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Abstract

Research in the area of automatic speaker verification
(ASV) has advanced enough for the industry to start using
ASV systems in practical applications. However, these sys-
tems are highly vulnerable to spoofing or presentation at-
tacks (PAs), limiting their wide deployment. Several speech-
based presentation attack detection (PAD) methods have
been proposed recently but most of them are based on
hand crafted frequency or phase-based features. Although
convolutional neural networks (CNN) have already shown
breakthrough results in face recognition, little is understood
whether CNNs are as effective in detecting presentation at-
tacks in speech. In this paper, to investigate the applica-
bility of CNNs for PAD, we consider shallow and deep ex-
amples of CNN architectures implemented using Tensorflow
and compare their performances with the state of the art
MFCC with GMM-based system on two large databases
with presentation attacks: publicly available voicePA and
proprietary BioCPqD-PA. We study the impact of increas-
ing the depth of CNNs on the performance, and note how
they perform on unknown attacks, by using one database to
train and another to evaluate. The results demonstrate that
CNNs are able to learn a database significantly better (in-
creasing depth also improves the performance), compared
to hand crafted features. However, CNN-based PADs still
lack the ability to generalize across databases and are un-
able to detect unknown attacks well.
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1. Introduction

Recent years have shown an increase in both the accu-
racy of biometric systems and their practical use. The ap-
plication of biometrics is becoming widespread from smart-
phones to automated border controls. The popularization of
the biometric systems, however, exposed their major flaw
— high vulnerability to spoofing attacks. The ease with
which a biometric system can be spoofed demonstrates the
importance of developing efficient anti-spoofing systems
that can detect both known (conceivable now) and unknown
(possible in the future) spoofing attacks.

In this paper, we focus on the spoofing attack detection
or, more specifically, on presentation attack detection (PAD)
systems in the context of voice biometrics. As per ISO/IEC
standard [7], presentation attacks are performed by present-
ing a spoofed sample to the physical sensor of a biometric
system, and for voice biometrics, it means a real or a synthe-
sized speech sample is played back to a microphone of the
automatic speaker verification (ASV) system. The replay
attacks are easy to perform (no special skills are required)
and ASV systems are shown to be vulnerable to them [13].

However, until only recently, most of the research fo-
cused on detecting synthesized speech, which is generated
by voice conversion or speech synthesis algorithms. Typi-
cal detection methods use handcrafted features based on au-
dio spectrogram, such as spectral [27, 4] and cepstral-based
features with temporal derivatives [19, 26], phase spectrum
based features [3], the combination of amplitude and phase
features [16], recently proposed constant Q cepstral coef-
ficients (CQCCs) [22], extraction of local binary patterns
in the cepstral domain [1], and audio quality based fea-
tures [9]. A survey by Wu et al. [24] provides a compre-
hensive overview of the attacks based on synthetic speech
and the detection methods tailored to those types of attacks.
The problems with these approaches based on handcrafted
features is that they do not generalize well for different
types of attacks, as several studies have shown [22, 10];
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and even ‘mega-fusion’ based techniques, which fuse sev-
eral different PAD systems, are not helpful, as is demon-
strated in [11, 6].

Some recent studies have shown neural nets to be
promising for detection of synthetic speech [5, 21, 17,
28] by learning features from the intermediate representa-
tions such as log-scale spectrograms or filterbanks. For
instance, Godoy et al. [5] demonstrated that a system
based on multilayer perceptron (MLP) outperformed sup-
port vector machines (SVM) and Gaussian mixture models
(GMM) based classifiers in detecting synthetic speech from
ASVspoof [25] database. Tian et al. [21] have shown on
the same ASVspoof database that a temporal CNN is even
better than MLP at detecting synthetic speech.

Neural nets are also promising for detection of replay or
presentation attacks [14, 12]. The latest study by Muck-
enhirnet al. [15] demonstrates the high accuracy of CNNs
compared to systems based on handcrafted features for at-
tack detection. However, little is known how CNNs perform
on unknown presentation attacks, and whether they can gen-
eralize across different databases with presentation attacks.
The impact of the neural net’s depth on the performance is
also not well understood.

In this paper, we focus on CNN-based PAD systems,
which learn features from raw speech data (similar to sys-
tems in [15]), and aim to answer several important ques-
tions: i) does CNN-based PAD performs better compared
to state of the art systems based on handcrafted features?
ii) what is the impact of depth of the architecture on the
attack detection accuracy? iii) do CNNs perform better on
unknown attacks or in cross-database settings? For this pur-
pose, we implemented two open source CNNs using Ten-
sorflow1, one with a shallow architecture of one convo-
lutional layer and another with a deeper architecture con-
sisting of three convolutional and three max pooling lay-
ers. As a state of the art PAD baseline, we selected a
system based on mel-scale frequency coefficients (MFCC)
and Gaussian mixture model (GMM) classifier. It has been
shown [18, 10, 11] that this system (besides MFCC being
very common and popular handcrafted features in speech
processing) is a good ‘all-rounder’ stand alone system (no
fusion) for unknown attacks and in cross-database evalua-
tions, in which it out-performed CQCC-based system [11].

Considering CNN-based PAD systems, which typically
require large amount of training data, we use two databases
with large number of different presentation attacks. One is
a publicly available voicePA2, an extension of the AVspoof
database (with more added attacks), which was shown to be
a threat to state of the art speaker verification systems [13].
Another is the new BioCPqD-PA [23] database of Por-
tuguese speakers and many high quality unknown presenta-

1http://tensorflow.com
2https://www.idiap.ch/dataset/voicepa

tion attacks recorded in an acoustically isolated room. Note
that, although proprietary, BioCPqD-PA database will be
publicly available for machine learning experiments on a
web-based BEAT platform3.

Therefore, this paper has the following main contribu-
tions:

• Two large databases with presentation attacks:
voicePA (publicly available2) and BioCPqD-PA (pro-
prietary);

• A reproducible evaluation of PAD systems based on
two CNNs implemented with Tensorflow and state of
the art MFCC system with GMM classifier, including
cross-database evaluation scenario;

• Open source implementations of tested PAD systems4.

2. Speech presentation attack databases
We use two large speech presentation attack databases:

voicePA and BioCPqD-PA. VoicePA, which has about 140
hours of audio in the training set alone, contains presen-
tation attacks recorded using different consumer devices,
such as laptops and mobile phones, in different environment
conditions, when both natural and synthesized speech was
played back. BioCPqD-PA database has about 250 hours
of audio in the training set alone and its main difference is
that it contains only replay attacks recorded in an acousti-
cally isolated room using different combinations of speak-
ers and microphones (including professional equipment).
The databases are summarized in Table 1 and detailed de-
scriptions are provided in the next sections.

Table 1. Number of utterances (bona fide, attacks, and total) in
voicePA and BioCPqD-PA databases.

Database Type of data Train Dev Eval
bona fide 4,973 4,995 5,576

voicePA attacks 115,740 115,740 129,988

total 120,713 120,735 135,564

bona fide 6,857 12,455 7,941

BioCPqD-PA attacks 98,562 179,005 114,111

total 105,419 191,460 122,052

2.1. voicePA database

The voicePA2 database inherits bona fide (genuine)
speech samples from AVspoof database [13], which con-
tains utterances from 44 participants (31 males and 13 fe-
males) recorded over the period of two months in four ses-
sions, each scheduled several days apart in different setups

3https://www.beat-eu.org/platform/
4Source code: https://pypi.python.org/pypi/bob.paper.isba2018-pad-dnn



Figure 1. voicePA database recording setup.

and environmental conditions such as background noises.
Speech samples were recorded using three devices: lap-
top using microphone AT2020USB+, Samsung Galaxy S3
phone, and iPhone 3GS (see the setup in Figure 1). For
more details, please refer to [13].

Table 2. Attack types in voicePA database.
Laptop replay Phone replay Synthetic replay

Laptop speakers, Samsung Galaxy S3, Speech synthesis,
High quality speakers iPhone 3GS & 6S Voice conversion

The presentation attacks were generated with assump-
tion that a verification system, which is considered to be at-
tacked, is installed either on a laptop (with an internal built-
in microphone), on Samsung Galaxy S3, or iPhone 3GS.
The attacker is trying to gain access to this system by play-
ing back to it a pre-recorded bona fide data or an automati-
cally generated synthetic data using some playback device.

The following devices were used to playback the attacks
(see Table 2): (i) direct replay attacks using a laptop with
internal speakers and a laptop with external high quality
speaker, (ii) direct replay attacks using Samsung Galaxy
S3, iPhone 3G, and iPhone 6S phones, and (iii) replay of
synthetic speech generated with text to speech and voice
conversion algorithms. Attacks targeting verification sys-
tem on the laptop are the same as the attacks in AVspoof
database [13], while the attacks on Samsung Galaxy S3
and iPhone 3G phones are newer and are contained only
in voicePA database.

The attacks were also recorded in three different noise
environments: a large conference room, an empty office
with window open, and a typical lab with closed windows.
In total, voicePA contains 25 different types of presentation
attacks.

All utterances (see Table 1) in voicePA database are split
into three non-overlapping subsets: training or Train (real
and spoofed samples from 4 male and 10 female partici-
pants), development or Dev (real and spoofed samples from
4 male and 10 female participants), and evaluation or Eval
(real and spoofed samples from 5 male and 11 female par-
ticipants).

Figure 2. Example of BioCPqD-PA database recording setup. All
attacks were recorded in an acoustically isolated room.

2.2. BioCPqD-PA database

BioCPqD-PA [23] is a proprietary database and it con-
tains video (audio and image) of 222 participants (124
males and 98 females) speaking different types of content,
which include free speech, read text, and read numbers
(credit card, telephone, personal ID, digits sequences and
other numbers set). Recordings used different devices (lap-
tops and smartphones), were performed in different envi-
ronments, and in Portuguese language.

The subset used in this paper as bona fide samples con-
sists of only the laptop part and include all participants. The
recordings used 4 different laptops, took place at 3 differ-
ent environments, including a quiet garden, an office, and
a noisy restaurant, and were performed during 5 recording
sessions5. In each session, 27 utterances with variable con-
tent were recorded.

The presentation attacks were recorded in an acousti-
cally isolated room (see Figure 2) using 3 different micro-
phones and 8 different loudspeakers, resulting in 24 con-
figurations (see Table 3 for details). The total number of
bona fide recordings is 27,253 and presentation attacks is
391,678. This database was split in three non-overlapping
subsets (see Table 1), isolating pairs of microphones and
loudspeakers in each subset (each microphone and loud-

5Not all subjects recorded 5 sessions, due to scheduling difficulties.



Table 3. Microphone/speaker pairs forming attack types in BioCPqD-PA database. (T), (D), and (E) indicate Train, Dev, and Eval sets.
aaaaaaaa
Microphone

Speaker Genius SP Megaware Dell A225 Edifier Logitech S-150 Creative SBS20 Dell XPS L502X Mackie

1. Genius travel A1-1 (T) A1-2 (T) A1-3 (T) A1-4 (T) A1-5 (D) A1-6 (D) A1-7 (D) A1-8 (D)
2. Dell XPS L502X A2-1 (D) A2-2 (D) A2-3 (D) A2-4 (D) A2-5 (E) A2-6 (E) A2-7 (E) A2-8 (E)
3. Logitech USB A3-1 (D) A3-2 (D) A3-3 (D) A3-4 (D) A3-5 (E) A3-6 (E) A3-7 (E) A3-8 (E)

speaker pair belongs to only one subset), thus providing a
protocol to evaluate the ability of a PAD system to gener-
alize to unseen configurations. As shown in the Table 3,
Train set contains 4 pairs of microphone and loudspeaker,
Dev set contains 12 pairs, and Eval set 8 pairs. Addition-
ally the protocol guarantees that Train and Eval sets do not
contain any repeated microphone-loudspeaker pairs. There
is no split among speakers, meaning that samples from all
speakers are present in all subsets.

2.3. Evaluation protocol

In a single database evaluation, the Train set of a given
database is used for training PAD system, the Dev set is
used for selecting hyper-parameters and Eval set is used for
testing. In a cross-database evaluation, the Train and Dev
sets are taken from one database, while the Eval set is taken
from another database.

For evaluation of PAD systems, the following metrics
are recommended [8]: attack presentation classification er-
ror rate (APCER) and bona fide presentation classification
error rate (BPCER). APCER is the number of attacks mis-
classified as bona fide samples divided by the total number
of attacks, and is defined as follows:

APCER =
1

NAT

NAT∑
i=1

(1−Resi), (1)

where NAT is the number of attack presentations. Resi
takes value 1 if the i-th presentation is classified as an at-
tack, and value 0 if classified as bona fide. Thus, APCER
can be considered as an equivalent to FAR for PAD systems,
as it represents the ratio of falsely accepted attack samples
in relation to the total number of attacks.

BPCER is the number of incorrectly classified bona fide
samples divided by the total number of bona fide samples:

BPCER =
1

NBF

NBF∑
i=1

Resi, (2)

where NBF is the number of bona fide presentations, and
Resi is defined similar to APCER. Hence, BPCER can be
considered as an equivalent to FRR for PAD systems.

In this paper’s evaluations, when testing PADs on each
database and in cross-database scenarios, we report EER
rates on Dev set (when BPCER and APCER are equal) and
separate BPCER and APCER values on Eval set using the
EER threshold computed on the Dev set.

3. PAD systems

For the baseline state of the art PAD system, we se-
lected a system based on mel-scale frequency coefficients
(MFCC) [2] and Gaussian mixture model (GMM)-based
classifier, which was shown to perform well by [18, 10, 11]
in single and cross-database scenarios.

To compute MFCC features, a given audio sample is
first split into overlapping 20ms-long speech frames with
10ms overlap. The frames are pre-emphasized with 0.97
coefficient and pre-processed by applying Hamming win-
dow. MFCC features are obtained from a power spectrum
(512-sized FFT) by applying mel-scale filter of size 20 (as
per [18]). A discrete cosine transform (DCT-II) is applied
to the filtered values and first 20 coefficients are taken.
Then, from the resulted coefficients, only deltas and delta-
deltas [20] are kept (40 in total) for the classifier, as it has
been reported in [18] that the static features degraded per-
formance of PAD systems.

The classification is done using two separately trained
GMM models, one for bona fide and one for attacks from
the Train set. The trained models are then used to compute
scores for Dev and Eval sets as the difference between log-
likelihoods to the two GMM models. Each model is trained
using 10 expectation-maximization (EM) iterations and has
512 Gaussians components.

3.1. Convolution neural networks

Two convolutional neural networks (CNNs) are designed
and trained for speech presentation attack detection: a
smaller network (denoted as ‘CNN-Shallow’ in this paper)
and a deeper model (denoted as ‘CNN-Deep’) with more
layers stacked up. The CNNs are implemented using Ten-
sorflow framework. The architecture of both CNNs are pre-
sented in Figure 3. The number of neurons are shown at
the top of each layer. These networks are by no means the
best possible architectures for PAD, as it was not our goal
to find such. Instead, we aim to understand whether CNNs,
even such simple ones, would be a better alternative to the
systems based on handcrafted features.

Unlike the traditional MFCC-GMM model, in a CNN
model the discriminative features are learned jointly with
the classification model. Hence, a raw waveform is used
as an input to the model and the convolutional layers are
responsible to build relevant features.



Figure 3. Architecture of the two CNNs designed for speech pre-
sentation attack detection. Two more convolutional layers and
more neurons are added in CNN-Deep model.

In our CNN networks, the raw input audio is split into
20ms-long speech frames. The features vector consists of
each frame plus its 20 left and right neighbors, resulting in
41 input frames.

In the CNN-Shallow network, the only convolutional
layer contains 20 neurons, each with kernel=300 and
stride=200, followed by a fully connected layer composed
of 40 neurons. Both layers use hard tangent as an activation
function. The output of convolutional layer is flattened for
the fully connected layer input. The last layer has two neu-
rons corresponding to the two output classes (bona fide and
attacks). LogSoftMax function is applied to the output of
the network before a negative log-likelihood loss function
is computed. Gradient descent with constant learning rate
0.0001 is used to optimize the loss.

A deeper CNN (CNN-Deep) is a slightly larger network
with three convolutional layers and we added it to analyze
how increasing depth of CNN architecture impacts the PAD
performance. The same raw data input and activation func-
tion are used as in the shallow network. The first convo-
lutional layer has 32 neurons, each with kernel=160 and
stride=20, followed by a max pooling layer (kernel=2 and
stride=1). A second convolutional layer has 64 neurons
(kernel=32 and stride=2) and the same max pooling layer.
The third convolutional layer contains 64 neurons (kernel=1
and stride=1) followed by the same max pooling layer. The
output of the last max pooling is flattened and connected to
a fully connected layer of 60 neurons. The last layer is an
output layer with 2 neurons-classes. Similarly to the shal-
low network, LogSoftMax function is applied to the out-
puts. For all convolutional layers, hard tangent activation
function is used. Gradient descent with exponentially de-
cay learning rate with base rate of 0.001 and decaying step
10000 is used for optimizing the negative log likelihood loss
function.

4. Evaluation results
To evaluate the performance of CNN-based PAD sys-

tems, we first trained both CNN-Shallow and CNN-Deep
networks, presented in the previous section, on training sets
of voicePA and BioCPqD-PA databases. The two trained
models (one for each database) were then used in two dif-
ferent capacities:

1. Use pre-trained models directly as classifiers on devel-
opment and evaluation sets

2. Use models as feature extractors, by taking the output
of the fully connected layer.

When used as a feature extractor, the feature vectors (40 val-
ues for CNN-Shallow model and 60 values for CNN-Deep
model) are extracted for a training set and two GMM clas-
sifiers are trained (one for bona fide and one for attacks)
in the same fashion as for MFCC-based PAD. Using the
same GMM classifier allows us to understand the effective-
ness of self-learned CNN-based features compared to the
handcrafted MFCC features (with CNN-Shallow model, the
number of features is also the same 40 as in MFCC-based
PAD).

Table 4 demonstrates the evaluation results of four ver-
sions of CNN-based PAD systems and baseline MFCC-
GMM based PAD using two databases voicePA and
BioCPqD-PA. The first column of the table describes the
combinations of the datasets used in each evaluation sce-
nario and other columns contains the evaluation results
(EER for Dev set with APCER and BPCER for Eval set)
for each of the considered PAD system.

For instance, in the first row of Table 4, ‘voicePA
(Train/Dev/Eval)’ means that the training set of voicePA
was used to train the model of each evaluated PAD, the de-
velopment set of voicePA was used to compute the EER
value and the corresponding threshold, and this threshold
was used to compute APCER and BPCER values on evalua-
tion set from the same voicePA database. In the second row
of Table 4, ‘voicePA (Train/Dev) → BioCPqD-PA (Eval)’
means that training and computation for development set
were performed in the same way as for the system in the
first row (hence, EER rate for Dev set is the same as in the
first row), but the evaluation was done on the Eval set of
BioCPqD-PA database instead. This cross-database evalu-
ation simulates a practical scenario when a PAD system is
built and tuned on one type of data but is deployed, as a
black box, in a different setting and environment with dif-
ferent data. The last cross-database scenario is when only a
pre-trained model is built using some existing data (a com-
mon situation in recognition), for instance from voicePA as
in row ‘voicePA (Train)→ BioCPqD-PA (Dev/Eval)’ of Ta-
ble 4, but the system is tuned and evaluated on another data,
e.g., from BioCPqD-PA.



Table 4. Performance of PAD systems in terms of EER (%) on Dev set, APCER (%) on Eval set, and BPCER (%) on Eval set of the scores
for each voicePA and BioCPqD-PA databases and for different cross-database scenarios. T, D and E stand for Train, Dev, and Eval sets.

Combinations of datasets GMM-MFCC GMM-CNN-Shallow GMM-CNN-Deep CNN-Shallow CNN-Deep
EER APCER BPCER EER APCER BPCER EER APCER BPCER EER APCER BPCER EER APCER BPCER

voicePA (T/D/E) 4.28 4.07 4.45 1.26 1.40 0.47 0.26 0.18 0.39 1.25 1.41 0.52 0.30 0.22 0.38
voicePA (T/D) → BioCPqD-PA (E) 4.28 96.18 8.89 1.26 48.65 54.40 0.26 50.45 13.76 1.25 79.59 3.49 0.30 75.69 1.73
voicePA (T) → BioCPqD-PA (D/E) 41.00 70.55 41.71 34.89 56.11 34.43 19.98 46.84 19.93 37.05 57.07 36.90 25.20 43.73 25.22
BioCPqD-PA (T/D/E) 41.00 70.55 41.71 11.39 22.45 11.09 7.34 24.09 7.14 11.69 23.73 11.48 7.01 23.81 6.89
BioCPqD-PA (T/D) → voicePA (E) 41.00 81.57 29.16 11.39 0.00 100.00 7.34 0.00 100.00 11.69 11.84 85.28 7.01 11.97 86.48
BioCPqD-PA (T) → voicePA (D/E) 50.19 37.73 47.31 22.86 24.83 18.49 37.04 39.59 32.08 33.29 34.02 26.54 32.23 32.52 26.15

0.10.2 0.5 1 2 5 10 20 40 60 80 90 95 98 99

FRR (%)

0.1
0.2

0.5
1
2

5

10

20

40

60

80

90

95

98
99

FA
R

 (
%

)

Dev set

Eval set

(a) VoicePA (Train/Dev/Eval)

0.10.2 0.5 1 2 5 10 20 40 60 80 90 95 98 99

FRR (%)

0.1
0.2

0.5
1
2

5

10

20

40

60

80

90

95

98
99

FA
R

 (
%

)
Dev set

Eval set

(b) VoicePA (Train/Dev) → BioCPqD-PA (Eval)

0.10.2 0.5 1 2 5 10 20 40 60 80 90 95 98 99

FRR (%)

0.1
0.2

0.5
1
2

5

10

20

40

60

80

90

95

98
99

FA
R

 (
%

)

Dev set

Eval set

(c) VoicePA (Train) → BioCPqD-PA (Dev/Eval)

0.10.2 0.5 1 2 5 10 20 40 60 80 90 95 98 99

FRR (%)

0.1
0.2

0.5
1
2

5

10

20

40

60

80

90

95

98
99

FA
R

 (
%

)

Dev set

Eval set

(d) BioCPqD-PA (Train/Dev/Eval)

0.10.2 0.5 1 2 5 10 20 40 60 80 90 95 98 99

FRR (%)

0.1
0.2

0.5
1
2

5

10

20

40

60

80

90

95

98
99

FA
R

 (
%

)

Dev set

Eval set

(e) BioCPqD-PA (Train/Dev) → VoicePA (Eval)

0.10.2 0.5 1 2 5 10 20 40 60 80 90 95 98 99

FRR (%)

0.1
0.2

0.5
1
2

5

10

20

40

60

80

90

95

98
99

FA
R

 (
%

)

Dev set

Eval set

(f) BioCPqD-PA (Train) → VoicePA (Dev/Eval)
Figure 4. DET curves of calibrated scores of CNN-Deep system in different evaluation scenarios (see the corresponding rows in Table 4).

The results in Table 4 demonstrate several important
findings. First, it is clear that CNN-based PADs perform
significantly better compared to MFCC-based PAD. This is
especially evident in individual database evaluations, with
‘CNN-Deep’ variants showing more than 10 times lower
error rates compared to MFCC-based PAD for voicePA
database and a few times lower for BioCPqD-PA database.
Then, deeper CNN models perform generally better com-
pared to shallow variants. Also, using CNN models as fea-
ture extractors coupled with a GMM classifier can be ben-
eficial and can lead to an increase in accuracy, though the
increase is not as significant compared to the larger compu-
tational resources GMM-CNN based systems require.

It is important to note that CNN-based systems do not
generalize well across databases, although, in the scenario
when only a model is pre-trained on another database,

CNNs are more stable and significantly more accurate com-
pared to MFCC-based PAD. However, if the system is both
trained and tuned (threshold is chosen) on the same database
but is evaluated on another database, CNN-based systems
completely fail just as MFCC-based systems.

To illustrate the performance of CNN-based systems in
more details, we also plot detection error tradeoff (DET)
curves for a ‘CNN-Deep’ system in Figure 4. You can
notice the large gap between the curves for Dev and Eval
sets in the Figure 4b and Figure 4e, when both training and
threshold tuning is performed on one database but evalua-
tion is done on another.

Although none of the considered PAD systems general-
ize well across different databases, it is also important to
understand how they perform on different types of attacks,
including unknown attacks, for which the systems were not



Table 5. Per attack APCER results for Eval sets of voicePA and BioCPqD-PA databases.
Types of attacks GMM-MFCC GMM-CNN-Shallow GMM-CNN-Deep CNN-Shallow CNN-Deep

voicePA, laptop replay 74.19 20.19 7.19 20.12 8.94
voicePA, phone replay 51.00 2.93 0.83 2.73 0.91
voicePA, synthetic replay 0.01 1.05 0.04 1.08 0.06
BioCPqD-PA, A2-5 71.42 5.81 30.86 3.93 28.91
BioCPqD-PA, A2-6 42.65 1.86 25.10 1.04 23.22
BioCPqD-PA, A2-7 77.01 0.00 0.34 0.00 0.31
BioCPqD-PA, A2-8 76.93 53.94 14.52 60.60 13.68
BioCPqD-PA, A3-5 73.96 2.05 3.80 1.59 4.41
BioCPqD-PA, A3-6 36.67 0.02 0.10 0.02 0.10
BioCPqD-PA, A3-7 68.72 43.38 74.04 43.87 73.67
BioCPqD-PA, A3-8 70.17 0.76 0.47 0.86 0.63

trained. This analysis can help us understand which types
of presentation attacks are more challenging. In this sce-
nario, PAD systems are trained, tuned, and evaluated on the
same database, only error rates are computed for specific at-
tacks. Thus, we computed APCER value separately for each
type of attacks in Eval sets of voicePA and BioCPqD-PA
database. Note that EER and BPCER values do not change,
since EER is computed on the whole development set and
BPCER only measures the detection of bona fide utterances.

The results for different types of attacks detailed in Ta-
ble 2 and Table 3 are shown in Table 5. It is important to
note that in case of voicePA, the same attacks are present in
all training, development, and evaluation sets (data is split
by speakers), so voicePA does not contain unknown attacks.
However, in BioCPqD-PA, different types of attacks are dis-
tributed into Train, Dev, and Eval sets differently (see Ta-
ble 3), so that all attacks in Eval set are basically unknown
to the PAD systems.

The results in Table 5 for voicePA database demonstrate
that using high quality speakers as a replay device (see
‘voicePA, laptop replay’ row of the table) lead to signif-
icantly more challenging attacks compared to attacks re-
played with mobile phone (see row ‘voicePA, phone re-
play’). Also, synthetic speech poses considerably lesser
challenge to PAD systems compared to the replay of nat-
ural speech. Also, note that we did not consider different
environments and ASV systems (different microphones) for
each of these types of attacks in voicePA, we only separate
different speakers and natural speech from synthetic.

The attacks in BioCPqD-PA, however, are formed by
combining different pairs of speakers (attack devices) and
microphones of ASV systems, while influence of environ-
ment and types of speech were excluded, since acoustically
isolate room was used and attacks were recorded by replay-
ing natural speech only. Results in Table 5 for BioCPqD-
PA, show the significance of the choice for both speaker,
with which attacks is made, and the microphone of the at-
tacked ASV system. For instance, the same microphone is
used in attacks ‘A3-6’ and ‘A3-7’ (see attacks details in Ta-
ble 3) but the difference in speakers can lead to drastically

different detection results, as ‘A3-6’ is easily detected by all
CNN-based PAD systems, while all were spoofed by ‘A3-
7’. Similarly, the results of the CNN-Shallow and the CNN-
Deep substantially vary across different pairs of speakers
and microphones, e.g., for pairs ‘A2-5’, ‘A2-6’, ‘A2-8’, and
‘A3-7’. These differences may be due to different features
learned by each neural network, as the model learns the fea-
tures directly from the audio signal. Therefore, changing
the neural network architecture will possibly affect the fea-
tures learned and consequently the results.

5. Conclusion
In this paper, we investigated whether, for speech

presentation attack detection, a convolutional neural net-
work (CNN) is a better alternative to the systems based
on handcrafted features. The evaluation results on two
large voicePA and BioCPqD-PA databases demonstrate that
CNNs can achieve up to the order of magnitude better per-
formance compared to MFCC-based systems. The perfor-
mance in cross-database scenario is not as impressive, al-
though, using a network model pre-trained on an external
data could be a possibility.

More work needs to be done, especially, in the direction
of understanding which CNN architectures would work best
for speech presentation attack detection, and how to find
such architecture, including determining good loss and ac-
tivation functions, cost optimizers, learning rate techniques,
dropouts, etc. We also would like to explore whether trans-
fer learning can improve the performance in the cross-
database scenario. Fusion techniques are also interesting
to investigate.
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son of features for synthetic speech detection. In INTER-
SPEECH, pages 2087–2091, 2015.

[19] S. Shiota, F. Villavicencio, J. Yamagishi, N. Ono, I. Echizen,
and T. Matsui. Voice liveness detection algorithms based
on pop noise caused by human breath for automatic speaker
verification. In INTERSPEECH, pages 239–243, 2015.

[20] F. K. Soong and A. E. Rosenberg. On the use of instanta-
neous and transitional spectral information in speaker recog-
nition. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 36(6):871–879, 1988.

[21] X. Tian, X. Xiao, E. S. Chng, and H. Li. Spoofing speech
detection using temporal convolutional neural network. In
Asia-Pacific Signal and Information Processing Association
Annual Summit and Conference (APSIPA), pages 1–6, Dec
2016.

[22] M. Todisco, H. Delgado, and N. Evans. Constant Q cep-
stral coefficients: A spoofing countermeasure for automatic
speaker verification. Computer Speech & Language, Feb.
2017.

[23] R. Violato, M. U. Neto, F. Simões, T. Pereira, and M. An-
geloni. BioCPqD: uma base de dados biométricos com
amostras de face e voz de indivı́duos brasileiros. Cadernos
CPqD Tecnologia, 9(2):7–18, 2013.

[24] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and
H. Li. Spoofing and countermeasures for speaker verifica-
tion: A survey. Speech Communication, 66:130–153, Feb.
2015.

[25] Z. Wu, T. Kinnunen, N. Evans, J. Yamagishi, C. Hanilçi,
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