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ABSTRACT
The focus of this paper is on multitask learning over adaptive

networks where different clusters of nodes have different ob-

jectives. We propose an adaptive regularized diffusion strat-

egy using Gaussian kernel regularization to enable the agents

to learn about the objectives of their neighbors and to ignore

misleading information. In this way, the nodes will be able

to meet their objectives more accurately and improve the per-

formance of the network. Simulation results are provided to

illustrate the performance of the proposed adaptive regular-

ization procedure in comparison with other implementations.

Index Terms— Distributed optimization, adaptive com-

bination and regularization, diffusion LMS.

1. INTRODUCTION

Distributed optimization and learning over networks is an at-

tractive research area with several applications from signal

processing and optimization to modeling of biological and so-

cial networks [1–4]. Several strategies have been proposed in

the literature for distributed processing over networks such as

incremental strategies [5], consensus strategies [6, 7] and dif-

fusion strategies [1, 2, 8]. It has been shown that among these

strategies, the diffusion algorithm is robust, scalable, and ca-

pable of real-time adaptation and learning. Diffusion strate-

gies also have superior performance and stability compared to

consensus methods [1,2,9]. We therefore focus on the imple-

mentation of diffusion strategies in this article. In particular,

we examine networks where different clusters of agents may

be interested in different objectives [10–15]. In this case, it is

important to develop algorithms that enable the agents to con-

tinuously learn which of their neighbors belong to the same

cluster and which ones are from different clusters.

References [13, 15] study the important case of two ob-

jectives where agents receive data from one of two possible

models. Reference [16] considers multiple clusters under the

assumption that the objectives of adjacent clusters are related
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to each other and that agents are aware of their clusters. There

are also variations of multi-task networks where agents deal

with the estimation of different types of parameters [17]; one

of the parameters is common to all agents and the second pa-

rameter can vary across agents.

In this paper we consider a multitask network consisting

of several connected clusters with different objectives. We do

not assume that the agents have access to any prior cluster-

ing information. In particular, the agents do not know which

clusters they belong to. They also do not know the clusters

of their neighbors. Moreover, we do not assume prior knowl-

edge about how the objectives of the clusters are related to

each other. Therefore, the proposed method is able to handle

situations where there are different objectives in the network

without interference among the clusters. For this purpose, we

propose a multitask learning method that employs Gaussian

kernel regularization. In this method, both the combination

weights and the regularization coefficients are learned adap-

tively and continuously. In this way, the agents are able to

cooperate only with neighbors that share the same objective.

2. MODELING OF MULTITASK NETWORKS

In this paper, we use plain letters to denote scalars, boldface

lowercase letters to denote vectors, and boldface uppercase

letters to denote matrices. Furthermore, Nk represents neigh-

bors of node k, including k.

2.1. Network model

We adopt a multitask problem formulation similar to the one

studied in [11,16] with some variation in the cost formulation,

as explained further ahead. We consider a connected network

consisting of N nodes. Each node k wants to estimate an M×
1 unknown vector ωo

k from collected measurements. Each

node k has access to a scalar measurement dk(i) and an M ×
1 regression vector xk(i) at every time instant i ≥ 0. The

data at each node is assumed to be related to the unknown
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Fig. 1. An example of a multitask network consisting of N =
15 nodes and Q = 3 clusters. The solid lines are the links

between the nodes of the same cluster and the dashed lines

represent connections between nodes in different clusters.

parameter vector ωo
k via a linear regression model:

dk(i) = xT
k (i)ω

o
k + nk(i), (1)

where nk(i) is the measurement noise at node k and time in-

stant i.
We assume that the network consists of Q different clus-

ters and we write Cq to represent the set of nodes in cluster q.

Each cluster is a collection of nodes that are interested in the

same parameter vector:

ωo
k = ωo

Cq
, for all k ∈ Cq. (2)

Nodes of different clusters can be connected to each other but

nodes do not have prior information about the clusters that

their neighbors belong to. This means that during the initial

stages of adaptation, nodes do not know whether their neigh-

bors are following the same objective as them. An example

of such a network is shown in Figure 1. In this network, the

total number of agents is N = 15 and there are Q = 3 clus-

ters. The solid lines represent links between nodes of the same

cluster while the dashed lines represent connections between

nodes in different clusters. In general, processing data from

neighbors without considering their clusters can lead to ad-

verse performance. In the next section we formulate an opti-

mization problem for such a network and propose an adaptive

method to solve this problem.

3. PROBLEM FORMULATION

In order to solve the estimation problem over the multitask

network, we assign a local cost function, Jk(ωC(k)), to each

node k where C(k) represents the cluster that node k belongs

to:

Jk(ωC(k)) = E {|dk(i)− xT
k (i)ωC(k)|2}. (3)

The nodes that belong to the same cluster have a mutual in-

terest in estimating the same parameter vector. Therefore, in

order to encourage this type of cooperation, we can use an ap-

propriate regularization to promote similarities among agents

with similar objectives. There are several possible regulariza-

tion terms that can be used for this particular purpose. Here,

following [11, 16], we consider the squared Euclidean dis-

tance as a similarity regularizer:

Δ(ωC(k) − ωC(�)) � ‖ωC(k) − ωC(�)‖2, (4)

where ‖ωC(k) − ωC(�)‖ is the Euclidean distance between the

parameter vectors for nodes � and k. Combining equations (3)

and (4) results in the regularized global cost function:

Jglob(ωC(1), ...,ωC(Q)) =

N∑
k=1

E {|dk(i)− xT
k (i)ωC(k)|2}

+ β
N∑

k=1

∑
�∈Nk

γ�k ‖ωC(k) − ωC(�)‖2, (5)

where β ≥ 0 is a strength parameter. Moreover, the weights

γ�k ≥ 0 adjust the role of the regularization term between the

two nodes k and � and they satisfy the conditions:

N∑
�=1

γ�k = 1, and γ�k = 0 if � /∈ Nk (6)

It is important to note that similar to the case studied in

[16], the role of adding the second term on the right hand side

of (5) is to promote similarity among nodes with similar ob-

jectives. However, unlike [16], here the nodes have no prior

information about the objectives of their neighbors. There-

fore, the internal summation in this term is over all the neigh-

bors of node k. Consequently, the regularization weights γ�k
must be adjusted such that they allocate more weight to neigh-

bors with similar objectives while giving less weight to the

neighbors from different clusters.

In the following section, we propose an adaptive diffusion

strategy that enables agents to learn the regularization coeffi-

cients, as well as the combination weights, in such a way that

they end up assigning relatively larger weights to the neigh-

bors with similar objectives.

4. DIFFUSION ADAPTATION STRATEGY

Without loss of generality, we employ the adapt-then-combine

(ATC) diffusion algorithm to solve the optimization problem

in equation (5) due to its superior performance even in com-

parison to consensus strategies [1]. The result of applying



ATC to equation (5) leads to the following distributed strat-

egy:

ψk(i) = ωk(i− 1) + μkxk(i)[dk(i)− xT
k (i)ωk(i− 1)]

+μkβ
∑
�∈Nk

γ�k(i) (ω�(i− 1)− ωk(i− 1)),

(7)

ωk(i) =
∑
�∈Nk

a�k(i)ψ�(i), (8)

where μk > 0 is the step-size parameter used by node k, and

the coefficients a�k(i) are non-negative entries of an N × N
combination matrix Ai at time instant i. It is important to

note that since Ai has to be left-stochastic, we have:

AT
i 1 = 1, a�k(i) = 0 if � /∈ Nk, (9)

where 1 is an N × 1 vector with all entries equal to one. Ob-

serve in (7) that we are allowing the regularization coefficients

γ�k(i) to vary with time because they will be adapted as well.

4.1. Selection of Regularization Weights

As indicated previously, selection of the regularization coef-

ficients γ�k in equation (5) has a significant impact on the

performance of the network. These coefficients must be esti-

mated in an adaptive manner so that agents can be clustered

more accurately. Now since the nodes do not have prior infor-

mation about the clusters of their neighbors, the weights must

be estimated in such a way that they allocate higher weight

to neighbors sharing similar objectives. In other words, the

regularization penalty term in equation (5) must be omitted

when the objectives of nodes k and � are not similar. There-

fore, the regularization weights γ�k(i) must be inversely, but

not necessarily linearly, proportional to the distance between

the objectives of two nodes, i.e., ‖ωo
k − ωo

�‖2.

Among several possible adaptive regularization terms that

have been used in the literature, we select γ�k(i) proportional

to exp(−‖ωo
k − ωo

�‖2/h) [18, 19]. It can be seen that this

method is analogous to Gaussian kernel regularization with

sufficient flexibility when h > 0:

γ�k(i) =
exp(−‖ωo

k − ωo
�‖2/h)∑

n∈Nk
exp(−‖ωo

k − ωo
n‖2/h)

(10)

It is still not feasible to evaluate the regularization weights

based on equation (10). This is because the nodes do not know

the true objectives ωo
k and ωo

� . Therefore, we replace these

objectives by the best available estimates at each time instant

and reformulate the weights as:

γ�k(i) ≈
{

exp(−‖ωk(i−1)−ω�(i−1)‖2/h)
∑

n∈Nk
exp(−‖ωk(i−1)−ωn(i−1)‖2/h)

, � ∈ Nk

0, otherwise

(11)

Algorithm 1 Regularized ATC Diffusion LMS for clustered

multitask networks with adaptive regularization weights.

Require: ωk,0 = ψk,0 = 0, γ�k(0) = 0 for all k
for i ≥ 1 do

γ�k(i) ≈
{

exp(−‖ωk(i−1)−ω�(i−1)‖2/h)
∑

n∈Nk
exp(−‖ωk(i−1)−ωn(i−1)‖2/h)

, � ∈ Nk

0, otherwise

ψk(i) = ωk(i− 1) + μkxk(i)[dk(i)− xT
k (i)ωk(i− 1)]

+μkβ
∑
�∈Nk

γ�k(i) (ω�(i− 1)− ωk(i− 1))

a�k(i) ≈
{ ‖ωk(i−1)−ψ�(i)‖−2

∑
n∈Nk

‖ωk(i−1)−ψn(i)‖−2 , � ∈ Nk

0, otherwise

ωk(i) =
∑

�∈Nk
a�k(i)ψ�(i)

end for

4.2. Estimation of Combination Weights

In order to estimate the combination weights, we follow the

same procedure developed in [11, 13] and introduce the in-

stantaneous MSD of the network at time i:

MSD(i) � 1

N

N∑
k=1

E‖ω̃k(i)‖2, (12)

where ω̃k(i) � ωo
k − ωk(i) is the error vector at node k at

time instant i. Then, the combination coefficients a�k(i) can

be obtained by solving the optimization problem:

min
Ai

MSD(i) (13)

subject to (9). It was shown in [13] that the optimal solution

can be approximated by:

a�k(i) ≈
{ ‖ωk(i−1)−ψ�(i)‖−2

∑
n∈Nk

‖ωk(i−1)−ψn(i)‖−2 , � ∈ Nk

0, otherwise
(14)

One important conclusion derived from equation (14) is that

the combination coefficient a�k(i) is inversely proportional to

the distance between the estimate of node k and the intermedi-

ate estimate ψ�(i) of node �. In other words, this combination

approach enables the agents to continuously learn about the

objective of their neighbors so that they can distinguish be-

tween useful and misleading information. This method helps

the nodes of multitask networks to acquire an effective coop-

erative strategy. Estimating both combination and regulariza-

tion weights in this manner results in an adaptive multitask

diffusion algorithm, which helps the agents benefit from co-

operation by ignoring misleading information.



Fig. 2. Performance of the network for different learning

strategies. The MSD curves are shown for different diffusion

strategies.

5. SIMULATION RESULTS

We present a numerical example in order to illustrate the be-

havior of the proposed algorithm over a multitask network.

In this example, we consider the network of 15 nodes, i.e.,

N = 15, shown in Figure 1. As can be seen in the figure,

the network is divided into 3 clusters: C1 = {1, 2, 3, 4, 5},

C2 = {6, 7, 8, 9, 10, 11, 12}, and C3 = {13, 14, 15}. The pa-

rameter vector for each cluster is two-dimensional and cho-

sen as ωo
C1

= [0.5,−0.4]
T

, ωo
C2

= [−1, 3]
T

, and ωo
C3

=

[5.19, 2.81]
T

. Moreover, the regression input signals xk(i)
are 2 × 1 zero-mean Guassian random vectors with covari-

ance matrices Rx,k = σ2
x,kIM where σ2

x,k is shown in Figure

3. Additionally, the measurement noises nk(i) are zero-mean

random variables with a Guassian distribution and their vari-

ances σ2
n,k are also shown in Figure 3.

The regularization weights γ�k(i) and the combination

weights a�k(i) are estimated using (11) and (14), respectively.

The results of different strategies have been averaged over 100

Monte-Carlo runs for μ = 0.1, as shown in Figure 2. The

performance of the proposed method is compared to other

learning methods: (a) the non-cooperative algorithm, where

each node of the network attempts to estimate the required

parameter vector without using any information from other

nodes. In this case, a cluster can be assigned to each node

and we set: Ai = IN , β = 0; (b) the regularized multi-

task algorithm with uniform regularization weights, where the

nodes employ a diffusion strategy with uniform regularization

weights: γk� = |Nk|−1
; (c) the regularized multitask algo-

rithm with uniform combination and regularization weights,

where both the regularization weights γk�(i) and combina-

tion weights ak�(i) are set equal to |Nk|−1
; (d) the regular-

ized multitask algorithm with β = 0, where the nodes of the

network solve the multitask problem cooperatively and with

adaptive weights, but the regularization term is omitted.

Comparing the five learning strategies, we can see that the

proposed regularized method with adaptive weights enables

Fig. 3. Variances of the network input and noise for each node

of the network.

the nodes of the network to achieve superior performance. On

the other hand, in cases where the regularization and combi-

nation weights are uniform and have not been estimated adap-

tively, the nodes are unable to distinguish misleading informa-

tion from beneficial data. Therefore, most of the nodes are not

successful in estimating their own objectives and their perfor-

mance is even worse than the case where there is no coopera-

tion. In fact, this result clearly reveals the challenge of coop-

eration in multitask networks since it shows that in the cases

where the nodes allocate equal weights to all of their neigh-

bors without considering their objectives, the performance of

the network may be even worse than the case where the nodes

do not cooperate at all. Finally, comparing the performance of

the proposed method for two regularization factors of β = 0
and β = 1 shows that adding the regularization term can be

beneficial.

6. CONCLUSION

In this paper, we have considered the multitask estimation

problem where the nodes of the network have different objec-

tives. We developed a regularized adaptive learning algorithm

involving Gaussian kernels, which guides the nodes to learn

the beneficial information and ignore the misleading data re-

ceived over time.
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