
A Best-Fit Mapping Algorithm to Facilitate
ESOP-Decomposition in Clifford+T

Quantum Network Synthesis

Giulia Meuli∗ Mathias Soeken∗ Martin Roetteler† Nathan Wiebe† Giovanni De Micheli∗
∗Integrated Systems Laboratory, EPFL, Lausanne, Switzerland †Microsoft Research, Redmond, WA, USA

Abstract—Currently, there is a large research interest and a
significant economical effort to build the first practical quan-
tum computer. Such quantum computers promise to exceed
the capabilities of conventional computers in fields such as
computational chemistry, machine learning and cryptanalysis.
Automated methods to map logic designs to quantum networks
are crucial to fully realizing this dream, however, existing methods
can be expensive both in computational time as well as in the
size of the resultant quantum networks. This work introduces
an efficient method to map reversible single-target gates into
a universal set of quantum gates (Clifford+T). This mapping
method is called best-fit mapping and aims at reducing the cost
of the resulting quantum network. It exploits k-LUT mapping
and the existence of clean ancilla qubits to decompose a large
single-target gate into a set of smaller single-target gates. In
addition this work proposes a post-synthesis optimization method
to reduce the cost of the final quantum network, based on two
cost-minimization properties. Results show a cost reduction for
the synthesized EPFL benchmark up to 53% in the number T
gates.

I. INTRODUCTION

The recent prospect of practical quantum computers [1],
[2], [3] is pushing the design automation community to develop
suitable tools that are able to address the peculiarities of
quantum circuits. In fact, there are many aspects in which
quantum computing differs from standard computing. First,
quantum computers process qubits instead of bits. They do
not only have the classical values 0 and 1, but can represent a
superposition of these. The state of a qubit cannot be copied,
so it is impossible to have a quantum gate with multiple fanout.
All quantum circuits are reversible. During design it is possible
to consider all the inputs as Boolean values—even though
when embedded as part of a quantum algorithm entangled
states in superposition are being applied. A quantum circuit
performing a Boolean function is called reversible quantum
network. This network is composed by reversible gates. In
this paper, we consider the frequently used single-target gates
and multiple-controlled Toffoli gates. Those are high-level
abstractions of the real operations that can be performed on
qubits. During design it is necessary to lower the level of
abstraction and map this reversible gates into a universal set
of quantum gates, the Clifford+T set [4], in an efficient way.

In this paper, we present a method that maps single-target
gates into Clifford+T networks by using k-LUT mapping. By
making use of clean ancilla qubits, i.e., qubits being initialized
to a constant value, it is possible to map a large single-
target gate into a sequence of smaller single-target gates.
Eventually, the small single-target gates can be mapped into

Clifford+T networks by applying ESOP (exlusive sum-of-
products) decomposition [5]. To further reduce the costs of the
Clifford+T networks, we propose a post-synthesis optimization
method based on graph matching that optimizes the Toffoli
networks resulting from ESOP decomposition.

We evaluate our mapping algorithm within the LUT-based
hierarchical reversible logic synthesis (LHRS) algorithm pro-
posed in [6]. LHRS is a reversible synthesis algorithm that
maps classical (irreversible) logic networks into reversible net-
works composed of single-target gates. Embedded into LHRS,
experimental results show that we can obtain a reduction of
up to 53% in the number of T gates when synthesizing the
EPFL arithmetic benchmarks. Experiments also show that the
proposed mapping approach can significantly speed up the
execution time of LHRS.

II. PRELIMINARIES

A. Reversible Network

A reversible network is a set of reversible gates realizing
a reversible function. A multi-output Boolean function is
reversible if each input pattern uniquely maps to an output
pattern. To accomplish this specification, a reversible function
has the same number of inputs and outputs. In addition, a
reversible network that corresponds to a quantum network
is required to be garbage free: intermediate values must not
appear at any output terminal of the network. This is because
the quantum networks typically need to be run on a superpo-
sition of different inputs and measuring and resetting garbage
bits can betray the path that the quantum computer took,
which can collapse the quantum state that encodes the data.
To describe reversible gates, consider the following notation.
A reversible gate performs an n-variable reversible function
which is applied to qubits (lines) X = {1, . . . , n}. We further
consider literals based on the numbers in X , i.e., given x ∈ X ,
we can have l as the positive literal and l̄ as the negative of
x. Note that ¯̄l = l, and we define |l| = |l̄| = x. Finally, let
l⊕ 0 = l and l⊕ 1 = l̄. Also, for a given set of literals L, we
use |L| = {|l| | l ∈ L} to refer to all variables of L.

Definition 1 (Single-target gate): Let c : Bk → B be
a Boolean function, called control function. Also, let C =
{c1, . . . , ck} ⊂ X be a set of control lines and let t /∈ C be
a target line. Then the single-target gate Tc(C, t) : Bn → Bn

is a reversible Boolean function which maps

(x1, . . . , xn) 7→
{
xi if i 6= t,
xt ⊕ c(xc1 , . . . , xck) otherwise.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148035452?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

prime6

x1 x3x2 x5x4 x6

(a) And-inverter graph.

x1 x3x2 x5x4 x6

prime6

(b) 3-LUT mapping.

x1 x3x2 x5x4 x6

prime6

(c) 4-LUT mapping.

Fig. 1. LUT mapping for the function prime6.

In other words, it inverts the target, if and only if the control
function evaluates to true.

Definition 2 (Multiple-controlled Toffoli gate): If c can be
expressed as a single product term c =

∧k
i=1(xci ⊕ pi) in

a single-target gate Tc(C, t), where pi are the polarities of
the controls, then we call the gate a multiple-controlled Toffoli
gate. Since we consider these gates as special cases, we intro-
duce a special notation T(C ′, t) where C ′ = {l⊕ pl | l ∈ C}.
An example of this special notation is in Fig. 2. For Toffoli
gates, we will use C ′ and c interchangeably.

B. LUT mapping

In algorithms such as LHRS, the control function of
a single-target gate is represented symbolically, e.g., using
an and-inverter graph (AIG). An AIG is a logic network
composed of AND gates and inverters (see Fig. 1(a) for
an AIG representing the function prime6(x1, . . . , x6) =
[(x6 . . . x1)2 is prime]). Each non-terminal node in an AIG
represents an AND gate with two operands and an edge
between two nodes is complemented when is drawn dashed.

The k-LUT mapping describes the problem of mapping
an AIG into k-LUTs, which are gates with k inputs that can
represent any k-input Boolean function. Several algorithms
have been presented to obtain a k-LUT mapping (see, e.g., [7],
[8], [9]). Figs. 1(b) and 1(c) show a 3-LUT and 4-LUT
mapping of the AIG. Note that vertices with the same color
belong to the same LUT. There are cases in which nodes of
the initial AIG were copied such that they can belong to two
different LUTs. The 3-LUT and 4-LUT mappings contain 12
and 4 LUTs, respectively.

III. MAPPING OF SINGLE-TARGET GATES

We target the synthesis of Clifford+T circuits, a gate library
consisting of the 2-qubit CNOT (controlled NOT) gate, and
the single-qubit Hadamard (H) and T -gate. The T gate is by

1
2
3

Fig. 2. Notations for the multiple-controlled Toffoli: the left gate is
T1∧2({1, 2}, 3) in the complete notation and T ({1, 2}, 3) in the special
notation; for the second gate T1∧2({1, 2}, 3) and T ({1, 2}, 3).

x1

x2

x3

x4

x5

x6

0

p
ri
m
e 6

=

x1

x2

x3

x4

x5

x6

prime6

Fig. 3. Example of mapping a single-target gate into Toffoli gates using
ESOP decomposition.

far the most expensive in fault tolerant quantum computing,
so that it is often the only one defining the cost of a quantum
algorithm [10]. The number of T -gates in the quantum network
is called T -count and we are interested in minimizing this
quantity. In this section we propose mapping techniques that
solve the following problem in reversible logic and quantum
circuit synthesis.

Problem 1: Given a single-target gate Tc(C, t), a set of
clean ancilla lines Xclean, find a Clifford+T network that
realizes the function c on line t and restores the initial values
on all other lines.

Ancillae are helper lines that can be used to map reversible
gates into quantum gates more efficiently. In large reversible
circuits many ancilla lines are available because each reversible
gate locally interacts only with a portion of all the qubits. If
the value of the ancilla is known to be zero when used in
the realization of a gate, then the ancilla is called clean. We
first introduce existing mapping methods. The first two are
direct methods and do not make use of any ancilla line: one
based on ESOP decomposition, and one based on precomputed
optimal networks. We propose then a novel method which
exploits ancillae by means of k-LUT networks, selecting the
most suitable LUT size. This novel method is called best-fit
mapping of single-target gates.

A. Direct Mapping Methods

ESOP-decomposition based mapping. One can always de-
compose a single-target gate Tc({x1, . . . , xk}, xk+1) into a
cascade of Toffoli gates

Tc1(X1, xk+1) ◦ Tc2(X2, xk+1) ◦ · · · ◦ Tcl(Xl, xk+1),

where c = c1 ⊕ c2 ⊕ · · · ⊕ cl, each ci is a product term or
1, Xi ⊆ {x1, . . . , xk} is the support of ci and, ◦ performs

x1

x2

x3

x4

x5

x6

0

p
ri
m
e 6

=

0
0
0

x1

x2

x3

x4

x5

x6

0
0
0
prime6

Fig. 4. Example of mapping a single-target gate into Toffoli gates using LUT
mapping.

a function composition. This decomposition of c is also
referred to as ESOP decomposition [11], [12], [13]. ESOP
minimization techniques can be applied to reduce the size
of the ESOP expression. An example is given in Fig. 3.
Eventually, each of the multiple-controlled Toffoli gates is
mapped into a Clifford+T with the mapping described in [10].

Near-optimum mapping. For small functions it is practical
to store optimal Clifford+T realizations, found by applying
optimization algorithms such as [14], [15], [16], [17], and store
them into a database. In order to reduce the number of optimal
results to be stored, affine classification of Boolean function is
exploited [18], [19], [20]. There are 22

n

Boolean functions on
n variables and they can be partitioned into equivalence classes
by allowing transformations on the inputs that only require
CNOT gates and therefore do not account to the number of T
gates in the quantum circuit. Two functions that are equivalent
under the condition of affine equivalence under negation are
called AN-equivalent. The exploitation of this classification
method enables to scale the use of the database up to 5 input-
LUTs. Indeed for n = 1, 2, 3, 4 and 5 there are only 2, 3, 6, 18
and 206 classes of AN-equivalent functions, respectively [21].

B. LUT-based Mapping Methods

We describe techniques that exploit LUT mapping to trans-
late a single-target gate into a network of multiple-controlled
Toffoli gates. A LUT-based mapping method performs k-
LUT mapping, which consists of dividing the network into
subnetworks, each one having maximum k inputs. If the
mapped LUT network is composed of ` LUTs, then it is
possible to map the single-target gate into a network of single-
target gates with at most k inputs, by using `−1 clean ancilla
lines. Fig. 4 shows how the LUT mapping in Fig. 1(c), where
k = 4, can be mapped into a single-target gates reversible
network. Note that for the LUT mapping in Fig. 1(b), where
k = 3, 11 clean ancillae are needed.

Hybrid LUT-based mapping. The hybrid method is a previ-
ously proposed LUT-based mapping that aims at exploiting the
near-optimal precomputed networks [6]. Given the input AIG it
performs 4-LUT mapping to match the 4-input functions affine
equivalent classes. However, it can happen that there are not
enough clean ancillae to store all the intermediate values of the
mapping. In that case the hybrid method merges two LUTs
into a larger one, thereby requiring one fewer clean ancilla.
This procedure is repeated until the number of available clean
ancillae suffices. This procedure leads to one very large LUT.
In fact, this LUT can have more inputs than primary inputs.

Best-fit mapping. The best-fit mapping method addresses
the limitations of both the direct and the hybrid methods. It

x1

x2

x3

x4

x5

x6

(a)

=

(b)

=

(c)

=

x1

x2

x3

x4

x5

y1

Fig. 5. Rule 2 example. Equivalence rules from [22]: (a) D1, (b) D7, (c) D1.

exploits extra ancillae, it applies near-optimal pre-computed
networks, and reduces the size of the functions that are directly
synthesized. The idea is to find a suitable value for k. This
value is chosen to be the smallest for which the LUT size
fits the available number of clean ancillae. Starting from
k = 4, k is incremented until the above mentioned condition is
satisfied. Once the mapping is obtained, each k-LUT needs to
be mapped in Clifford+T gates. If the number of a LUT’s
inputs is small enough, the LUT can be replaced by the
precomputed optimal Clifford+T network, otherwise ESOP-
based decomposition is applied.

IV. POST-SYNTHESIS OPTIMIZATION

In addition we propose a technique to reduce the T -count
of reversible networks composed of multiple-controlled Toffoli
gates. It is particularly useful for our best-fit technique. In
fact, the optimization is effective for reversible circuits ob-
tained with ESOP-decomposition; since these circuits consist
of a set of multiple-controlled Toffoli gates all acting on the
same target lines. Networks with these characteristics can be
optimized exploiting gate pair combinations described in the
next section. In addition it is important to note that the position
of a gate is irrelevant in these networks, in fact all the gates
have the same target and for this reason they can be moved in
any order.

A. Exploited Properties

The rules here described are possible ways to combine two
gates with specific characteristics of their control lines. All the
rules apply on two gates which share the same target line.

Rule 1: Let g1 = g2 = T(C, t). Then costs(g1 ◦ g2) = 0.

If two gates are identical, they can both be removed from the
network. This property is called deletion rule in [22].

Rule 2: Let g1 = T(C1, t) and g2 = T(C2, t) with A =
C1 ∩ C2 and B = C2 ∩ C1.
If the following conditions are verified:

if l ∈ C1 then l̄ 6∈ C2,

if l ∈ C2 then l̄ 6∈ C1,

#B = 1, B = {c}

where #B is the cardinality of the set of controls B. Then
g1 ◦ g2 = T(A, |c|) ◦ g2 ◦ T(A, |c|).

Rule 2 is a generalization of some rules presented in [23]. An
example is shown in Fig. 5, explaining the rules using identities
from [22]. Given two Toffoli gates, it applies if one gate has
a single control on a qubit that is not a control of the other
one. In the example this is x5. It is possible to substitute the
second gate with two identical gates applied before and after

x1

x2

x3

x4

(a)

=

(b)

=

x1

x2

x3

y1

Fig. 6. Rule 3 example. Equivalence rules from [22]: (a) D2, (b) D3.

the remaining one. They are controlled by the ones not in
common with the first gate. This rule leads to cost reduction
only if the two initial gates have some identical controls in
common: x1 and x2 in the example.

Rule 3 ([24]): Let g1 = T(C1, t) and g2 = T(C2, t) with
#C1 = #C2, i.e., g1 and g2 share the same set of controls.
Let D = C1 ∩ C2 = {c1, . . . , ck} be the set of controls that
occur in different polarities in g1 and g2, and let #D > 0.
Then

g1 ◦ g2 =
k

©
i=2

T(c1, |ci|) ◦ T(C1 ∩ C2, t) ◦
k

©
i=2

T(c1, |ci|).

An example is shown in Fig. 6. This rule applies when the
first and the second gates have controls on the same lines, with
different polarities. It uses two identical CNOT gates before
and after the initial gates to complement the polarity of one
control (see rule D2 in [22]). This is done until only one control
with different polarity remains. Then the pair is equivalent to
a single gate with this control removed and all the identical
controls kept (see rule D3 in [22]).

B. Graph Matching Problem

Direct single-target gate mapping using ESOP decompo-
sition leads to reversible networks with multiple-controlled
Toffoli gates that all have the same target line. There are
many pair of gates that could be combined and this paragraph
describes the algorithm used to select which pairs to combine.
The exploited method derives an optimization graph from the
circuit and performs graph matching in a similar fashion to
how it has been done in [25].

Definition 3 (Optimization graph): Given a set of gener-
alized Toffoli gates g1 = T(C1, t), g2 = T(C2, t), . . . , gm =
T(Cm, t), we define the undirected graph G = (V,E) with
edge weights q : E → N0 as follows:

V = {g1, . . . , gm}
E = {{v, w} | v, w ∈ V ∧

costs(v ◦ w) < costs(v) + costs(w)}
q(e) = costs(v) + costs(w)− costs(v ◦ w)

where e = {v, w}

In other words, vertices in G are all gates and two gates are
connected by an edge if their cost when combined together
is smaller than their accumulated individual cost. The weights
on an edge e = (v, w) describe the cost savings that can be
achieved when composing the gates v and w together. We refer
to this graph as optimization graph. We use graph matching
to find the set of graph edges corresponding to the set of
combined pairs that leads to the largest gain in terms of cost.
The following theorem follows trivially.

Theorem 1: Let G = (V,E) be an optimization graph as
defined above. Let M = {e1, . . . , ej} be a graph matching for
G. Then it is possible to realize all generalized Toffoli gates
in a circuit with

costs(g1 ◦ · · · ◦ gm) =
∑

(v,w)∈M

costs(v ◦ w) +
∑
v∈Vr

costs(v)

where Vr = V \ (e1 ∪ · · · ∪ ej).

A greedy algorithm is used to compute a graph matching with
a maximal weight. Given the matching, that corresponds to a
set of edges in the optimization graph. Each edge refers to
a pair of Toffoli gates in the initial circuit to be combined
together exploiting Rule 2 or 3. The final circuit is computed
considering the reduced cost of combined gates.

V. RESULTS

We implemented the algorithm in C++ on top of
RevKit [26].1 Experiments were run on an Intel Core i3 with
3.06 GHz and 4 GB RAM running Mac OS X Yosemite.

A. Best-Fit Mapping Method

The efficiency of the best-fit mapping method is compared
to the hybrid mapping, a method already implemented in
LHRS [6]. The EPFL arithmetic benchmark is used for the
evaluation and the results are shown in Table I. For each
benchmark the table shows the results for three different
methods: HY – all single-target gates with hybrid mapping;
BF – all single-target gates with best-fit mapping, PB – pick-
best method. Pick-best selects, for every single-target gate, the
one between the hybrid and the best-fit technique which results
in the lower T -count. All the final networks are post-optimized
with the method proposed in Section IV.

In order to perform the synthesis of a complex circuit, the
LHRS framework performs an initial LUT-mapping, then as-
sociates each LUT with a single-target gate to be synthesized.
This part of the procedure is independent from the mapping
method evaluation, but the selection of the k1 parameter for
this initial LUT mapping has an impact on the complexity of
the single-target gates and on the number of qubits. Different
initial k1 selections are shown in Table I: 16-LUT, 22-LUT
and 28-LUT. It is important to not confuse this k1 parameter,
that is used to map the initial benchmark AIG into single-target
gates, with the k used for mapping of each single-target gate
into Clifford+T networks.

The results show that the best-fit method is always superior
to the hybrid method in terms of the number of T gates in the
final network. While the second method applies best-fit to all
the single-target gates that compose the circuit; the pick-best
method selects for each single-target gate the one between
hybrid and best-fit that results in the smaller cost. Most of
the time using pick-best helps in getting a smaller T -count,
even if the gain is always small. This proves that for most of
the possible, isolated, single-target gates the mapping method
best-fit is superior to the hybrid method.

All the simulations have been performed with a timeout
of 30 minutes. The LUT-based mapping techniques are par-
ticularly slow whenever direct mapping has to be performed.

1https://msoeken.github.io/revkit.html

This happens whenever the number of inputs of the LUT
exceeds the AN-classification capabilities. Even if there is
not any runtime difference between the three methods with
a fixed number of available qubits; the situation changes when
some extra qubits are available for the synthesis. In the LHRS
framework, the number of available ancillae for the mapping
of each single-target gate is fixed by means of the first LUT-
mapping. Nevertheless, because the mapping algorithm can
also be used outside the proposed framework, it includes the
possibility to specify a different number of ancillae. In this
experiment this is used to show the best-fit algorithm superior
capabilities in exploiting additional ancillae. Indeed the best-
fit mapping, varying its k parameter, is able to take advantage
from extra qubits, reducing the number and the size of the
LUTs that are mapped with the direct method. Note that some
of the results in hyp, log2, multiplier, and square are marked
with the symbols ? and ??. This means that it is possible to
get these results by adding 20 qubits or 40 qubits, respectively,
whenever running into a timeout. Wherever in the table there
is a timeout indication, that means that not even with 40
additional qubits a mapping is possible in 30 minutes. This
is often the case for the hybrid method.

B. Post-Synthesis Optimization

The post-synthesis optimization technique proposed in Sec-
tion IV is evaluated on the EPFL arithmetic benchmark. It is
synthesized with the LHRS framework with direct mapping
method. Results are shown in Table II and Table III. The
first table shows a comparison between greedy and an exact
matching algorithms, for example the blossom algorithm [27],
with k1 = 6 . A small k1 is chosen in order to be able to
compute the exact matching in a reasonable time. It proves
that the greedy algorithm, whose complexity is Θ(E) where
E is the number of edges in the graph, is capable of obtaining
satisfying maximal matching. The exact approach only leads
to very small improvements, always less than 1% in the case
of k1 = 6. We are then confident that for the purpose of the
reversible circuit optimization, the greedy approach is accurate
enough and that the results of the exact approach are not worth
the complexity it has. The second table shows the case in which
the initial LUT mapping has been performed with k1 = 16.
With a larger k1, each single-target gate has a more complex
control function in terms of number of gates and inputs and
more room for improvements. The optimization leads to a 53%
reduction in terms of T -count.

VI. CONCLUSION

We propose an efficient method to map single-target gates
into Clifford+T logic networks. This method has been inte-
grated in the open-source LHRS framework for Hierarchical
Reversible Synthesis and its performances have been compared
with other mapping methods proving its superiority. We also
provide a post-synthesis optimization method to reduce the
cost of reversible quantum networks, reaching up to 53%
reduction in T -count. Both the proposed method have been
evaluated on the EPFL arithmetic benchmark.

Acknowledgments: This research was supported by H2020-
ERC-2014-ADG 669354 CyberCare and the Swiss Na-
tional Science Foundation (200021-169084 MAJesty and and
200021-146600).

REFERENCES

[1] S. Debnath et al., “Demonstration of a small programmable quantum
computer with atomic qubits,” Nature, 2016.

[2] P. J. J. O’Malley et al., “Scalable quantum simulation of molecular
energies,” PRX, 2016.

[3] E. A. Martinez et al., “Real-time dynamics of lattice gauge theories
with a few-qubit quantum computer,” NATURE, 2016.

[4] N. M. Linke et al., “Experimental comparison of two quantum com-
puting architectures,” PNAS, 2017.

[5] K. Fazel et al., “ESOP-based Toffoli gate cascade generation,” in
PACRIM, 2007.

[6] M. Soeken et al., “Logic synthesis for quantum computing,”
arXiv:1706.02721 [quant-ph], 2017.

[7] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
TCAD, 1994.

[8] D. Chen and J. Cong, “DAOmap: a depth-optimal area optimization
mapping algorithm for FPGA designs,” in ICCAD, 2004.

[9] S. Ray et al., “Mapping into LUT structures,” in DATE, 2012.
[10] D. Maslov, “Advantages of using relative-phase Toffoli gates with an

application to multiple control Toffoli optimization,” Physical Review
A, 2016.

[11] G. Bioul et al., “Minimization of ring-sum expansions of Boolean
functions,” PRR, 1973.

[12] S. Stergiou et al., “A fast and efficient heuristic ESOP minimization
algorithm,” in GLSVLSI, 2004.

[13] A. Mishchenko and M. A. Perkowski, “Fast heuristic minimization of
exclusive-sum-of-products,” in RM, 2001.

[14] M. Amy et al., “A meet-in-the-middle algorithm for fast synthesis
of depth-optimal quantum circuits,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2013.

[15] ——, “Polynomial-time T-depth optimization of Clifford+T circuits via
matroid partitioning,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2014.

[16] O. D. Matteo and M. Mosca, “Parallelizing quantum circuit synthesis,”
Quantum Science and Technology, 2016.

[17] D. M. Miller et al., “Mapping ncv circuits to optimized Clifford+T
circuits,” in RC, 2014.

[18] M. A. Harrison, “On the classification of Boolean functions by the
general linear and affine groups,” Journal of the Society for industrial
and applied mathematics, 1964.

[19] B. Krishnamurthy and R. N. Moll, “On the number of affine families
of Boolean functions,” Information and Control, 1979.

[20] M. A. Harrison, “The number of equivalence classes of Boolean
functions under groups containing negation,” IEEE Transactions on
Electronic Computers, 1963.

[21] Y. Zhang et al., “Computing affine equivalence classes of Boolean
functions by group isomorphism,” IEEE Transactions on Computers,
2016.

[22] M. Soeken and M. K. Thomsen, “White dots do matter: rewriting
reversible logic circuits,” in International Conference on Reversible
Computation, 2013.

[23] C. Bandyopadhyay et al., “Improved cube list based cube pairing
approach for synthesis of ESOP based reversible logic,” Transactions
on Computational Science, 2014.

[24] S. P. Parlapalli et al., “Optimizing the reversible circuits using comple-
mentary control line transformation,” in RC, 2017.

[25] K. C. Chen et al., “DAG-Map: graph-based FPGA technology mapping
for delay optimization,” IEEE Design Test of Computers, 1992.

[26] M. Soeken et al., “RevKit: A toolkit for reversible circuit design,”
Multiple-Valued Logic and Soft Computing, 2012.

[27] J. Edmonds, “Paths, trees, and flowers,” Canadian Journal of mathe-
matics, 1965.

TABLE I. MAPPING TECHNIQUES COMPARISON

map k1 runtime [s] qubits T -count map k1 runtime [s] qubits T -count
adder HY 16 0.03 463 16788 max HY 16 0.18 796 101063

HY 22 0.05 439 30738 HY 22 0.83 720 119359
HY 28 0.05 415 49152 HY 28 0.82 707 116651
BF 16 0.02 463 5280 BF 16 0.16 796 66927
BF 22 0.03 439 8352 BF 22 0.44 720 84927
BF 28 0.06 415 12432 BF 28 0.43 707 84406
PB 16 0.1 463 4930 PB 16 0.63 796 65224
PB 22 0.18 439 8002 PB 22 2.31 720 80991
PB 28 0.23 415 12082 PB 28 2.32 707 80587

bar HY 16 0.12 582 81570 multiplier HY 16 9.05 2852 2272545
HY 22 0.24 456 231258 HY 22 316.02 2657 2994802
HY 28 0.6 376 307157 HY 28 timeout
BF 16 0.12 582 53635 BF 16 3.64 2852 1362648
BF 22 0.17 456 149187 BF 22 6.65 2657 1614750
BF 28 2.16 376 212442 BF 28 ?5.6 ?2479 ?1889020
PB 16 0.52 582 53587 PB 16 15.58 2852 1356269
PB 22 0.87 456 149139 PB 22 23.66 2657 1609359
PB 28 4.84 376 208803 PB 28 ?20.1 ?2479 ?1877375

div HY 16 2.55 11827 1283653 sin HY 16 6.03 518 3385470
HY 22 3 11607 1765250 HY 22 timeout
HY 28 3.55 11379 2372531 HY 28 timeout
BF 16 2.26 11827 1042748 BF 16 6.77 518 2267298
BF 22 2.67 11607 1393197 BF 22 17.31 398 1963094
BF 28 3.05 11379 1782804 BF 28 timeout
PB 16 7.41 11827 924762 PB 16 24.4 518 2220883
PB 22 9.89 11607 1286036 PB 22 44.86 398 1859543
PB 28 18.2 11379 1678393 PB 28 timeout

hyp HY 16 60.16 39324 8313496 sqrt HY 16 0.81 7816 541028
HY 22 ??59.43 ??34671 ??12481259 HY 22 1.29 7723 836615
HY 28 timeout HY 28 2.05 7592 1253089
BF 16 64.22 39324 5365594 BF 16 0.7 7816 415351
BF 22 51.07 34631 7888686 BF 22 0.98 7723 620113
BF 28 ?55.93 ?33619 ?9137021 BF 28 1.47 7592 919615
PB 16 189.11 39324 5248822 PB 16 2.48 7816 414004
PB 22 185.68 34631 7852992 PB 22 3.94 7723 618906
PB 28 ?81.2 ?33619 ?9103931 PB 28 6.37 7592 918468

log2 HY 16 153.74 2315 49704644 square HY 16 ?123.89 ?2684 ?1827095
HY 22 timeout HY 22 timeout
HY 28 timeout HY 28 timeout
BF 16 136.22 2315 43804438 BF 16 12.7 2664 1328712
BF 22 ?189.27 ?1934 ?32442333 BF 22 ?6 ?2089 ?1805269
BF 28 ?546.88 ?1658 ?29381592 BF 28 ??17.18 ??1836 ??2166758
PB 16 547.18 2315 43755584 PB 16 29.76 2664 1309580
PB 22 ?369.16 ?1934 ?32170428 PB 22 ?13.12 ?2089 ?1792062
PB 28 ?858.41 ?1658 ?29215860 PB 28 ??27.05 ??1836 ??2149137

? = +20 qubits, ?? = +40 qubits

TABLE II. DIRECT MAPPING - k1 = 6 - GREEDY VS EXACT MATCHING ALGORITHM

Benchmark post-optimized greedy approach post-optimized exact approach Compare
depth I O size runtime [s] qubits Tcount gates runtime [s] qubits tcount gates %Tcount

adder 255 256 129 1020 0.08 505 3928 1482 0.1 505 3928 1482 0.00
bar 12 135 128 3336 0.17 584 50944 4224 0.2 584 50944 4224 0.00
div 4372 128 128 57247 11.97 12389 692261 83305 11.79 12389 692261 83305 0.00
hyp 24801 256 128 214335 135.12 47814 1800236 382769 149.92 47814 1799562 382830 0.04
log2 444 32 32 32060 4.64 7611 446579 51707 4.75 7611 445669 51837 0.20
max 287 512 130 2865 0.46 1233 54542 5904 0.51 1233 54542 5904 0.00
multiplier 274 128 128 27062 3.58 5806 336071 49233 4.59 5806 336071 49281 0.00
sin 225 24 25 5416 0.89 1468 74455 9188 1.08 1468 74351 9194 0.14
sqrt 5058 128 64 24618 3.32 8212 277703 25108 3.34 8212 277687 25108 0.01
square 250 64 128 18484 2.2 4058 166271 29687 2.32 4058 166119 29699 0.09

TABLE III. DIRECT MAPPING - k1 = 16 - NAIVE VS POST-OPTIMIZED SYNTHESIS

Benchmark naive post-optimized Compare
depth I O size runtime [s] qubits Tcount gates runtime [s] qubits tcount gates %Tcount

adder 255 256 129 1020 13.93 463 309018 6811 16.53 463 143330 23941 53.62
bar 12 135 128 3336 0.13 582 52480 4252 0.18 582 52480 4252 0.00
div 4372 128 128 57247 15.2 11827 1417387 86402 21.41 11827 1091924 105907 22.96
max 287 512 130 2865 22.92 796 745389 16317 27.65 796 466209 32483 37.45
multiplier 274 128 128 27062 497.75 2852 8283999 191648 592.45 2852 4694824 444065 43.33
sin 225 24 25 5416 379.49 518 3913954 67970 436.26 518 2326324 172162 40.56
sqrt 5058 128 64 24618 483.36 7816 1729343 43357 501.62 7816 1158174 79175 33.03

