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Abstract— Typical operators for the decomposition of Boolean
functions in state-of-the-art algorithms are AND, exclusive-OR
(XOR), and a 2-to-1 multiplexer (MUX). We propose a logic de-
composition algorithm that uses the majority-of-three (MAJ) op-
eration. Such decomposition can extend the capabilities of cur-
rent logic decomposition, but only found limited attention in pre-
vious work. Our algorithm makes use of a decomposition rule
based on MAJ. Combined with disjoint-support decomposition,
the algorithm can factorize XOR-Majority Graphs (XMGs), a re-
cently proposed data structure which has XOR, MAJ, and invert-
ers as only logic primitives. XMGs have been applied in various
applications, including (i) exact synthesis aware rewriting, (ii) pre-
optimization for 6-LUT mapping, and (iii) synthesis of quantum
networks. An experimental evaluation shows that our algorithm
leads to better XMGs compared to state-of-the-art algorithms,
which positively affect all these three applications. As one exam-
ple, our experiments show that the proposed method achieves up
to 37.1% with a average of 9.6% reduction on the look-up tables
(LUT) size/depth product applied to the EPFL arithmetic bench-
marks after technology mapping.

I. INTRODUCTION

Boolean decomposition is the task of representing a (com-
plex) Boolean function in terms of a basis consisting of simple
subfunctions. Disjoint-support decomposition (DSD) is a spe-
cial case of Boolean decomposition, which results in a tree of
nodes with non-overlapping supports and inverters as optional
complemented attributes on the edges. Due to its low imple-
mentation cost, DSD received wide interest and is applied to
designing both ASIC and FPGA.

Typical decomposition operators are AND, XOR, and a 2-to-
1 multiplexer (MUX). Algorithms using AND/OR/MUX rep-
resentations are generally exploited to synthesize control logic
(AND/OR-intensive). In contrast, datapath logic, especially
when arithmetic functions are involved, makes extensive use of
XOR and the majority-of-three function 〈xyz〉 = xy ∨ xz ∨ yz
(MAJ, [1]). Moreover, nanotechnologies such as Quantum-Dot
Cellular Automata [2], Spin Wave Devices [3], and Nanomag-
nets [4], realize majority gates as primitive building blocks.
Also, in commonly used cost models for quantum computing,
MAJ can be implemented at the same cost of AND/OR, and
the cost of an XOR gate can be neglected [5]. Therefore, it is
advantageous that logic synthesis methods unify AND/OR and
XOR/MAJ representations to support different circuit designs.

Logic representations that use MAJ as a basic logic primi-
tive have recently been proposed for the synthesis of Boolean
logic functions. The MAJ-based logic representation demon-
strated superior synthesis results for both standard CMOS and
emerging technologies [6]. For instance, XOR-majority graphs
(XMGs, [7]) have XOR, MAJ, and inverters as logic primitives,
which are an extension of the Majority-inverter graphs (MIGs)
introduced in [8].

XMGs offer a compact logic representation when being used
for exact synthesis, since it allows for compact networks in
which each of the gate has a small number of fanins [7]. Exact
synthesis algorithms have been proposed that find an optimum
XMG in terms of size or depth for a given Boolean function.
Due to its high computational complexity, exact synthesis is
generally limited to small functions. However, recent studies
show how the combination of exact synthesis and logic rewrit-
ing led to improvements in And-Inverter Graphs (AIGs) [9, 10],
MIG [11, 6], and XMG size optimization [7]. Logic decom-
position can strengthen exact synthesis, because (i) large net-
work can be decomposed into small subnetworks using DSD
or support-reducing decomposition techniques [12]; (ii) the up-
per bound of optimization objective can be computed by logic
decomposition, which can be provided as the start point for
Satisfiability (SAT) solver to enable incremental improvement.

The early attempts to achieve MAJ logic decomposition in
60’s were concerned with the existence of MAJ decomposi-
tion based on truth tables or Karnaugh map [13, 14]. Due to
their intractable complexity, failed to gain interest later in auto-
mated logic synthesis. Known recent decomposition algorithms
that yield MAJ operation are mostly based on binary decision
diagrams (BDDs) [1, 12, 15]. A constructive library-aware mul-
tilevel logic synthesis approach using symmetries is proposed
in [12], in which MAJ cell is used as one primitive library, the
method integrates the technology-independent and technology-
dependent stages of synthesis to favor ultimate topological and
physical structures. The synthesis flow is later applied in the
resynthesis loop under tight industry constraints [15]. Another
work try to decompose a function F as 〈FaFbFc〉 by construc-
tive method. Even the method searching majority dominator
nodes on BDDs, the solution space is still huge and need high-
effort computation to construct MAJ. The key difference of our
work is that (i) functional decomposition using MAJ with one
disjoint-support is considered instead of library-aware decom-
position, and (ii) truth-tables and mDSD structure are used to
manipulate operations instead of BDD.

In this paper, we extend the capability of current logic decom-
position methods by additionally using MAJ. Our contributions
are as follows:

1. We make use of a MAJ decomposition which resembles
the well-known Shannon decomposition: we show that
under some conditions it is possible to write a function F
as 〈xGH〉 such that G and H do not depend on variable x
(Section III).

2. We propose a decomposition algorithm that combines
DSD, MAJ, and Shannon decomposition to factorize an
XMG from a function provided as truth table (Section IV).

3. We improve exact synthesis aware logic rewriting, in op-
timum or near-optimal XMGs are derived for each LUT
(lookup-table) in a LUT-network (Section V).

Experimental results on Boolean functions reveal that using
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MAJ enables more logic decomposition opportunities. On aver-
age, 87.3% partial-DSD functions (functions which are partially
decomposable by DSD) can be decomposed into XMGs; while
54.7% functions allowing no DSD decomposition whatsoever
(non-DSD) can be decomposed into XMGs. The proposed
logic decomposition algorithm is integrated into an exact syn-
thesis algorithm by decomposing large logic network into small
subnetwork and computing the upper bounds of optimization
objective. Experimental results show that the proposed method
achieves up to 38.1% with a average 8.6% reduction on XMG
size/depth product, while up to 37.1% with a average of 9.6% re-
duction on the look-up tables (LUT) size/depth product, applied
to the EPFL arithmetic benchmarks.

II. BACKGROUND

Boolean Functions Given a set of Boolean variables X =
{x1, . . . , xn}, the support SF of F is the set of Boolean vari-
ables xi ∈ X that have an impact on the output value of F (see,
e.g., [16]). The support size |SF | is the number of its elements.
Two functions G and H are called disjoint-support if they share
no support variables, i.e., SG ∩ SH = ∅.

The positive cofactor of F (x1, . . . , xi, . . . , xn) wrt. variable
xi is Fxi

= F (x1, . . . , 1, . . . , xn), and the negative cofactor is
Fx̄i

= F (x1, . . . , 0, . . . , xn).
The basic Boolean operations considered in this paper are

AND, OR, XOR, and MAJ. For the purposes of distinction, we
refer to all basic operations except MAJ as ordinary operations.
MAJ can be expressed in disjunctive, conjunctive normal form,
and exclusive-or-sum-of-products (ESOP) form as

〈xyz〉 =xy ∨ xz ∨ yz = (x ∨ y)(x ∨ z)(y ∨ z)

=xy ⊕ xz ⊕ yz
(1)

where ‘⊕’ is the XOR operation as

x⊕ y = xȳ ∨ x̄y = (x ∨ y)(x̄ ∨ ȳ) (2)

The MAJ operation is more expressive and includes AND and
OR as special cases: 〈0xy〉 = x ∧ y and 〈1xy〉 = x ∨ y.

Logic Representations Typically, multi-level logic networks
are represent as directed acyclic graphs, called dags, in which
terminal nodes are input variables or constants and internal
nodes are logic operations. Homogeneous logic networks,
which restrict the nodes’ functions to be from a small set
of functions, have attracted more interest due to its simplic-
ity and thus optimization opportunities. Popular instances of
homogeneous logic representations include NAND and NOR
circuits [17], AND-inverter graphs (AIGs) [18], and recently
proposed MIGs [8]. XMGs are an extension of MIGs which
additionally use XOR.

A DSD structure is a data structure to manage the compu-
tational operations of decomposition/composition functions,
which was first introduced by Mishchenko [19]. In this paper,
to obtain an XMG, we use a modified DSD structure, referred
to as mDSD structure, to manage the computational opera-
tions. An mDSD structure over the primary input variables
X = {x1, . . . , xn} is a dag T = (V,E, Y ) with
• a finite set of nodes V = X ∪G, where G = {g1, . . . , gk}

are internal nodes representing the logic operations in the
tree,
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Fig. 1. Example mDSD structure representations (a) F = x1x2 ∨ x3x4

where edges with bubble indicate the complemented attribute (b)
F = 〈x1(x2 ⊕ x3)PRIME(x2, x3, x4)〉.

• a finite multiset of edges E ∈ G × (V × B), where the
first element in the tuple is a source node and the second
element is a pair of a target node and a polarity bit to
indicate the edge complemented attribute,

• and a finite multiset of outputs Y ∈ V ×B.
For each internal node gi ∈ G, the operations can be basic gates
(AND, OR, XOR, MAJ) or prime nodes. Each prime node is
associated with a hexadecimal truth table, which indicates it
needs further functional decomposition. The truth table of a
prime node is called prime function if it cannot be decomposed.
The number of inputs to internal nodes depends on their opera-
tion types. AND, OR, and XOR nodes have two inputs, MAJ
nodes have three inputs, and prime nodes can have multiple or-
dered inputs. We do not consider MUX disjoint decomposition
in order to obtain a data-structure that is closer to the XMG
representation.

If the resulting mDSD structure has no prime nodes, it is
isomorphic to an XMG, which can be directly derived from
it. Consequently, the proposed logic decomposition algorithm
enables further opportunities in the synthesis with XMG net-
works.

Fig. 1 shows examples of two mDSD structures. Note that
OR can be derived from AND using De Morgan’s rule. Func-
tion F = x1x2 ∨ x3x4 in Fig. 1 (a) contains three ANDs
and three inverters, that is F = x1x2 ∧x3x4. The function
F = 〈x1(x2 ⊕ x3)PRIME(x2, x3, x4)〉 in Fig. 1 (b) contains a
prime node, denoted by ‘?’, with truth table 0xCA.

Disjoint-Support Decomposition The decomposition of a
logic function F (x1, . . . , xn) identifies a set of functions Ai(xi)
with no shared input variables, and a function L [20] such that:

F = L(A0, . . . , Ai, . . .)

The DSD is a special case of Boolean logic decomposition.
Function F (X) has a disjoint decomposition when the two
other functions, say G and H , such that:

F (x1, . . . , xn) = H(x1, . . . , xi−1, G(xi, . . . , xn))

F (X) = H(X1, G(X2)), X1 ∪X2 = X X1 ∩X2 = ∅ (3)

In contrast, F is said to be prime function if it cannot be repre-
sented by (3).

Given a set of operations G, a logic function is called full-
DSD if it can be represented by operations in G with disjoint
supports. A function is non-DSD if it is a prime function without
any disjoint support. A function is partial-DSD if it can be
represented as the combination of operations in G with disjoint
supports and prime functions.



Exact Synthesis Exact synthesis is the task of finding an op-
timum logic network representation for a given input specifica-
tion in terms of size or depth [21]. Using size as an optimization
objective, as an example, the idea is to use a SAT solver to check
whether there exists a Boolean network of r gates that realizes
the given functions [22]. The algorithm solves a sequence of
decision problems. The algorithm starts with r = 1 and incre-
mentally increases r until the SAT solver returns a satisfiable
solution. That means the search for a size-optimum network
with r gates requires to solve up to r decision problems using a
SAT solver.

In terms of runtime, most of the overall runtime is typically
required to prove an instance is unsatisfiable for small r. If r is
large enough, the solver will immediately return the solution.
Generally, a timeout value t is given to ask whether the SAT
solver can find an optimum solution within t seconds. If not, the
algorithm terminates and other strategies are required. Although
exact synthesis is efficient for small functions (having up to
6 variables), it can also be implemented for large functions
when being applied to small subnetworks to guarantee local
optimality [22].
NPN Classification Two functions are NPN-equivalent if one
of them can be obtained from the other by Negating inputs,
Permuting inputs, or Negating the output. As an example, all
22n

Boolean functions over n variables can be partitioned into
2, 4, 14, 222, 616 126 NPN classes for n = 1, 2, 3, 4, 5, while
up to 200,253,952,527,185 NPN classes for n = 6 [23].

III. MAJORITY LOGIC DECOMPOSITION

Our work makes use of functional decomposition based on
the majority operation. The aim is to represent F as 〈xGH〉
such that G and H do not depend on x. We make use of the
following decompostion [14]:

Theorem 1. Let F be a Boolean function and x a variable in
F . Then

F = 〈xFxFx̄〉 if, and only if F is monotone. (4)

Proof. If F is monotone, then F xFx̄ = 0. From Shannon’s
decomposition (in XOR-form), we know that F = xFx ⊕ x̄Fx̄.
Also we have 〈xFxFx̄〉 = xFx ⊕ xFx̄ ⊕ FxFx̄ (see Eq. (1)).
We check for which condition these two equations differ:

xFx ⊕ x̄Fx̄ ⊕ xFx ⊕ xFx̄ ⊕ FxFx̄

a⊕a=0
= x̄Fx̄ ⊕ xFx̄ ⊕ FxFx̄

āb⊕ab=b
= Fx̄ ⊕ FxFx̄

a⊕ab=ab̄
= F xFx̄.

Hence the equations only differ whenever F xFx̄ = 1. Be-
cause F is monotone, F x and Fx̄ have an empty intersection.
Therefore, we can write F = 〈xFxFx̄〉.

IV. FUNCTIONAL DECOMPOSITION USING MAJORITY

This section describes our proposed functional decomposi-
tion algorithm. Input to the algorithm is a Boolean function
F : Bn → B represented as truth table. The output is an XMG.

1 function recursive_decomp(F )
2 R←mDSD_init(F );
3 repeat
4 R←func_decomp(R);
5 until exist_no_prime_node(R);
6 return R;
7 function func_decomp(R)
8 for each prime node n in R do
9 f ←truth table of n;

10 if is_basic(f ) then update_basic(n,R);
11 else if is_DSD(f ) then update_DSD(n,R);
12 else if inputs_of_(f) ≤ m then update_exact(n,R);
13 else if is_MAJ(f )∧ flag then update_MAJ(n,R);
14 else update_Shannon(n,R);
15 end
16 return R;

Algorithm 1: Functional decomposition
A. Algorithm Overview

Given a truth table, the algorithm uses exhaustive evaluation
for all prime nodes until it cannot be decomposed. The com-
putational results are operated by the mDSD structure. The
algorithm is outlined in Algorithm 1. After checking special
cases and initialization, it constructs an mDSD structure with
just one prime node. The decomposability of the prime node is
checked according to following conditions in a sequential way.

(i) If the truth table equals the basic functions such as two-
inputs AND, OR, XOR, and three-inputs MAJ, then the
prime node will be replaced by these basic gates (line 10).

(ii) For each input of the prime node, we traverse all input
variables to check whether it can be DSD-decomposed
(line 11).

(iii) If no DSD exists, the prime node must be a prime function,
if the prime function having up to m variables, we call
exact synthesis subroutine described in [21] (line 12).

(iv) If the three previous conditions do not hold, we check
whether Eq.(4) is satisfied to try the proposed MAJ de-
composition. Meanwhile, we set a flag to check whether
the MAJ decomposition wrt. input variable achieves best
support size of cofactors (See Section IV. B for details)
(line 13). Otherwise, the Shannon decomposition is ap-
plied (line 14).

Note that any of these conditions is satisfied, we create a cor-
responding operator node and new prime node with updated
truth table and supports. Finally, the resulting mDSD structure
is returned as the solution. Since Shannon decomposition is
implemented, the mDSD structure is isomorphic to an XMG.

The conditions for MAJ decompositions are demonstrated in
Section III. For the conditions and updating schemes of DSD,
readers can refer to [20, 24] for further details.

B. Heuristic to Select MAJ or Shannon

For prime functions that are not DSD-decomposable, the vari-
ables that satisfy Eq.(4) may not be unique. Different variables
result in distinct cofactors. Suppose both xi ∈ X and xj ∈ X ,
i 6= j, satisfy Eq.(4), then

F = 〈xiFxi
Fx̄i
〉 = 〈xjFxj

Fx̄j
〉 (5)

The support size of distinct cofactors, which is the key issue
to control the subsequent size and depth of mDSD structure,



1 function exact_synthesis(F )
2 r ← 1;
3 repeat
4 res = has_xmg(F, r);
5 if res 6= nil then return res;
6 else r ← r + 1;
7 until timeout;
8 res← recursive_decomp(F );// Algorithm 1

9 r ← size_of(res) −1;
10 while true do
11 res_new ← has_xmg_to(F, r, t);
12 if res_new 6= nil then
13 r ← r − 1; res← res_new
14 else return res;
15 end

Algorithm 2: Exact Synthesis
also may not be equal. Therefore, instead of using MAJ decom-
position as a priority to decompose prime functions, we first
calculate the minimum support size of cofactors, referred to as
ys, of all variables in X . Then, we exploit the variables that sat-
isfy Eq.(4), similarly, and calculate the minimum support size
of cofactors, referred to as ym, among these validated variables.
The MAJ decomposition is implemented only when ym ≤ ys
by setting flag=true in line 12 of Algorithm 1. Otherwise,
Shannon decomposition is applied.

V. LUT-BASED EXACT SYNTHESIS

In this section, we describe the application scenario to LUT-
based size optimization in which logic decomposition can be
employed.

A. Brief Review of LUT-based Optimization

LUT-based mapping is a special case of technology mapping
in which logic networks are covered by k-LUTs. It provides
an attractive way to identify the subnetworks. Given an input
network N , the approach proposed in [7] first maps the network
into k-LUTs, e.g., in a size- or depth-oriented manner. Each
k-LUT represents a k-variable Boolean function which is then
used as input for exact synthesis. The results of exact synthesis
are saved in a database that stores the optimum representations
of the NPN classes, which is referred to as Boolean function
mining. Finally, the locally optimum networks are merged
together to construct an optimized, functionally equivalent net-
work N ′. The optimization process may be iterated on N ′ to
improve results.

The approach is fast for 4-LUT mapping, as all optimum
local subnetworks are precomputed. For k-LUT mappings,
where k > 4, the exact synthesis may take a long time to
find an optimum subnetwork by enumerating of all k-variable
Boolean functions. In the context of LUT-based mapping that
have thousands of LUTs, the execution time and quality of exact
synthesis are both important issues.

B. Improving Exact Synthesis by Logic Decomposition

The computational complexity of LUT-based exact synthesis
is proportional to k. LUT mapping with larger k is of high inter-
est as it increases the size of the subnetwork and enables better
optimization results. To leverage the computational complexity,

we propose a logic decomposition method to improve exact
synthesis performance. The idea is based on two principles:
(i) large network can be decomposed into the combinations of
disjoint-supports and prime functions with fewer variables; (ii)
for networks that cannot be disjointly decomposed, the upper
bounds of the XMG can be computed by Algorithm 1, which
is served as the starting point for exact synthesis to achieve
incremental improvement.

Given a k-inputs function obtained from the LUT, we first
call Algorithm 1 with following settings:
• MAJ- and Shannon-based decomposition are disabled. We

defer such kind of decompositions as we first try DSD for
each function to obtain optimal small subnetworks in size.

• We set m = k in Algorithm 1 line 12.
For functions that are not DSD-decomposable, Algorithm 2
is invoked to return a solution and all decompostion types are
enabled.

There are two parts in Algorithm 2. In lines 2–7, we start
from a lower bound to check whether there exists an optimum
network within given timeout value constraint. If the timeout
exceeds, the first part stops and reports a timeout, we then try
heuristic in lines 8–15 to improve the upper bounds incremen-
tally. The two functions,
• has_xmg(F, r) returns an XMG if the SAT solver

checked Boolean function F can be realized by a Boolean
network of r gates;

• has_xmg_to(F, r, t) acts the same with
has_xmg(F, r), but terminates with no results af-
ter t seconds.

Timeout Note that the different timeout strategies are used
in the two parts. The timeout value is set to control the loop
(lines 2–7) in terms of the first part, while control each call
of has_xmg_to(F, r, t) in the second one. Starting from
r = 1, the former case behaves as if has_xmg(F, r) returns
unsatisfiable and increments r by 1. Once r is large enough that
the problem is satisfiable, an optimum solution may be found
within the time limit. In contrast, given r an upper bound of
XMG size, we decrease r by 1 to incremental improve the XMG
size if has_xmg(F, r, t) returns satisfiable solution within t
seconds.

Computing Upper Bound Given a Boolean function F , Al-
gorithm 1 will return an XMG quickly if we set the exact syn-
thesis threshold as m = 4. To this end, all decomposition types
are used sequentially to obtain an XMG. It should be pointed
out that F must be a prime function in this context, as exact
synthesis are only applied to prime functions. During logic de-
composition of F , the first step would be exact synthesis, MAJ,
or Shannon decomposition, then the subsequent decomposition
steps could be any of decomposition types. The worst case is
the XMG used as the upper bound be returned as a solution, if
no more improvements can be achieved by decreasing r.

VI. EXPERIMENTAL RESULTS

We evaluate the proposed functional decomposition method
in the following sections. All experiments have been carried
out on an Intel i7-4870HQ CPU at 2.50 GHz with 16 GB of
main memory.



TABLE I
DECOMPOSITION RESULTS ON DSD BENCHMARKS

Sets Inputs #Func. FULL %(full) PART %(part) NONE %(none)

Pa
rt

ia
l

6 1M 983,017 98.3 16,983 1.7 – –
8 1M 954,870 95.5 45,130 4.5 – –
10 100K 92,392 92.4 7,608 7.6 – –
12 100K 88,645 88.6 11,355 11.4 – –
14 10K 7,581 75.8 2,419 24.2 – –
16 10K 7,294 72.9 2,706 27.1 – –

Avg. 87.3 12.7

N
on

e

6 1M 929,116 92.9 59,423 5.9 11,461 1.1
8 1M 692,390 69.2 264,884 26.5 42,726 4.3
10 100K 49,731 49.7 42,490 42.5 7,779 7.8
12 100K 47,478 47.5 47,810 47.8 4,712 4.7
14 10K 3,192 31.9 6,084 60.8 724 7.2
16 10K 3,710 37.1 5,990 59.9 300 3.0

Avg. 54.7 40.6 4.7

A. Evaluation on DSD benchmarks

We implemented our logic decomposition approach in C++
on top of the logic synthesis framework CirKit.1 The DSD
benchmarks2 considered are enumerated partial-DSD and non-
DSD functions with 6–16 inputs, which are not fully DSD-
decomposable using only AND, OR, and XOR. Our decompo-
sition results are verified by simulating the truth tables of the
resulting mDSD structure or XMG.

To exploit the decomposition capability of MAJ, here we first
disable exact synthesis and Shannon decomposition in Algo-
rithm 1. The experimental results are shown in Table I, which
includes two benchmark sets. As ‘#Func.’ indicates, there
are 1 million 6-input functions, while 10 thousands 16-input
functions, et al. The last six columns give the numbers and
percentages of functions that contain no prime nodes (FULL,
isomorphic to an XMG), just one prime node (NONE, no de-
composition exist), and the others which does not belong to
FULL and NONE (PART, the combination of prime nodes and
basic gates). On average, 87.3% functions that are partially
DSD decomposable can be decomposed into XMGs (FULL).
Further, 54.7% functions exhibiting no possibility for DSD
decomposition can be decomposed into XMGs (FULL), and
40.6% be decomposed into PART, after introducing MAJ de-
composition.

As the number of input variables increased, the percentage
of FULL functions are generally decreased. For partial-DSD
functions set, up to 98.3% functions of 1 million 6-inputs bench-
mark are FULL by our method. The minimum percentage is
the 16-inputs benchmark, which achieves 72.9% FULL func-
tions. There are only 4.7% functions are still not decomposable
(NONE).

To evaluate the performance of MAJ decomposition on the
XMG size and depth, we enable all decomposition types in Al-
gorithm 1 and set m = 4 for exact synthesis. The experimental
results on non-DSD benchmarks are shown in Table II, where
size and depth are the total amount of gates and depth of XMGs
by logic decomposition. The baseline is obtained by evaluating
the XMGs which are generated by logic decomposition method
without MAJ decomposition. It is shown that our method can
improve size and depth by 5.4% and 5.9%, respectively.

1github.com/msoeken/cirkit
2people.eecs.berkeley.edu/~alanmi/temp5

TABLE II
XMG DEPTH AND SIZE IMPROVEMENT BY MAJ DECOMPOSITION

Set Inputs #Func. Base Improvement (%)
Size Depth Size Depth

N
on

e

6 1M 7,924,723 4,583,829 4.4 3.2
8 1M 13,661,959 6,989,645 7.3 6.2
10 100K 1,962,317 839,971 5.1 5.0
12 100K 2,906,682 1,023,392 7.4 6.8
14 10K 408,819 130,521 4.0 6.9
16 10K 610,317 148,447 4.5 7.0

Avg. 5.4 5.9

B. Evaluation on EPFL benchmarks

We implemented the method described in Section V to show
the effectiveness of the exact synthesis based optimization ap-
proaches to 6-LUT mapping. The EPFL arithmetic benchmark3

are considered for comparison with [7]. Both our method
and [7] start with the same input networks, containing only
AND gates. We set m = 6, and timeout value to one minute in
Algorithm 2. In terms of k-LUT mapping, we focus on default
technology mapping using ABC command if -K 6.

As shown by Table III, XMG size or depth can be improved
by 9 out of 10 benchmarks, except Sine, in which we got in-
crease in both XMG size and depth. By computing the geomet-
ric mean, taken over the size and depth of the networks, our
method performs 4.8% reduction of geomean, and 8.6% reduc-
tion of size/depth product than [7]. We also compare the results
after 6-LUT mapping. Generally, XMG size optimization ad-
vantage also carries over into LUT mapping improvements. The
results show that both LUT size and depth can be improved.
In total, our method achieves 5.8% reduction of geomean of
LUT size and depth, and 9.6% reduction of LUT size/depth
product than [7]. However, as a recent research pointed out [25],
optimization of the size and depth of a logic network may not
necessarily result in reduced LUT size and depth. The statement
is also hold for our experiment. For instance, Sine performs less
well on both XMG size and depth, but achieves improvement of
LUT size and depth. In contrast, Multiplier can be optimized in
terms of XMG size and depth, whereas results in increasement
of LUT size with exactly the same LUT depth.

C. Evaluation on Quantum Reciprocal Operation

In [5] a synthesis algorithm called DXS (direct XMG syn-
thesis) has been proposed to realize quantum networks based
on an XMGs. The general idea is to map each gate in an
XMG into a quantum network and then compose these net-
works. However, quantum computers are limited to perform
reversible computations which requires to store intermediate
results on auxiliary qubits. Besides the number of qubits, the
cost of a quantum network is measured in terms of the number
of T gates. The T gate accounts for the far most complex exe-
cution in a quantum computer [26]. We show how the improved
XMGs affect the quality of the network by applying DXS to
XMGs obtained from [7] and from the proposed method. As
benchmarks we used the integer reciprocal design INTDIV(n)
for n = 16, 32, 64, 128 [5]. Table IV lists the results, where
‘Qb’ means number of qubits and ‘Tg’ means number of T
gates. DXS comes in two variants: Normal and Bennett. The
latter typically leads to fewer qubits for the sake of a higher

3lsi.epfl.ch/benchmarks

github.com/msoeken/cirkit
people.eecs.berkeley.edu/~alanmi/temp5
lsi.epfl.ch/benchmarks


TABLE III
USING EXACT SYNTHESIS AND LOGIC DECOMPOSITION FOR XMG-SIZE OPTIMIZATION

Benchmarks I/O Previous method [7] Our Method
XMG 6-LUT XMG 6-LUT

Size Depth LUT Size LUT Depth Size Depth LUT Size LUT Depth
Adder 256/129 383 129 192 64 383 128 192 64
Barrel Shifter 135/128 2858 17 512 4 2149 14 512 4
Divisor 128/128 39768 4310 13036 1097 37003 4243 11189 862
Hypotenuse 256/128 99927 9017 44657 4455 99428 8755 44615 4293
Log2 32/32 23006 219 7736 84 22957 213 7573 78
Max 512/130 1982 254 744 90 1938 200 766 55
Multiplier 128/128 16575 136 5388 64 16357 133 5554 64
Sine 24/25 3825 121 1460 42 3896 140 1400 39
Square-root 128/64 17369 6149 6161 1115 17187 5169 6234 1028
Square 64/128 8527 155 3846 63 8325 156 3813 61

Avg. 21,422 2,050.7 8,373.2 707.8 20,962.3 1,915.1 8,184.8 654.8
GeoMean 1,807.5 633.9 1,721.6 597.4

Size · Depth 43,930,095.4 5,926,551 40,144,900.7 5,359,407

6-LUT indicates the LUT size and depth after 6-LUT technology mapping using ABC command if -K 6

TABLE IV
RESULTS ON QUANTUM CIRCUITS REALIZATION OF RECIPROCAL

OPERATION (INTDIV(n))

n Previous method [5] Our method (% improvement)
time(s) Normal Bennett time(s) Normal (%) Bennett (%)

Qb T g Qb T g Qb T g Qb T g
16 0.82 1,109 10,976 494 15,526 643.16 9.4 11.4 13.2 8.9
32 1.42 4,590 44,380 1,929 62,538 233.30 6.1 8.5 11.6 5.6
64 2.07 18,090 169,988 7,337 239,386 649.59 2.3 3.4 7.2 0.5

128 2.68 70,712 650,916 28,056 916,692 763.29 1.3 2.1 4.9 -0.5
Avg. 4.8 6.3 9.2 3.6

number of T gates. Note that we did not count the CPU time of
precomputed optimum XMG library construction in [5]. Hence,
the proposed approach requires more runtime as indicated in
the Table, which includes both the time to compute the XMG
and the time used by DXS, which is negligible. However, it can
be seen that due to the more compact XMGs both the qubits
and number of T gates improves (except for the 128-bit version,
for which the number of T gates slightly decreases).

VII. CONCLUSION

In this paper we make use of a decomposition based on MAJ
and proposed an algorithm that combines the decomposition
with conventional DSD decomposition in order to derive XMGs.
The introducing of MAJ decomposition extends the capability
of logic decomposition. The 54.7% functions exhibiting no pos-
sibility for DSD decomposition can be decomposed into XMGs.
The logic decomposition method is applied to exact synthesis
aware rewriting and quantum network synthesis. Experimental
results show the effectiveness of our method on both XMG/LUT
size and depth optimization, and the number of qubits and T
gates optimization in quantum network.
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