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Abstract

Empirical research on the bodily self has shown that the body representation is
malleable, and prone to manipulation when conflicting sensory stimuli are presented.
Using Virtual Reality (VR) we assessed the effects of manipulating multisensory
feedback (full body control and visuo-tactile congruence) and visual perspective (first
and third person perspective) on the sense of embodying a virtual body that was
exposed to a virtual threat. We also investigated how subjects behave when the
possibility of alternating between first and third person perspective at will was
presented. Our results support that illusory ownership of a virtual body can be achieved
in both first and third person perspectives under congruent visuo-motor-tactile
condition. However, subjective body ownership and reaction to threat were generally
stronger for first person perspective and alternating condition than for third person
perspective. This suggests that the possibility of alternating perspective is compatible
with a strong sense of embodiment, which is meaningful for the design of new embodied
VR experiences.

Introduction 1

The experience of embodiment, or bodily self-consciousness—the pre-reflective sensation 2

of being the subject of an experience—comes from the coherent multisensory integration 3

taking place in the brain and relates to the notion of an egocentric first person 4

perspective on the self [1–5]. One feels embodied due “to the ensemble of sensations 5

that arise in conjunction with being inside, having, and controlling a body” [6] (p. 374). 6

It is proposed that the sense of embodiment emerges from three central 7

components [6, 7], namely (i) the sense of agency, i.e. feeling of motor control over the 8

body; (ii) the sense of body ownership, i.e. feeling that a perceived body is one’s own 9

body; and (iii) self-location, i.e. the experienced location of the self. Although we 10

experience our body as a consistent and seemingly immutable representation of our self 11

in space, experimental protocols have shown that the sense of embodiment is much more 12

malleable than commonly assumed. Conflicting multimodal stimulation can temporarily 13
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change how one perceives properties of their own body (i.e. an altered bodily 14

self-consciousness). Notably, it can lead to the illusion of owning a fake—either material 15

or virtual—limb [8–14], body [15–17], and even another individuals’ body [18,19]. 16

In the rubber hand illusion [8, 9], the synchronous stroking of a visible rubber hand 17

and the occluded real hand provides visuo-tactile congruence to the subject, while 18

causing a visuo-proprioceptive conflict. That is, the subject sees the rubber hand being 19

stroked at the same place and time as she feels the stroke in the real hand, but the 20

position of the rubber hand is offset relative to the proprioceptive perception of the real 21

hand. As the brain tries to make sense of the multisensory incongruence, the conflict is 22

often solved favoring the visuo-tactile congruence, and the subject feels ownership over 23

the fake limb, which is accompanied by the feeling that the real hand is now located 24

closer to the rubber hand (i.e. the congruent visuo-tactile stimulation induces alterations 25

to the proprioceptive mapping). Additionally, this illusion can also be induced when 26

active or passive movements of the hand (i.e. visuo-motor or visuo-proprioceptive 27

congruence) are used in lieu of the tactile stimulation [13,20,21]. Moreover, alterations 28

to the bodily self are not limited to body parts. Research using cameras and virtual 29

reality (VR) demonstrated that a whole alien body can be felt as ones’ own body—in a 30

full body ownership illusion—when visual, tactile and proprioceptive information 31

match [16,18]. Such changes in the experience of body ownership are often accompanied 32

by changes in physiological processing such as skin temperature [22, 23] and increase in 33

galvanic skin responses when the alien body is threatened [24]. 34

The perspective from which the body is seen is another important aspect of illusory 35

body ownership. The ownership over a body through multisensory congruence has been 36

achieved using both first person perspective (1PP) [16–18] and third person perspective 37

(3PP) [15,19,25,26,50], and differences in the ability to achieve it in 3PP were 38

described [27,28]. In the experiment proposed by [15], a 3PP image of a body is 39

presented to the subject through a Head Mounted Display (HMD). A visuo-tactile 40

stimulation synchronously delivered to the back of the subject and to the image of the 41

body was shown to increase the sense of body ownership and to drift self-location closer 42

to the seen body. This was not the case when the stimulation was asynchronous (i.e. 43

with temporal mismatch between felt and seen stroking). In a follow up study, Slater et 44

al. [16] directly compared 1PP and 3PP, and have further suggested that perspective is 45

not only relevant, but also has a greater effect size on the reported sense of body 46

ownership than the synchronous visuo-tactile stimulation. 47

In this paper we use VR to assess the effect of congruent visuo-motor-tactile 48

feedback (full body control and haptic feedback vs. pre-recorded movements, which we 49

refer to as VMT and ¬VMT conditions) and perspective (1PP and 3PP conditions) to 50

the sense of embodiment of a virtual body. We additionally investigate how subjects 51

behave when the possibility of alternating perspective at will is presented (ALT 52

condition), and how the reported sense of embodiment of the virtual body in this 53

condition compares to 1PP and 3PP alone. The ALT condition is proposed in order to 54

integrate the advantages of both 1PP and 3PP viewpoints of the virtual avatar in a 55

seamless experience of the virtual environment. The experiment consists of a series of 56

tasks (reaching to targets, walk a few meters forward, feel a passive haptics device) that 57

the subject had to perform (VMT condition) or watch the virtual body performing 58

(¬VMT condition), and end up by exposing the subject to a virtual pit threat. 59

Therefore, this study adds a new dimension to the consistency of multisensory cues by 60

allowing the motor control of the whole virtual body with a natural mapping, including 61

global aspects such as walking in the virtual environment and tactile congruence of the 62

feet with floor and the beams of a platform. 63

The first objective of this experiment is to assess the viability of embodiment in 3PP 64

when rich multisensory congruence is provided (congruent visuo-motor-tactile or not, 65
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VMT/¬VMT), and how it contrasts with 1PP. From a VR standpoint, 3PP allows 66

taking a new and potentially more informative point of view within a VR application, 67

such as for training [29–31]. For instance, 3PP is often employed in non-immersive 68

virtual environments such as video games to increase awareness of the environment and 69

threats to the player, thus overcoming field of view limitations of 1PP. In VR, the use of 70

3PP viewpoints have been recommended to help setting the posture of a motion 71

controlled virtual body [29], and to compensate for the compression of distance 72

perception inherent to immersion systems such as large stereoscopic projections [31]. 73

The problem is that 3PP is not the natural condition in which subjects experience their 74

real bodies, and might consequently lower the sense of ownership over the virtual body. 75

The question is therefore to know if these benefits of 3PP could be exploited without 76

detrimental consequences on the ability to embody an avatar. 77

This experiment secondly explores how subjects behave when the possibility of 78

alternating between points of view in VR applications is presented, and how this affects 79

their subjective sense of embodiment of the virtual body. Combining the best of the two 80

approaches, 1PP maximizing embodiment and 3PP providing awareness of the 81

surrounding, would open new possibilities in the design of Virtual Reality interaction. 82

For instance, a VR experience could be started and developed in 1PP, and at moments 83

where an overview of a situation, and the physical relation of the avatar with the 84

environment is required, a temporary transition to 3PP could be conducted. Our 85

hypothesis is that the rich multisensory congruence as well as the possibility of 86

switching perspective at will can mitigate the negative effect of 3PP viewpoint to the 87

sense of body ownership. 88

Materials and Methods 89

Equipment and Software 90

An Oculus development kit 2 HMD was used to display a virtual scene (960 x 1080 91

pixels per eye, 100◦ field of view, 75 Hz). Head tracking was performed using its inertial 92

sensors (low latency) and corrected for drift around the vertical axis using optical 93

tracking. 94

A pair of Bose® QuietComfort 15 headphones was used for environmental noise 95

canceling and to provide unlocalized white noise, thus phonically isolating the user from 96

the real environment. Using a microphone, the experimenter could talk to the subjects 97

directly through the headphones and provide instructions throughout the experiment. 98

A Nintendo® Wii remote controller was used to allow the subjects to trigger 99

when they would like to switch the perspective in the alternating condition. The Wii 100

remote was also used for the mental ball drop task (see Response Variables). Subjects 101

held the controller in their right hand. For consistency, the virtual avatar also held a 102

similar object with the right hand. 103

Galvanic skin response (GSR) was acquired using a g.GSRsensor connected to 104

a g.USBamp amplifier (g®.tec) and recorded with the OpenViBE software [32]. 105

A Phasespace Impulse X2 optical tracking system was used for motion capture. 106

Our Phasespace system uses 14 cameras and 40 markers attached to a motion capture 107

suit and to the HMD. A VRPN [33] server interfaced the capture system (updated at 108

240 Hz) to the rendering engine (75Hz). An in-house analytical inverse kinematics 109

implementation was employed to reconstruct the posture of the subject [34], which 110

reinforces co-location of end effectors (hands and feet) with the equivalent physical 111

markers. Fingers were not animated and were kept in a neutral pose. The body 112

reconstruction latency from capture to render was approximately 40 to 50ms. To 113

account for body size variability, a calibration based on a standard posture (T-stance) 114
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was performed until head, trunk and lower/upper limbs of the virtual body were 115

adjusted in scale and orientation to closely match the real body. 116

A physical object and its virtual representation were used to convey congruent 117

visuo-tactile stimulation when walking over the pit. This manipulation is known as 118

passive haptics, when a seen virtual object has a physical equivalent, which is 119

calibrated to spatially match, thus rendering accurate tactile sensations. This device is 120

made of wood and its dimensions are 140cm× 40cm× 10cm. Fig 1a shows an overview 121

of the experimental environment and the equipment the subject had to wear. Note that 122

the picture shown in Fig 1a was staged for illustrative purposes. During the experiment 123

the lights were off, and the 124

Fig 1. Experiment setup and scene overview. (a) The subject was fit with a
motion capture suit, an Oculus DK2, GSR sensors and a Wii remote. Note that this
picture was staged with one of the authors for illustrative purposes, during the
experiment the lights were off and the projection display, which in the picture presents
the point of view of the subject, was not used. (b) Presents an overview of the virtual
scene.

The virtual environment was developed using Unity 3D, and was inspired by the 125

pit room proposed by Meehan et al. [35]. It featured a main room and a 10m deep 126

virtual pit. The main room was 3.4 meter high and slightly smaller in surface than the 127

captured space. A virtual mirror was placed over the pit, facing the virtual body. For 128

each session, the pit was initially covered by a wooden floor. A wooden ramp was 129

located in the center of the scene. During a session run, the floor covering the pit would 130

eventually fall (at the command of the experimenter), revealing the pit to the subject 131

and leaving the virtual body standing on the wooden ramp overseeing the pit. An 132

overview of the virtual environment is presented in Fig 1b. 133

Experiment Design 134

The experiment had two manipulated variables and followed a mixed factorial design, 135

with multisensory congruence as the between-subject variable and perspective as the 136

within-subject variable. Multisensory congruence was treated as a between-subject 137

variable for two reasons. First, the ¬VMT condition requires pre-recording movements 138

from the VMT sessions, which is optimally achieved and randomized by using recording 139

of the VMT group for the ¬VMT group. Second, in previous work studying the 140

influence of perspective change and visuo-motor congruence on agency, body ownership 141

and self-location [26], we have observed a limitation of the within subject design leading 142
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to a potential ceiling effect and under-evaluation of the perspective factor with respect 143

to the congruence one. Conversely, within subject design was selected for the 144

perspective factor as it limits the number of subjects, thus balancing the experimental 145

time with the long preparation time needed for each subject. 146

Response variables were determined in order to assess components of the sense of 147

embodiment, consisting of an embodiment questionnaire, the variation of GSR following 148

a threat event, and a mental imagery task where the subject had to estimate the time 149

an hypothetical ball would take to hit the ground (mental ball drop – MBD). The 150

response variables are detailed later in the paper. 151

Multisensory Congruence Factor 152

Subjects were assigned to one of two equally sized groups. The first group performed 153

the experiment in a congruent visuo-motor-tactile condition (VMT group), in which 154

subjects could control the movement of the virtual body, had to perform a sequence of 155

tasks and could interact with a passive haptic device that stands in between the virtual 156

body and the bottom of the pit. The second group could not control the virtual body 157

(¬VMT group), instead subjects were placed standing at the starting position and had 158

to watch the virtual body moving as recorded from subjects in the VMT group. The 159

lack of visuo-proprioceptive congruence with the virtual body is expected to negatively 160

impact the senses of agency and ownership of the virtual body. As the motion recordings 161

of the VMT group were necessary for the ¬VMT condition, we ran all subjects of that 162

group before proceeding to the second group. The subjects in the ¬VMT group also 163

wore the motion capture suit, thus allowing for similar GSR recording conditions. 164

Note that subjects in the ¬VMT group could still control the rotation of the virtual 165

camera. This aspect was kept across groups because it is critical to prevent 166

cybersickness, which is mainly attributed to the sensory mismatch of visual and 167

vestibular systems [36], particularly when visual movement is present in the lack of its 168

vestibular counterpart. In contrast, the position of the virtual camera had to be driven 169

by the data recorded during the VMT sessions in order to grant consistent viewpoint 170

location relative to the virtual body experienced by the VMT group. We assessed a 171

smaller risk of sickness in this case as translations often results in smaller changes to the 172

visual flow than rotations. As a result, subjects in the ¬VMT group experienced 173

partially congruent sensorimotor feedback of the virtual camera. 174

Perspective Factor 175

Each subject repeated the experimental session three times, once for each perspective 176

condition: first person perspective (1PP), third person perspective (3PP), and a novel 177

one in which the subject could alternate between 1PP and 3PP at will (ALT ). This 178

alternation of perspective required the implementation of a transition phase which was 179

carefully designed to prevent cybersickness.Three different approaches were considered 180

and tested. In the first one, camera followed for a second a parametric curve with 181

accelerating and decelerating phases in order to avoid interpenetration with the virtual 182

body. This was however not efficient as it required a long trajectory and continuous 183

changes in the direction of movement and gave the false impression of real movement to 184

the subject (some subjects would try to compensate and lose balance). The second 185

alternative was teleportation which entirely avoids translation. However, teleportation 186

is known to cause disorientation [37] and to affect subjects’ ability to immediately 187

resume a task on the new point of view. Finally, we opted in favor of a very fast (200 188

ms) straight line translation of the camera (Fig 2ALT). The vision was slightly blurred 189

during movement, making it unlikely that subjects could perceive interpenetration with 190

the virtual body. This approach allowed subjects to quickly resume their action after a 191
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transition. None of our subjects reported feeling sickness with this transition. The 192

position of the camera in 1PP lies in between the eyes of the virtual body (Fig 21PP). 193

The position of the 3PP camera was shifted 120cm toward the back of the scene and 194

moving relatively to the head of the virtual body (Fig 23PP). This way, in 3PP 195

condition, the virtual body is exposed to the threat of the pit while the virtual camera 196

remains over a safe area (the floor, Fig 1b). 197

In the ALT session, subjects could decide when to trigger the perspective switch by 198

pressing a Wii remote button with the right thumb. They were instructed to perform 199

this action at least three times during the session. The perspective presentation order 200

was counterbalanced. 201

Fig 2. Perspective conditions. The subject could experience the scene in three
different conditions: (1PP) first person perspective; (3PP) third person perspective; or
(ALT) be free to alternate between 1PP and 3PP. When in the alternate condition,
subject were asked to perform at least 3 perspective switches.

Session Overview 202

An experimental session was divided into 4 stages: REACH, WALK, WAIT and 203

OBSERVE. 204

REACH : the subject had to reach 12 targets appearing around him/her (Fig 3a). 205

There were six ground and six air-targets activated one after the other in a shuffled 206

order. Between each target reach the subject had to place back both feet on a central 207

target. The targets were placed such that they were at equal distance to the central 208

target (ground targets), and to the chest of the participants (air targets). 209

WALK : a 13th target eventually lights up in front of the wooden ramp, inviting the 210

subject to walk from the initial position to the edge of the ramp, i.e. on the passive 211

haptic device (Fig 3b). The central target and the front of the ramp were separated by 212

2.1 meters. 213

WAIT : once the subjects arrive to the end of the ramp, they were orally 214

instructed—through their headphones—to feel the edges of the ramp with their feet, 215

sensing the passive haptic device while observing the virtual body simultaneously 216

touching it (Fig 3c). During this event the experimenter would press a button, and the 217

floor would fall down within 1 to 5 seconds (random), with a cracking sound (Fig 3d). 218

OBSERVE : the floor fall event marked the transition to the OBSERVE stage. In 219

this stage the subjects were asked to read some words in the pit wall opposite to where 220

the virtual body stands, so that they had to face the pit. 221

For the ¬VMT group the virtual body was driven by the data recorded from the 222

VMT group. No passive haptic device was used and the subject did not have to act to 223

complete the session. The subject was told that the virtual body would move by itself, 224

and that (s)he should pay attention to what the virtual body was doing. The camera 225

position also moved according to the recording, but the camera rotation could still be 226
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Fig 3. Overview of the session stages. (a) First the subject has to reach for
targets that can appear either in the air or in the floor (REACH stage); (b) a final
target invites the subject to walk to the wood platform (WALK); (c) once on the
platform, the subject is asked to feel the edges with their feet (WAIT); (d) finally, the
wooden floor beneath the platform collapses, revealing the pit to the subject
(OBSERVE). Subjects in the ¬VMT group do not perform these task, instead they
watch recordings from the VMT group. The session was followed by the mental ball
drop (MBD) task and an embodiment questionnaire.

controlled by the subject. We kept this level of control due to its critical role preventing 227

cybersickness [36]. The session started with a short communication, and further 228

communication followed to remind subjects to pay attention to the virtual body, and 229

that they could not control it (in case they tried to). To assign the recordings to 230

subjects in the ¬VMT group we have paired VMT and ¬VMT subjects, the pairing was 231

random and assured that the subjects in both groups were assigned to the same 232

perspective order, i.e. a ¬VMT subject that did the experiment in the 1PP, 3PP and 233

ALT order used the recording of a VMT subject who did the experiment in that same 234

order. We had to repeat some of the VMT group recordings due to a technical issues 235

with the recording software used for the first 5 subjects. 236

Response Variables 237

Questionnaire 238

A questionnaire was designed to assess the senses of agency, body ownership, 239

self-location and the effectiveness of the floor fall threat. It contains 10 questions, two 240

related to each of the four measurements, and two controls. Questions were formulated 241

based on related experimental protocols [7, 15,38] and are presented in Table 1. The 242

answers were given in a 7-point Likert scale, ranging from “Strongly DISAGREE” (-3) 243

to “Strongly AGREE” (+3). We use the mean of the two related questions as the score 244

of the four main response variables—ownership, agency, self-location and threat—, and 245

the raw value for the two control question variables—more bodies and turning virtual. 246

The questions were presented after each session in a random order. 247

Galvanic Skin Response 248

GSR was recorded to assess physiological responses to the threat (floor fall event). We 249

expect a GSR increase due to the threat, and the magnitude of this increase to correlate 250

PLOS 7/20



Table 1. Embodiment questionnaire applied in the end of each session. Answers were given in a 7 point likert scale
ranging from strongly disagree (-3) to strongly agree (3). The variable corresponds to the mean answer to both questions.

Variable name Question:
During the last session ...

Agency Q1 ... it felt like I was in control of the body I was seeing
Q2 ... whenever I moved my body I expected the virtual body to move in the same way

Ownership Q3 ... I felt as if I was looking to my own body
Q4 ... it felt that the virtual body was my own body

Self-location Q5 ... it felt as if my body was located where I saw the virtual body to be
Q6 ... it seemed as if I were sensing the movement of my body in the location where the
virtual body moved

Threat Q7 ... I felt as if the pit posed a threat to myself
Q8 ... it felt as if I could get hurt if the virtual body was to fall in the pit

More bodies Q9 ... it felt as if I had more than one body
Turning virtual Q10 ... it felt as if my real body was turning virtual

with the sense of body ownership. This type of measurement has been shown to be 251

valid in stressful virtual environments by Meehan et al. [35], being present in the GSR 252

signal of a subject even after multiple exposures. The electrodes were placed on the 253

index and ring fingers of the subject and the GSR was recorded at a sampling rate of 254

512 observations per second. Our GSR response variable is defined as the difference 255

between the median GSR in the interval between 1 and 6 seconds following the floor fall 256

event, minus the median GSR in the 5 seconds preceding this event. Median GSR was 257

preferred because some subjects presented a response that could vary beyond the ≈ 6µS 258

(microsiemens) recording window that our setup allowed. A sample GSR recording for a 259

complete session is presented in supporting S1 Fig. 260

Mental Ball Drop 261

MBD is a mental imagery task adapted from [19]. In this task, the subject estimates 262

the time a ball would take to fall down from their hand to the floor. This measurement 263

was performed at the end of each session, when the virtual body was standing on the 264

wooden ramp at the top of the pit. The MBD is meant to detect whether the subject 265

have similar time estimation in 1PP and 3PP. Consistently shorter times in 3PP could 266

indicate weak sense of self-location, as the subject might be using the bottom of the pit 267

in 1PP, and the floor under the camera in 3PP. 268

Before performing this task the screen turned black, and the measurement was then 269

performed with the subjects unaware of their surrounding. Subjects were instructed to 270

press and hold the trigger button of the Wii remote controller to release the virtual ball, 271

and to release the trigger button when they estimated that the ball have reached the 272

floor. Subjects were not instructed about which floor they should consider (lab floor, 273

point-of-view floor or pit floor). The task was repeated five times for each session, and 274

the median of these trials gives the MBD time estimation for a given subject and 275

condition. 276

Time in 1PP (specific to ALT usage) 277

Regarding the behavior of subjects while in the ALT condition, we evaluate whether the 278

session stage (REACH, WALK, WAIT and OBSERVE) and multisensory congruence 279

have an effect on the choice of perspective. To summarize the choice of perspective in 280

the ALT condition we compute the proportion of time spent in 1PP (time in 1PP 281

variable) during each stage of the ALT session (REACH, WALK, WAIT and OBSERVE) 282
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for both VMT and ¬VMT conditions. We evaluate whether the session stage and 283

multisensory congruence have an effect on the choice of perspective. Moreover, to better 284

understand the influence of the time in 1PP to the sense of embodiment, we verify if 285

this variable is correlated with ownership, agency, self-location, threat, GSR and MBD. 286

Analysis 287

Statistical analysis was conducted using R. For the response variables agency, 288

ownership, self-location, threat, more bodies and turning virtual, the analysis was carried 289

using mixed design analysis of variance (ANOVA) with perspective (1PP vs. 3PP vs. 290

ALT) as a within-subject factor, and multisensory congruence (VMT vs. ¬VMT) and 291

perspective order(1PP-3PP-ALT vs. 1PP-ALT-3PP vs. 3PP-1PP-ALT vs. 292

3PP-ALT-1PP vs. ALT-1PP-3PP vs. ALT-3PP-1PP) as between-subject factors. We 293

included perspective order as a factor to verify if the order in which 1PP, 3PP and ALT 294

have been presented could have had a consistent effect in the questionnaire responses. 295

For GSR, a similar analysis was carried, but excluding the perspective order factor. For 296

MBD, only the VMT group was considered, and repeated measures one-way ANOVA 297

was used with Perspective as the independent variable. 298

As ANOVA assumes that the residuals of the model fit belong to a normal 299

distribution, we tested this assumption with the Shapiro-Wilk test. If residuals are 300

deemed not normal, we transform the response with a Box-Cox transformation yλ, 301

which does not alter the order of the response values (monotonic transformation). 302

We conducted post-hoc analysis with pairwise t-tests and Holm-Bonferroni 303

correction for multiple comparisons if a significant main effect of perspective or the 304

interaction between perspective and multisensory congruence was found. For the latter 305

we select a subset of possible comparisons in order to limit the correction of the 306

significance level. More specifically, we fix the value of one of the variables, and test for 307

the combinations of the other, and vice versa. This yields a total of 9 comparisons. We 308

do not perform any post-hoc for significant effects related to perspective order, and 309

simply report that a statistically significant effect has been found. 310

Procedure 311

After reading the information sheet and completing the informed consent form, subjects 312

were asked to fill in a characterization form with questions about their background 313

(other experiments, experience with HMDs ...) and physical characteristics (height, 314

weight and age). Then the experimenter played a video demonstrating the stages of a 315

session (Video S2 Video) and subjects were asked to wear the motion capture suit. 316

Subjects in the VMT group had to undergo the motion capture calibration at this point. 317

A brief training on how the mental ball drop (MBD) task should be performed followed, 318

using the laboratory floor as a reference. Finally, the experimenter helped the subject 319

fit the HMD and the noise canceling headphones, and tested the verbal communication 320

through microphone. The GSR electrodes were placed in the left hand and the wii 321

remote in the right hand. The subject then went through an experimental session. After 322

the session was complete, the image on the HMD went black, and instructions of the 323

MBD task appeared. The task was repeated 5 times, and then the experimenter 324

removed the HMD and the headphones and asked the subject to fill in the embodiment 325

questionnaire (Table 1). The session procedure was repeated three times, once per 326

perspective condition. After the experiment subjects filled-in a post experiment 327

questionnaire about their perspective of preference for different stages of the session. 328

The questionnaire also asked whether they considered the floor of the laboratory or the 329

floor of the virtual environment during the MBD task. 330
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A total of 48 subjects participated on the experiment (8 females, age between 19 – 331

30, mean 22.6). All subjects had normal or corrected to normal vision, normal physical 332

and psychological condition and did not suffer from acrophobia. For technical reasons 333

and for optimal use of the motion capture system, we limited recruitment to subjects 334

with height from 165 to 190 cm, and body mass index in the range from 18 to 27. Only 335

4 subjects reported having participated in an experiment using VR in the past, while 17 336

reported having tried a HMD in the past, one of which with weekly frequency. 337

This experiment was approved by the Commission cantonale d’éthique de la 338

recherche sur l’être humain in Vaud (CERVD - protocol 02/13), Switzerland. Subjects, 339

recruited through online registration system, had to read and sign a written informed 340

consent form to participate and were compensated with 20 CHF/hour for their 341

participation. 342

Results 343

A summary of the results and details of the post-hoc statistical results are presented in 344

supporting information S1 Table and S2 Table. The data obtained with this experiment 345

is available in supporting information S1 Data. 346

Questionnaire 347

A summary of questionnaire results are presented in Fig 4 and Fig 5. 348

Fig 4. Questionnaire results: senses of agency and body ownership for the
interaction between perspective and multisensory congruence. Error bars represent the
confidence interval of the mean (CI). “*”, “**” and “***” indicate p < .05, p < .01 and
p < .001 respectively.

Agency: agency response analysis yielded a significant effect of multisensory 349

congruence, perspective, as well as their interaction (F1,36 = 98 p < .001, F2,72 = 8.7 350

p < .001 and F2,72 = 3.37 p < .05 respectively). The post-hoc of the interaction 351

indicates a significant effect of multisensory congruence for all perspective conditions 352

(VMT > ¬VMT). The sense of agency was significantly lower for 3PP when 353

multisensory congruence was not present (1PP¬VMT and ALT¬VMT > 3PP¬VMT). 354

Ownership: a significant main effect of multisensory congruence, perspective and 355

their interaction was found (F1,36 = 4.5 p < .042, F2,72 = 22.8 p < .0001 and F2,72 = 5.2 356

p < .008 respectively). Post-hoc of the interaction indicates that the response score in 357

3PP¬VMT was significantly lower than 1PP¬VMT, ALT¬VMT and 3PPVMT. The 358
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Fig 5. Questionnaire results: self-location and threat responses for the main effect
of perspective and multisensory congruence. Error bars represent the confidence interval
of the mean (CI). “*”, “**” and “***” indicate p < .05, p < .01 and p < .001
respectively.

average ownership response was always positive when multisensory congruence was 359

present, with no significant difference between perspective conditions in this case. It 360

suggests that the lack of multisensory congruence negatively affected body ownership 361

only for 3PP. 362

Self-location: showed a significant effect of multisensory congruence (VMT > 363

¬VMT), perspective and an interaction between perspective and presentation order 364

(F1,36 = 4.3 p < .046, F2,72 = 33.8 p < .001 and F10,72 = 3.1 p < .003 respectively). 365

Post-hoc analysis of the perspective factor shows a significant difference between all 366

three conditions: 1PP > 3PP and ALT, and ALT > 3PP. The interaction with 367

perspective order suggests that the perspective presentation order had influence over the 368

reported self-location. Specifically, subjects starting the experiment in 1PP or ALT gave 369

lower self-location scores to 3PP, while subjects starting in 3PP gave similar scores to 370

all perspective conditions (presented in supporting material Fig S2 Fig). 371

Threat: was significantly affected by the perspective factor (F2,72 = 21.4 p < .001). 372

Post-hoc shows a significant difference for all perspective comparisons (1PP > 3PP and 373

ALT, and ALT > 3PP). Although Fig 5 may suggest a consistent decrease of Threat 374

score in the ¬VMT condition, the statistical test failed to reject the equality 375

(F1,36 = 3.4, p > .075). 376

More bodies: a significant effect of perspective and its interaction with multisensory 377

congruence was found (F2,72 = 4.3 p < .017 and F2,72 = 6.8 p < .003 respectively). Post 378

hoc analysis of the interactions has shown statistically significant difference with 379

3PPVMT and 1PP¬VMT > 1PPVMT. 380

Turning virtual: a significant effect of perspective was found (F2,72 = 16.4 p < .001). 381

Post hoc analysis shows that 1PP and ALT > 3PP. 382

Galvanic Skin Response 383

Eight subjects were excluded from the GSR analysis due to missing data or to failing 384

connectors for at least one of the 3 sessions of the experiment. The recordings in the 385

moments that precedes and follows the threat are presented in Fig 6. The threat event 386

caused a significant increase of the median for all 6 possible combinations of conditions 387

as compared by a pairwise Wilcoxon summed-rank test. When comparing the increase 388

observed across the levels of perspective and multisensory congruence, ANOVA shows a 389
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significant effect of perspective (F2,56 = 4.21 p < .02). Post hoc shows a significantly 390

stronger response in 1PP as compared to 3PP. The difference between ALT to 1PP and 391

3PP were not significant. The statistical test failed to reject the equality of VMT and 392

¬VMT (F1,28 = .59 p > .44), however, it is worth noting that GSR tends to present 393

high inter-subject variability.GSR also presented a positive and statistically significant 394

correlation with the Threat question (r118 = .34 p < .001) , but not with Agency, 395

Ownership or Self-location (r118 = .07 p > .45, r118 = .10 p > .26 and r118 = .17 p > .05 396

respectively). This suggests that the GSR was effectively related to how threatened the 397

subject felt, validating the threat event. On the other hand, this measurement is usually 398

expected to correlate with the sense of body ownership [17], although other experiments 399

have also reported the lack of correlation [39]. 400

Fig 6. GSR variation time locked to the floor fall event (response in
microsiemens). (left) The green and red shaded areas highlight the time interval used
to compute the median GSR preceding (5 to 0 seconds before) and following (1 to 6
seconds after) the floor fall event for each subject. Each line color represents the GSR
recording of one subject. The threat caused a statistically significant increase in the
GSR response for all 6 combinations of conditions. (right) The difference between the
medians is used to indicate the per subject GSR change linked to the threat. A
significant difference between 1PP and 3PP was observed.

Mental Ball Drop 401

We noticed a bias of overestimating MBD time in the 3PP¬VMT condition. We believe 402

this might result from limited visibility of the bottom of the pit due to the lack of body 403

control in this specific condition. Thus, only the time of subjects performing in the 404

VMT group were considered. One subject was excluded due to incomplete MBD data. 405

The ANOVA test failed to reject the similarity of MBD time across perspective levels 406

(F2,44 = 2.1 p > .14 ), making it unlikely that subjects performed the task differently in 407

1PP, 3PP and ALT conditions. 408

Time in 1PP (specific to ALT usage) 409

Subjects performed 2 to 30 perspective switches during the ALT session, with 410

mean±SD of 11± 5.6. Two subjects performed less perspective changes than instructed 411

by the experimenter. The mean±SD proportion of time spent in 1PP was .68± .13. 412

That is, nearly one third of the time in the ALT condition was spent in 3PP. Subjects 413

tended to make use of perspective changes during the REACH stage, while favoring 414

1PP for the following stages. The breakdown of the proportion of time spent in 1PP 415
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during each stage is shown in Fig 7.The proportion of time in 1PP presents a significant 416

positive correlation with the reported sense of self-location (r46 = .29 p < .05) and 417

threat (r46 = .33 p < .022), but do not correlate with agency (r46 = −.04 p > .81) and 418

ownership (r46 = .12 p > .4). The latter suggests that the possibility of alternating 419

perspective had no consistent influence to the sense of ownership of the virtual body. 420

Fig 7. Breakdown of the proportion of time spent in 1PP for each stage of
the ALT session for VMT and ¬VMT. Subjects tended to make a balanced use of
perspectives in the REACH stage, while favoring 1PP for the following stages. Notably,
overall perspective choice has shifted to 1PP once the reaching task was complete. 1PP
seems to be preferred by the VMT group when they had to complete the walking task.
This was not the case for the ¬VMT group, who had no practical incentive to change
perspective at this stage of the session as the task is completed regardless of their
actions. The WALK stage was the only one to present a statistically significant
difference between the groups, as analyzed with pairwise t-tests (t35 = 2.88, p < .01).

Discussion 421

In our study we manipulated visual perspective (1PP, 3PP and ALT) and multisensory 422

congruence (VMT and ¬VMT). Subjects could successfully perform all stages of all the 423

sessions. We assessed the sense of embodiment with a questionnaire and the change in 424

galvanic skin response due to a threat. Our threat was effective, and a clear and 425

significant increase in GSR could be observed following the threatening event for all 426

conditions. The results revealed several interesting findings. First, sense of body 427

ownership measured in 3PP was similar to 1PP, but only when multisensory congruence 428

was used, suggesting that visuo-motor-tactile congruence can mitigate the bodily 429

discontinuities inherent to a 3PP view point in an ecologically valid VR experience 430

scenario. Second, despite the lack of direct interaction with the virtual body in the 431

¬VMT group, subjects reported sense of agency and ownership of the body when in 432

1PP or ALT condition; this indicates that the match of having an intent and seeing the 433

virtual body performing it may be sufficient to feel agency and body ownership in 1PP 434

and ALT. Third, the ALT condition had similar response to 1PP, regardless of the 435

multisensory congruence condition, indicating that it could be used in VR experiences 436

as an alternative to having a constant point of view. 437
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Sense of Embodiment in 3PP 438

The experimental manipulation of multisensory congruence had the expected effect on 439

the 3PP condition. The 3PP:VMT group reported a significantly stronger sense of 440

agency, body ownership and self-location than the 3PP:¬VMT group. 441

On the one hand, the sense of agency and small alterations to self-location of a body 442

seen in 3PP through multisensory congruence are well supported by literature. Agency 443

in humans represents an adaptive causal link, that seems to be constantly modelled by 444

action and outcome contingencies developed by repetition [40]. One can feel agency over 445

outcomes that are mediated by a device, such as a sound caused by pressing a 446

button [41]. Thus, it is to be expected that agency over a controlled virtual body will 447

be sustained independently of perspective, as reflected in our agency results (but 448

see [21]). Moreover, alterations to the sense of self-location are also consistently 449

reported [2, 15,19,25,28,42]. A currently supported hypothesis is that changes in 450

self-location are produced by alterations of the peripersonal space (volume of space 451

within body reach, which is associated to multisensory neurons reacting to 452

visual/auditory and tactile stimulation [43,44]), driven by the congruent tactile and/or 453

motor stimulation, despite the incongruent point of view (3PP) [2]. Recent 454

experimental protocols have found support to this hypothesis [28, 42]. In Noel et al. [42] 455

the authors use an audio-tactile task to identify the point in space where a looming 456

sound speeds up tactile processing. They replicate the protocol described in [15], 457

showing that the peripersonal space drifts by a small amount towards the virtual body 458

seen from a 3PP. Furthermore, novel results have shown that such modulation of self 459

location and peripersonal space can be induced even when participants are unaware of 460

the stimulation [45]. Overall, our self-location results indicate a positive response in 461

3PP, although significantly lower than in 1PP. Moreover, the results of the mental 462

imagery task (MBD) suggests that subjects did not differentiate between 1PP and 3PP 463

when estimating the time that an imaginary ball would take to hit the ground, 464

regardless of the fact that the point of view was located 10 meters farther from the 465

ground when in 1PP. 466

On the other hand, the sense of ownership of a virtual body in 3PP is a more subtle 467

aspect of embodiment that requires further attention. First, our results are inline with 468

previous experiments using visuo-tactile [15,19] or visuo-motor [25,26] congruence 469

showing that ownership of a virtual body is possible in 3PP. They however contrast 470

with other experiments where visuo-tactile synchrony and perspective were manipulated; 471

Slater et al. [16] and Petkova et al. [17] show evidence of a strong influence of 1PP to 472

the sense of ownership of a virtual body, more significant than the influence of 473

visuo-tactile synchrony. Moreover, additional experiments by Maselli and Slater [27, 28] 474

report subjects’ disagreement when asked about their experience of ownership of a body 475

seen from 3PP. Here, our statistical analysis failed to reject the equivalency of body 476

ownership between 3PP and 1PP in the VMT group in questionnaire responses. This 477

contrasts with the clear evidence in the ¬VMT group that 1PP is a decisive factor for 478

embodiment (as in [16,17,27,28,49]). Together, our questionnaire results suggest that 479

most of the influence on the sense of body ownership were mitigated by the 480

multisensory congruence in place. This might be explained by the new dimensions to 481

the consistency of multisensory cues that our study provides; allowing motor control of 482

the whole virtual body with a natural mapping and including global aspects such as 483

walking in the virtual environment. In addition, our study adds an effective bodily 484

involvement through the threat of falling, which is supported by a correlation between 485

GSR and threat questionnaire scores. Interestingly, we do not find a correlation between 486

GSR and body ownership score (which would be in line with [17]), yet we find a weaker 487

response to threat — both GSR and questionnaire — in 3PP than in 1PP or ALT. We 488

interpret this as an evidence that perspective had an impact on the subjective feeling of 489
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body ownership. 490

1PP and Multisensory Congruence 491

In addition to the expected results on 3PP, it is worth noticing that, in 1PP, the effect 492

of multisensory congruence was verified for agency and self-location, but not for body 493

ownership, thus suggesting a strong effect of perspective to the sense of body ownership 494

only when no other congruent sensorial clues were present. This could be an appealing 495

advantage for 1PP, as it suggests that observing the virtual body from a natural point 496

of view while only controlling camera orientation is sufficient for the subject to 497

self-identify with the avatar body, independently of proprioceptive and tactile 498

congruence. Moreover, even though the responses to the agency questions were 499

significantly inferior for ¬VMT, its absolute value are still positive, unveiling a degree of 500

agreement with the sense of agency question statements. It could be hypothesized that 501

subjects associated the control of the camera with the control of the head of the avatar, 502

thus leading to a feeling of partially controlling the body. 503

These results find support on the recent work of Kokkinara et al. [47]. In their study, 504

seated subjects developed the feeling of agency and ownership of a walking virtual body. 505

But only when the externally controlled virtual body was experienced from a 1PP. The 506

authors make the argument that, in line with the more subjective account of agency 507

proposed by Synofzik et al. [46], the intention to walk may have been produced during 508

observation, driving the self-attributing that they report. With the exception that the 509

tasks in our experiment had higher complexity, our ¬VMT condition closely replicates 510

their experimental paradigm, with compatible agency and body ownership results, and 511

thus supporting their view. 512

Alternating Perspective 513

The ability to choose the point of view resulted in embodiment responses that were 514

similar to 1PP, regardless of the multisensory congruence condition. This is most 515

probably related to the larger amount of time spent on average in 1PP than in 3PP (7). 516

Still, our results suggest that the relation with a virtual body experienced from 1PP can 517

be sustained despite the periodic alternation to a 3PP point of view. Therefore, we 518

observe that the ALT condition is a viable alternative for VR applications to maximize 519

the sense of embodiment, without compromising the contextual information that 3PP 520

can provide nor the more consistent bound to the virtual body that 1PP seems able to 521

promote. We also highlight that more subjects preferred the ALT condition, and that 522

they had the perception of performing faster in that condition, even though we found no 523

clear effect of perspective in our performance measure (Table 2, a short analysis of the 524

time to reach targets is available in supporting Fig S3 Fig). Moreover, the post 525

experiment comparative questionnaire shows that subjects generally perceive the 3PP 526

as safer than 1PP (Table 2). It is worth noting that none of the subjects reported 527

feeling sick due to the perspective switch, although no formal testing has been 528

conducted in this matter. 529

Conclusion 530

In this paper we presented an experiment using Virtual Reality to explore the influence 531

of perspective taking and multisensory congruence on the embodiment of a virtual body. 532

We show that the multimodal correlation with the whole body movement and its 533

physical contacts with the environment plays a prominent role on the sense of body 534

ownership of a virtual body located in the extra-personal space (3PP), but is less 535
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Table 2. Post-experiment responses for the VMT group. Values represent the
total count of responses in favor of each perspective condition. Most subjects preferred
to use 1PP, and felt safer in 3PP. When asked about conditions, subjects thought ALT
to be more efficient in the reaching task. ALT was also preferred by more subjects than
the other conditions.

Which point of view ... 1PP 3PP

... makes you feel safer when the floor falls? 3 21

... do you prefer to use when the floor falls? 19 5

... do you prefer to use to walk forward? 22 2

... do you prefer to use to reach the targets? 19 5

Which condition ... 1PP 3PP ALT

... do you prefer to perform the reaching task? 2 2 19

... is more efficient to reach the targets? 8 5 10

influent when the point of view coincides with the body (1PP). Thus, in the context of 536

the scientific debates investigating the influence of perspective taking, motor and 537

sensory correlation over the sense of body ownership, our result stands out by 538

supporting the view that a 3PP is compatible with body ownership when sensorimotor 539

contingencies are present. 540

Moreover, we proposed and explored how a new method alternating 1PP and 3PP 541

could benefit from the particular advantages of each viewpoint. Subjective evaluations 542

of embodiment for this condition were very similar to those of 1PP alone, suggesting 543

that the interruption of the point of view during the simulation is not significantly 544

detrimental to the sense of body ownership of a virtual body. A potential application of 545

alternated perspective could be in post traumatic stress disorder or phobia treatment, in 546

which one can develop a strong sense of embodiment of the virtual body in 1PP, and 547

then switch to 3PP when the body is exposed to a threat. This would allow the 548

exposure to happen in a more reassuring manner, while still preserving a stronger 549

bound to the virtual body, thus making the experience of self exposure flexible and the 550

treatment more gradual. 551

In summary, our results contribute to the understanding of the interplay of the 552

multiple components supporting embodiment and show that several factors (visuomotor 553

congruence, visuotactile congruence or perspective) can influence body ownership and 554

embodiment depending on the tasks to perform and on the stimuli provided. 555

Understanding the cognitive mechanisms of embodiment is a fundamental challenge for 556

the development of VR interaction that needs to be investigated further. This study 557

shows how an original idea for the design of interaction in VR can originate from and be 558

supported by cognitive science knowledge, potentially leading to innovative interaction 559

and navigation paradigms benefiting to several fields of application. 560

Supporting Information 561

S1 Video. Overview of the experimental setup and conditions. 562

S2 Video. Session Protocol. Video used to instruct the subject about the stages 563

of a session. 564

S1 Fig. Example of the GSR signal of a complete session. 565

PLOS 16/20



S2 Fig. Reported sense of self-location at different levels of perspective 566

and perspective order factors. 567

S3 Fig. Performance comparison of the reaching task (VMT group only). 568

S1 Table. Summary of results: Mean and confidence interval per experimental 569

condition. 570

S2 Table. Summary of statistical tests results and their respective effect 571

size estimations. 572

S1 Data. Data sets obtained with this experiment. 573

Acknowledgments 574

This work has been supported by SNFS project “Immersive Embodied Interactions in 575

Virtual Environments” N° 200021 140910. 576

Author Contributions 577

Conceived and designed the experiments: HGD SB BH RB. Developed the virtual scene: 578

SB HGD. Performed the experiment: SB HGD. Analyzed the data: HGD RS BH. 579

Wrote the paper: HGD BH RS SB OB RB. The described experiment was developed 580

and conducted at the Immersive Interaction Group of EPFL. 581

References

1. Legrand D. The bodily self: The sensori-motor roots of pre-reflective
self-consciousness. Phenomenology and the Cognitive Sciences. 2006;5(1):89–118.
doi:10.1007/s11097-005-9015-6.

2. Blanke O. Multisensory brain mechanisms of bodily self-consciousness. Nature
Reviews Neuroscience. 2012;13(8):556–571. doi:10.1038/nrn3292.

3. Blanke O, Slater M, Serino A. Behavioral, neural, and computational principles
of bodily self-consciousness. Neuron. 2015;88(1):145–166.
doi:10.1016/j.neuron.2015.09.029.

4. Faivre N, Salomon R, Blanke O. Visual consciousness and bodily
self-consciousness. Current opinion in neurology. 2015;28(1):23–28.
doi:10.1097/WCO.0000000000000160.

5. Vogeley K, Fink GR. Neural correlates of the first-person-perspective. Trends in
cognitive sciences. 2003;7(1):38–42. doi:10.1016/S1364-6613(02)00003-7.

6. Kilteni K, Groten R, Slater M. The Sense of Embodiment in Virtual Reality.
Presence: Teleoperators and Virtual Environments. 2012;21(4):373–387.
doi:10.1162/PRES a 00124.
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