, our
algorithm is roughly 4 times faster than the TA
algorithm. However, none of the algorithm was

optimized numerically, because the goal of the present
paper is only to assess the intrinsic properties of the
new algorithm. The TA algorithm can be made faster
by adopting the statistics of Nanbu [22, 23, 24, 25]
in the velocity change in a binary collision. By
considering the cumulative effects of several collisions,
the statistics can be shown to depart from gaussian
statistics, and taking this into account, larger time
steps can be used. However, as emphasized in the
introduction, the TA algorithm would be orders of
magnitude more expensive than ours in the parallel
environment of XTOR-K, which uses domain cloning.

3. Case of a sum of two Maxwellian
distributions with different temperatures

The rate of energy transfer between two Maxwellian
distributions of species a and b with temperature Ta
and Tb and no relative velocity is given in Ref. [20]
(Chapter 5). In the case of species of same mass and
charge, it is, in our normalization:

3

2
nb

dTb
dt

=
2nanb√

π

Ta − Tb
(Ta + Tb)3/2

, (26)

which can be integrated numerically with the con-
straint of energy conservation

naTa + nbTb = (naTa + nbTb)
∣∣
t=0

. (27)
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To compare the numerical solutions of this
equation with the results produced by the Teff

algorithm described in section 2, we initialize two
Maxwellian distributions fa = fMa(Ta, 0) and fb =
fMb(Tb, 0) with different temperatures and join them
in a single distribution f = fa + fb. In principle,
we could represent the different densities of the two
distributions by attaching different weights to the
particles. However, in view of the implementation in
the XTOR-K code, where all particles have the same
constant weight, the density ratio is actually equal to
the ratio of the number of particles in each of the
distributions. That is, if fa is represented with Na
particles and fb with Nb particles, then the densities
na and nb to be used in equations (26)-(27) are given by
na/nb = Na/Nb and na + nb = 1. The latter equality
comes from our normalization.

A priori, the Teff algorithm should work well only
when one of the distributions, say fb, represents a small
perturbation to the other one, that is, if Nb � Na
and/or if |Tb − Ta| � Ta. However, we will see that it
works well even when it is not the case for some choice
of parameters, so we don’t make this assumption in the
following.

In order to increase the reliability of our results, we
also make the comparison with the TA algorithm [12],
which reproduces Eq. (2) exactly in the limit of ∆t→
0, N → ∞. In section 5 where analytical formulæ
are not known, this is the most reliable way to test
our algorithm, but even in the present case, it is
useful because we do not expect the temperature
curves to follow the solution of equations (26)-(27)
exactly. Indeed, in the relaxation process, the
distributions dynamically deviate from a Maxwellian
distribution, so that the analytical formulæ no
longer describe the temperature relaxation with high
accuracy. Nonetheless, they should give the correct
initial slope.

We can compute the effective temperature analyt-
ically in the case of two Maxwellian distributions with
different temperatures. It is given by equating the en-
ergy transfer of species a and b on the effective Max-
wellian with temperature Teff and density na +nb = 1.
For symmetry reasons, we can take Veff = 0 in this
section. Therefore, Teff is the solution to

nb
Teff − Tb

(Teff + Tb)3/2
+ na

Teff − Ta
(Teff + Ta)3/2

= 0. (28)

When nb = 0, Teff = Ta, so we can expand Teff in the
parameter δ ≡ nb/na as

Teff = Ta + δT1 + δ2T2 +O(δ3). (29)

By solving order by order and defining ∆T ≡ Tb − Ta,
Y ≡ [1 + ∆T/(2Ta)]

−1
, we find

T1 = ∆TY 3/2 (30)

T2 = Ta(−3Y 4 + 11Y 3 − 11Y 2 + 3Y ). (31)

This formula works reasonably well up to nb ∼ na.
Using this result, we can estimate the error in the
energy transfer rate between the two distributions
(in fact the first order of Eq. (29) is sufficient for
this purpose). We have to compare the correct rate
nanb(Ta − Tb)/(Ta + Tb)

3/2 with the actual rate in the
simulation, nb(na + nb)(Teff − Tb)/(Teff + Tb)

3/2. The
ratio between the latter and the former is, to order 1
in δ,

1 +K(∆T )δ (32)

K(∆T ) = 1−
1 + 3

2
∆T

2Ta+∆T(
1 + ∆T

2Ta

)3/2

=
15

32

(
∆T

Ta

)2

+O(∆T 3) > 0. (33)

Hence, the lowest order correction to the energy
transfer rate is small, of order ∆T 2(nb/na), which
makes the algorithm robust for reasonable values of
∆T . Heuristically, we can interpret this result as the
fact that for larger densities nb, Teff becomes larger,
reducing the effective ∆T seen by the fb part of the
distribution, but the density of the target distribution
increases in the same time, which restores the correct
energy transfer rate to order ∆T 2. From Eq. (33), we
can predict that even for nb = na, the Maxwellian
energy transfer rate for small ∆T will be modelled well
by our algorithm because the error is at second order
in ∆T . However, it should break down for ∆T � Ta,
if the condition nb � na is not met.
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Figure 2. Deviation δf from the Maxwellian distribution for
the Teff algorithm compared to the TA algorithm.

The results of simulations of relaxation between
two Maxwellian distributions can be seen in Fig. 1,
for nb/na = 0.1, Tb/Ta = 2 (a), nb/na = 0.5,
Tb/Ta = 2 (b), nb/na = 1, Tb/Ta = 2 (c), nb/na =
0.1, Tb/Ta = 0.5 (d), nb/na = 0.5, Tb/Ta = 0.5
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(e), nb/na = 1, Tb/Ta = 0.5 (f). The value of
Na in all these simulations is Na = 105. The two
values of ∆T are chosen so that K(∆T ) � 1. In
order to improve readability, only the analytical result
is plotted for fa, since Ta can always be deduced
from Tb and conservation of energy (which is exact
in all the algorithms used in this paper). It is seen
that our algorithm and the TA algorithm produce
very similar results, almost undistinguishable. It can
be verified that the discrepancy with the result of
equations (26)-(27) is indeed due to the deviation
from the Maxwellian distribution. It disappears if at
each time step, the distributions are replaced with
Maxwellian distributions with temperature given by
the variance of the distribution.
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Figure 3. Comparison between the Teff and the TA algorithms
in the case nb = na, Tb = 10Ta.

We can also compare the deviation of the
distribution with respect to the Maxwellian δfa =
fa−fMa(Ta) and δfb = fb−fMb(Tb). Fig. 2 shows the
result for the distribution function in vx, for na = nb
and Tb(0) = 2Ta(0) at t/t0 = 15. It is seen that the
deviation is virtually identical for the TA algorithm
and the Teff algorithm.

Finally we push the algorithm outside its domain
of validity identified above by using nb = na and
∆T � Ta, namely Tb = 10Ta. The result can be
seen in Fig. 3. The energy transfer rate is too large at
first, which is consistent with the positivity of K, see
Eq. (33). However, on the long run, as ∆T becomes
smaller and Teff becomes closer to Ta, the algorithm
behaves much better and once again reproduces the
results of the TA algorithm.

We conclude that the Teff algorithm is efficient
at simulating the relaxation of two Maxwellian
distributions, not only in obtaining the correct energy
transfer rates, but also in reproducing the correct shape
for δf . It is remarkable that the algorithm performs

very well even if the condition nb � na or ∆T < Ta is
not met.

4. Case of a sum of two Maxwellian
distributions with different velocities

In this section we investigate the case where the fa
and fb parts of the distribution have different average
velocities. First, we take fb to represent a cold beam
with significant momentum: Tb � Ta, |〈vb〉fb | >

√
Ta,

nb < na. This can be thought of as the interaction
between the bulk plasma and particles from a neutral
beam, just after ionization by the plasma. Again, we
compare the results with the TA algorithm. Fig. 4
shows the data obtained with nb/na = 0.1 and nb/na =
0.5. In both cases the initial velocity difference is
Vx,b = 10v0.
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Figure 4. Comparison between the Teff algorithm and the
binary collision algorithm of Ref. [12]. Temperature evolution
in a), c), velocity evolution in b), d). The parameters are as
follows: a) and b): nb/na = 0.1, c) and d): nb/na = 0.5.

In Fig. 4 a) and b), the density of the beam
is small. As expected, the beam directed energy
is isotropized first, so that its temperature increases
rapidly. Meanwhile, it transfers its energy and
momentum to the Maxwellian bulk. Both Teff and Veff

follow closely the temperature and velocity values of
the fa part of the distribution. The small discrepancy
with Ta and Va allows for the conservation of energy
and momentum. There is a noticeable difference in the
maximum temperature reached by the beam between
the two models, but the initial energy and momentum
transfer rates are virtually equal. The time necessary
to relax to a single Maxwellian distribution is almost
the same, albeit a bit shorter for the Teff algorithm.

However, in Fig. 4 c) and d), where the beam
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Figure 5. Ratio of |dV/dt|t=0 in the Teff algorithm to the same
quantity in the TA algorithm, for Tb = Ta/10 (a), Tb = Ta (b),
and Tb = 2Ta (c).

density is comparable to the bulk density, the difference
between the two models becomes significant. The
initial energy and momentum transfer rates are no
longer equal, and the effective temperature and
velocity depart noticeably from their values for the fa
part of the distribution. Nonetheless, the overall time
to relax to the Maxwellian distribution has the good
order of magnitude.

In order to estimate the domain of validity of the
algorithm, we compare the initial momentum transfer
rates for different values of the density ratio and the
velocity difference. Fig. 5 displays the ratio between
|dV/dt|t=0 in the TA algorithm to the same quantity
for the Teff algorithm, for Tb = Ta/10 (a), Tb = Ta (b),
Tb = 2Ta (c) and Tb = 10Ta (d). When data points
are left blank in Fig. 5 b), it means that the Newton
algorithm to find Teff and Veff does not converge, due
to the difficulty to find a good guess. Each data point
is obtained by averaging the momentum transfer rate
over 100 points to reduce the PIC noise. The contour
drawn in white on the figure corresponds to a ratio
of 0.75, that is, the Teff algorithm overestimates the
transfer rate by about one third. Except for Tb � Ta
(d), the region where the overestimation is less than
one third is defined by nb < 0.2na or |Vb| < 2. In
other words, the density ratio can be large provided
that the velocity shift is small, and the velocity shift
can be large provided that the density ratio is small.

In practice, the most frequent applications verify
the small density condition (e.g. beam injection)
and/or involve subsonic flows |Vb| � 1 with

small temperature discrepancies. Therefore, the Teff

algorithm can be used in such practical applications.

5. Case of alpha particles

In this section, we investigate the slowing-down
properties of alpha particles, which represents an
important situation in view of the simulation of
burning plasmas. It is well-known that alpha particles
deposit most of their energies on electrons. However,
as the alpha particles are slowed down, this becomes
less true. Let us study the ratios of the self-
collision slowing-down frequency of an alpha particle

ν
α/α
s (on the thermalized Helium ash) to the slowing-

down frequency on the main bulk ion ν
α/i
s and to

the slowing-down frequency of the electrons ν
α/e
s (see

reference [26]). Assuming a plasma containing 10%
of Helium, (the maximum value allowed in ITER to
prevent fuel dilution [27]), one obtains:

ν
α/α
s

ν
α/e
s

=
2

1 + mα
me

φ (vα/vth,α)

φ (vα/vth,e)

Z2
αnα
ne

(34)

ν
α/α
s

ν
α/i
s

=
2

1 + mα
mi

φ (vα/vth,α)

φ (vα/vth,i)

Z2
αnα
ni

(35)

where vth,β ≡
√

2Tβ/mβ is the thermal velocity of the
species β, and Zα = 2 is the Helium charge number.
For an ion at 3.5 MeV and Ti = Te = Tα = 10 keV,
the ratios are approximately equal to

ν
α/α
s

ν
α/e
s

' 0.01,
ν
α/α
s

ν
α/i
s

' 0.3, (36)

and most of the collisions lead to heating the electrons,
as is well-known. After the ions have slowed down to
5×vth,α, the ratios are

ν
α/α
s

ν
α/e
s

' 0.7
ν
α/α
s

ν
α/i
s

' 0.3, (37)

so that self-collisions, although still smaller than
collisions on main ions and on electrons, contribute to
the slowing-down.

The point here is not that self-collisions have a
large impact on the slowing-down of alpha particles,
but rather, that it is better to check that the Teff

collision algorithm does not introduce spurious effects
when the distribution has a large tail of fast particles.
Indeed, the algorithm is applied in the same way
regardless of the shape of the distribution function.

The distribution is initialized with Na = 105

particles of a Maxwellian distribution at rest and with
temperature Ta = 1, and an energy Dirac delta of
Nb = 103 particles with isotropic velocity distribution
at v =

√
350. This corresponds to 1% of alpha particles

at 3.5 MeV in a 10 keV plasma. With such parameters,
the total energy of the distribution is significantly
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larger than the energy of the bulk fa, despite the
smallness of the fast particles density.

The comparison between the Teff and TA
algorithms is shown in Fig. 6. The time step is
∆t = 0.1 for the Teff algorithm and ∆t = 0.5 for the
TA algorithm. The temperature of the bulk Ta, of the
alpha particles (more precisely the quantity 2/3〈v2〉fb)
and the effective temperature Teff are plotted. The
dotted and dash-dotted curves represent the results
of the Teff algorithm when the correction to the
friction, Eq. (24), is not applied. As anticipated
in section 2, if only Eq. (25) is used, energy and
momentum are conserved, but the price to pay is a
large error in the energy transfer rate between the fast
particles and the bulk. This error vanishes in the limit
∆t → 0, but it would require prohibitively small time
steps. Instead, implementing Eq. (24) restores the
correct transfer rates, and the time evolution of the
distribution becomes virtually identical to the one of
the TA algorithm.
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Figure 6. Relaxation of fast alpha particles on a cold bulk.

Also remarkable is the fact that the effective
temperature, Teff , follows closely Ta, the temperature
of the bulk, during the whole evolution. That
way, the relevant physical process is simulated: the
fast particles, which are weakly collisional, and in
particular almost don’t interact with each other,
mainly see the slow part of the distribution, which
corresponds to fa with temperature Ta. The small
difference between Teff and Ta ensures the conservation
of energy, that is, that all the energy lost by the fast
particles is transferred to the bulk.

6. Implementation in the XTOR-K code

We intend to implement the Teff algorithm in the
XTOR-K code. This requires to go a step further,

from the 3D model detailed above to the full 6D
implementation. There are three issues here. The first
is parallelization. The second is that the algorithm
involves sums on particles which are not located at the
same point in space. The last issue is conservation of
energy and momentum in the XTOR-K sense.

Regarding the first issue, parallelization means
that the particles in a cell of the mesh do not a
priori belong to the same process. As mentioned
in the introduction, this is a serious issue in the
case of the TA algorithm, because it means that the
particles must be sorted and reaffected to the processes
according to their positions, an operation that is very
expensive in communications, CPU time and memory.
However, the Teff algorithm only involves sums over
the particles, which can always be computed separately
on each process, and then summed using Message
Passing Interface (MPI) routines such as MPI Reduce

or MPI Allreduce. Thus, this first issue is easy to solve
using the standard tools of parallel computing.

Regarding the second issue of non-locality, it is
a matter of trade-off between the PIC noise and the
approximation made by using particles at different
locations to define the parameters of the effective
Maxwellian distribution. If they are defined on a
very small spatial scale, they are better localized, but
the number of particles may not be large enough to
obtain a sufficiently small PIC noise. Recall that the
PIC noise is proportional to 1/

√
N , where N is the

number of samples. On the contrary, if we define
them on a too large spatial scale, the PIC noise is
efficiently reduced, but the spatial variations are no
longer modelled accurately. A reasonable trade-off is to
compute Teff and Veff on the same (R,Z, ϕ) mesh that
is used to compute the fluid moments of the kinetic
particles. The cells of this mesh contain typically a
few thousands to tens of thousands of particles, which
is sufficient to obtain an acceptably small PIC noise.
Also, as we have seen, in most cases of interest, Teff is
close to the temperature of the bulk of the distribution,
so its characteristic scale length is the same as that of
the bulk temperature and it varies smoothly on the
mesh if the latter does. Note that in addition to Teff

and Veff , an other parameter defines the Maxwellian
distribution: its density neff . The density neff is taken
to be simply proportional to the number of particles in
the cell.

The last issue of energy and momentum conserva-
tion arises because despite the exact energy and mo-
mentum conservation properties of the Teff algorithm
in the 3 dimensional velocity space, the fluid energy
and momentum are not conserved in the XTOR-K
sense. Indeed, the momentum and energy at a grid
point (Rα, Zβ) in the (R,Z) space, and for a toroidal
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mode number‡ n are given by

jαβ,n =
∑
i

Wi,αβ,nvi (38)

Eαβ,n =
∑
i

Wi,αβ,nv
2
i , (39)

where the sum is on all particles and the weight
functions Wi,αβ,n, which depend on the positions of
the particles, quantify how much each particles is
contributing to the moment in the cell. After a
collision, the particle velocities are changed without
their positions being affected, and one sees that there
is no reason for jαβ,n and Eαβ,n to be equal after the
collision step to their value before collision. In order
to conserve energy and momentum in this sense, it is
possible to transform the velocities in the same spirit
as Eq. (25), according to the following transformation:

v′i ← λiv
′
i + µi, (40)

where primed quantities still denote the quantities
after a collision step. In the 6D PIC code, Eq. (40)
replaces Eq. (25). The quantities λi and µi are
linearly interpolated at the position (R,Z, ϕ) of the
particles from the coefficients λαβ =

∑
n λαβ,ne

−inϕ

and µαβ =
∑
n µαβ,ne

−inϕ, so as to reduce the number
of coefficients to compute and store.

The coefficients λαβ,n and µαβ,n are determined
using the constraints j′αβ,n = jαβ,n and E ′αβ,n = Eαβ,n.
This results in a coupled non-linear system, which we
will now write explicitly. The linear interpolation gives
the nth Fourier component of λi as

λi,n =
∑
αβ

(
ui,αβti,αβλα+1,β+1,n

+(1− ui,αβ)ti,αβλα+1,β,n

+ui,αβ(1− ti,αβ)λαβ+1,n

+(1− ui,αβ)(1− ti,αβ)λαβ,n
)

≡
∑
αβ

Ii,αβλαβ,n (41)

where ui,αβ ( resp. ti,αβ) is the coefficient of the
linear interpolation in the R (resp. Z) direction
(see Fig. 7). The coefficients ui,αβ and ti,αβ both
vanish if the point (Ri, Zi) is not inside the square
(Rα, Zβ), (Rα+1, Zβ), (Rα+1, Zβ+1), (Rα, Zβ+1). For
every particle indexed by i, only 4 coefficients Ii,αβ
are nonzero, and

∑
αβ Ii,αβ = 1.

From now on, we do not write the mode number
index n, in order to obtain a lighter notation. It is
understood that the system of equations we will obtain
for the λ and µ coefficients must be solved for every
value of n. Using the transformed expression Eq. (40)
for the new velocities, we obtain the following set of
equations for the coefficients λαβ and µαβ :

‡ The moments are Fourier discretized in the toroidal direction

Figure 7. Definition of the coefficients for the linear
interpolation

∑
α′β′

(
λα′β′AJα′β′;αβ

+ µα′β′BJα′β′;αβ

)
= jαβ (42)∑

α′β′,α′′β′′

(
λα′β′λα′′β′′AEα′β′,α′′β′′;αβ

+ 2λα′′β′′µα′β′ · BEα′β′,α′′β′′;αβ

+ µα′β′ · µα′′β′′CEα′β′,α′′β′′;αβ

)
= Eαβ (43)

with

AJα′β′;αβ =
∑
i

v′iWi,αβ,nIi,α′β′ (44)

BJα′β′;αβ =
∑
i

Wi,αβ,nIi,α′β′ (45)

AEα′β′,α′′β′′;αβ =
∑
i

v′2i Wi,αβ,nIi,α′β′Ii,α′′β′′ (46)

BEα′β′,α′′β′′;αβ =
∑
i

v′iWi,αβ,nIi,α′β′Ii,α′′β′′ (47)

CEα′β′,α′′β′′;αβ =
∑
i

Wi,αβ,nIi,α′β′Ii,α′′β′′ , (48)

and we used the symmetry relation BEα′β′,α′′β′′;αβ =

BEα′′β′′,α′β′;α,β . Equations (42)-(43) are a coupled non-
linear system, which can be solved using standard
iterative techniques, such as the Newton-Krylov
method, which is already used in the solver of the
fluid part of XTOR-K [4]. The initial guess λ = 1
and µ = 0 can be used in the iterative method. If
some cells are not populated enough, they may cause
the whole system to be singular. When this is the case,
it is sufficient to remove the corresponding nodes from
the system and to set λ = 1 on these nodes. As in
the first part of the algorithm, the computation of Teff

and Veff , determining the coefficients of the non-linear
system only requires MPI reduce type communication,
because they are obtained as a sum over all the
particles in a cell (Eqs. (44)-(48)).

Finally, we sum up the implementation of the
Teff algorithm in the XTOR-K case, including the
communications between processes:
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(i) On each process, the sums Ḡ, H̄, and their
derivatives with respect to T and V, are computed
in every cell of the (R,Z, ϕ) mesh.

(ii) A call to MPI Reduce sums the values of all the
processes, and the values obtained are used at each
iteration of the Newton process. At the end of this
process, the values of neff , Teff and Veff are known
at the center of the cells of the (R,Z, ϕ) mesh.

(iii) The values of neff , Teff and Veff are broadcasted
to all the processes.

(iv) The friction and diffusion coefficients are com-
puted, according to the value of neff , Teff and Veff

at the location of each particle, obtained from neff ,
Teff and Veff at the center of the cells of the mesh
by interpolation. The friction is corrected accord-
ing to Eq. (24). However exact conservation of mo-
mentum and energy is not ensured using Eq. (25)
at this stage.

(v) For each value of the mode number n, the
coefficients of the nonlinear system (42)-(43), AJ ,
BJ , AE , BE and CE , are computed on each process.

(vi) The total coefficients are obtained via MPI reduce.

(vii) The nonlinear system is solved in parallel
using iterative Newton-Krylov technique. The
coefficients λαβ and µαβ are obtained at every
node of the (R,Z) grid and broadcasted to all the
processes.

(viii) Transformation Eq. (40) is applied to each particle
using the local λi and µi, linearly interpolated
from the grid quantities λαβ and µαβ .

7. Discussion

To the authors’ knowledge, the present approach has
never been proposed, let alone used in a parallel full-f
PIC code. Consequently, there remains a large number
of unknowns regarding its applicability to the XTOR-K
code. The present section lists the questions that will
have to be clarified upon implementing the method in
the code.

First, it is worth emphasizing that only a few cases
for the shape of the distribution function have been
studied here. They were chosen for their relevance
(heating by a fast beam or by the alpha particles)
and for the ease in initializing the distribution function
with Maxwellian distributions. The results are found
to be very good in these cases: the conditions for the
model to reproduce the correct energy and momentum
transfer rates, as well as the correct δf , are not very
restrictive. Even when the conditions are not met, and
the transfer rates are wrong by a large amount, the
overall relaxation times are roughly correct (see Fig. 4
c) and d)). However, this does not guarantee that all
possible shapes for the distribution function will give

satisfying results provided that the density of δf is
small. In particular, one of the main objectives of the
collision module in the XTOR-K code is to reproduce
the ion-driven neoclassical transport self-consistently.
Neoclassical transport results from the collisional
friction between passing and trapped particles. Passing
particles can have a large parallel momentum, unlike
trapped particles, which are constrained to have a slow
precessional motion in the toroidal direction. This
induces a discontinuity of the distribution function at
the trapped/passing boundary in the (v‖, v⊥) plane,
which is relaxed by collisions. The specific shape
of the distribution function is responsible for the
detailed properties of the neoclassical transport, and
the present study does not assure that neoclassical
transport will be modelled correctly. Nonetheless, the
good results obtained here allow for some optimism.
Also, analytical formulæ exist in a lot of cases, so it
will be possible to assess the quality of the results
quantitatively when the collisions are implemented in
the XTOR-K code.

Even before turning to neoclassical transport,
the present study does not say anything about
classical transport, which takes place accross a
uniform magnetic field in the presence of density and
temperature gradients. The benchmarking of the
algorithm versus classical and neoclassical transport
theory is left as future work.

Last but not least, we have not discussed in this
paper the issue of multi-species collisions. The XTOR-
K code is meant to evolve kinetically several different
species of ions, while electrons are always kept in
the fluid part of the code. Collisions on electrons
can readily be handled in the following way: their
velocity and temperature being available from the
fluid, one merely needs to give the ions Langevin kicks
for the corresponding electron Maxwellian, without
the slightest consideration of energy and momentum
conservation in a first step; in a second step, the
energy and momentum lost by the ions is computed
and entirely given to the electrons. The electron
distribution function is supposed to remain Maxwellian
all the time. If there are multiple kinetic ion species,
a similar approach could be adopted, where for each
species the Maxwellian considered is the effective
Maxwellian found in the ion-collision step. Under
certain conditions, such as on the density and/or mass
discrepancies, it may even be possible to generalize
the Teff algorithm to multispecies collisions, so that
all species collide on the same effective Maxwellian
distribution. This is left as future work.



A novel approach to ion-ion Langevin self-collisions in particle-in-cell modules applied to hybrid MHD codes 12

8. Conclusion

In this paper, we have shown that it is possible
to write an energy and momentum conserving self-
collision algorithm by requiring the particles to collide
on a single Maxwellian distribution, which is shifted in
temperature and velocity. These shifts are what allows
to model the background reaction satisfactorily. In all
the cases analyzed, including the interaction between
shifted or non-shifted Maxwellian distributions with
different temperatures, and a distribution with a tail
of fast ions, the algorithm compares very well with
the binary collision algorithm of Ref. [12], which is
exact in the limit N → ∞, ∆t → 0. Contrary to
the latter, our algorithm can be implemented in a 6D
domain cloning PIC code, without requiring to sort
the particles belonging to different processes at each
collision time step. Only calls to MPI Reduce type
routines with the operator sum are required in order
to get all the quantities required by the algorithm.
Compared to the local 3-dimensional in velocity space
algorithm, there is an additional computational price
to pay to recover energy and momentum conservation
in the 6-dimensional case, which is the resolution of a
large nonlinear system. We do not expect this price to
be prohibitive.
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Appendix A. Expressions for G, H and their
derivatives

We detail here the expressions of G and H, as well
as their partial derivatives with respect to T and V.
The quantities Ḡ and H̄, as well as the Jacobian of
the system, are obtained by applying the operator 〈·〉f
on the respective quantities, in order to obtain the
average over the distribution. We recall the notation
X = |v −V|/

√
T .

The explicit expressions for G and H are:

G =

4√
π
Xe−X

2 − erf(X)
√
TX

, (A.1)

H = −(v −V)
φ(X)

X3T 3/2
. (A.2)

The derivatives of G are given by

∂G
∂T

=
(4X2 − 1)e−X

2

√
πT 3/2

, (A.3)

∂G
∂V

=
8(v −V)√
πT 3/2

((
1 +

1

4X2

)
e−X

2

−
√
πerf(X)

8X3

)
. (A.4)

The temperature derivative of H is given by

∂H
∂T

=
2(v −V)e−X

2

√
πT 5/2

. (A.5)

The diagonal terms are given by

∂Hi
∂Vi

= −
[
φ(X)

(
3(vi − Vi)2

X2T
− 1

)
− 4√

π
(vi − Vi)2X

T
e−X

2

]
1

X3T 3/2
. (A.6)

Finally, the off-diagonal terms, ∂Hi/∂Vj with i 6=
j, are given by

∂Hi
∂Vj

=
(vi − Vi)(vj − Vj)√

πX5T 5/2

[
4√
π
X3e−X

2

− 3φ(X)

]
(A.7)
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