
Secure Storage with Replication and Transparent Deduplication
Iraklis Leontiadis

∗

Ecole Polytechnique Federale de Lausanne (EPFL)

School of Computer and Communication Sciences

Lausanne, Switzerland

iraklis.leontiadis@epfl.ch

Reza Curtmola

New Jersey Institute of Technology (NJIT)

Department of Computer Science

Newark, NJ, USA

crix@njit.edu

ABSTRACT
We seek to answer the following question: To what extent can we
deduplicate replicated storage ? To answer this question, we design

ReDup, a secure storage system that provides users with strong

integrity, reliability, and transparency guarantees about data that is

outsourced at cloud storage providers. Users store multiple replicas

of their data at different storage servers, and the data at each storage

server is deduplicated across users. Remote data integrity mech-

anisms are used to check the integrity of replicas. We consider a

strong adversarial model, in which collusions are allowed between

storage servers and also between storage servers and dishonest

users of the system. A cloud storage provider (CSP) could store

less replicas than agreed upon by contract, unbeknownst to honest

users. ReDup defends against such adversaries by making replica

generation to be time consuming so that a dishonest CSP cannot

generate replicas on the fly when challenged by the users.

In addition, ReDup employs transparent deduplication, which

means that users get a proof attesting the deduplication level used

for their files at each replica server, and thus are able to benefit

from the storage savings provided by deduplication. The proof is

obtained by aggregating individual proofs from replica servers, and

has a constant size regardless of the number of replica servers. Our

solution scales better than state of the art and is provably secure

under standard assumptions.

CCS CONCEPTS
• Security and privacy → Database and storage security; Se-
curity protocols; • Information systems → Deduplication; Dis-
tributed storage; • Computer systems organization→ Reliabil-
ity; Redundancy;

KEYWORDS
remote data integrity checking; RDIC; replication; deduplication

ACM Reference Format:
Iraklis Leontiadis and Reza Curtmola. 2018. Secure Storage with Replication

and Transparent Deduplication. In CODASPY ’18: Eighth ACM Conference
on Data and Application Security and Privacy, March 19–21, 2018, Tempe, AZ,

∗
This work was done while the author was affiliated with NJIT.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CODASPY ’18, March 19–21, 2018, Tempe, AZ, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5632-9/18/03. . . $15.00

https://doi.org/10.1145/3176258.3176315

USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/3176258.

3176315

1 INTRODUCTION
Outsourcing storage to cloud storage providers (CSPs) has become

a popular and convenient practice. Despite its cost-saving bene-

fits, cloud storage remains rife with security issues [16]. There

are reported incidents of lost data or service unavailability due to

power outages [15], hardware failure, software bugs [14], external

or internal attacks, negligence, or administrator error. Moreover,

cloud infrastructures lack transparency and data owners have to

fully trust the CSPs. All these factors limit the suitability of cloud

platforms for applications that require long-term data integrity and

reliability. Of particular concern to data owners is that although

storage can be outsourced, the liability in case data is lost, damaged,

or stolen cannot be outsourced.

Several approaches can be used to ease these concerns. First, to

improve reliability, data can be stored redundantly by replicating it

across geographically dispersed cloud storage servers. Whenever

data is damaged at one replica server (RS), data can be retrieved from
healthy replication servers in order to repair the damaged data and

restore the desired level of redundancy. Second, the transparency

of cloud infrastructures can be improved by using an auditing

mechanism such as remote data integrity checking (RDIC) [4, 5, 9,
22], which allows data owners to efficiently check the integrity of

data stored at untrusted CSPs.

At the same time, a popular trend is that of data deduplication,
which allows CSPs to reduce their storage costs by exploiting com-

mon properties of files stored by different users. When different

users upload the same file at a CSP, deduplication ensures that only

one copy is stored. Recent studies show that cross-user data dedu-

plication can lead to significant savings in storage costs, ranging

from 50% to 95% [20, 21].

Although deduplication across multiple users’ files is economi-

cally beneficial for CSPs, the individual users whose files get dedu-

plicated do not benefit from these savings. Typically, each user

gets charged an amount that is proportional with the amount of

data stored and any savings due to deduplication with other users’

data are not passed to the end user. Recently, Armknecht et al. [3]

introduced transparent deduplication, which gives users full trans-

parency on the storage savings achieved through deduplication.

This enables a new pricing model which takes into account the level

of deduplication of the data: The more users store the same piece

of data, the lower each individual user gets charged for storing that

piece of data.

We wish to design a system that provides both integrity and

reliability (via RDIC and replication) as well as cost-efficient storage

via transparent deduplication, when faced with an economically

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034698?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3176258.3176315
https://doi.org/10.1145/3176258.3176315
https://doi.org/10.1145/3176258.3176315

motivated adversary that controls some or all of the storage servers.

Adversarial servers will try to “cut corners” and gain an economic

advantage as long as it remains undetected. This can be achieved

either by using less storage than required to fulfill their contractual

obligations for replication, or by charging users according to a

deduplication level that is lower than the real one. To achieve this

goal, we are faced with twomain challenges that were not addressed

by previous work:

Challenge 1: Overcoming the replicate on the fly (ROTF) attack.
Previous work has established that the storage servers should be

required to store different and incompressible replicas [10, 12].

Otherwise, if all replicas are identical, an economically motivated

set of colluding servers may try to save storage by simply storing

only one replica and redirecting all data owner’s RDIC challenges

to the one server storing the replica. One approach to generate

different replicas is by encrypting the original file with different

keys. This mitigates the “redirection” attack described earlier: A

storage system cannot successfully pass RDIC challenges for the t
replicas without actually storing the t replicas.

However, in order to enable deduplication across users, the repli-

cas generated by two users for the same file for the same storage

server should be identical. For example, two users must generate

identical replicas H1 for storage server RS1, identical replicas H2

for storage server RS2, etc. To achieve this, users should use the

same keys to generate replicas for the same storage server. This

introduces the replicate on the fly (ROTF) attack, a novel attack

unique to this setting: if at least one user shares with the CSP the

keys used to generate replicas, then the CSP can recover and store

only the original file instead of storing the t replicas. The CSP can

then generate on the fly a particular replica to pass an RDIC chal-

lenge for that replica. This will hurt the reliability of the storage

system, because the CSP does not store t replicas, unbeknownst to
the client.

Challenge 2: Efficient transparent deduplication formultiple replicas.
Transparent deduplication has been investigated only when the

data is stored at a single cloud server [3]. When data is replicated

at multiple storage servers, the previous solution does not scale

well and transparent deduplication becomes more challenging to

achieve securely and efficiently.

Contributions: In this work, we propose ReDup, a secure storage
solution with Replication and transparent deDuplication. ReDup
provides users with strong integrity, reliability, and transparency

guarantees about data that is outsourced at cloud storage providers.

To the best of our knowledge, ours is the first proposal to provide

all these guarantees at the same time. Specifically, ReDup offers:

• Integrity: ReDup employs a remote data integrity checking

(RDIC) mechanism to allow users to check the integrity of

their outsourced data. Each user runs periodically a RDIC

protocol to check the health of her data at each replica server.

Whenever data damage is detected at a replica, data from

healthy replica servers can be used to restore the desired

replication level. Such a RDIC mechanism allows users to

assess the health of their data by periodically verifying the

integrity and replication level of their data.

• Reliability: ReDup provides data reliability by replicating a

user’s data at multiple storage servers that are geograph-

ically dispersed. Since different users may have different

reliability needs, ReDup offers multiple replication levels

and allows users to choose a replication level suitable for

their needs. We consider a more realistic adversarial model

which includes not only collusions between storage servers,

but also between storage servers and users of the system.

This introduces a novel attack, the replicate on the fly (ROTF)
attack, which allows the CSP to store only one copy of the

data and generate replicas on the fly to respond to RDIC

challenges. To defend against the ROTF attack, we make

the replica generation be time consuming and we enhance

the standard RDIC challenge-response model to include an

additional check regarding the time needed to generate the

RDIC proof. In this way, dishonest CSPs that try to generate

replicas on the fly will not be able to pass the RDIC chal-

lenges. In ReDup, replicas are generated from the original

file by applying a novel shortcut-free time consuming function
(SFTCF), which we define formally and then instantiate with

a butterfly construction.

• Efficient and transparent deduplication for multiple replicas:
When a user’s data is replicated at multiple servers, ReDup
provides a proof to the user attesting the deduplication level

that occurs at each replica server. The proof is obtained by ag-

gregating individual deduplication level proofs from replica

servers, and has a constant size regardless of the number

of replica servers. Users are charged inversely proportional

to the deduplication level of each of their replicas. ReDup
reconciles the seemingly contradictory notions of replication

and deduplication: The data of each user is replicated at mul-

tiple servers to increase reliability, whereas deduplication

is applied independently at each replication server across

different users’ data to reduce storage costs.

• Collusion resistance: These guarantees hold even in the pres-

ence of collusion between replica servers or between replica

servers and users.

The remainder of the paper is organized as follows: In Section 2

we present background information and related work. We describe

the system and adversarial model in Section 3, along with the secu-

rity guarantees sought by the system. In Section 4 we provide some

preliminaries for our basic building blocks. A solution overview

of the protocol is depicted in Section 5 and its full description is

described in Section 6. Section 7 analyses the security of ReDup
and finally we conclude in Section 8.

2 BACKGROUND AND RELATEDWORK
Remote data integrity checking formultiple replicas. Remote

data integrity checking (RDIC) [4, 17, 22] is a mechanism that allows

to check the integrity of data stored at an untrusted cloud storage

provider (CSP). A data owner uploads at the CSP their data together

with metadata consisting of a set of verification tags, and then

periodically challenges the CSP to provide a proof about the health

of the data. The CSP is able to create such a proof based on the data

and the metadata initially uploaded by the owner.

To ensure data reliability over time, the data owner creates mul-

tiple replicas of the data and stores them at multiple storage servers.

The data owner then uses RDIC to periodically check the health of

each replica, and if a replica is found corrupt, data from the other

healthy servers is used to restore the desired redundancy level in

the system [10, 12]. Previous work has established that the storage

servers should be required to store different and incompressible

replicas [10, 12].

Transparent Deduplication. Armknecht et al. [3] introduced the
notion of transparency for deduplicated storage: The cloud provides

to users proofs that attest the level of deduplication across users

employed by the cloud over their files. This enables a new pric-

ing model which takes into account the level of deduplication of

the data, allowing end users to get the benefits of deduplication.

Users are protected against a cloud provider that uses a certain

deduplication level, but charges users based on a lower level.

The solution lies in a Merkle tree tailored for this application,

which allows an honest user to verify a) how many users have also

uploaded the same file and b) that information about the user’s

file has been correctly incorporated in the bill issued by the cloud.

Although this solution is efficient when files are stored at a single

storage server, when translated to a multiple replica scenario it

becomes inefficient as it would require multiple instances of the

Merkle tree, one per each replica.

2.1 Other Related Work
Current literature in remote data integrity checking protocols either

does not address deduplication in amultiple replica scenario, or does

not consider the challenging multi-user scenario with collusions

between users and economically-motivated replica servers.

Multi-User with Tags Deduplication. Vasilopoulos et al. [24]
proposed a combination of existing deduplication schemes with

proofs of retrievability to further reduce the storage cost of tags

for identical blocks. In their model, there is a single replica storage

policy and users do not collude with the cloud provider. Armknecht

et al. [2] considered the same model, whereby a single replica server

stores only once tags coming from different users for the same data

block. The solution lies on shared aggregated tags based on BLS

signatures [8] incorporating the secret keys of all users and can

tolerate collusions between users and a malicious cloud storage

provider: Deleting a deduplicated block tag and obtaining the secret

key from a malicious user cannot help the cloud to reconstruct the

tag without the participation of all the other users. Their model,

however, does not consider providing both multiple replica storage

and deduplication.

Replicated Storage. Curtmola et al. [12] considered a model

in which a single user stores replicas of a file at multiple storage

servers to tolerate faults. The user relies on an RDIC protocol to

verify faithful storage at each replica server. However, this scenario

does not consider multiple users nor the deduplication functionality.

Armknecht et al. [1] considered a multiple replica storage scenario

enhanced with proofs of correct replication by the user. This work

differs in two fundamental aspects from ours: 1) its focus is towards

delegating the replica computation to the CSP, and 2) the tunable

puzzles used in the replication scheme rely on the assumption that

computation is more expensive than storage, which may not always

H1 vt11

vt12

vt13

RS1

vt21

vt22

vt23

RS2

vt31

vt32

RS3

vt41

RS4

H1

H1

H2

H2

H2

H3

H3 H4

(a) Before Deduplication

vt11

vt12

vt13

RS1

vt21

vt22

vt23

RS2

vt31

vt32

RS3

vt41

RS4

H1 H2 H3 H4

(b) After Deduplication

Figure 1: An example of deduplication applied to multiple replicas.

be applicable. Other work [7, 13, 25] seeks to establish the physical

location of replicas. Our goal is different.

3 SYSTEM AND ADVERSARIAL MODEL
3.1 System Model
A set of users,U = U1,U2,U3, . . . ,Um , store their files at a cloud

storage provider (CSP). To ensure data reliability and protect against

data damage, the CSP exposes an interface that allows users to

store multiple replicas of their files at different replication servers.

Each user uses remote data integrity checking (RDIC) to check the

integrity of their replicas stored at each replica server; in case data

damage is detected at a replica server, the user leverages replicas

from other healthy replica servers to restore the desired level of

redundancy.

Replication level. As users have different budgets and needs, the

CSP allows users to choose the desired replication level (rl) for their
files. Without loss of generality, we assume the CSP offers a fixed

number of replication levels (e.g., in practice it may offer three

levels, corresponding to high, medium, and low reliability). Fig. 1(a)

shows an example with three users choosing different replication

levels, rl1 = 4, rl2 = 3, rl3 = 2. User U1, who chose rl1 = 4, will

generate four replicas H1,H2,H3,H4 and the corresponding RDIC

verification tags vt1
1
, vt2

1
, vt3

1
, vt4

1
, and will store them at replication

servers RS1,RS2,RS3 and RS4. Whereas userU3, who chose rl3 = 2,

will generate two replicasH1,H2 and RDIC verification tags vt1
3
, vt2

3
,

and store them at servers RS1,RS2, respectively.
We assume identical files will result in identical encrypted ci-

phertexts when stored at the CSP. This assumption is typical in

the secure storage deduplication literature and ensures that if two

users want to store the same file, the replicas generated for the file

will be identical, thus allowing deduplication to be applied at each

replica server. The mechanism used to achieve this is outside the

scope of the paper, but we enumerate here existing approaches:

Users can rely on variants of convergent encryption to derive an

encryption key securely with a multiparty computation protocol

between users [19]. Or, deduplication can occur with the aid of a

semi-trusted server and message lock encryption [18].

Deduplication level. Whenever possible, the CSP employs dedu-

plication across different users’ files at each replication server: If

multiple users store identical files, the CSP keeps only one copy.

In the example of Fig. 1(b), servers RS1,RS2,RS3 perform dedu-

plication for the files H1,H2,H3, and the deduplication level (dl) is
dl1 = 3, dl2 = 3, dl3 = 2, respectively. Server RS4 does not perform
deduplication, as it already stores only one copy of file H4. Notice

that deduplication occurs at each replication server independently,

meaning that different copies of the same file will be dispersed

along replica servers to ensure reliability, but at each replica server

deduplication is applied and only one copy of multiple identical

files is stored.

Pricing model. The system divides time into epochs (e.g., one
epoch is one day) and users get charged at the end of each epoch.

A user’s bill for each epoch is directly proportional to the chosen

replication level and inversely proportional to the deduplication

level that occurs at each replica server. This means that if a user

is uploading a file at a replica server and that file is already stored

by r other users, then each of the r + 1 users that store the file will
get charged an amount that is r + 1 smaller compared to the case

when no deduplication occurs.

To prevent a dishonest CSP from charging users more by claim-

ing a lower deduplication level, the system employs transparent

deduplication: the CSP provides to each user at the end of each

epoch a proof that attests to the deduplication level that occured at

each replication server.

System overview.As depicted in Fig. 2, the system consists of four

protocols: Setup,Replicate,RDIC, and AttestDedup. Each userUj ,

with 1 ≤ j ≤ m, runs these protocols. We give an overview of these

protocols next:

Setup(1λ ,n, rlj): During Setup, each user Uj chooses rlj , the
replication level for her files. Users also generate the secret keys

fk, kj , according to the security parameter λ, that will be used

during the other protocols of the system.

Replicate(F, fk, kj , rlj): Each userUj runs the Replicate protocol
to generate replicas H1,H2, · · · ,Hrlj for file F, using the key fk.
Identical files by different users are stored only once at each replica

server, but are stored multiple times according to the replication

level choice rlj to ensure reliability. User Uj also uses key kj to
compute the set of RDIC verification tags vtij on top of each replica

Hi , with 1 ≤ i ≤ rlj . Finally, Uj uploads replica Hi and verification

tags vtij at server RSi .
RDIC(F, < Uj : Q >, < RSi : σi >): Each user Uj engages in a

remote data integrity checking protocol (RDIC) with replica server

RSi to check faithful storage of the replica fileHi , for 1 ≤ i ≤ rlj . In
the RDIC protocol, the user issues a challenge Q to a replica server,

and the server responds with a proof σi that attests the integrity
of the replica stored at that server (this proof is constructed using

the challenged replica file and its corresponding verification tags).

The user verifies the correctness of the proof received from the

U1 U2 U3 Um

· · ·

RS1 RS2 RSrl1

H1 H2 Hrl1

· · ·

vt11 vt21 vtrl11

U1 U2 U3 Um

· · ·

RDIC1 RDIC2 RDICrl1

RS1 RS2 RSrl1
H1 H2 Hrl1· · ·
vt11 vt21 vtrl11

U1 U2 U3 Um

· · ·

dlj
F

?
= correct, j ∈ 1, ...,m

dl1F dl2F dl3F dlmF

H2H1

RSrljRS2RS1

Hrlj· · ·

Figure 2: Setup, RDIC, AttestDedup for a user U1 storing a file F.

server. Unlike in a standard RDIC protocol, the user performs an

additional check in order to prevent the ROTF attack: whether the

server’s response time is below a threshold T .
AttestDedup(ep,Uj , F): Each user Uj runs the AttestDedup pro-

tocol during each epoch ep to verify the CSP’s claim about the

deduplication level employed for the user’s replica files during that

epoch. During each time epoch, the CSP issues a bill to each user

based on the replication level chosen by the user for her files, and

on whether the user’s replica files benefited from deduplication.

The bill includes a proof that allows the client to verify the dedu-

plication level of its replicas. The AttestDedup protocol prevents

dishonest CSPs from claiming a lower deduplication level that the

one deployed at its servers in order to charge users a higher bill.

3.2 Adversarial Model
We assume an adversary that controls some or all of the storage

servers and is rational and economically motivated. Adversarial

servers will try to cheat and “cut corners” as long as cheating re-

mains undetected and it provides an economic benefit. For example,

the CSP may use less storage than required to fulfill its contractual

obligations for replication, or it may charge users according to a

deduplication level that is lower than the real one. An economically

motivated adversary captures many practical settings in which ma-

licious servers will not cheat and risk their reputation, unless they

can achieve a clear financial gain. Moreover, the communication

between users and the CSP is done over an authenticated channel.

The ROTF attack. In addition to controlling storage servers, the

adversary may also corrupt users of the system. As such, users

may collude with the CSP to share their secret key material. For

example, a user may share with the CSP the secret key material used

to generate replicas. This allows the CSP to recover the original

file and only store that file instead of storing multiple replicas as

required by contract. Whenever a user sends an RDIC challenge to

check a particular replica, the CSP can generate that replica on the

fly based on the original file and on the key material obtained from

the colluding user. As described in previous work [10, 11], a storage

server that is challenged and does not possess its replica, can either

forward the challenge to a server that stores the file (which will

generate the needed replica on the fly), or can retrieve the file in

order to generate the challenged replica on the fly. By allowing

collusions between the CSP and its users, our adversarial model is

stronger and more realistic compared to previous work.

We note that users are willing to collaborate in order to benefit

from cost reduction due to deduplication. However, we want the

system to be resilient to the possibility that some users may be

malicious and may collude with the untrusted CSP.

Incorrect deduplication level. A CSP may advertise appealing

costs for deduplicated files: Users are charged inversely propor-

tional to the number of times a file has been stored. However, a

dishonest CSP may try to claim a lower deduplication level in order

to increase its revenue.

3.3 Security Guarantees
Inspired by the aforementioned adversarial model, we define the

security guarantees of our system. They protect an honest user

Uj from a coalition of malicious replica servers and users who

will try not to follow the contractual agreement with respect to

1) faithful storage of file replicas at rlj replica servers and 2) the
correct deduplication level used forUj ’s files.

3.3.1 Collusion Resistant Replica Integrity. The CSP must prove

to a user Uj that it faithfully stores rlj replicas of the user’s files
in their entirety. In contrast with multiple replica RDIC protocols

designed for single users [1, 12], ReDup seeks to provide data

integrity of each replica file when confronted with ROTF attacks

that involve collusion betweenmalicious users and dishonest replica

servers. More specifically, we say that ReDup provides:

• SG1: Replica integrity, if each replica server RSi can convince
a user Uj with high probability that the replica Hi remains

intact in its entirety, for 1 ≤ i ≤ rlj .
• SG2: Storage Allocation, if the amount of data stored by a

CSP for a file F of size |F| on a replication level rl is at least
rl|F|.

SG1 protects the users from a CSP that does not store replica

files in their entirety. SG2 protects users from a CSP that does not

respect its contractual obligations of storing rlj replicas and tries to
reduce its costs by storing less replicas. Together, SG1 and SG2 im-

ply that the CSP faithfully stores all rlj replica copies of a file F. We

capture these two guarantees under the Collusion Resistant Repli-
cas Integrity (CR2P) property, formulated with a standard security

game between the adversary and the challenger:

In our adversarial model, we assumeA can collude with another

userU or another replica server RS. During the game, we allow A

to have access to the oracles, which provide all the secret transcripts.

We denote by Oabc (k, l ,m;x ,y, z) the abc oracle, which takes as

inputs the parameters k, l ,m and executes its code with local vari-

ables x ,y, z, which are unknown to the caller–the adversaryA. We

denote by ai a list with i elements. LetU ′ be the set of corrupted

users andU −U ′ be the set of honest users. We use RS′ to denote

the corrupted replica servers and RS − RS′ the faithful servers.

We useUi →U to denote the insertion of elementUi into the set

U . A has access to the following oracles:

• U ′,RS′ ← OSetup (uidm−1, sidt ;m, rlj):Whenever invoked

with parameters a list of users ids uidm−1 and replica servers
ids sidt , the OSetup

oracle stores the ids to the appropriate

setsU ′,RS′, denoting the list of corrupted users and replica

servers, respectively.

• Hi ← O
GenReplica (F, j; fk, i): The OGenReplica

oracle takes as

input a file F and a user id j . It first checks ifUj ∈ U
′
. If that

user is corrupted then it outputs the replica copy Hi for the

replica server RSi for that user on file F using the key fk. The
oracle keeps track of the uploaded files and for similar files

it uses the same key in order to simulate the deduplication

process. Finally OGenReplica
also stores Hi → H in the list H

and sends Hi to A.

• vtij ← OTagFile (Hi , j; kj): The OTagFile
oracle on input Hi

and j first checks if Uj ∈ U
′
and Hi ∈ H . If both hold, then

computes the tags vtij using kj and forwards them to A.

• c
j
F ← O

Challenge (F, j; kj): The OChallenge
oracle outputs a

challenge for file F for the userUj ∈ U −U
′
.

• β ← OVerify (proof j,iF ,τi ;T): TheO
Verify

oracle takes as input

a proof proof j,iF and a response time τi . It outputs β = 0 if

either the proof is not valid or τi > T , otherwise it sets β = 1.

During the GameCR
2P

A
game the adversary communicates with the

oracles in order to create the environment to be challenged upon

as follows:

GameCR
2P

A

1 : U ′, RS′ ← AO
Setup

//A compromises users and servers

2 : for i = 1...rlj do

3 : Hi ← A
OGenReplica (F, j ;fk,i)//A learns replica copies

4 : vtij ← A
OTagFile (Hi , j ;kj)//A asks for verifications tags

5 : c jF ← A
OChallenge (F, j ;kj)//A is challenged

6 : proof j,iF , τi ← A (U ′, RS′, F, Hi , vtij , c
j
F)

7 : βi ← OVerify (proof j,iF , τi ;T)

8 : return β =
∧

βi //Experiment is successful if β ?

=1

Finally the game outputs a value β ∈ {0, 1}. We define the success

probabilities of an adversary A playing the GameCR
2P

A
game as:

SuccCR
2P

A
= Pr[GameCR

2P
A

= 1]. The heuristic is that if the output

of the experiment equals 1 then A should posses all replica copies

H1 . . .Hrlj . In order to formulate that heuristic we employ the no-

tion of the extractor E, which can communicate with the adversary

and rewind her at different steps in order to extract a file F from

all replica copies H1 . . .Hrlj . We define the success probability of

the extractor E as follows: SuccExtract
A

= Pr[F = Ffh |Ffh ← EA].

Definition 1. (CR2P: Collusion Resistant Replica Possession)ReDup
system guarantees Collusion Resistant Replica Possession if under
any collusions for a set users |U | who have stored the file F in rlj
replica servers RS1,RS2,RS3, · · · ,RSrlj and for any PPT adversary
A, for any security parameter λ and a negligible quantity negl (λ),
it holds that:

Pr[SuccExtract
A

≤ negl (λ) ∧ SuccCR
2P

A
> negl (λ)

: E
U ′,RS′,F,Hi ,vtij ,c

j
F

←− A ↔ GameCR
2P

A
] ≤ γ

Intuitively, the CR2P definition establishes an upper bound γ

on the event that an adversary A wins the GameCR
2P

A
game with

non-negligible probability and that an extractor E is not able to

extract the file after interacting with A.

3.3.2 Deduplication Correctness. An economically motivated

dishonest CSP may employ a certain deduplication level, but may

charge users a higher amount by claiming a lower deduplication

level. Previous work uses an authenticated data structure (ADS) to

accumulate the users’ file deduplication levels, and provides to each

user a proof of membership in this ADS. To ensure deduplication

correctness, it suffices to provide:

• dc1: Proofs attesting that each of the user’s files has been

included in the ADS.

• dc2: A proof attesting the correct size of the ADS.

We capture these two guarantees under the Deduplication Correct-
ness property:

Definition 2. (Deduplication Correctness) During an epoch ep,
each userUj stores file replicas at replica serversRS1,RS2,RS3, · · · ,RSrlj
and the deduplication level for a file F at each replica serverRSi is dliF.
The system guarantees Deduplication Correctness if, for any epoch
ep, an honest user U who runs the AttestDedup(ep,U , F) algorithm
will detect with high probability if a dishonest CSP claims a dedu-
plication level dli

′

F , dliF for file F at replica server RSi .

4 PRELIMINARIES
In this section, we present building blocks that will be used in our

construction.

4.1 Shortcut Free Time and Consuming
Function (SFTCF)

We put forward the definition of a Shortcut Free and Time Con-

suming Function S . S is a symmetric trapdoor function which takes

input I with v blocks and outputs H with v blocks. Moreover S
should adhere to the shortcut free property which states that the

holder of any output H ′ with v ′ < v blocks will not help her to

recover the remaining v − v ′ output blocks in time less than a

threshold T , even when it knows the trapdoor of S . Finally the

running time of S should be considerably greater than the running

time of a well known functionality G. The properties of a SFTCF
are:

(1) Shortcut Freeness: Storing any intermediate state st, which
is smaller than the original size v of the input, does not

result in evaluation time smaller than the running time of S

on the original input of size v: S cannot be decomposed in

S1, S2, . . . , Sv , such that S (v) = S1 () ◦ S2 ()◦, . . . , ◦Sv ()
(2) G-Detectable TimeConsumption: Evaluation of the func-

tion requires computational resources, which results in a

considerable detectable time for its evaluation. That is, for

another function G whose complexity is ΩG (v) we say that

S guarantees G-Detectable Time Consumption if ΩS (v) ≫
ΩG (v).

Security. An SFTCF is correct if it allows the recovery of the

original input I from the output H . Evaluating S and S−1 cannot be
done without having the secret key.

Definition 3. An SFTCF S is secure if it assures shortcut free-
ness and is G-Detectable Time Consuming for any G with ΩS (v) ≫
ΩG (v).

For readers familiar with the hourglass function primitive [23],

we clarify that our goal in the definition of the SFTCF function is to

adapt the security requirements of the hourglass primitive in order

to fit the needs of our protocol. The goal of the hourglass function in

[23] is to ensure storage of a file in an appropriate format, whereas

ReDup’s goal is to attest faithful storage of all replicas in case of

collusions between users and the CSP.

4.1.1 SFTCF Instantiation. We instantiate the SFTCF S with

the butterfly construction proposed by Dijk et al. [23]. Let I and
H be the input and output domain consisting of v block files. The

output is computed in d = log
2
v levels. At each level, an atomic

operationw takes as input pairs of blocks and outputs another pair,

acting as input for the next level. A PRP such as AES can be used

for w . More formally S : Iv → Hv
. The input blocks are denoted

as I1[u] and the final output blocks as Hd [u], with u ∈ [1, . . . ,v].
Overall,w is invoked

v
2
log

2
v times (

v
2
times at each level).

Shortcut Freeness: An example of a SFTCF instantiation is

shown in Fig. 3, with v = 8 blocks and d = 3. Each of the blocks

on the last level is the result of mixing all of the v input blocks.

The SFTCF meets the shortcut freeness requirements because a

malicious cloud server that is missing even one block on the last

level cannot evaluate S in less time than O (v).
G-Detectability: As shown in [23], the butterfly-based hour-

glass construction induces considerable computation overhead.

More specifically, setting G be the response time of a benign cloud,

r r r r r r r r

r r r r r r r r

r r r r r r r r

r r r r r r r r

input

level 1

level 2

I

H

w w w w

I1[v]

Hd[1]Hd[2]Hd[3] Hd[v]

w w w w

w w w w

level 3

I1[1]I1[2]I1[3]

Figure 3: Example of SFTCF based on a butterfly construction, with
v = 8 input blocks.

aggrp1 = RS1||RS2||RS3
W(F, aggrp1, U2, ep)

root1

W(F, aggrp1, U1, ep)

h13

h10

h4h3h2h1

h6

root3

W(F, aggrp3, U3, ep)

h13

h10h9

h1

h5 h6h6

h1 h2

h6

W(F, aggrp2, U2, ep)

root2

W(F, aggrp2, U3, ep)

aggrp2 = RS4||RS5 aggrp3 = RS6||RS7||RS8||RS9||RS10
H0 = W(0)

W(F, aggrp1, U3, ep)

H0 H0 H0 H0 H0H0

h5h5

Figure 4: ReDup uses optimized Merkle trees for deduplication level proofs. The CSP offers 3 deduplication levels, rp
1
= 3, rp

2
= 5, rp

3
= 10.

Three users U1, U2, U3 choose replication levels rl1 = 3, rl2 = 5 and rl3 = 10, respectively. There will be 3 trees corresponding to 3 replica server
groups: aggrp1 = {RS1, RS2, RS3 } for U1, U2 and U3, aggrp2 = {RS4, RS5 } for U2 and U3, and aggrp3 = {RS6, RS7, RS8, RS9, RS10 } for U3. Grey nodes
marked H0 are “zero” leaves obtained by hashing the 0 value. During verification, for example, U2 receives the following proofs for the file
corresponding to the root1 tree: for dc1 h1, h6, and for dc2 h5.

W(F, U2, ep)W(F, U1, ep)

h6

h3h2h1

h6

W(F, U3, ep)

H0

h5

h7

Figure 5: A CARDIAC example with deduplication level 3: leaves
h1, h2, h3 correspond to three users U1, U2, U3 who store the same
file. The tree contains one “zero” leaf H0. The deduplication level
proof for user U2 consists of: dc1) the sibling path for h2, and dc2)
the rightmost non-zero leaf h3 and the sibling path for h3.

the running time ofG is 0.077 seconds on average according to [23,

Table 2] and the corresponding running time for a malicious cloud,

who tries to run the butterfly hourglass function, equals 18.065

seconds on average for a 2GB file. This experimental evaluation

supports the detectability property of our SFTCF.
Alternatively, an SFTCF may be be instantiated with the con-

struction based on tunable puzzles proposed by Armknecht et al. [1].
However, the design of their protocol does not explicitly provide

provisions against ROTF attacks, since the authors make certain

assumptions regarding the higher price of computation costs com-

pared with storage costs, which may not hold in all systems and is

subject to change over time.

4.2 Merkle Hash Trees
We use a standard Merkle hash tree, which uses a collision resistant

hash function W : {0, 1}∗ → {0, 1}λ to compute its root with the MHT
algorithm. To prove membership for a leaf element, a prover calls

ProveMT which computes the corresponding sibling path and the

verifier uses CheckPath to verify the membership proof.

5 ReDup OVERVIEW
We give an overview of ReDup, focusing on the challenges ad-

dressed by our system:

CH1a (Resiliency against collusions between servers): ReDup
encrypts the replicas with different keys. As such, when RSi does
not store its replica copy Hi , it cannot use the replica copy from

another server RSj to answer RDIC challenges on the fly because

RSj stores a different replica copy Hj .

CH1b (Resiliency against collusions between a user and replica

servers): Each user Uj generates each replica file by applying the

SFTCF function S on the original file F with a different key for

each replica. The user then computes verification tags over each

replica and uploads the tags and replicas to the replica servers.

The user runs an RDIC protocol with each replica server to ensure

faithful storage of each replica file by each replica server. In contrast

with previous RDIC protocols, ReDup uses an RDIC verification

procedure that succeeds only if the time to verify the integrity of

each replica copy is below a threshold value T , which is greater

than the time to evaluate S (F). As such, Uj can detect malicious

behavior of a replica server RSi that colludes with a dishonest user

to answer the RDIC challenges without storing the replica file.

CH2 (Scalable transparent deduplication for multiple replicas):

To ensure the correctness of the deduplication level, we adapt the

solution based on accumulation Merkle trees used in CARDIAC([3],

Section 3.2.1). In CARDIAC, the CSP publishes in each epoch the

root of a Merkle tree for each deduplicated file. The Merkle tree

has two types of leaves: “non-zero” and “zero” leaves. Each “non-

zero” leaf corresponds to a user whose file has been deduplicated,

and contains a hash of the user identifier, the file identifier and

the epoch. The deduplication level equals the number of non-zero

leaves. The rest of the leaves are “zero” leaves, i.e., hashes of the
0 value. The proof of deduplication level correctness for a user

consists of two parts: dc1) a membership proof, which establishes

that this user’s file was included in the Merkle tree and dc2) a proof
attesting the correct number of non-zero leaves, which consists

RSi Replica server i, 1 ≤ i ≤ n (n is the number of replica servers)

Uj User j, 1 ≤ j ≤ m (m is the number of users)

fu File block u, 1 ≤ u ≤ v (there are v blocks in the original file F)
S Shortcut Free and Time Consuming Function (SFTCF)
fk Secret key used by SFTCF S to generate file replicas

kj Secret key used byUj to compute the tags over her file replicas

W A hash function W : {0, 1}∗ → {0, 1}λ

vtij Verification tags created by userUj for her replica stored at RSi
dliF Deduplication level of file F at RSi
rlj Replication level for userUj

f h Fixed height of the Merkle tree

nz Index of the rightmost non-zero leaf of a Merkle tree

Z F
A list of users owning file with id F

l F
U

A list of hashes of each element of the list Z F

rootF The root of the Merkle tree for file F
hF
0

The signed root of the Merkle tree for file F
apmF

j The authentication path for node hj of the Merkle tree with root hF
0

hF
nz The rightmost non-zero leaf of the Merkle tree with root hF

0

apcFj Rightmost non-zero leaf authentication path with tree root hF
0

π F,ep
j Uj ’s proof of deduplication correctness at ep epoch for file F

Table 1: Notation used throughout this section.

of the rightmost non-zero leaf and its sibling path. Fig. 5 shows a

CARDIAC accumulation tree example.

Naive solution. A naive adaptation of CARDIAC to a multi-

replica scenario does not scale well with different replication level

policies per user. Imagine 10 replica servers, one file and three users

with three different replication levels: rl1 = 3, rl2 = 5, rl3 = 10 for

usersU1,U2,U3. ACSP following the naive CARDIAC approach has

to maintain 10 different trees, one per each replica server. To check

the deduplication level,U3 has to obtain proofs for 10 different trees,

which implies a tenfold increase in the communication bandwidth

and in the proof computation and verification time.

Optimized solution. Recall that each userUj chooses her repli-

cation level rlj out of a fixed number of replication levels, e.g., 3
levels corresponding to low, medium, and high reliability. Our so-

lution reduces the number of Merkle trees per file from rlj to a

constant number (e.g., 3), which is the number of different repli-

cation levels offered by the CSP. We aggregate different replica

server Merkle trees which accumulate the same users and thus

have the same structure. In the example provided in Fig. 4, userU3

who chose a replication level of 10 gets only 3 proofs instead of 10

proofs as in the naive application of CARDIAC.

6 THE ReDup SYSTEM
The full details of the ReDup system are presented in Figures 6

and 7. We start by presenting in Table 1 commonly used notation

throughout this section.

A file F consists of file blocks f1, f2, ..., fv . The CSP keeps track

of two data structures, FL and RL. FL serves as a file log that records
which users have stored a specific file. FL is abstracted as a dic-

tionary keyed by the id of a file F. FL[F].append(Uj) denotes the
insertion of userUj under the key F and FL[F] returns a tuple set
with the id of all users who have stored the file F. RL is a log dictio-

nary that contains the replication level choice of a user and the files

stored by that user: RL[Uj] = (rl : rlj , f : ()). We describe next the

four phases of the protocol, Setup,Replicate,RDIC,AttestDedup.
Setup: Each user Uj runs the Setup algorithm, which outputs

RDIC tagging keys kj (Fig. 6, Setup algorithm, line 1). Users agree

on a key fk to compute the replica copies. Furthermore, each user

chooses its replication level rlj and forwards it to the CSP (line 2),

which in turn stores it in the RL dictionary (line 3).

Replicate: Each user runs this algorithm, which outputs the

replica copies and the corresponding verification tags to be stored

at each replica server RSi . A key fki is derived from fk for each

replica server RSi with the use of a PRF (Fig. 6, Replicate algorithm,

line 4). The replica copy Hi for RSi is then obtained by applying

the SFTCF S to the blocks of the original file f1, f2, . . . , fv (line

5). To generate the RDIC verification tags, ReDup can use any ex-

isting RDIC protocol with private verification [4, 17, 22] (line 6)

using secret keys kj . However, unlike previous RDIC protocols, the

TagFile is not applied directly on the file F but on the output Hi of

the SFTCF function S .
RDIC: ReDup uses the standard Challenge,Prove and Verify al-

gorithms of an interactive RDIC protocol to check the integrity of

the replicas. The user provides as input the challengeQ and theCSP
produces a proof σi for each replica server. In contrast with the pre-

vious RDIC protocols, ReDup uses an RDIC Verify procedure that

succeeds only if the time to verify the integrity of each replica copy

is below a threshold valueT > Time(S (F)), where Time(S (F)) is the
running time of S (F). Assuming a computationally-bounded CSP
and depending on the client needs,T can be set asT >> Time(S (F))
to detect large corruptions, or as T ≈ Time(S (F)) to detect small

corruptions.

AttestDedup: The CSP computes the Merkle trees in each epoch

with theAttestDedup.P algorithm (Fig. 7, AttestDedup.P algorithm,

lines 1-14). In lines 6-9 the correct symmetric replica servers for

rp are accumulated in the leaf of each user and finally the leaf ZF

is being hashed with a collision resistant hash function W to output

the digest lF
U
. For the remaining 2

f h − |lF
U
| nodes, zero leaves are

computed as W(0) to fill in the tree of height f h. Once all the leaves
of the tree have been computed, the CSP calls the MHT algorithm,

which computes the root of the Merkle tree rootF (line 12) and

signs it hF
0
= Sig(rootF) (line 13).

To compute the proof for a userUj , the CSP computes the sibling

paths apmF
j for all the trees the user has been included in (line

4), using the standard Merkle tree membership proof (ProveMT
algorithm). To establish a correct deduplication level for the file (i.e,
number of non-zero leaves), theCSP fetches the rightmost non-zero

leaf node hFnz of each tree Uj has been included in and computes

its sibling path apcFj as well (lines 5-6). Finally, it sends the proof

π
F,ep
j = (apmF

j ,h
F
nz , apc

F
j , f h, |l

F
U
|) toUj .

Upon receipt of the proof π
F,ep
j , Uj invokes AttestDedup.V al-

gorithm (cf. Fig. 8) to verify the proof. It first checks whether the

claimed deduplication level is consistent with the zero leafs for a

tree of height f h (AttestDedup.V algorithm, line 4). For dc1, which
ensures that the user id was included in the tree(s) of the corre-

sponding files,Uj calls CheckPath to verify the consistency of the

returned sibling path apmF
j (AttestDedup.V algorithm, line 5). For

dc2, which atests the deduplication level |lF
U
|, Uj first verifies the

paths of all hFnz with the CheckPath Merkle tree algorithm (line

6). Afterwards,Uj checks if the CheckPath algorithm on input the

(2f h − 1) − |lF
U
| nodes computed as zero leaf nodes, along with

• Setup(1λ ,n, rlj): // Run byUj

1 : (kj , fk) ← KeyGen(1λ, n)

2 : Uj sends rlj to CSP

3 : CSP sets RL[Uj].rl = rlj
//CSP stores the replication level in the log file RL

• Replicate(F, fk, kj , rlj): // Run byUj

1 : for (i = 1, i ≤ rlj , i + +) do

2 : Hi ← GenReplica(i, F, fk) :

3 : parse F as f1, f2, . . . , fv
4 : fki = PRFfk (i)

//Derive the key for replica to be stored at RSi
5 : Hi = Sfki (f1, f2, . . . , fv)

//Run the SFTCF S on the original file blocks

6 : vtij ← TagFile(Hi , kj)

7 : Uj sends Hi , vtij to RSi
8 : CSP runs FLi [F].append(Uj)
• RDIC(F, < Uj : Q >, < RSi : σi >):

1 : for (i = 1, i ≤ rlj , i + +) do

2 : Q ← Challenge(l, n)

3 : σi ← Prove(Q, Hi , vtij)

4 : τi ← (Time(Verify(σi) ≤ T)) : 1?0

5 : if
∧

τi
?

= 1 return 1 else return 0

• AttestDedup(ep,Uj , F):// Run byUj and CSP

1 : for (ep ∈ T ∧ F ∈ FL ∧Uj ∈ U) do

2 : π F,ep
j ← AttestDedup.P(ep, Uj , F)

3 : {0, 1} ← AttestDedup.V(π F,ep
j)

Figure 6: The ReDup system.

their sibling nodes, verifies correctly the Merkle tree (line 7). If all

the checks succeed, AttestDedup.V outputs 1 for successful verifi-

cation.

Discussion. In ReDup, users encrypt their files before uploading
them to the CSP. As such, there is no need for the CSP to encrypt

data at rest. We note that, consistent with the secure deduplica-

tion literature, the IND-CPA or IND-CCA definitions for privacy

cannot be achieved. Thus, we inherit the security guarantee for

deduplicated messages: PRIV-CDA (privacy under chosen distribu-

tion attacks) [6], which guarantees that encryption of unpredictable

messages should be indistinguishable from a random message of

the same length. We also note that, if users choose weak keys to en-

crypt their files, the CSP can apply semantically secure encryption

for data at rest independently on top of ReDup.

7 SECURITY ANALYSIS
Theorem 1. If S is a Shortcut Free and G-Detectable Time Con-

suming Function (SFTCF), then ReDup guarantees Collusion Resis-
tant Replicas Possession (CR2P) against a rational and economically
motivated CSP and any colluding user.

π
ep
j ← AttestDedup.P(ep,Uj , f h): // Run by the CSP

1 : pp = 1

2 : foreach rp do

// For replication levels 3, 5, 10, at every loop rp = 3, 5, 10

3 : for (F ∈ RL[Uj].f) do

// For every file fetch the id thereof from RL

4 : for U ∈ FL[F] do

// Retrieve the set of users who stored the file

5 : Z F = U | |ep

6 : for (j = pp ; j ≤ rp) do

// Aggregate all the RS of that replication level group

7 : if (RL[U].rl > j) continue

8 : Z F+ = | |RSj
// Aggregate all the replica servers.

9 : lF
U
+ = W(Z F)

// Using a CRHF W hash the leaf value.

10 : for (z = 1; z ≤ (2f h − 1) − |lF
U
|; z + +)

11 : lF
U
+ = W(0)

// Pad with 0 leaf nodes

12 : rootF ← MHT(lF
U
)

// Build the merkle tree for lF,rl
U

13 : hF
0
= Sig(rootF)

// Sign the root

14 : pp = rp

1 : foreach rp do

// For replication levels 3, 5, 10, at every loop rp = 3, 5, 10

2 : if (RL[Uj].rl < rp) continue

3 : for (F ∈ RL[Uj].f) do

// For every file fetch the id thereof from RL

4 : apmF
j ← ProveMT(hj , lFU)

// Compute the sibling path for Uj ’s leaf

5 : hF
nz ← FetchR(hF

0
)

// Fetch the rightmost non-zero leaf

6 : apcFj ← ProveMT(hF
nz, l

F
U
)

// Compute its sibling path

7 : π F,ep
j = (apmF

j , h
F
nz, apc

F
j , f h, dl

rp
F)

8 : return π F,ep
j , ∀F ∈ RL[Uj].f

Figure 7: The AttestDedup.P algorithm run by the CSP.

Proof. (Sketch) Let δui follow a Bernoulli distribution with suc-

cess probability δui denoting the probability A corrupts block fu
at replica server RSi and failure probability 1 − δui . Let Uuid be

the user who challenges the CSP. Then all the vrluid blocks have

{0, 1} ← AttestDedup.V(πF,ep
j) : // Run byUj

1 : foreach rp do

// For replication levels 3, 5, 10, at every loop rp = 3, 5, 10

2 : if (RL[Uj].rl < rp) continue

3 : for (F ∈ RL[Uj].f) do

// For every file fetch the id thereof from RL

4 : dlrpF + |zero leafs |
?

= 2
f h

5 : {0, 1} ← CheckPath(hj , apmF
j , h

F
0
)

//Check if Uj ’s file F was included

6 : {0, 1} ← CheckPath(hF
nz, apc

F
j , h

F
0
)

//Test inclusion of rightmost non-zero leaf

7 : {0, 1} ← CheckZeroNodes(hF
0
)

// Build up the tree starting from the zero nodes

8 : return (all checks == 1)?1 : 0

Figure 8: The verification algorithm for AttestDedup: The
Client verifies the proof.

corruption probability δui for u ∈ [1 . . .vrluid]. The success proba-

bility SuccCR
2P

A
for A to pass a challenge of size l depends on the

failure probability 1 − δui and the success probability δui to corrupt

fu by outputting the correct challenge on time less than T . We

assume S is a secure SFTCF. The probability to correctly guess the

challenged blocks equals the probability to randomly guess the

output of S for each block of the challenge of size l , and is equal to

SuccCR
2P

A
=
∏l

u=1 (1 − δ
u
i +

δui ϵ
2
v), where ϵ is a negligible probabil-

ity that corresponds to the event of evaluating S in time less than

T . From that we conclude that SuccCR
2P

A
≤ negl (λ).

The extractor E simulates the OTagFile
oracle. When A queries

the OTagFile
oracle with input (Hi , uid), E first checks if uid ∈

U ′ and Hi ∈ H . If both hold then it computes the tags vtiuid and

forwards them to A. We assume A stores only s < vrluid blocks.

By storing we mean both the blocks and the verifications tags. Thus,

during the challenge,A has to correctly guess the blocks and tags of

the challenge. Let some s ′ < l , s blocks of the total l-block challenge
be stored byA. We denote by E1 the eventA correctly guesses the

remaining l − s ′ challenged blocks (which are not stored), E2 the
event A computes the responses for that challenge correctly and

E3 the event the O
TagFile

oracle outputs a special malicious output

h∗, from whichA can compute the remaining l − s ′ blocks and the

responses on the fly. Accordingly, the probabilities for E1,E2,E3
are p1,p2,p3, respectively.

Clearly, p1 = p2 =
2
l−s′

2
v ,p3 =

1

2
q , where q is the digest size

of the OTagFile
response. As such, SuccExtract

A
= 1 − (p1p2 + (1 −

p1p2)p3) = 1−p3+p1p2 (p3−1) = 1− 1

2
q +

2
2(l−s′)

2
2v (1

2
q −1), meaning

that SuccExtract
A

> negl (λ). As such, Pr[SuccExtract
A

≤ negl (λ) ∧

SuccCR
2P

A
> negl (λ)] ≤ negl (λ). □

Theorem 2. If W is a collision-resistant hash function, thenReDup
guarantees Deduplication Correctness against a rational and eco-
nomically motivated adversaryA who controls all the replica servers
RSi .

Proof. (Sketch) Assume the adversary claims an incorrect dedu-

plication level dli
′

F . If dl
i′
F < dliF, an honest user will accept the

server’s proof with negligible probability neg(λ) ≤ 2
−λ/2

, where λ
is the image length of the collision resistant hash function W. The
collision resistance property of W prevents A of computing a set of

leaves lF,rl
U ′

different than the correct set of leaves lF,rl
U

with the same

root digest hF,rl
0

. Otherwise, A can be used to break W’s collision
resistance.

An economically motivated adversary will never claim dli
′

F > dliF,
as this implies a higher deduplication level than the real one, and

individual users whose data are deduplicated will be charged less

than they should.

□

8 CONCLUSION
We have demonstrated that two seemingly contradictory notions,

replication and deduplication, can be reconciled without violating

the security guarantees of outsourced storage. Our solution, ReDup,
leverages time-consuming replica generation to tolerate collusions

between users and a rational CSP that tries to cheat by storing

less replicas than agreed upon with its clients. Moreover, ReDup
provides transparent deduplication for multiple replicas, thus pre-

venting a malicious CSP from claiming that it deduplicates less

files than it actually does. ReDup does this in a scalable manner by

presenting to clients a proof that has a constant size regardless of

the number of replica servers. This enables a new pricing model

which takes into account the level of deduplication of the data: The

more users store the same piece of data, the lower each individual

user gets charged for storing that piece of data.

ACKNOWLEDGMENTS
This research was supported by the US National Science Founda-

tion (NSF) under Grants No. CNS 1054754, CNS 1409523, and DGE

1565478, and by the Defense Advanced Research Projects Agency

(DARPA) and the Air Force Research Laboratory (AFRL) under

Contract No. A8650-15- C-7521. Any opinions, findings, and conclu-

sions or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of NSF, DARPA,

and AFRL. The United States Government is authorized to repro-

duce and distribute reprints notwithstanding any copyright notice

herein.

REFERENCES
[1] Frederik Armknecht, Ludovic Barman, Jens-Matthias Bohli, and Ghassan O.

Karame. 2016. Mirror: Enabling Proofs of Data Replication and Retrievability in

the Cloud. In Proc. of the 25th USENIX Security Symposium (USENIX Security ’16).
1051–1068.

[2] Frederik Armknecht, Jens-Matthias Bohli, David Froelicher, and Ghassan O.

Karame. 2016. SPORT: Sharing Proofs of Retrievability across Tenants. Cryptol-

ogy ePrint Archive, Report 2016/724. (2016). http://eprint.iacr.org/2016/724.

[3] Frederik Armknecht, Jens-Matthias Bohli, Ghassan O. Karame, and Franck

Youssef. 2015. Transparent Data Deduplication in the Cloud. In Proc. of ACM
CCS ’15. ACM, 886–900.

http://eprint.iacr.org/2016/724

[4] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,

Zachary Peterson, and Dawn Song. 2007. Provable data possession at untrusted

stores. In Proc. of ACM CCS 2007. 598–609.
[5] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner,

Zachary Peterson, and Dawn Song. 2011. Remote Data Checking Using Provable

Data Possession. Transactions on Information and System Security (TISSEC) 14, 1
(2011).

[6] Mihir Bellare, Sriram Keelveedhi, and Thomas Ristenpart. 2013. Message-Locked
Encryption and Secure Deduplication. Springer Berlin Heidelberg, Berlin, Heidel-

berg.

[7] Karyn Benson, Rafael Dowsley, and Hovav Shacham. 2011. Do You Know Where

Your Cloud Files Are?. In Proc. of ACM Cloud Computing Security Workshop
(CCSW ’11).

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. 2001. Short Signatures from the

Weil Pairing. In Proc. of ASIACRYPT 2001. Springer Berlin Heidelberg, Berlin,

Heidelberg, 514–532.

[9] Kevin D. Bowers, Ari Juels, and Alina Oprea. 2009. Proofs of Retrievability:

Theory and Implementation. In Proc. of ACM Workshop on Cloud Computing
Security (CCSW ’09). 43–54.

[10] Bo Chen and Reza Curtmola. 2013. Towards Self-repairing Replication-based

Storage Systems Using Untrusted Clouds. In Proc. of ACM CODASPY ’13. ACM,

377–388.

[11] Bo Chen and Reza Curtmola. 2017. Remote data integrity checking with server-

side repair. Journal of Computer Security 25, 6 (2017).

[12] Reza Curtmola, Osama Khan, Randal Burns, and Giuseppe Ateniese. 2008. MR-

PDP: Multiple-Replica Provable Data Possession. In Proc. of ICDCS 2008. IEEE
Computer Society, 411–420.

[13] Mark Gondree and Zachary N. J. Peterson. 2013. Geolocation of Data in the

Cloud. In Proc. of ACM Conference on Data and Application Security and Privacy
(CODASPY ’13).

[14] http://www.computerworld.com/. 2015. OOPS: Google “loses” your cloud data.

(2015). https://goo.gl/zXRAdR.

[15] http://www.datacenterknowledge.com/. 2012. Amazon Data Center Loses Power

During Storm. (2012). https://goo.gl/anNoI.

[16] http://www.infoworld.com/. 2016. The dirty dozen: 12 cloud security threats.

(2016). ttps://goo.gl/i6tAsF.

[17] A. Juels and B. S. Kaliski. 2007. PORs: Proofs of Retrievability for Large Files. In

Proc. of ACM Conference on Computer and Communications Security (CCS ’07).
[18] Sriram Keelveedhi, Mihir Bellare, and Thomas Ristenpart. 2013. DupLESS: server-

aided encryption for deduplicated storage. In Proc. of USENIX Security ’13. 179–
194.

[19] Jian Liu, N Asokan, and Benny Pinkas. 2015. Secure deduplication of encrypted

data without additional independent servers. In Proc. of ACM CCS 2015. ACM,

874–885.

[20] Dutch T. Meyer and William J. Bolosky. 2011. A Study of Practical Deduplication.

In Proceedings of the 9th USENIX Conference on File and Storage Technologies (FAST
’11). 1–1.

[21] Dutch T. Meyer and William J. Bolosky. 2012. A Study of Practical Deduplication.

ACM Trans. Storage 7, 4 (Feb. 2012), 14:1–14:20.
[22] Hovav Shacham and Brent Waters. 2008. Compact Proofs of Retrievability. In

Proc. of ASIACRYPT 2008. Springer Berlin Heidelberg, 90–107.

[23] Marten van Dijk, Ari Juels, Alina Oprea, Ronald L. Rivest, Emil Stefanov, and

Nikos Triandopoulos. 2012. Hourglass Schemes: How to Prove That Cloud Files

Are Encrypted. In Proc. of ACM CCS 2012. ACM, 265–280.

[24] Dimitrios Vasilopoulos, Melek Önen, Kaoutar Elkhiyaoui, and Refik Molva. 2016.

Message-Locked Proofs of Retrievability with Secure Deduplication. In Proc. of
ACM CCSW ’16. 73–83.

[25] Gaven J. Watson, Reihaneh Safavi-Naini, Mohsen Alimomeni, Michael E. Locasto,

and Shrivaramakrishnan Narayan. 2012. LoSt: location based storage. In Proc. of
ACM Cloud Computing Security Workshop (CCSW ’12).

https://goo.gl/zXRAdR
https://goo.gl/anNoI
ttps://goo.gl/i6tAsF

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Other Related Work

	3 System and Adversarial Model
	3.1 System Model
	3.2 Adversarial Model
	3.3 Security Guarantees
	3.3.1 Collusion Resistant Replica Integrity.
	3.3.2 Deduplication Correctness.

	4 Preliminaries
	4.1 Shortcut Free Time and Consuming Function (SFTCF)
	4.1.1 SFTCF Instantiation

	4.2 Merkle Hash Trees

	5 ReDup Overview
	6 The ReDup System
	7 Security Analysis
	8 Conclusion
	Acknowledgments
	References

