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Resolving the spin splitting in the conduction band
of monolayer MoS2
Kolyo Marinov1,2, Ahmet Avsar1,2, Kenji Watanabe 3, Takashi Taniguchi3 & Andras Kis 1,2

Time-reversal symmetry and broken spin degeneracy enable the exploration of spin and

valley quantum degrees of freedom in monolayer transition-metal dichalcogenides. While the

strength of the large spin splitting in the valance band of these materials is now well-known,

probing the 10–100 times smaller splitting in the conduction band poses significant chal-

lenges. Since it is easier to achieve n-type conduction in most of them, resolving the energy

levels in the conduction band is crucial for the prospect of developing new spintronic and

valleytronic devices. Here, we study quantum transport in high mobility monolayer MoS2
devices where we observe well-developed quantized conductance in multiples of e2/h in zero

magnetic field. We extract a sub-band spacing energy of 0.8 meV. The application of a

magnetic field gradually increases the interband spacing due to the valley-Zeeman effect.

Here, we extract a g-factor of ~2.16 in the conduction band of monolayer MoS2.
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Layered semiconducting materials have been extensively
studied in the past decade due to their unconventional
physical properties1–4. One of the recently most studied

classes of materials are semiconducting transition-metal dichal-
cogenides (TMDCs). At the monolayer limit, these materials
become direct band gap semiconductors5–8. Missing inversion
symmetry enables spin splitting at the edges of both valence and
conduction bands9. More interestingly, as the two degenerate K
and K´ valleys are coupled to the two sublattices in the mono-
layer, they exhibit degenerate band edges with opposite spin
orientation leading to the unique presence of spin-valley locking
in these materials2,4,10. This property is crucial for the investi-
gation of novel spin-valley physics in monolayer TMDCs.

The magnitude of spin splitting has been theoretically well
understood by calculating the band structure of these materials
via DFT, GW, TB, and other common approaches3,4,10–12. At the
valence band maximum (VBM), the values range between 150
and 460 meV, while at the conduction band minimum the spin
splitting is relatively smaller, predicted to be in the 1–50 meV
range. Since the magnitude of spin–orbit splitting is expected to
increase with the atomic number, the splitting is smallest in MoS2
which is also the best studied crystal from the TMDC family.
Despite the great progress in theory, experimental confirmation
of these values is still scarce. One experimental tool allowing the
direct access to complete band structures is spin-resolved ARPES
or k-PEEM, which allows the imaging of the material band dia-
gram in the reciprocal space under the Fermi level. In this
manner, spin splitting in the valence band of TMDCs was
experimentally demonstrated13–15. However, the smaller
spin–orbit splitting in the conduction band could not be resolved
due to the energy resolution limit of the method in the range of
20–25 meV13,15. A way to circumvent this resolution problem is
to study the Fermi surface of MoS2 electrically by investigating
the electron transport in the conduction band.

In this work, we experimentally study the strength of spin
splitting in the conduction band of monolayer MoS2 by performing
quantum transport measurements in the split-gate geometry. We
realize a quantum point contact (QPC) and observe conductance
quantization with lifted degeneracies, which is then investigated as
a function of bias offset and magnetic field. We find that the
electron g-factor in the conduction band is 2.16± 0.13.

Results
Device structure. In our van der Waals heterostructure, monolayer
MoS2 is the active channel. It is encapsulated between atomically
flat h-BN layers and contacted to multilayer graphene, Fig. 1a.
Monolayer MoS2 flakes are first identified by their optical contrast
on the substrate. The monolayer thickness is later confirmed by
photoluminescence imaging using a dark field optical microscope
(see Supplementary Fig. 1 and Supplementary Note 1)16. Atom-
ically flat, defect-free h-BN layers are utilized as a high quality
substrate and dielectric to preserve the intrinsic electronic prop-
erties of MoS2. Few-layer graphene is used as a work-function
tunable contact which has been proven to match the work
function of monolayer MoS2 for effective charge injection17.
Source-drain metal contacts and split gates are defined using
conventional e-beam lithography followed by e-beam deposition
of 2/85 nm Ti/Au electrodes. The distance between the circularly
shaped split gates is ~100 nm, allowing the confinement of elec-
trons in the one-dimensional channel. An optical micrograph of
the finished device is shown in Fig. 1b and an AFM image of the
split-gate geometry is presented in Fig. 1c. Electrical measure-
ments were performed in a pumped variable temperature insert
in a helium bath cryostat with a base temperature of 1.4 K. We
used the conventional lock-in technique at low frequency of 13

Hz and low AC voltage amplitude of 100 µV< kBT/e to avoid
sample heating. Back (Vbg) and top (Vtg) gate potentials were
applied using a DC bias source. In all presented measurements,
the split top gates are biased at the same Vtg.

Primary characterization. Figure 2a shows the Vbg dependence
of conductance measured at the base temperature of 1.4 K. The
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Fig. 1 Dual-gated encapsulated monolayer MoS2 transistor. a The 3D
schematics of the device shows all the layers in our device and the metallic
electrodes. b An optical micrograph of the final device after contact
deposition. Scale bar is 10 µm. c An AFM image of the split-gate geometry.
Scale bar is 500 nm. Following the red line we measure a distance between
the two top gates of about 100 nm
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device shows typical n-type behavior. The device conductance
turns on near Vbg = 20 V with monotonically increasing con-
ductance up to 70 V. At around Vbg = 75 V, we observe a sharp
increase in the conductivity followed by a mild saturation of the
conductance at Vbg> 90 V. We assume that the first part of the
curve corresponds to the filling of band tail trap states typical for
single-layer TMDCs, which was recently measured in capacitance
spectroscopy studies18,19. The sharp turn-on indicates that the
Fermi level is crossing over the conduction band edge. We esti-
mate the field effect mobility of ~1060 cm2 V−1 s−1 from the slope
of the sharp turn-on. This value is similar to the highest reported
values for monolayer MoS220. We have further studied the Ids/Vds

characteristics of the device at different applied gate voltages in
order to investigate the contacts (Fig. 2b). Even at low doping
(Vbg = 20 V to 50 V) and low temperature, the characteristic is
linear, indicating low contact resistance and possibly Schottky
barrier-free charge injection17. These transparent FLG contacts
are necessary for the reliable study of the two-dimensional elec-
tron gas (2DEG) in the conduction band of MoS2.

Next, we study the influence of the top gates on the 2DEG at
high constant back-gate induced doping (Vbg> 90 V). We aim for
the simultaneous realization of highly doped contact areas
(electron reservoirs) with low resistance and the formation of a
narrow constricting path for the electron flow between them,
which will be the QPC. In Fig. 3a, we present the turn-off curve
with the top-gate voltage applied symmetrically to both top gates
and at constant high doping induced by the back gate. We can
clearly distinguish three regions on this curve (Fig. 3a). (I) While
the Vtg is tuned from −1 to −4 V, the device conductance is slowly
decreasing due to the electron depletion of the 2DEG underneath
the top gate electrodes. (II) Near Vtg = −4 V, we observe a sharp
decrease in the conductance indicating the formation of a
constriction for the electrons in the gap between the split gates.
(III) At Vtg< −5.5 V, we see the clear quantization of the
conductance in steps, which is an evidence for the formation of
the QPC. Next, we concentrate on this region and analyze the
steps of conductance quantization. In Fig. 3b we present the third
region after subtraction of a series resistance of 2.74 kΩ stemming
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from the combination of wiring, contact resistance between metal
electrodes and graphite as well as between graphite contacts and
single-layer MoS2, and finally the geometrical resistance of the
MoS2 sheet on both sides of the constriction. As a result, we
observe eight consecutive, regular steps appearing at wholes and
halves of G0 = 2e2/h, which indicates the lifting of all degeneracies
in our sample. Slight deviations from perfect multiples of e2/h
might be due to variation in the resistance of the reservoirs
around the constriction originating from the presence of charged
impurities21,22. In monolayer MoS2, there is spin splitting near
the conduction band minimum of MoS2, while the K and K´
valleys are degenerate3,4,10. Our measurement implies that inside
the constriction area, the valley degeneracy is lifted and therefore
the conductance quantizes into singular spin states. We note that
such conductance quantization is also observed in other prepared
devices (See Supplementary Fig. 2 and Supplementary Note 2).
Similarly to this device, we observe the conductance steps at
multiplies of 0.5 ×G0 corroborating the lifting of all degeneracies
in monolayer QPCs. Such valley degeneracy lifting in a QPC
geometry is not unique to monolayer MoS2. Similar response was
observed in Si–SiGe heterostructures23,24, graphene25, and carbon
nanotubes26.

Bias spectroscopy. We next perform bias spectroscopy mea-
surements to investigate the 1D sub-band energy spacing inside
our monolayer MoS2 QPC. For this purpose, we measure the
differential conductance G = dI/dV using the lock-in technique
with a small ac signal at finite dc source-drain bias Vdc and at
different fixed values of Vtg. The resulting conductance variation
is plotted as color maps at different magnetic fields in Fig. 4a–d.
We can clearly see the regions of quantized conductance around
Vdc = 0 mV and how it saturates at higher offset values. In order

to understand in more detail the evolution of quantized values,
we also represent the data as line maps in Fig. 5. We first discuss
the measurements performed at B = 0 T (Fig. 5a). In this map, the
conductance plateaus appear as dark regions with increased
density of line traces. Note that the lower the trace is in the map,
the more negative is the applied top-gate voltage Vtg. In the center
(Vdc = 0 mV), we observe the bunching of lines in the range
0.5–2.5 ×G0 at regular spacing of 0.5 ×G0 after subtraction of the
background resistance contribution (see Supplementary Infor-
mation). All presented maps were symmetrized following the
model of Kristensen et al.27 (see Supplementary Fig. 3 and Sup-
plementary Note 3). We follow the increase of the differential
conductance by continuously increasing the dc bias voltage. At
Vdc ~ 0.8 mV, we observe a saturation of the differential con-
ductance at the corresponding value of a half plateau at about
n� 1

2

� �
´ 1

2G0, as expected for the adiabatic transport model in
QPCs28. We attribute any deviation from ideal half-plateau
conductance values to the fact that we study a very low number of
subbands n just above the band gap of MoS2. On the contrary, for
higher subbands like e.g. 2G0, the traces evolve only up to the
expected half plateau values (2.25G0) in good agreement with the
proposed model.

In Fig. 5b–d we present the same bias spectroscopy maps taken
at constant perpendicular magnetic fields of 3, 7, and 9.8 T. While
qualitatively very similar, these maps allow us to quantitatively
measure the evolution of the spin splitting and Zeeman energy
between the subbands of the QPC. Similarly to observations in
other 2DEG systems like GaAs/AlGaAs29 at higher magnetic
fields, the discrete conduction levels at Vdc = 0 V and their
evolution to half plateaus become better visible, as a smaller
number of intermediate lines are present in the maps. The
transition to the half-plateau values in these maps occurs at
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consecutively higher dc bias values as the magnetic field increases,
indicating the continuous increase of Zeeman energy splitting.
From the evolution of the Zeeman energy as a function of the
magnetic field, we can extract the electron g-factor in the
conduction band of MoS2.

In Fig. 6a, we present normalized representative curves for the
Vdc dependence of the differential conductance at different
constant magnetic fields. In this direct comparison, it is apparent
how the splitting energy between the opposite spin levels is
increasing with increasing magnetic field. We extract the sub-band
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Zeeman splitting energy values from the points at which the
curves reach saturation or at higher magnetic fields, the Vdc value
where the slope changes. In Fig. 6b we plot the thus extracted
Zeeman energy as a function of the magnetic field taking into
account the uncertainty of the half plateau saturation for different
conductance steps from all the bias spectroscopy maps. The
Zeeman energy follows a linear dependence. The slope of this line
can be fitted using ΔEz=B ¼ gj jμB30,31, where μB is the Bohr
magneton. In this way, we extract a g-factor of 2.16± 0.13 in the
conduction band of MoS2. This value is in good agreement with
DFT calculations predicting a g-factor of about 2.24. This indicates
very low electron-electron interaction in single-layer MoS2-QPC.
We also note that the extracted value is very similar to the g-factor
of a free electron, as well as the g-factor in other two-dimensional
materials like graphene32 and black phosphorus33.

Discussion
We present the measurement of the spin-splitting in the con-
duction band of single-layer MoS2 and its evolution in magnetic
field. Our high electron mobility device allows us to access to the
intrinsic properties of electrons in the conduction band of MoS2.
By applying a large positive voltage to the back gate we achieve
high homogeneous doping of the channel. Using the top gate
electrodes, we locally deplete the MoS2 sheet and form a con-
striction for the electrons, a QPC. We observe quantization of the
conductance in multiples of e2/h revealing lifted spin and valley
degeneracy. Performing bias spectroscopy at different magnetic
fields, we extract the spin splitting and g-factor values in the
conduction band of monolayer MoS2. The direct resolution of
spin splitting on the order of meV which can be further enhanced
by bringing single-layer MoS2 in close proximity to the magnetic
insulator substrate34 could pave the way for novel 2D spintronic
devices.

Methods
Material transfer and device fabrication. Bottom h-BN flakes were directly
exfoliated on Si substrates covered with 270 nm thermally grown SiO2. Thin flakes
were identified using optical microscope and AFM. All further flakes were exfo-
liated on PDMS substrates. Single-layer MoS2 was identified by optical contrast and
further confirmed by dark field microscope PL measurements. Flakes were aligned
and transferred on the target substrate in a home-built transfer station with
micromanipulators. The exfoliated flake on the inverted PDMS stamp was aligned
and brought into contact with the target substrate, which is heated to up to 70 °C
for better adhesion. The stamp is cooled down to room temperature and slowly
lifted from the substrate, resulting in the transfer of the flake onto the target
substrate (see Supplementary Fig. 4 and Supplementary Note 4).

After the complete stack is deposited onto SiO2, the wafer is annealed for 8 h at
360 °C in high vacuum in order to improve the adhesion between the layers and
remove residues from the transfer. Source-drain electrodes and top gates are
defined by conventional e-beam lithography followed by the e-beam deposition of
Ti/Au (2/85 nm) electrodes. A final annealing at 100 °C for 8 h inside the
measurement chamber at a pressure of 5 × 10−6 mbar prior to characterization is
performed in order to improve the contact resistance between metals and FLG and
to remove fabrication residues.

Electrical transport measurements. Electrical characterization is carried out
using a National Instruments virtual DAQ lock-in amplifier, a Basel physics
LSK389A current amplifier and a Keithley 2636 sourcemeter as a DC voltage
source. Cryogenic measurements were performed in an ICE Oxford liquid helium
continuous flow cryo-magnetic system with a base temperature of 1.4 K. To avoid
heating up of the sample and charging, we used an ac excitation with an amplitude
of 100 µV and a frequency of 13 Hz. Gate leakage currents were kept as small as
possible, generally lower than 50 pA.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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Supplementary Figure 1. Exfoliated MoS2 and FLG crystals. a, Optical micrograph of the exfoliated 
monolayer MoS2 on PDMS substrate. b, Dark-field microscope PL of the crystal in a. There is a strong optical 
signal only from monolayer MoS2. c and d, Optical micrographs of the FLG flakes used as source and drain 

contacts to the monolayer MoS2. 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2. Observation of conductance quantization in another similar device. a, AFM 
image of the split gate geometry, which is very similar to that of the device in the main text. b, Height profile 
along the blue line displayed in a. The distance between the two top gates is about 100 nm. c, Conductance of 

the device as function of the applied top-gate voltage after subtraction of series resistance of 8.3 kΩ. Clear 
quantization steps in whole and half values of G0 = 2e2/h  are observed.  
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Supplementary Figure 3. Correction of the self-gating effect and series resistance. a, Raw data of the 
map at B = 0 T. The asymmetry originates from the self-gating effect. b, The same map as in a after averaging 

for positive and negative bias and subtraction of series resistance.  

 
 

 

Supplementary Figure 4. Transfer sequence of the heterostructure device. a, Optical image of the 
exfoliated ~5  nm thick h-BN crystal serving as a bottom substrate later on. b, Optical image of the monolayer 
MoS2 exfoliated on PDMS used in this work. c, Optical micrograph showing the 1L MoS2 crystal after its 
deposition on h-BN from a. d, Image of the heterostructure after transfer of the first few-layer graphene crystal 
form PDMS to the substrate. e, Optical image of the heterostructure after deposition of the second FLG crystal. 
f, Final completed 1L MoS2 encapsulation after deposition of the top h-BN crystal. 
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Supplementary Note 1: Material preparation 

All crystals needed for the realization of a heterostructure were exfoliated on a PDMS 

substrate by means of mechanical cleavage. Thin crystallites were detected optically. In 

Supplementary Figure 1a we show the single layer MoS2 used in this work after exfoliation 

on PDMS. For further confirmation, we perform dark field microcopy photoluminescence 

measurements1 (Supplementary Figure 1b). In this optical picture we see clearly the very 

strong homogeneous emission from the monolayer, while thicker MoS2 crystallites remain 

dark, because their bandgap is indirect. As shown previously, very good ohmic contact to 

MoS2 can be realized with few layer graphene (FLG).2 For this, we exfoliate NGS graphite 

on PDMS substrates and select crystals that are thin and large enough to serve later as source 

and drain electrodes (Supplementary Figure 1c and d). 

 
 
Supplementary Note 2: Conductance quantization in an identical device 
 

For further confirmation of the observed conductance quantization, we prepared in identical 

manner another device. It consists of a monolayer MoS2 contacted with few-layer graphene 

electrodes and encapsulated between two h-BN layers. The geometry of the deposited split 

top-gates is very similar to the device presented in the main text. An AFM image is presented 

in Supplementary Figure 2a.  Following the blue line (Supplementary Figure 2b) we estimate 

the separation between the gates to be about 100 nm. Further, we study the conductance of 

this device at base temperature of 1.4 K and at high doping as function of the applied top-gate 

voltage.  The back-gate in this case is kept at constant 118 V and the top gate voltage is swept 

from 0 to -3.6 V (Supplementary Figure 2c).  

 At Vtg = -0.8 V we can observe the first plateau in the conductance curve. When the top-

gate voltage is further reduced, we see series of ten conductance steps separated by steep 

transitions down to 0.5×G0.  At voltages below -3 V the MoS2 channel is completely pinched-

off. With this, we confirm the appearance of the same conductance quantization in whole and 

half values of 2e2/h in another device, which endorse our observation that in a monolayer 

MoS2 QPC all state degeneracies are lifted. 
 
 
Supplementary Note 3: Self-gating effect 

 

Supplementary Figure 3a shows the raw data acquired for the differential conductance of the 

sample while sweeping the dc offset at a constant top-gate voltage. There is a clear 

asymmetry in the map. At negative applied dc bias voltages, the conductance decreases, 

while at positive biases it increases. We assume that this is due to the self-gating effect, 

which was also observed in other QPC devices.3,4 Note that unlike other reports, the contact 

material of our device is a semimetal (FLG) and also prone to gating. In order to correct for 

this effect, we average between the values of conductance obtained at positive and negative 

biases:3 

𝐺∗(𝑉dc) =
1

2
[𝐺(+𝑉dc) + 𝐺(−𝑉dc)] 

The resulting symmetric corrected map in this case for B = 0 T is presented in Supplementary 

Figure 3b. The characteristic dip of conductance around Vdc = 0 mV is still pronounced, as it 

is least effected by the gating. 
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Supplementary Note 4: Transfer procedure 

 

The heterostructure was assembled by sequential deposition of exfoliated crystals from a 

PDMS on a SiO2 substrate following the recipe of Castellanos-Gomez et. al.5 We start with 

an approximately 5 nm thick h-BN crystal exfoliated on a Si/SiO2 substrate (Supplementary 

Figure 4a). Then, we select a 1L MoS2 crystal exfoliated on PDMS substrate to be deposited 

on the h-BN crystal (Supplementary Figure 4b). We align the PDMS stamp with the crystal 

facing down above the target substrate and approach slowly. When the stamp and the crystals 

are in contact, we heat up the substrate up to 50 °C in order to improve the adhesion between 

MoS2 and h-BN. After waiting for about 5 minutes, we slowly raise the stamp. The MoS2 

crystal is deposited on the target substrate (Supplementary Figure 4c). Following this 

procedure, we deposit two few layer graphene crystals (Supplementary Figure 4d and e) and 

finally the top h-BN crystal (Supplementary Figure 4f) in order to completely encapsulate the 

single layer MoS2. The heterostructure produced in this way is then annealed in high vacuum 

at 360°C for 8 hours in order to improve adhesion between the layers and remove trapped 

impurities and water between them. 
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