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Abstract

Mitochondrial dynamics refers to the processes of fusion, fission, and transport that aid mito-

chondria in accomplishing their many roles; including ATP production, oxygen sensing, and

homeostasis. Due to their involvement in numerous essential cellular activities, dysfunctional

mitochondria have been implicated in a wide range of human diseases.

Confocal microscopy using fluorophores for molecular specificity remains the gold standard

of intracellular imaging. However, fluorescent labels can be toxic to the cell upon prolonged

exposure and still suffer from photobleaching. This compromises the application of confocal

fluorescence microscopy for true long lasting time-lapse imaging of living samples.

Optical coherence microscopy (OCM) exploits the intrinsic variation in the scattering prop-

erties of the sample to achieve fast, label-free, and highly sensitive three-dimensional imaging.

Unfortunately, being label-free means OCM lacks specificity and coherence based imaging

techniques have no counterpart to fluorescent markers. The invention of the photothermal

optical lock-in OCM (poli-OCM) brought about the possibility of specific OCM imaging using

gold nanoparticles (AuNP) as photothermal bio-markers. The use of AuNPs as specific contrast

agents has substantial advantages stemming from their well-established biocompatibility and

photostability.

Microscopic techniques that offer fast three-dimensional imaging over extended time dura-

tions may serve to reveal previously inaccessible knowledge on mitochondria. In this work we

quantify mitochondrial dynamics based on specific poli-OCM and surface functionalization

of AuNPs.

In realizing mitochondria specific poli-OCM imaging, it is necessary to functionalize AuNP

with mitochondria targeting capabilities. We presented copolymer surface coatings that pro-

vide the AuNPs with improved stability, solubility, and cellular uptake on top of mitochondria

labeling. We further optimized the utilization of these AuNP labels for poli-OCM imaging. We

also demonstrated poli-OCM imaging with differently structured gold nanolabels, which could

lead to the realization of multimodal imaging using a single bio-marker.

The two quantification techniques we developed are based on (1) temporal autocorrelation

analysis combined with a classical diffusion model and (2) single particle tracking. Autocorre-

lation analysis is the foundation of fluorescence correlation spectroscopy (FCS); a technique

extensively used for analyzing dynamic phenomena in chemistry and biophysics. We extended
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this analysis to three-dimensional poli-OCM imaging allowing us to map quantified mitochon-

drial diffusion parameters in three dimensions within the cell. We also investigated how the size

of the mitochondria with respect to the point spread function (PSF) of the poli-OCM impacts

the result of our autocorrelation analysis. Single particle tracking complements our temporal

autocorrelation analysis since recent advances in localization and tracking algorithms have

demonstrated precision better than the size of the PSF.

Finally, we demonstrated the possibility of using mitochondria specific poli-OCM imaging

with the quantification techniques we developed for studying the Cockayne syndrome (CS). CS

is a very rare and fatal genetic disease that has been associated with mitochondrial dysfunction.

To our knowledge, no study has been conducted focusing on quantifying the effect of CS on

mitochondrial dynamics.

Key words: Optical coherence microscopy (OCM); photothermal optical lock-in OCM (poli-

OCM); mitochondrial dynamics; gold nanoparticle functionalization
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Résumé

La dynamique mitochondriale fait référence aux processus de fusion, de fission et de trans-

port permettant aux mitochondries d’accomplir leurs différentes fonctions, notamment la

production d’ATP, la détection d’oxygène, et l’homéostasie. Dû au rôle des mitochondries dans

de nombreuses activités cellulaires essentielles, leur dysfonctionnement est impliqué dans

une large variété de maladies humaines.

La microscopie confocale, qui apporte de la spécificité moléculaire grâce à l’utilisation de

fluorophores, reste la méthode de référence pour l’imagerie intracellulaire. Cependant, les

marqueurs fluorescents peuvent devenir toxiques pour la cellule lors d’une exposition prolon-

gée et sont aussi sujets au photoblanchiment. Ces phénomènes compromettent l’utilisation de

la microscopie de fluorescence pour imager des échantillons vivants sur de longues périodes.

La microscopie par cohérence optique (OCM) exploite les propriétés intrinsèques de l’échan-

tillon en termes de diffusion de la lumière pour accomplir une imagerie tridimensionnelle

rapide, sans marqueurs et avec une grande sensibilité. Cependant, la absence de marqueurs

entraîne un manque de spécificité de l’OCM. Par ailleurs, les techniques basées sur la co-

hérence n’ont aucun équivalent aux marqueurs fluorescents. L’invention de l’OCM photo-

thermique avec une détection synchrone optique (ou poli-OCM pour photothermal optical

lock-in OCM) a rendue possible l’imagerie OCM spécifique en utilisant des nanoparticules

d’or comme biomarqueurs photothermiques. L’usage de nanoparticules d’or en tant qu’agents

de contraste spécifique présente des avantages considérables grâce à leur biocompatibilité et

leur photostabilité bien établies.

Les techniques de microscopie permettant l’imagerie rapide tridimensionnelle sur des

durées prolongées ont le potentiel de révéler des connaissances précédemment inaccessibles

sur les mitochondries. Dans cette thèse, nous quantifions la dynamique mitochondriale

en se basant sur l’imagerie spécifique en poli-OCM et la fonctionnalisation de surface des

nanoparticules d’or.

Pour accomplir l’imagerie spécifique des mitochondries en poli-OCM, il est nécessaire

de fonctionnaliser les nanoparticules d’or afin de cibler spécifiquement les mitochondries.

Nous présentons des traitements de surface pour revêtir de copolymères les nanoparticules

d’or, améliorant ainsi leur stabilité, leur solubilité et leur assimilation par les cellules en plus

du marquage mitochondrial. De plus, nous optimisons l’utilisation de ces nanoparticules
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d’or pour l’imagerie poli-OCM. Nous démontrons en outre l’imagerie en poli-OCM avec

des nano-marqueurs d’or de structures différentes, permettant la réalisation d’une imagerie

multimodale n’utilisant qu’un seul biomarqueur.

Les deux techniques de quantification que nous avons développées sont basées sur (1)

l’analyse de l’autocorrélation temporelle combinée à un modèle de diffusion classique, et (2)

le suivi de particules uniques (ou SPT pour single particle tracking). L’analyse de l’autocorré-

lation est à la base de la spectroscopie de corrélation de fluorescence (FCS), une technique

largement utilisée pour l’analyse de phénomènes dynamiques en chimie et biophysique.

Nous étendons cette analyse à l’imagerie tridimensionnelle en poli-OCM, nous permettant

ainsi de caractériser de façon quantitative les paramètres de diffusion mitochondriale en

trois dimensions à l’intérieur de la cellule. Nous investiguons aussi la manière dont la taille

des mitochondries impacte le résultat de notre analyse d’autocorrélation par rapport à la

fonction d’étalement du point (ou PSF pour point spread function). Le SPT complète notre

analyse de l’autocorrélation temporelle, des avancées récentes sur les algorithmes de suivi et

de localisation ayant démontré une précision meilleure que la taille de la PSF.

Finalement, nous démontrons la possibilité d’utiliser l’imagerie spécifique des mitochon-

dries en poli-OCM avec les techniques de quantification développées pour l’étude du syn-

drome de Cockayne (SC). Le SC est une maladie héréditaire très rare et fatale qui a été associée

à un dysfonctionnement mitochondrial. A notre connaissance, aucune étude se focalisant

sur la quantification de l’effet du SC sur la dynamique mitochondriale n’avait été conduite

auparavant.

Mots clefs : microscopie par cohérence optique (OCM); OCM photothermique avec une

détection synchrone optique (poli-OCM) ; dynamique mitochondriale ; fonctionnalisation des

nanoparticules d’or
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Introduction

Mitochondria are dynamic organelles found in most eukaryotic cells existing in a highly

interconnected network [1]. Their primary function is to provide the cell with ATP via oxidative

phosphorylation [2] but they have been known to factor in other cellular activities. These

include oxygen sensing [3, 4], regulation of intracellular Ca2+ [5–7], and apoptosis [8–10]

among others. In accomplishing these tasks, the mitochondrial network undergoes continuous

reorganization via the processes of fusion, fission, and transport; collectively referred to as

mitochondrial dynamics [11, 12]. Considering mitochondrial involvement in a number of

mechanisms ensuring the health and survival of the cell, it is not surprising that mitochondrial

dysfunction has been implicated with numerous human diseases [1, 13, 14]. While multiple

studies have linked mitochondrial dynamics to the pathogenesis of different diseases, most

have focused on genetic and biochemical aspects [15–17]. Very few, if any, have approached

this phenomena via imaging and quantification of mitochondrial motion from a physics and

kinetics perspective. This is despite the recent advances in microscopy [18,19], from which our

understanding of intracellular structure and mitochondrial morphology has benefited [20–24].

Confocal fluorescence microscopy is still the most widely used imaging technique in cell biol-

ogy, providing three-dimensional structural information with a diffraction limited resolution.

Furthermore, it achieves molecular specificity with the use of fluorescent bio-markers. The

availability of a broad range of fluorophores, designed for various intracellular structures,

proteins, and organelles contributes to the versatility of confocal microscopy. Unfortunately,

most fluorescent labels are either susceptible to photobleaching or inherently toxic [25, 26].

These limitations hinder the use of confocal fluorescence microscopy in applications requiring

long term imaging of living samples.

Optical coherence microscopy (OCM) is a three-dimensional imaging technique that uses a

broadband light source with a short coherence length to achieve depth-sectioning [27]. It is fast,

highly sensitive, and label-free; obtaining its contrast from the intrinsic variation of the sam-

ple’s scattering properties. OCM has demonstrated its value in biomedical research through

its application in studies focusing on the progression of diabetes [28–32] and Alzheimer’s

disease [33]. Similarly, cellular imaging with the OCM has already been achieved [34, 35]
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but the lack of specificity limits its further involvement in intracellular imaging. Unfortu-

nately, coherence based techniques do not have a counterpart to the fluorescent biomarkers

used in confocal microscopy. It was the invention of the photothermal optical lock-in OCM

(poli-OCM), which realized the possibility of specific OCM imaging using gold nanoparticles

(AuNPs) as photothermal contrast agents.

In this thesis we develop techniques for quantifying mitochondrial dynamics by exploiting

the speed and specificity of three-dimensional poli-OCM imaging and using functionalized

AuNPs as mitochondria specific labels.

An important component of our approach is the surface functionalization of AuNPs. We

present copolymer coatings based on human and bovine serum albumin that impart mito-

chondria targeting and improve the solubility, biocompatibility, and cellular uptake of the

AuNPs. Photothermal imaging using AuNP bio-markers offers substantial advantages due to

the well-established biocompatibility and photostability of gold. We optimize the utilization of

these AuNP labels for poli-OCM imaging by adjusting the labeling concentration and charac-

terizing the poli-OCM signal. Furthermore, we demonstrate mitochondria specific poli-OCM

imaging using differently structured nanoparticle labels.

We develop two techniques for quantifying mitochondrial dynamics. The first one is based

on temporal autocorrelation analysis merged with a classical diffusion model. This tech-

nique extends the analytical foundation of fluorescence correlation spectroscopy (FCS) [36]

to three-dimensional poli-OCM imaging. We demonstrate the ability of our technique to

extract spatially resolved mitochondrial diffusion parameters. We also investigate the accu-

racy of our measurements through numerical simulations. Specifically, we determine the

impact of maintaining the assumption of point-like diffusers despite the non-negligible size

of the mitochondria compared to the focal volume of the poli-OCM. We consider the effect

of mitochondrial size as a modification to the molecular detection function (MDF) of the

poli-OCM. Furthermore, the Bessel-like illumination beam of the poli-OCM augments the

extracted diffusion parameters and needs to be incorporated in the modified MDF. The second

technique we develop is based on single particle tracking (SPT). We elaborate on how the

higher localization precision of SPT results in a more accurate measurement of mitochondrial

diffusion constant. Moreover, we demonstrate the possibility of using SPT to identify and

quantitatively differentiate the transition between diffusive and directional mitochondria

motion.

Finally, we apply the techniques we developed to study the Cockayne syndrome (CS); a very

rare and fatal genetic disease that cause neurdegeneration and developmental deficiency [37].

CS shares a lot of it symptoms with neurdegenerative diseases and mitochondrial dysfunction

has been strongly implicated with its pathogenesis [37–39]. To our knowledge, no study has

attempted to quantify the effects of CS on mitochondrial dynamics.
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The rest of this thesis is organized as follows:

• Chapter 1 focuses on mitochondrial dynamics and how it is associated with human dis-

eases. Here we give a brief overview of the characteristics and functions of mitochondria

that contribute to the overall health and survival of a cell. We cite some mitochon-

drial related diseases and discuss how abnormal mitochondrial dynamics link to their

pathogenesis.

• Chapter 2 reviews the theoretical concepts that are most relevant for poli-OCM imaging.

• Chapter 3 discusses the use of AuNPs as bio-markers for poli-OCM imaging. In this

chapter we elaborate on the physical properties of AuNPs that make them ideal labels for

long term live cell imaging applications. We also present a method for surface function-

alization of AuNPs that imparts mitochondria targeting. We also explain the procedure

and analysis in optimizing AuNP labeling for poli-OCM imaging.

• Chapter 4 We present the techniques we developed to quantify mitochondrial dynamics

via three-dimensional time-lapse imaging with poli-OCM. We include our publication

and a submitted manuscript detailing these techniques, which are based on temporal

autocorrelation analysis with a classical diffusion model and single particle tracking.

In this chapter we also investigate the accuracy of our autocorrelation analysis using

numerical simulations.

• In the last chapter, Chapter 5, we present the results of our pilot study aimed at demon-

strating the possibility of using the techniques we developed for imaging and quantifying

mitochondrial dynamics to study the Cockayne syndrome.

3





1 Mitochondrial dynamics

Mitochondria are organelles commonly found in eukaryotic cells. They are famously known as

the “powerhouse of the cell” providing energy by producing cellular ATP. In order to sustain

the cell’s energy needs, mitochondria exist in a highly interconnected network. This mito-

chondrial network undergoes continuous transformation through the process of fusion and

fission depending on current cell activity. Fission allows mitochondria to divide and increase

their number. These individual ball-shaped mitochondria are more mobile and are capable

of migrating across different locations in the cell. The redistribution and transport of mito-

chondria is necessary to provide for the regions of the cell with the most energy demand.

An example of this mitochondrial migration is seen in neurons where mitochondria from

the soma are transported along the extent of the axon in support of neurite growth [40]. On

the other hand, fusion enables mitochondria to form longer strands and/or attach to the

mitochondrial network. ATP production through oxidative phosphorylation (OXPHOS) has

been shown to promote mitochondria fusion [41]. In fact, according to Youle et al. fusion helps

in maximizing OXPHOS by improving complementation among damaged mitochondria [42].

In this thesis we will refer to mitochondria fusion, fission, and migration with the general term

mitochondrial dynamics.

On top of ATP production, mitochondria are also involved in a number of regulatory cell

functions. Mitochondria control intracellular Ca2+, which is crucial for homeostasis [6]. In-

tracellular Ca2+ is used for signaling [43] where Ca2+ may trigger various functions including

cell apoptosis [44], differentiation [45, 46], and enhanced oxidative metabolism [47]. This

regulation of Ca2+ by the mitochondria is linked to the fusion mediator mitofusin-2 (Mfn2) [6].

Mitochondria also function as cellular oxygen sensors. Oxygen is a necessary component of

ATP production via OXPHOS. In oxygen limited environments, eukaryotic cells need to activate

an adaptive response to ensure survivability [48]. As a reaction to hypoxia, mitochondria

release reactive oxygen species (ROS) via the electron transport chain [49, 50]. The increased
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Chapter 1. Mitochondrial dynamics

level of ROS, in turn, activates the hypoxia-inducible factors (HIFs) [49]. Mitochondria fission

is an important upstream fascillitator of this adaptive response mechanism and it has even

been shown that inhibited fission prevents hypoxia-induced metabolic shift, which include

preferring glycolysis over OXPHOS [51].

Ensuring mitochondrial integrity is another cell function that is associated with mitochondrial

dynamics. Mitophagy is a “quality control” mechanism pertaining to the degradation of

compromised or dysfunctional mitochondria. Damaged mitochondria is first isolated via

fission before being disposed of by lysosomes [52]. In contrast, mitochondrial biogenisis is

mediated by peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), which

also regulates the expression of the fusion mediator Mfn2 [53, 54].

It is evident that mitochondrial dynamics are essential for mitochondria to accomplish their

various duties. It comes with little surprise that dysfunctional mitochondrial dynamics have

been implicated with aging and several diseases [13, 17].

1.1 Mitochondrial dysfunction and diseases

In addition to producing ATP, mitochondria play multiple roles in maintaining normal cellular

function. Because of these roles, a number of human conditions have been associated with

abnormal mitochondrial behaviour and dynamics. These conditions include but are not

limited to normal aging, metabolic disease, cancer, and neurodegenaritve diseases [13]. In

this section we give examples of a few diseases and how mitochondrial dynamics impact their

pathogenesis.

Cancer According to Hanahan and Weinberg the hallmarks of cancer are (1) sustained cell

proliferation and (2) robustness against growth suppressor, (3) resistance to programmed

cell death or apoptosis, (4) high invasiveness potential, (5) promotion of angiogensis, and (6)

enabling replicative immortality [55]. Among these qualities, resistance to apoptosis is the

one most closely related to mitochondrial dynamics. Inhibiting the mitochondrial apoptotic

pathway is the most common form of cell death deregulation shared by a variety of cancer

phenotypes [56]. A known fission mediator, Dynamin-related protein 1 (Drp1), induced fis-

sion occurs early during apoptosis and right before the release of cytochrome c [8]. Despite

regulating apoptosis by inducing mitochondrial fragmentation, Drp1 knockdown has reduced

proliferation and increased spontaneous apoptosis for non-small-cell lung carcinoma [57].

Similarly, overexpression of Drp1 was associated with malignant oncocytic thyroid tumors [58].

The aggressive proliferation of cancer cells needs to be accompanied by a rapid and sufficient

increase in ATP production. One prevailing mechanisms addressing this enhanced energy de-
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1.1. Mitochondrial dysfunction and diseases

mand was first proposed by Otto Warburg [59]. The Warburg effect, as it is called, describes the

preference of cancer cells to glycolysis over OXPHOS for ATP production [59,60]. Despite being

less efficient, glycolysis generates ATP at a faster rate compared to OXPHOS [61, 62]. Moreover,

glycolysis allows cancer cells to sustain ATP production even in low oxygen level conditions.

Since mitochondrial morphology is tightly linked to energy metabolism, this reprogramming

of the metabolic mechanism is reflected in mitochondrial dynamics [63]. Interconnected

mitochondrial networks favors respiration and OXPHOS whereas high fragmentation corre-

lates with glycolytic metabolism [64]. Abnormalities that promote mitochondrial fission have

been repeatedly observed in samples from cancer patients [63]. Increased levels of Drp1 were

found with mutations associated with melanoma, thyroid, and breast cancer just to name a

few [65–67]. Similarly, down-regulation of Mfn2 and optic atrophy 1 (OPA1), both of which

are fusion regulating, were observed in human gastric tumors and hepatocellular carcinoma

samples, respectively [68, 69].

It is evident that the resistance to apoptosis and shifting to glycolysis of cancer cells involve

mitochondrial dynamics and morphology. In particular, abnormal mitochondrial fission and

fragmentation seem to be common qualities of malignant tumor development. It is also

true that mitochondrial dysfunction is observed in many cancer phenotypes, which may

explain the preference for ATP. However, mounting evidence has shown that cancer cells have

a tendency to promote glycolysis despite normal mitochondrial function while still producing

significant amounts of ATP via OXPHOS [70].

Neuropathy Mitochondrial dynamics play a crucial role in the execution of energy demand-

ing neuronal activity including synapse and neurite growth. Consequently abnormalities in

various mediators of mitochondrial dynamics are correlated to a number of neurological dis-

orders. For example, the most common cause of Charcot-Marie-Tooth (CMT) disease, which

is a group of disorders causing peripheral neuropathy, is a mutation with Mfn2 [71]. Similarly,

OPA1 mutation has been found in a majority of cases of dominant optical atrophy DOA [72].

The nerve damage caused by these diseases typically results in impaired movement and vision

but in some cases could also lead to complete loss of function.

Huntington’s Disease Disturbed mitochondrial dynamics have also been implicated in a

number of neurodegenerative diseases. The Mayo Clinic defines Huntington’s disease (HD) as

a dominantly inherited neurodegenerative disease causing progressive breakdown of neurons

in the brain. It is fatal and patients afflicted with this disease suffer through personality

change, impaired and involuntary movement, dementia, and intellectual decline [73]. HD

results from the repeat expansion of CAG trinucleotide in the huntingtin gene [13]. Mounting

evidence has shown that reduction in number and size of mitochondria, mitochondrial ATP

7



Chapter 1. Mitochondrial dynamics

production, and PGC-1α expression comes with increasing HD severity [74, 75]. HD is also

accompanied by significant increase in Drp1 and decrease in Mfn2 [76]. Furthermore, mutant

huntingtin gene have been known to regulate mitochondrial traffic and bind to Drp1, inducing

fragmentation [16, 77].

Alzheimer’s Disease Alzheimer’s disease (AD), similar to HD, is also a neurodegenerative

disease that causes memory loss and the overall deterioration of the patients mental faculties.

It is characterized by the extracellular formation of amyloid-β plaques and intracellular neu-

rofibrillary tangles [13]. Although not common in all cases, mutations of the amyloid-β protein

precursor (APP), presenilin 1 (-PS1), or presenilin 2 (-PS2) genes involved with amyloid-β

peptide production were found in AD neurons [17]. Metabolic impairment and ROS induced

damage are known abnormalities that have been strongly implicated with the pathogenesis of

AD [78]. Since mitochondria are the primary source of both ATP and ROS in cells, there has

been a build up of evidences that alludes to the involvement of dysfunctional mitochondria

and mitochondrial dynamics in the progression of AD.

Overexpression of the fission mediator Drp1 was found in both APP mutant cell lines and the

postmortem brains of AD patients and AD mouse models. Moreover, this abnormal expression

extends to nearly all mitochondrial fusion and fission mediating proteins including OPA1 and

Mfn1/2 among others, often leading to mitochondrial fragmentation. Due to this excessive

fission, mitochondria from AD brain biopsies or mouse models are often more fragmented,

enlarged or swollen, and in some instances formed “beads-on-astring” like structure [79]. This

fragmented mitochondrial network found in AD models has also been attributed to oxidative

stress and ROS over production [78].

ROS are a natural byproduct of ATP production by the mitochondria, which are in fact used as

signaling molecules for homeostasis. However, ROS are also capable of inducing damage by

oxidizing lipids and major biomolecules such as DNA and RNA [80, 81]. The intracellular ROS

concentration is typically balanced between the production by mitochondria and clearance

by antioxidants, but damaged or dysfunctional mitochondria are known to be less efficient in

ATP generation while at the same time producing more ROS. Unfortunately, increased levels of

ROS also induce mitochondrial fragmentation. This mutually promoting interaction between

mitochondrial fragmentation and ROS overproduction amplifies the impact of oxidative

imbalance and dysfunctional mitochondrial dynamics in AD [78].

Parkinson’s Disease Genes regulating mitochondrial dynamics have been implicated in

the development of Parkinson’s disease (PD); these include α-synuclein, Parkin, and phos-

phatase and tensin homolog induced putative kinase 1 (PINK1) [42, 82]. PD is arguably one of

the most common neurodegenerative disease and causes bradykinesia, rigidity, and resting
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1.2. Remarks

tremors caused by the loss of pigmented dopaminergic neurons [13, 73]. It is accompanied

by the presence of Lewy bodies, which are abnormal aggregates predominantly composed

of α-synuclein. Overexpression of the protein α-synuclein has been observed to hamper

microtubule-dependent trafficking and consquently mitochondrial transport.

The rare and early onset familial PD is believed to be caused by PINK1 and Parkin muta-

tions [83, 84]. PINK1 and Parkin act together and play an important role in mitochondrial

“quality control” by regulating Miro, a component of the mitochondrial motor complex [15].

Prior to mitophagy, a damaged mitochondrion is held in position by first detaching it from

its microtubule motor. This is accomplished by the PINK1-mediated Parkin phosphoryla-

tion of Miro [15]; a process that has been observed to protect dopaminergic neurons in

Drosophila [85, 86]. Mutations in PINK1 and Parkin lead to the accumulation of damaged

mitochondria and implicate the failure of mitophagy in PD development [87]. For example,

PINK1 and Parkin have been observed to target Mfn2, discouraging fusion and resulting to mi-

tochondrial fragmentation. In studies with Drosophila, overexpression of PINK1 significantly

inhibited mitochondrial transport [15, 84]. Because neurons have highly polarized structures

and rely on axonal transport to execute its functions, PINK1 and Parkin regulation of mito-

chondria motility may give an explanation for the peripheral neuropathy reported in some PD

patients. However, desipte extensive studies, a clear interpretation of the function of PINK1

and Parkin in PD remains elusive. Studies with mammalian cells have been less symptomatic

and, in some instances, have provided conflicting results. Mitochondria from PINK1 or Parkin

knockout human neurons have demonstrated mitochondrial fragmentation [88, 89], which

could be reversed by Parkin overexpression [90] or by augmentation with Mfn2 or OPA1 [88].

Conversely, PINK1 knockout in COS-7 cells promoted mitochondrial tubulation [14, 91]. Evi-

dently, explaining the abnormalities in mitochondrial morphology and dynamics is crucial in

unveiling the mechanisms behind PD. Unfortunately, the role that PINK1 and Parkin mutations

play on this is not well understood and needs to be investigated further.

1.2 Remarks

This chapter gave a brief overview of mitochondrial dysfunction and how it impacts the

development of various diseases. Without a doubt, disturbed mitochondrial dynamics are

detrimental to health and could explain the mechanism behind the pathogenesis of these

diseases. While these studies have extensively investigated gene mutations and how they relate

to abnormal mitochondrial function as well as disease symptoms, the approaches have been

mostly biochemical. In recent years, the advances in super-resolution optical microscopy have

given scientists a means to visualize the mitochondrial structure [20–24]. Unfortunately, it is

difficult to achieve true long duration time-lapse imaging because most of this techniques

are limited by photobleaching. Arguably, this limitation is the primary reason why studies

9



Chapter 1. Mitochondrial dynamics

approaching mitochondrial dynamics from the physics point of view where the kinetics of the

mitochondria are investigated and quantified are very rare and scarce.

10



2 Coherence and photothermal optical

coherence microscopy

The Oxford Dictionary in English defines coherence as “the quality of being logical and consis-

tent”. We consider ideas and policy to be coherent if they display consistency with respect to

themselves or others. Similarly, a person is deemed coherent if he or she is understandable to

other people. This requires the individuals conversing to at least share the same language or

background information. In other words, coherence is a measure of similarity between two

entities.

Mathematically, coherence can be characterized by the normalized dimensionless cross-

correlation function (CCF)

γi j (τ) =
〈
U∗

i
(t )U j (t +τ)

〉
√〈

|Ui (t )|2
〉〈∣∣U j (t )

∣∣2
〉 (2.1)

where 〈〉 denotes temporal averaging, both Ui (t) and U j (t) are complex functions of time

varying signals, and ∗ is to indicate the complex conjugate. This correlation function quantifies

the similarity between a pair of signals as a function of the time delay τ.

2.1 Interference

In physics and optics, coherence is among the fundamental properties of waves and is often

described as their ability to interfere. If for example, two waves are too “dissimilar” they

lose this interference property and are therefore labeled as incoherent. Light, being a wave

phenomenon, is also characterized by its coherence.

Consider two stationary light fields U1(r, t ) and U2(r, t ) with constant average intensities

I1(r) =
〈
|U1(r, t )|2

〉
and I2(r) =

〈
|U2(r, t )|2

〉
[92]. The superposition of these two fields at an

11



Chapter 2. Coherence and photothermal optical coherence microscopy

observation location rP results in

UT (rP , t ) =U1 (rP , t − t1)+U2 (rP , t − t2) (2.2)

where t1 = rP−r1
c

and t2 = rP−r2
c

are defined as the durations needed for the fields traveling at

the speed of light c to propagate from their sources at r1 and r2 respectively. The observed

interference is given by the time averaged total intensity

IT (rP ) =
〈
|UT (rP , t )|2

〉

= I1(rP )+ I2(rP )+
〈
U∗

1

(
rP , t ′

)
U2

(
rP , t ′+τ

)〉
+

〈
U1

(
rP , t ′

)
U∗

2

(
rP , t ′+τ

)〉 (2.3)

with the variable substitutions t ′ = t − t1 and τ = t1 − t2. It is obvious from Eq. 2.3 that the

interference terms share the same form as the cross-correlation function (Eq. 2.1). This illus-

trates how interference is the phenomenon of correlating waves and coherence is a measure

of how well these fields interfere. In fact,
〈
U∗

1

(
rP , t ′

)
U2

(
rP , t ′+τ

)〉
is referred to as the mutual

coherence function and Eq. 2.3 can be rewritten as

IT (rP ) = I1(rP )+ I2(rP )+2
√

I1(rP )I2(rP )Re
{
γ12 (τ)

}
, (2.4)

using the real part of the normalized mutual coherence function, also known as the complex

degree of coherence γ12(τ), to represent the interference term [92]. For the case of interfering

fields from the same source separated by a time delay τ, γ12(τ) transforms into the normalized

autocorrelation function γ(τ) = 〈U∗(t )U (t+τ)〉�
〈|U (t )|2〉

, which characterizes the temporal coherence of

the source [92].
∣∣γ(τ)

∣∣ takes on values from 0 to 1 describing the boundary conditions of perfect

incoherence and coherence respectively. In reality, all light sources display a certain degree

of partial coherence and
∣∣γ(τ)

∣∣ generally decays with increasing τ. To quantify the temporal

coherence of a light source, we define the coherence time τc [92] as

τc =
∫∞

−∞

∣∣γ(τ)
∣∣2 dτ. (2.5)

Consequently, the coherence length lc is defined as the distance light travels for a duration

equivalent to τc or simply lc = cτc . Through the years, interferometric imaging techniques

have capitalized on the coherent nature of light to improve resolution, sensitivity, as well as to

develop novel contrast mechanisms.

2.2 Frequency domain optical coherence tomography (FDOCT)

Optical coherence tomography (OCT) is a three-dimensional imaging method based on low-

coherence interferometry. The broadband light sources used in low-coherence interferometry

have finite coherence lengths allowing them to perform depth sectioning. OCT systems are

12



2.2. Frequency domain optical coherence tomography (FDOCT)

able to resolve individual scatterers in depth as long as they are separated by more than the

coherence length lc ; this ability is called coherence gating. For a broadband light source with a

Gaussian spectral profile centered at λ0 and bandwidth ∆λ, the depth resolution δz is given

by

δz =
lc

2n
=

2ln2

nπ

λ2
0

∆λ
. (2.6)

where n is the index of refraction of the sample [93]. Similar to other interferometric techniques,

OCT splits the light into the reference beam and the illumination or sample beam. OCT

collects the backscattered light from the sample and superimposes it with the reference

beam. One advantage of this interferometric detection scheme is the ability to adjust the

reference beam power to boost the collected signal independent of the illumination. By taking

advantage of this coherent amplification, OCT has consistently demonstrated its effectiveness

for imaging weakly scattering biological samples. Furthermore, the contrast of OCT stems

from the intrinsic scattering properties of the sample. These qualities, high sensitivity, three-

dimensional imaging capability, and label-free nature, of OCT have helped it establish a niche

in the field of biomedical imaging.

Initially, however, OCT systems were slow and required three-dimensional scanning to acquire

full volumetric images. In 1995, Fercher et al. proposed using a spectrometer to record the in-

terferogram spectrum which resulted in the invention of frequency domain OCT (FDOCT) [94].

The acquired interference spectrum Ispec (k) would be the coherent sum of all backscattered

fields Es(k, t ) = E0 (k)
∑N

i=1αi e i (kzi−ωt ) and the reference field Er (k, t ) = E0 (k)e i (kzr −ωt )

Ispec (k) =
〈∣∣∣∣∣E0 (k)αr e i (kzr −ωt ) +E0 (k)

N∑

i=1
αi e i (2kzi−ωt ) +c.c.

∣∣∣∣∣

2〉

= |E0 (k)|2
[
α2

r +
N∑

i=1
α2

i +
N∑

i �= j=1
αiα j cos

(
2k

(
z j − zi

))
+

N∑

i=1
αiαr cos(k (zr −2zi ))

] (2.7)

where αr and αi are the effective reflectivities of the reference arm with length zr and each

scatter in the sample located at zi along the axial direction. The first two terms are the DC

components while the third term represents the interference between the different scatterers;

typically, αi ≪ αr meaning the third term can be neglected. The final term stands for the

cross-correlation between the sample and reference fields and allows us to determine the

position zi of the different scatters within the depth of field (DOF). This significantly decreases

the acquisition time of OCT because the full depth information is already encoded in this

spectrum. It would only require an inverse Fourier transform to retrieve the depth profile and

therefore, FDOCT systems only need 2D raster scanning to acquire full 3D tomograms.
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Chapter 2. Coherence and photothermal optical coherence microscopy

2.3 Optical coherence microscopy (OCM)

Optical coherence microscopy (OCM) is the high resolution implementation of OCT. It makes

use of high numerical aperture (NA) optics to achieve submicron resolution δr ∝ λ0
NA ideal

for imaging samples at the cellular level. However, improving spatial resolution by focusing

Gaussian beams comes with a corresponding decrease in DOF ∝ λ0

NA2 . As a consequence,

z-scanning would again be necessary to achieve full 3D imaging. This presents OCM with a

fundamental trade-off between speed and high resolution imaging. A number of OCT/OCM

instruments have tried to address this limitation. One instrument that is of particular interest

for this thesis is the extended-focus OCM (xfOCM) [27].

xfOCM circumvents the reduced DOF of focused Gaussian beams by exchanging it with a

Bessel-like illumination beam [27]. The Bessel-beam is a solutions to the Helmholtz equation,

which predicts a beam that maintains its lateral profile over a large propagation distance. In

practice, the xfOCM uses a Bessel-like beam to illuminate the sample with a light needle that

preserves its beam width over an extended depth despite focusing with a high NA objective. The

xfOCM has been used in longitudinal in vivo imaging studies which revealed the progression

of diabetes [28–32] and Alzeihmer’s disease [33] in their respective mouse models. Quantitative

blood flow imaging with the xfOCM has also been done [95, 96] and was applied to statistical

parametric mapping of mouse cortex blood flow response to stimuli [97]. Dark-field OCM

(dfOCM) is a variant of the xfOCM featuring enhanced contrast for imaging weakly scattering

samples such as cells [34]. The separate illumination (Bessel-beam) and detection (Gaussian

beam) modes of the xfOCM makes dark-field imaging readily accessible by adding a circular

mask to discard specular reflection.

2.4 Photothermal optical lock-in OCM

As previously mentioned, the contrast of OCM imaging is obtained from the variations of

the refractive index within a sample. Because it is based on elastic scattering and coherent

detection, OCM cannot take advantage of the fluorescent labels extensively used by other

microscopy techniques (confocal, super-resolution, etc.). Despite consistently displaying

high sensitivity and speed, this lack of specificity hinders OCM’s further involvement in

biological studies at the cellular level. Instead of fluorescence, photothermal contrast is an

appealing alternative for specific OCM imaging since it utilizes local perturbation of the

sample’s refractive index.

Photothermal contrast is based on the conversion of light energy into heat. Most photothermal

microscopes use labels that absorb energy from a heating beam and dissipate heat into their

immediate vicinity [98]. This interaction causes an increase in temperature of the surround-

ing medium, which consequently alters the local index of refraction and expansion [98, 99].
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2.4. Photothermal optical lock-in OCM

Photothermal contrast is achieved by using a separate probe beam to detect this change in

scattering properties. One way of implementing photothermal imaging is by using an intensity

modulated heating beam at a defined frequency Ω. This modulated heating generates syn-

chronously modulated backscattered fields which can then be selectively filtered via lock-in

detection.

According to Gaiduk et al. [99], the change in temperature ∆T (r, t ) caused by the photothermal

effect with a sinusoidally modulated heating beam is described by

∆T (r, t ) = Pdi ss
1

4πκr

(
1+exp

(
−

r

rth

)
cos

(
Ωt −

r

rth

))
(2.8)

where κ is the medium’s thermal conductivity and the dissipated power Pdi ss = Pheat
σabs

A
is

defined by the power of the heating beam Pheat and the ratio of its diffraction limited spot size

A with the absorption cross section σabs of the photothermal label. Finally, the extent of heat

diffusion is characterized by the thermal radius rth

rth =
√

2κ

ΩCp
(2.9)

using the heat capacity per unit volume Cp of the medium. Assuming the refractive index

change with respect to temperature as ∂n
∂T

, the effective photothermal scattering signal is given

by

S ≈
1

πω0Cpλ2Ω
n
∂n

∂T

σabs

A
Pheat Ppr obe∆t (2.10)

where ∆t is the detector integration time and ω0, λ, and Ppr obe are the waist, wavelength, and

power of the probe beam respectively. In general, Pheat , Ppr obe , and ∆t are accessible system

parameters that can be adjusted to improve imaging performance.

In 2012, Pache et al. demonstrated fast three-dimensional imaging of gold nanoparticles

(AuNP) in highly scattering media and living cells with the invention of photothermal optical

lock-in OCM (poli-OCM) [100]. In addition to the intensity modulated photothermal heating

beam, poli-OCM uses a pair of acusto-optic modulators (AOM) to add linear phase modulation

to the reference beam, enabling optical lock-in detection [100]. Pache et al. approximated the

field backscattered by the volume surrounding the AuNP as

E AuN P (k, t ) =αAuN P E0 (k)e i k(2zAuN P+εcos(Ωt ))−iωt (2.11)

and the reference beam by

Er (k, t ) =αr E0 (k)e i(kzr −(ω+Ω)t−φ) (2.12)
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Chapter 2. Coherence and photothermal optical coherence microscopy

where theα’s are the effective reflectivities, E0 is the amplitude of the input beam,Ω is again the

modulation frequency, and ε is a parameter for the thermally induced path length modulation.

The effective photothermal signal comes from the interference of theses two fields integrated

over an integer multiple of integration time T = m∆t of the spectrometer

Ipoli (k) = |E0 (k)|2αrαAuN P e i k(zAuN P−zr )−iϕ
∫T

0
e−i (εcos(Ωt )−Ωt )dt +c.c.

≈ |E0 (k)|2αrαAuN PεkTsin
(
2k (zAuN P − zr )−φ

)
, for εk ≪ 1.

(2.13)

As stated in [100] and similar to Eq. 2.10, the photothermal signal is proportional to the

scattering by an effective volume defined by the integral of the modulated refractive index

variation around the AuNP. In Eq. 2.13 this photothermal interaction is represented by ε such

that ε∝ Pheat
σabs

A
. This pioneering work demonstrated the possibility of highly sensitive and

specific poli-OCM imaging in living without cells sacrificing speed [100]. Furthermore, one

particular advantage of photothermal imaging, as opposed to fluorescence, is the photostabil-

ity of its markers. AuNPs, like most photothermal labels, are not susceptible to photobleaching

making them ideal for long term time-lapse imaging of living cells.
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3 Gold nanoparticle functionalization

and mitochondria imaging

Specific imaging for biological samples is most often achieved by attaching a fluorophore

to the structure or molecule of interest. The spectral separation between the excitation and

emission of these fluorophores enables selective filtering of the desired signal. To this date,

confocal fluorescence microscopy is arguably the most widely used intracellular imaging

technique and numerous organic dyes, fluorescent proteins, and quantum dots have been

developed to further its use. Unfortunately, no counterpart is available for coherent imaging

techniques based on elastic scattering like OCM. As previously elaborated, photothermal

imaging using AuNPs as contrast agents offers a promising alternative; particularly because of

the unique combination of properties AuNPs posses.

The high stability and low toxicity of AuNPs are among their qualities important for biological

application. The high oxidation potential of gold makes it more stable compared to other

metals even in an aqueous environment [101]. Furthermore, cells and other biological samples

have consistently demonstrated high tolerance and survivability despite prolonged exposure

to AuNPs alluding to the biocompatibility of colloidal AuNPs [102, 103].

Moreover, AuNPs are “very small” by definition. They typically have dimensions that are in the

same order of magnitude or smaller compared to organelles and other intracellular structures.

This is of particular significance since, labels should be small enough not to mechanically

perturb the activity of the molecule it attaches to. In addition, larger particles (> 102 nm) are

known to have difficulty passing through cellular membranes [101].

AuNPs also display highly localized enhancement of electromagnetic fields upon illumination

by ultraviolet (UV) to near infrared (NIR) light. This field enhancement is a direct consequence

of the resonant oscillations of free electrons at the interface of a metal conductor and a

dielectric (e.g. air, water, etc.). Referred to as surface plasmons, these oscillations are highly

localized in the case of AuNPs because their dimensions are much smaller than the wavelength
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Chapter 3. Gold nanoparticle functionalization and mitochondria imaging

of the exciting field [104, 105]. Because of this localized field enhancement, molecules situated

in the near vicinity of the AuNPs experience intensities much higher than the initial incident

illumination. This phenomenon is the basis for techniques like surface enhanced Raman

sepctroscopy (SERS) and fluorescence (SEF) [106]. At their surface plasmon resonance, AuNPs

have a large absorption cross section, which, in addition to their efficiency in converting

absorbed light into heat, make AuNPs ideal photothermal contrast agents [107–109]. The

peak wavelength of AuNPs surface plasmon resonance typically lies in the green band (≈ 530

nm) of the visible spectrum. However, it has been repeatedly demonstrated that the peak

and broadness of this resonance can be adjusted over a wide wavelength range (UV-NIR)

depending on the geometry and material compositions of the AuNP core and shell [110–112].

This tunability grants AuNPs the possibility for simultaneous multicolor labeling and imaging.

This collection of physical and chemical characteristics of AuNPs places them in an ideal posi-

tion for bioimaging and biomedical applications. This has been demonstrated time and again

in photothermal therapy [113,114] as well as by the use of AuNPs as biomarkers and nanoscale

biosensors [115, 116]. However, to accomplish these tasks, it is crucial to functionalize the

surface of AuNPs with coatings made up of ligands, proteins, peptides etc. [117–119]. These

coatings improve the AuNP’s biocomaptibility, cellular uptake, and stability in physiological

media. Moreover, surface functionalization using specific molecules grants AuNPs with the

custom characteristics for applications such as targeting or labeling of organelles. In our exper-

iments we are particularly interested in using AuNPs as mitochondria targeting photothermal

markers for specific poli-OCM imaging.

3.1 Multifunctional copolymer coated AuNPs

for poli-OCM imaging

Parts of this section were published in: Biomaterials Science 5, 966-971 (2017)

In this study, we synthesized photothermally active AuNPs functionalized with a versatile

polypeptide copolymer for mitochondria imaging with the poli-OCM. The synthesis of this

multifunctional polypeptide was based on the blood plasma protein human serum albumin

(HSA) which served as the precursor. The available carboxylic acid groups of HSA were con-

verted to primary amino groups yielding polycationic HSA (cHSA) [120]. The conversion into

cHSA enhances surface attachment and improves cellular uptake due to the electrostatic

interactions [121]. Furthermore, cHSA has an increased number of reactive sites allowing for

more chemical modifications. Denaturing cHSA resulted in dcHSA who’s thiol groups were

then reacted with polyethylene oxide (PEO) side chains for water-solubility and to reduce

nonspecific interactions [120, 122]. N-Hydroxy-succinimide activated maleimide (MI-NHS)

was then reacted with the dcHSA-PEO hybrid in pH 7.4 PBS buffer. Next, this newly introduced
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3.1. Multifunctional copolymer coated AuNPs for poli-OCM imaging

maleimide group was reacted with the terminal thiol of the cysteine (Cys) residue of TAT

(SH-Cys-Gly-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg) yielding dcHSA-PEO-TAT. The

addition of several copies of the TAT peptide improved uptake into mammalian cells and

enhanced endosomal escape. Mitochondria targeting was provided by the lipophilic cation

triphenyl-phosphonium (TPP), widely known for its selective accumulation in mitochon-

dria. [123]. Finally, hydrophobic TPP cations were attached following the EDC-NHS ester

coupling reaction to yield the dcHSA-PEO-TAT-TPP bioconjugate.

This multifunctional polypeptide copolymer we synthesized imparts excellent water solubility,

biocompatibility, and stability under various physiological conditions. AuNPs coated with

this copolymer are well suited for time-lapse photothermal imaging with poli-OCM. Futher-

more, this multifunctional copolymer platform offers the possibility of Au-nanotransporters,

traceble via imaging, that are capable of delivering cargos such us drugs to specifically tar-

geted organelles or cell compartments. In this particular case, the AuNPs were designed for

mitochondria specific imaging.

We investigate the optimum labeling condition of our functionalized AuNPs for poli-OCM

imaging. We approach this by incubating HeLa cells with increasing concentrations of AuNPs.

For each of the concentration we evaluate the strength of the measured poli-OCM signal.

HeLa cells were seeded onto Ibidi µ-slide 8-well (≈2000–4000 cells per well) with 250 µL of

cell culture medium (Dulbecco’s Modified Eagle Medium (DMEM), 10% fetal bovine serum,

and 1% penicillin and streptomycin antibiotics). The cells were given sufficient time (≥12

hrs.) to adhere to the substrate before replacing the medium with a fresh batch containing

different concentrations of the dcHSA-PEO-TAT-TPP functionalized AuNPs for each well. We

investigated five concentrations: 2.77, 6.84, 13.42, 31.7, and 58.2 nM. The cells were incubated

overnight to allow sufficient uptake of the AuNPs. Prior to imaging, the cells were washed

3× with PBS, removing the excess AuNPs, then fresh culture medium was added. In addi-

tion, we costained the cells with MitoTracker Deep Red at 10nM for simultaneous dfOCM

and fluorescence imaging. This was done to control the AuNP labeling of the mitochondria,

ensuring that the difference in poli-OCM signal was not due to significant variations in the

mitochondria content among cell cultures. Imaging was conducted using a 532 nm laser as the

photothermal heating beam with an average power of 3 mW. Sample images from these cell

cultures are shown in Fig. 3.1. Each row features a set of dfOCM, poli-OCM and fluorescence

images arranged in increasing AuNP labeling concentrations from top to bottom.

The dfOCM images (Fig. 3.1 left column) are single en-face sections (cross-sectional slices)

from complete three-dimensional tomograms featuring the complete cell morphology. The

dfOCM contrast is based on the backscattering induced by variations of the refractive index

and we clearly notice regions inside the cell with weak and strong signals. Although dfOCM

imaging does not offer specific information, we associate the weakly scattering regions with
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Figure 3.1 – dfOCM, poli-OCM, and fluorescence images of HeLa cells incubated with in-
creasing concentration of mitochondria targeting AuNPs. Going from top do bottom the
concentration are 2.77, 6.84, 13.42, 31.7, and 58.2 nM. The HeLa cells were co-stained with
MitoTracker Deep Red at 10nM for fluorescence imaging. Scalebar: 25µm
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3.1. Multifunctional copolymer coated AuNPs for poli-OCM imaging

the cell nucleus. This appears to be a good assumption since this weakly scattering region

coincides with parts of the cell not labeled by both the AuNPs and MitoTracker.

The middle column of Fig. 3.1 displays maximum intensity projections along the z-direction

of three-dimensional poli-OCM tomograms depicting the presence of AuNPs attached to

mitochondria. With regards to the effect of varying the amount of functionalized AuNPs,

the series of poli-OCM images clearly illustrates an increase in number of AuNP-labeled

mitochondria with higher labeling concentrations. In fact, for the lowest AuNP concentration

(2.77 nM) the poli-OCM signal was nearly neglible. On the other hand, from 13.4 nM and

above the poli-OCM images show that mitochondria of the entire cell culture were almost

completely labeled by the AuNPs.

The corresponding fluorescence images on the right column indicates two things. First, there

is clearly a good agreement between the fluorescence imaging with MitoTracker and poli-OCM

imaging with the functionalized AuNP demonstrating the specificity of the AuNPs for mito-

chondria targeting. We further confirm this in [124] where we show a Pearson’s colocalization

coefficient of 0.89 between MitoTracker and dcHSA-PEO-TAT-TPP AuNP labeling. Second,

the fluorescence images confirm that there is no noticable difference with the mitochondria

content among the cell cultures and the increase in poli-OCM signal is indeed due to the AuNP

concentrations.

We characterized the increase in poli-OCM signal in response to the AuNP labeling con-

centration by evaluating the distribution of measured signal intensities. For each labeling

concentration we acquired a set of three poli-OCM tomograms from different locations in the

well. From these tomograms, we subsequently generated histograms showing the distribution

of poli-OCM signal intensities (Fig. 3.2). These distributions were normalized to the total num-

ber of voxels that had good poli-OCM signal-to-noise for each labeling concentration. This

was done to ensure that we are in fact comparing signal strength and quality while avoiding a

bias due the number of AuNP labeled mitochondria. The histograms in Fig. 3.2 as well as their

mean values show that, as expected, higher AuNP concentrations also gave stronger poli-OCM

signals. However, it is interesting to point out that the dependence of poli-OCM signal with

labeling concentration is not linear. Inspecting either Eqs. 2.10 or 2.13 we notice that this was

evaluated for a single photothermal absorber. Furthermore, the strength of the photothermal

signal is, in general, proportional to the absorption cross-section σabs and not the number of

photothermal absorbers within the diffraction limited spot size of the heating beam. Moreover,

interaction of plasmonic particles that are too close to each other induce a red-shift with their

plasmonic resonance [125, 126] that could, in effect, decrease their absorption efficiency.
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Figure 3.2 – Normalized histogram of poli-OCM signal for increasing the AuNP concentrations
in logarithmic scale
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3.2. Mitochondria imaging with various Au-nanostructures

3.2 Mitochondria imaging with various Au-nanostructures

Parts of this section were published in: Nano Letters 16(10), 6236-6244 (2016)

We further demonstrate mitochondria specific poli-OCM imaging with different surface func-

tionalization and other gold nanostructures. In particular we imaged HeLa cells with mitochon-

dria labeled using AuNPs and gold nanorods (AuNRs) functionalized with globular cBSA-TPP.

This surface coating is based on polycationic bovine serum albumin (cBSA) with mitochondria

targeting provided by the same TPP molecule as with the dcHSA-PEO-TAT-TPP copolymer.

Surface functionalization using the globular cBSA-TPP as coating provided the AuNPs with im-

proved cell uptake, stability in biological media, and biocompatibility on top of mitochondria

targeting. Despite having fewer functional groups compared to dcHSA-PEO-TAT-TPP coating,

we were able to achieve sufficient AuNP mitochondria labeling at a much lower concentration

of 0.31 nM. The specifics of synthesizing globular cBSA-TPP are discussed in 4.1.2.

150 μm

a) c)b)

Figure 3.3 – Cross-sectional slices of a) dfOCM and b) poli-OCM tomograms showing the com-
plete cell and the AuNP-labeled mitochondria respectively. c) Maximum intensity projection
with the color indicating depth information. Scalebar: 25µm

dfOCM and poli-OCM images of HeLa cells with AuNP-labeled mitochondria are shown in

Fig. 3.3. The AuNPs were functionalized with globular cBSA-TPP AuNPs and have 3.7 ± 0.9 nm

diameter. Similar to 3.1 the dfOCM images is a slice from the full three-dimensional tomogram

showing the complete cell and the distinguishable weaker scattering of the nucleus. The two

poli-OCM images are a single slice (Fig. 3.3b) and a maximum intensity projection along the

z-direction (Fig. 3.3c) with the depth position encoded in the color. Fig. 3.4 features similar

images as Fig. 3.3 but with HeLa cell mitochondria labeled with AuNRs instead of AuNPs. The

AuNRs had dimensions of 95.2 ± 10.8 nm in length and 51.3 ± 9.5 nm in width resulting in

plasmonic resonance peaks at ≈ 530 nm and ≈ 650 nm.

Lastly, we also attempted using fluorescent nanodiamond and AuNP dimers (fND-AuNP)

for poli-OCM imaging (3.5). This fND-AuNP dimer is representative of “all-in-one” hybrid
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150 μm

a) c)b)

Figure 3.4 – Cross-sectional slices of a) dfOCM and b) poli-OCM tomograms showing the com-
plete cell and the AuNR-labeled mitochondria respectively. c) Maximum intensity projection
with the color indicating depth. Scalebar: 25µm

particles uniquely designed for multimodal cellular imaging. The fluorescence of the ND

can be used as a marker for confocal microscopy while the AuNP is useful for photothermal

imaging as well as for electron microscopy [127]. This new class of nanoparticles offers the

possibility of specificity for both established and emerging techniques across multiple imaging

technologies.

a) b)

Figure 3.5 – Cross-sectional slices of a) dfOCM and b) poli-OCM tomograms showing the
complete cell and mitochondria labeled with the fND-AuNP respectively. Scalebar: 25µm

3.3 Summary

We have discussed the advantages of using AuNPs as bio-markers for specific intracellular

imaging. In particular, AuNPs have a unique combination of properties that make them the

ideal labels for photothermal imaging. Compared to other metals, AuNPs are stable in aqueous

and biological media, have a low degree of cytotoxicity, and do not photobleach. Furthermore,

the plasmonic resonance of the AuNPs can be adjusted by altering their size, geometry, and
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composition giving us the ability to design AuNP labels suitable for our imaging system as well

as to use multiple labels for multicolor photothermal imaging.

We also discussed the synthesis and characterization of mitochondria specific AuNP labels

with a novel multifunctional copolymer coating. This copolymer was based on the blood

plasma protein human serum albumin (HSA) with attached TPP molecules for mitochondria

targeting. In addition, this multifunctional copolymer platform can be used as traceable

nanotransporters since they can be functionalized for delivery and imaged at the same time.

For our experiments, these AuNPs were designed to target the mitochondria for specific poli-

OCM imaging. We optimized the AuNP labeling condition for these AuNPs by incubating the

HeLa cells with different concentrations of AuNP labels and evaluating the poli-OCM signal.

Our results show that the strength of the poli-OCM signal is not linearly dependent on AuNP

labeling concentration. Increasing the AuNP labeling concentration above 13 nM does not

seem to improve the poli-OCM imaging performance.

In the last section of this chapter, we demonstrated the possibility of specific poli-OCM

imaging using other kinds of AuNPs and different polymer coatings. We imaged HeLa cells

with mitochondria targeting Au-nanospheres and Au-nanorods functionalized with a surface

coating based on polycationic bovine serum albumin; mitochondria targeting was again

provided by attaching TPP molecules. Finally, we also imaged HeLa cells incubated with

fluorescent nanodiamond and AuNP dimers. This unique dimer can be considered an “all-in-

one” hybrid particle which can be used for multimodal cellular imaging. The same dimer can

be used as a label in fluorescence confocal, electron, and photothermal microscopy [127].
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4 Quantification of mitochondrial

dynamics

There are a number of techniques that were developed to probe and measure dynamic proper-

ties of a system. One particular technique that has been extensively used in both biology and

chemistry is fluorescence correlation spectroscopy (FCS) [128]. FCS quantifies the dynamics

of a system by measuring the fluctuations of its fluorescence intensity signal [36]. In its first

implementation, Magde et al. used FCS to quantify the chemical rate constants and diffusion

coefficients of the binding process between ethidium bromide and double stranded DNA [36].

The use of FCS became more prominent upon the development of confocal microscopy and

the merging of the two techniques [129]. The use of confocal illumination and detection

provided FCS with the necessary sensitivity to probe biological interactions at physiological

concentrations. Since then, FCS has emerged as one of the most well-established techniques

adapted for cell biology and biophysics. There have been numerous variants of FCS each

aimed at improving its effectiveness for specific applications. Dual-focus FCS utilizes a pair

of overlapping detection foci which serves as an external length to overcome the limitation

introduced by the size of the PSF [130]. Fluorescence cross-correlation spectroscopy is an-

other variant, which is basically a dual color FCS implementation that allows us to observe

two different fluorescent species [131]. FCCS is particularly capable for probing molecular

reactions between a pair of uniquely labeled reactants. Newer FCS based techniques have

also exploited the recent advancement of super resolution imaging techniques [132–134].

One variant of FCS that is of particular interest in this thesis is temporal image correlation

spectroscopy (ICS) [135]. As the imaging analogue of FCS [135], temporal ICS averages over

space and thereby achieves statistical significance without needing to acquire fluorescence

fluctuations on the same focal spot for a long time. This makes temporal ICS well suited to

quantify the dynamics of nearly static or slowly diffusing particles.

In the succeeding section of this chapter we demonstrate quantification of mitochondrial

dynamics by extending ICS to three-dimensional poli-OCM imaging of AuNP labeled mito-

chondria. Our method is based combining temporal autocorrelation analysis and a classical
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diffusion model to extract spatially resolved diffusion parameters, which we can map in

three-dimensions. Subsequently, we elaborate on the possible issues introduced by the non-

negligible size of mitochondria compared to the focal volume of the poli-OCM. In the last

section, we propose single particle tracking as a complementary technique for quantifying

mitochondrial dynamics

4.1 3D time-lapse imaging and quantification of mitochondrial dy-

namics

Journal article

Published in: Scientific Reports 7, Article number: 43275 (2017).
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We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in

living HeLa cells based on photothermal optical coherence microscopy and using novel

surface functionalization of gold nanoparticles. The biocompatible protein-based biopoly-

mer coating contains multiple functional groups which impart better cellular uptake and

mitochondria targeting efficiency. The high stability of the gold nanoparticles allows con-

tinuous imaging over an extended time up to 3000 seconds without significant cell dam-

age. By combining temporal autocorrelation analysis with a classical diffusion model, we

quantify mitochondrial dynamics and cast these results into 3D maps showing the hetero-

geneity of diffusion parameters across the whole cell volume.
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4.1.1 Introduction

Mitochondria are organelles present in most eukaryotic cells. They are important for sustaining

the energy needs of the host cell via the synthesis of ATP [1]. Besides being the cellular power-

house, mitochondria are also involved in synaptic transmission and cellular signaling [136].

These fundamental functions translate into continuous mitochondria trafficking, which is

an essential characteristic of these organelles, best subsumed by the term “mitochondrial

dynamics” [11]. Quantifying these dynamics over a large time span promises to deepen our

insight on cellular processes tightly related to neurodegenerative diseases such as Alzheimer’s

and Parkinson’s disease [1, 137–139].

Confocal fluorescence microscopy remains the most widely used technique for cellular imag-

ing. It provides high spatial resolution and specificity, known from fluorescent markers, making

it suitable for intracellular imaging and studying mitochondria morphology. However, avail-

able fluorescent markers are prone to photobleaching, such as organic dyes, or are inherently

toxic, like quantum dots [25, 26], limiting their viability for long-lasting live cell imaging.

Light-sheet microscopy is a fast, 3D, and high resolution intracellular imaging technique that

also addresses photobleaching. In particular, Planchon, T. A. et al. [140] demonstrated imaging

live-cell mitochondrial dynamics using a scanned Bessel beam. Live pig kidney epithelial cells

(LLC-PK1 cell line) were imaged over 300 volume stacks displaying a decrease in fluorescence

intensity of only <20%. Among these techniques, probably the most advanced is lattice light-

sheet microscopy by Chen, B.-C. et al. [141] where imaging mitochondrial dynamics for

more than 18 minutes was achieved with limited photobleaching. Undoubtedly, light-sheet

microscopy has succeeded in pushing the bounds of intracellular imaging. However, it still

relies on fluorescence probes and will eventually be confronted with the same limitations.

The use of gold nanoparticles (AuNPs) as biomarkers for photothermal imaging offers a promis-

ing alternative because of their high stability and very low toxicity. However, to accomplish

photothermal imaging inside living cells, it is crucial to stabilize the surface of the AuNPs with

water-soluble, biocompatible ligands that can withstand various physiological conditions.

Stability of the AuNPs at varying pH and in the presence of proteases located in vesicles during

endosomal uptake processes or in the reductive environment in the cytoplasm are essential to

provide suitable intracellular markers for time lapse studies [142]. Protein based polymeric sur-

face coatings offer the additional advantage as multiple functionalities could be incorporated

at the level of the polymer. This ensures characterization by standard polymer analytics and

guarantees the presence of all required functions at the particle surface after coating [143]. In

this way, photothermal imaging AuNPs could be envisaged carrying the desired functionalities

for targeting sub-cellular organelles, such as mitochondria, inside living cells.

The photothermal contrast mechanism relies on a temporally modulated refractive index in

29



Jo
u

rn
al

ar
ti

cl
e

Chapter 4. Quantification of mitochondrial dynamics

the near vicinity of the AuNPs resulting from heat dissipated by the AuNPs’ plasmon-enhanced

absorption. This contrast mechanism is the basis for photothermal optical lock-in optical

coherence microscopy (poli-OCM), which provides two distinct imaging modalities: a dark-

field mode (dfOCM) for imaging the 3D cell volume, and a poli-mode, utilizing functionalized

AuNPs for highly specific 3D mitochondria imaging [100].

In this work, we report the synthesis of a novel and biocompatible protein-based biopolymer

for surface functionalization of AuNPs. The biopolymer is comprised of multiple groups

imparting enhanced cellular uptake and mitochondria targeting. Using these AuNPs, 3D

mitochondria specific poli-OCM imaging during 3000 seconds was demonstrated without

any loss of contrast. Finally, we quantified mitochondrial dynamics, per voxel, using temporal

autocorrelation analysis based on a classical diffusion model, which allowed us to extract

mitochondria diffusion time τD and other diffusion parameters. The novelty of our method

resulted in cells segmented into sub-volumes providing 3D parameter maps.

4.1.2 Results and Discussion

Synthesis of mitochondria specific AuNPs

We synthesized mitochondria targeting AuNP biomarkers tailor-made for poli-OCM imaging.

The synthesis, functionalization, and characterization of these AuNPs are summarized in Fig.

4.1a – d. The blood plasma protein is known to be biocompatible and provides many reactive

carboxylic acid and amino groups that can be further modified. First, all accessible carboxylic

acid groups were converted into primary amino groups by applying ethylenediamine and the

coupling reagent EDC according to a literature-known procedure [144]. After dialysis, globular

polycationic bovine serum albumin (cBSA) was obtained having the ability to interact with

cellular membranes, facilitate cellular uptake, and cytosolic release by Clathrin-mediated

endocytosis [145]. To accomplish mitochondria targeting, lipophilic triphenyl phosphonium

groups (TPP) were attached to cBSA [146]. According to the MALDI-ToF mass spectra (Fig.

4.1b), about 19 TPP groups were attached to the cBSA surface yielding cBSA-TPP in good

yields. cBSA-TPP was then purified and subjected to AuNP preparation. We used a strong

reducing agent, NaBH4, to reduce Au-salt (HAuCl4) in the presence of cBSA-TPP and yielded

monodispersed spherical AuNPs with diameters centered around 3.7 ± 0.9nm (Fig. 4.1c). The

inset histogram map confirms the relative narrow size distribution and Fig. 4.1d shows the

characteristic plasmonic peak of the prepared AuNPs. Since the stability of the cBSA-TPP

passivated AuNPs in biological media is crucial for cellular uptake and subsequent observation

of their movement without prior aggregation, dynamic light scattering experiments were

performed in DMEM medium (see Fig. 4.6). No indication of severe aggregation, as little

increase of the particle size, was observed, which is believed to be due to the alteration of ionic

strength in biological medium as compared to its aqueous counterpart [147].
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Figure 4.1 – a) Synthesis scheme of globular cationized protein (cBSA-TPP) with multiple
mitochondria targeting TPP groups attached. b) MALDI-ToF spectra (matrix: sinapinic acid)
indicate successful functionalization from the progressive increase in molecular weight from
BSA (calculated 66.00 kDa, measured 66.13 kDa), cBSA (calculated 71.05 kDa, measured 71.04
kDa) and cBSA-TPP (calculated 77.62 kDa, measured 77.51 kDa). Approximately 19 TPP units
were attached. c) Low resolution transmission electron microscopy (TEM) image of cBSA-TPP
coated AuNPs. Scalebar: 50 nm. Inset: Size distribution histogram indicating average diameters
of the AuNPs of 3.7 ± 0.9 nm. d) Characteristic absorption spectra of the as-synthesized AuNPs
highlighting the surface plasmon peak centered at 536 nm.

In order to demonstrate the specificity of our AuNP biomarkers, Hela cells with AuNP labeled

mitochondria were co-stained with MitoTracker Red, a standard mitochondria specific dye.

These AuNPs were linked with FITC fluorophores which enabled imaging via confocal laser

scanning microscopy and colocalization with MitoTracker staining. We conducted this test

using two different kinds of AuNP functionalization; the first group of AuNP-cBSA was attached

with TPP (AuNP-cBSA-TPP) while the second one was not (AuNP-cBSA). Fig. 4.2a – f shows

the fluorescence confocal images of the Hela cells with MitoTracker (red), AuNP-FITC (green),

and their overlays. From these images, we observed good colocalization of AuNP-cBSA-TPP

with MitoTracker giving a Pearson’s coefficient of 0.69 (Fig. 4.2d – f) as opposed to 0.29 for

AuNP-cBSA (Fig. 4.2a – c). These results are indicative of the specificity of our AuNP biomarkers

and substantiate their use for mitochondria specific poli-OCM imaging. In addition, we also

investigated the biocompatibility of our AuNP labels through a cell viability assay (Fig. 4.2g

and Fig. 4.7). We obtain 95% cell viability at 0.31 nM AuNP concentration which is the typical

AuNP labeling concentration we use for poli-OCM.
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Figure 4.2 – Fluorescence confocal images of Hela cells incubated with AuNP-noTPP a) – c) and
AuNP-TPP d) – f) co-stained with MitoTracker. a) and d) are the MitoTracker images whereas
b) and e) are the FITC tagged AuNPs. Their overlays in c) and f) have Pearson’s coefficients of
0.29 and 0.69 for AuNP-noTPP and AuNP-TPP respectively. Scalebars: 30 µm. g) Cell viability
test showing 95% viability Hela cells incubated with 0.31 nM of mitochondria targeting AuNPs.

Quantifying mitochondrial dynamics

We quantified mitochondrial dynamics by exploiting fast and specific 3D imaging via poli-

OCM and using a diffusion model considering the mitochondria as freely diffusing particles

inside the voxel volume. Knowing the high complexity of the intracellular structure, we argue
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that using a voxel sized sampling volume allows the use of a diffusion model supposing a

homogeneous environment. This model permits to assess the general mitochondrial dynamic

and to cast our results in a parameter space known and used in correlation microscopy.

Our correlation analysis closely follows the principles of image correlation spectroscopy (ICS)

developed by Petersen et al. [148] and Wiseman et al. [135, 149] that extended fluorescence

correlation spectroscopy (FCS) to full 2D imaging methods. ICS based correlation analysis on

pixel-wise intensity fluctuations provide the diffusion time of the particles under investigation.

Merging photothermal detection and correlation spectroscopy was previously introduced

[150, 151] but not with 3D imaging or extended time scales (up to 1 hour) [152] In a similar

manner, phase correlation imaging has also been demonstrated as a robust technique for

studying cell dynamics [153] even without the use of specific labels. As we have previously

stated, using the poli-OCM we achieved fast 3D mitochondria specific live cell imaging up to

3000 seconds without any loss of contrast (see Fig. 4.10).

Stepping from 2D to 3D imaging, the voxel-wise autocorrelation function can be stated as

GV (τ) =
〈δiV (t )δiV (t +τ)〉
〈iV (t )〉〈iV (t +τ)〉

(4.1)

where the indices V point to the individual voxels i.e. the sampling volumes, 〈〉 denotes time

averaging, iV (t ) the time-dependent intensity and τ the temporal lag. The temporal intensity

fluctuation is then defined as δiV (t ) = iV (t )−〈δiV (t +τ)〉. Assuming a 3D Gaussian sampling

volume, (see Fig. 4.9), the processed intensity data are fitted with the model for classical 3D

diffusion behavior

GV (τ) =
G (0)(

1+ τ
τD

)√
1+ τ

κτD

+G∞. (4.2)

Here κ=
(

z0

r0

)2

where r0 and z0 represent the lateral and axial extent of the sampling volume,

τD is the diffusion time, and G∞ = limτ→∞GV (τ) [135, 154]. In FCS, G (0) ∝
1

N
, where N is

the mean number of diffusing particles. G (0), in turn, is dependent on the signal to noise

ratio and also considers “independent particles” [155], which in the case of poli-OCM can be

influenced by AuNP labelling efficiency and interparticle coupling [156]; an in depth analysis

of this dependence is beyond the scope of this study. All instrument parameters, r0 and z0,

were evaluated by measuring the point spread function (PSF), fitting it with a Gaussian profile,

(Fig. 4.9) and by taking into account the coherence length which defines the axial extent of
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the PSF [157, 158]. For a more in depth discussion of coherent correlation analysis please refer

to previous papers in OCCS [157, 158]. Due to the interferometric detection, our signal has

extremely high sensitivity to phase and not only intensity in contrast to ICS of Wiseman and

Petersen.

The dual imaging modality of the poli-OCM is exhibited in Fig. 4.3a – c. where we show

en face and orthogonal slices of the 3D dfOCM (Fig. 4.3a), photothermal OCM (Fig. 4.3b)

tomograms, and their overlay (Fig. 4.3c). The orthogonal slices emphasize the 3D specific

imaging and localization we achieve using the poli-OCM; we are capable of imaging the entire

cell morphology (Fig. 4.3a) as well as only the AuNP labeled mitochondria (Fig. 4.3b). For the

purposes of our temporal autocorrelation analysis we image individual cells in a scan range of

25µm ×25µm. Alternating between dfOCM and poli-mode, tomograms similar to (Fig. 4.3a

and b) were acquired to monitor both the motion of the entire cell (dfOCM) and mitochondrial

dynamics (photothermal OCM).

The temporal autocorrelation was calculated for each voxel in the 3D poli-OCM tomogram

time series following equation (1). The data was then segmented into sub-volumes of 2×2×2

voxel (0.58µm ×0.58µm ×2.05µm) where the autocorrelation was averaged and subsequently

fitted with the diffusion model given by equation (2) using a non-linear least squares solver.

Our method allowed the extraction of diffusion parameters from each of these segmented

sub-volumes resulting in a 3D diffusion time map (Fig. 4.3f). Furthermore, the 2×2×2 voxels

sub-volume we use are related to the measured dimensions of our point spread function (PSF).

The data shown in Fig. 4.3d represent five sub-volumes with different diffusion times (see

matched color code of histogram in Fig. 3e) underlining the high variation of the mitochondrial

dynamics across the full cell volume. The very small residuals between the autocorrelation

and the model indicate a good fit and give confidence to the validity of the model. Additionally,

the normalized autocorrelations (Fig. 4.3d, inset) demonstrate even more the large variation of

τD . The probability distribution (pd f ) of the τD extracted from all sub-volumes in the entire

cell (Fig. 4.3e) demonstrates a spread of over two orders of magnitude with a τD ranging from

10 to 1.5×103 seconds having a mean value of 214 sec. (median value of 101 sec.). We divided

the pd f (τD ) into five color-coded intervals, each representing 20 % of the total cell volume

(Fig. 4.3e). These intervals were used to render a 3D map of the diffusion time, as shown in Fig.

4.3f and Fig. 4.12 with each sub-volume color-coded according to the pd f (τD ). This 3D map

allows us to determine and locate regions within the cell featuring high or low mitochondrial

dynamics. These extracted τD can be further related, by the Stokes-Einstein relation (see

Fig. 4.12), to the viscosity values inside our sampling volumes. Assuming a mitochondria

hydrodynamic radius of 500 nm we deduced viscosity values ranging from 0.18 to 26.7 (Pa·s),

which are still within the range predicted by the model of Kalwarczyk et al. [159]. In addition,

the associated diffusion constants we calculate from these data coincide with published
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Figure 4.3 – En face and orthogonal slices of a) 3D dark-field OCM and b) poli-OCM tomograms
and c) their overlay. In d) we show selected autocorrelation data with corresponding fits and
their residuals. Inset: normalized autocorrelation and fits. e) Probability distribution of all
extracted diffusion times from each sub-volumes in the entire cell is shown. The color-coded
segments of e) each represents approximately 20% of the complete cell volume. f) 3D rendering
(diffusion time map) using data from e) illustrating the high heterogeneity of mitochondrial
dynamics within the cell. The semi-transparent grey volume outlines the entire cell volume.
d)-f) shares the same color-code meaning each curve in d) comes from the same colored
segment in e) as well as the same colored sub-volume in f) Scalebars: a) - c) 30 µm en face and
7.5 µm orthogonal slices, f) 5 µm.

quantified cellular dynamics using phase correlation imaging [153].

In addition to the high heterogeneity of mitochondrial dynamics, regions within the cell, where

it was not possible to extract any diffusion parameters were also observed. As elaborated in

S.6. of the supporting information, this region exhibits a high overlap with the locations in

the corresponding dfOCM (dark-field OCM) time series showing lower scattering signal. We

associate this low scattering regions to the nucleus of the cell where no mitochondria are

expected.
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The high heterogeneity of diffusion parameters over the cell volume is an observed phe-

nomenon resulting from our data and analysis. This is not surprising given the known complex-

ity of the intracellular environment [160–162], especially considering the size of mitochondria

and their tendency to form networks. Furthermore, the works of Planchon et al. [140] and

Chen, B.-C. et al. [141] also observed this variety in mitochondrial dynamics using a com-

pletely different and independent imaging concept. We would like to reiterate that, unlike

fluorescence, poli-OCM imaging is not prone to photobleaching at all; as shown in Figures

4.10, there is no decrease in signal contrast even after acquiring 500 poli-OCM tomograms. We,

nevertheless, consider lattice light-sheet microscopy as the golden standard for imaging live

intracellular dynamics and poli-OCM imaging compares well with these published time-lapse

acquisition protocols. These previous works in light sheet microscopy [140, 141] demonstrated

similar high heterogeneity of mitochondrial dynamics and can therefore be considered as an

independent validation of our observations.

4.1.3 Conclusion

In this paper, we report highly specific fast 3D imaging of mitochondrial dynamics inside

living HeLa cells. We prepared narrowly dispersed AuNPs with a protein coating based on the

plasma protein BSA, functionalized with positive ammonium and multiple TPP groups. The

positive ammonium groups improve cell membrane attachment and endocytosis while the

TPP groups provide intracellular mitochondria targeting. All AuNPs used in this study were

decorated by the functionalized protein coating approach. The photostability and limited

toxicity of these markers enabled true long-lasting time lapse live cell imaging. Finally, we

used these functionalized AuNPs for fast 3D poli-OCM imaging to quantify mitochondrial

dynamics via temporal autocorrelation analysis resulting to 3D diffusion parameters maps. We

believe that this method provides a novel perspective of mitochondrial dynamics and paves an

innovative way for investigating its relation to various not yet understood metabolic diseases.

4.1.4 Methods

Preparation of functionalized protein coated AuNPs

Materials used Cationized bovine serum albumin (cBSA) was synthesized following the

procedure reported previously by our group [120] N-hydroxy-succinimide (NHS, 99%), (3-

Carboxypropyl) triphenylphosphonium bromide (TPP), 98% and N-(3-Dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC, 98%) were procured from Sigma-Aldrich. Hydrogen

tetrachloro aurate (III) trihydrate, ACS, 99.99% was obtained from Alfa Aesar. Sodium borohy-

dride 98% was bought from Acros Organics. All chemicals were used as received without further

purification. Vivaspin ultrafiltration tubes were purchased from GE healthcare. Ultra-pure
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milli-Q water was used for all experiments involving water.

Synthesis of cBSA-TPP TPP (80 mg), NHS (30 mg) and EDC.HCl (40 mg) were dissolved in

0.5 mL of degassed dimethylformamide (DMF) solution. This mixture was stirred at room

temperature under argon atmosphere for overnight. Next day, cBSA (20 mg) dissolved in 20 mL

milli-Q water was added and reacted overnight at room temperature. The product was washed

through vivaspin 20 (MWCO 30K) ultracentrifuge tube to separate the unreacted reactants.

Finally, the solution was kept at 4°C for future use. Fig 4.5 shows the zeta potential and XPS

data of the conjugate.

Synthesis of cBSA-TPP coated AuNPs AuNPs with desired sizes were synthesized and func-

tionalized for mitochondria labeling. Briefly, aqueous HAuCl4 solution (60 µL, 10mM) and

cBSA-TPP (globular cationic bovine serum albumin with triphenyl phosphonium cations, 50

µL, 10 mg/mL) were mixed and the solution was diluted to 250 µL with milli-Q water. Freshly

prepared NaBH4 solution (6 µL, 3 mg/mL) in chilled milli-Q water was added rapidly to the

solution which yielded monodispersed, spherical AuNPs with diameter of approximately 4

nm. Then, the reaction mixture was stirred for 30 minutes and washed with water to remove

excess of NaBH4. By varying the amount of added NaBH4, various sizes of the AuNPs were

obtained. In particular, the AuNPs used in the poli-OCM imaging experiments had diameters

of 3.7 ± 0.9 nm. Corresponding XPS peaks of AuNPs are presented in Fig. 4.6a.

AuNP characterization Plasmonic absorption was recorded using TECAN infinite M1000

microplate reader. Zeta-potential and DLS measurements were performed using a Malvern

Zetasizer ZEN3600 (Malvern Ltd, Malvern, UK) at 20°C. A JEOL 1400 transmission electron

microscope was used to obtain bright field TEM images of the AuNPs. X-ray photoelectron

spectroscopy (XPS) data were recorded on a Physical Electronics PHI 5800 ESCA System using

mono-chromatized Al Kα radiation (13 kV, 250 W).

Cell viability assay

HeLa cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM, Gibco) with 10% fetal

bovine serum, 1% penicillin/streptomycin with phenol-red and seeded at 6,500 cells/well in a

white 96-well (half-area) plate. The cells were left to adhere overnight at 37°C and 5% CO2 and

afterwards different concentrations of AuNPs were added into each well. The treated cells were

subsequently incubated with the AuNPs for approximately 30 hours at 37°C, 5% CO2. After

incubation, the cells were washed with phosphate buffer to remove the excess AuNPs present

in the medium and re-incubated with DMEM medium. The cells were further incubated for
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4 hours before the addition of Tox-8 reagent with phenol red free DMEM medium. After 2

hours incubation with Tox-8, the emission intensity was measured by a Tecan Infinite M1000

microplate reader (λex = 570 nm, λem = 590 nm). We used wells without cells but with Tox-8

reagent as controls. Each experiment was performed in quadruplicates. The cell viability (V )

was calculated according to the following equation

V =
(

X −Z

Y −X

)
×100% (4.3)

where X is the average emission with the treatment of AuNPs at various concentrations, Y is

the average emission of the experimental groups without the treatment of the AuNPs, and Z is

the average emission of the culture medium background.

Confocal microscopy

HeLa cells were incubated in Dulbecco’s Modified Eagle Medium (DMEM, Gibco) with 10%

fetal calf serum (FCS, Gibco) and non-essential amino acids in a humidified incubator at

37°C and 5% CO2. For confocal laser scanning microscopy (CLSM), cells were seeded onto an

Ibidi µ-slide 8-well and incubated with FITC labelled protein coated AuNPs for 24 hours. We

used two different kinds of protein coating: one with TPP attached and the other without TPP

attached in its backbone. Fluorescence confocal laser scanning microscopy (CLSM) images

were acquired with a 63× 1.4 NA oil immersion plan apochromatic LSM 710, Axio Observer

objective. Fluorescence of FITC was excited by a HeNe laser λex = 488 nm (AOTF transmission

set to 10-20%) and was set to emission maximum at 525 nm. We added 1 µM MitoTracker Red

in each well-plate and excited at 560 nm with an emission maximum at 625 nm.

poli-OCM imaging

The 3D time-lapse imaging and analysis we implemented for the quantitative assessment of

mitochondrial dynamics is summarized schematically in Fig. 4.4.

Cell culture and AuNP labelling HeLa cells were seeded and incubated overnight onto an

Ibidi µ-slide 8-well with 250 µL of cell culture medium (Dulbecco’s Modified Eagle Medium

(DMEM, Gibco), 10% fetal bovine serum, and 1% penicillin and streptomycin antibiotics). 2 µL

of 40 nM AuNP solution were then added into the media and again incubated overnight. Finally,

the cells were washed with PBS and fresh culture medium was added before imaging. During

poli-OCM imaging, the Ibidi µ-slide 8-well was housed in a custom built micro-incubator,

where the temperature was regulated at 37°C and humidified premixed (5% CO2) air was

pumped continuously.
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Figure 4.4 – Schematic summarizing step by step imaging and data extraction for mitochon-
drial dynamics. 3D time lapse imaging of live Hela cells was performed using the poli-OCM
localizing the AuNP labeled mitochondria. Temporal autocorrelation analysis was applied
over the whole cell volume resulting in a 3D map of mitochondria diffusion time. In addition,
imaging with the poli-OCM also enables mitochondrial dynamics quantification via tracking
individual AuNP-labeled mitochondria but is outside the scope of this work

poli-OCM instrumentation The specifics of the OCM instrument as shown in Fig. 4.8 have

been previously described and characterized elsewhere (xfOCM [27], dfOCM [163] and poli-

OCM [100]). A broadband laser source centered at 800 nm (∆λ= 135 nm) is used as a source for

optical coherence imaging. An axicon shapes the illumination beam into a Bessel beam which

propagates across the scanning unit and is focused on the sample by a high-NA objective

(25×, NA = 0.8, Carl Zeiss). The backscattered field is collected by the same objective and

superimposed with the reference beam; the resulting interference is finally recorded using

a custom-made spectrometer. The Bessel beam configuration of our poli-OCM ensures an

extended depth of field or a uniform lateral resolution over the full 3D cellular volume. The

poli-OCM, as used in this study, provides a lateral and axial resolution of 0.53 µm and 2.15

µm respectively over an extended depth of focus of 50 µm. The experimental measurement

of the resolution is discussed in the supporting information. The photothermal contrast of

the poli-OCM [100] is achieved by exciting the plasmonic resonance of the AuNPs using a

532 nm solid-state laser. This photothermal heating beam is intensity modulated at 150 kHz

using an AOM before being coupled into the OCM scanning unit by a dichroic mirror (D1;

720DCXR, Chroma Technology). This intensity modulation induces a similarly modulated

index of refraction around the AuNP which in turn generates a modulated backscattered signal.

This backscattered field is superimposed with a phase modulated reference field (150 kHz)

enabling heterodyne detection of the sinusoidally modulated signal. In accordance with C.

Pache et al. we operate at an A-scan rate of 3900Hz with an integration time of 250 µs [100].

At this operating parameters the temperature increase in the vicinity of an individual AuNP

is approximately 1K [98, 100]. During imaging, we used approximately 6 mW for OCM probe

beam and 3 mW average power for the photothermal heating laser.
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Time lapse imaging Aiming for the extraction of diffusion parameters of the AuNP labeled

mitochondria requires fast 3D imaging with short time intervals while extending the experi-

ment over a prolonged acquisition period (100 to 103 seconds). A total of 1000 3D tomograms

were acquired over a volume of 25×25×50µm3 (approximately 0.29×0.29×1.028µm3 per

voxel) while alternating between dfOCM and poli-OCM. This resulted in two time series each

having 500 3D tomograms and a time interval of 6 seconds between tomograms. This scan

protocol provided us with sufficient sampling necessary for our autocorrelation analysis. Simi-

larly, poli-OCM imaging allows for 3D tracking of AuNP labeled mitochondria but this is not

within the scope of this current work.

4.1.5 Supporting Information

S1. Functionalized protein coated AuNP preparation

a) b)

Figure 4.5 – a) Zeta-potential values of BSA, cBSA, and cBSA -TPP conjugates. Increase in zeta-
potentials proceeds in line with the expected increase in the number of positive charges after
each reaction step. b) XPS spectra of the protein backbone before and after TPP conjugation,
where the respective peaks of P2p is clearly observed.

S2. Cell viability test

In addition to the cell viability test included in the main text, we investigated the viability of

Hela cells with AuNP labeled mitochondria exposed to 532nm illumination. A second 96-well

plate was prepared following the same procedure as in the experimental section and incubated

with the same concentration of AuNPs. This plate was illuminated with light from a 532nm

LED array with approximately 5mW of power for 5 minutes continuously. Exposure to the

532nm light was done after washing the excess AuNPs from cell culture. As seen in Fig. 4.7

we still achieved good cell viability at 87% even with this light exposure. The photothermal

contrast of our poli-OCM is achieved by scanning a focused intensity modulated 532nm
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4.1. 3D time-lapse imaging and quantification of mitochondrial dynamics

Figure 4.6 – a) XPS spectra of cBSA-TPP passivated Au NPs, where the respective peaks of
Au4f7/2 and Au4f5/2 are readily seen. b) Dynamic Light Scattering (DLS) data of as-synthesized
AuNPs in water and DMEM medium. No indication of aggregation is observed.
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Figure 4.7 – Cell viability data of cBSA-TPP coated AuNPs with (a) 30hrs incubation with no
light irradiation, (b) 30hrs total incubation and after 24hrs 532nm LED light irradiation at ≈
5 mW power with continuous illumination for 5 min. For obtaining poli-OCM image in this
work, we used 0.31nM AuNP which clearly stayed in the window where most of the cells were
alive (95% and 87% respectively).

beam with an average power of 2mW. Using an integration time of 250µs for each A-Scan

location (1 pixel along the lateral scan) this translate to 0.5µJ of light energy distributed over

the extended focal depth. Please be aware that for OCM we only need to do 2D scan to achieve

3D tomograms because a single A-Scan records the full axial profile. The induced light stress is

therefore negligible compared to fluorescence confocal microscopy. Even with 5mW exposure

for 5 minutes (1.5J equivalent to 3×106 times more energy) we still achieve 87% cell viability;

however, this is through wide-field illumination over the whole cell culture and is not directly

comparable to our imaging conditions.
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S3. poli-OCM schematic and system parameters

A confocal fluorescence channel was also added to the poli-OCM using a dichroic mirror (D2;

TL600, Chroma Technology). A 632nm HeNe laser is used as an excitation source spectrally

separated from the fluorescence detection path by a dichroic mirror (D3; z647rdc, Chroma

technology). This fluorescence signal is filtered by a bandpass filter (HQ680/35, Chroma

technology) and detected by an avalanche photodiode (SPCM-AQR-14-FC, PerkinElmer). The

addition of the confocal channel enables simultaneous dfOCM and fluorescence imaging.
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Figure 4.8 – Photothermal optical lock-in optical coherence microscopy setup with an added
fluorescence channel.
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4.1. 3D time-lapse imaging and quantification of mitochondrial dynamics

OCM probe
Photothermal

heating

Fluorescence

excitation

Wavelength
800nm

(∆λ= 135nm)
532nm 632nm

Power 6mW 3mW 80µW

Table 4.1 – Summary of poli-OCM light source parameters

Imaging parameters The details of poli-OCM light sources are summarized in Table 4.1 and

the effective imaging NA is 0.68. 3D time lapse tomograms were acquired by scanning 86×86

pixels covering 25×25 µm2 along the x-y plane. The spectrometer of the poli-OCM has an

imaging axial extent of 700µm in air (≈526µm in water with 1.33 index of refraction) over 512

pixels. For all our OCM imaging we maintain a voxel sampling of approximately 0.29µm/voxel

laterally 1.028 µm/voxel axially.
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Figure 4.9 – a) En face and b) orthogonal slice of a poli-OCM image of a 50nm AuNP in PDMS
and their normalized profile taken along the dashed line with a corresponding Gaussian fit.
Scalebar: 2µm.

PSF measurement We measure the point spread function (PSF) of the poli-OCM experimen-

tally by imaging 50nm AuNPs suspended in PDMS (n = 1.4) as shown in Fig. 4.9. We extract the

linear profiles laterally and axially along the dashed lines in Fig 4.9 and fit a Gaussian following
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PSF (s) = A exp

(
−

(
s −µ

)2

2σ2

)
(4.4)

where s represents the spatial dimension (x, y or z). Table S1 lists the parameters of the fitted

Gaussian laterally (x,y) and axially (z). From this fit we derive the lateral and axial extent, r0

and z0, used in our classical diffusion model which corresponds to the e−2 radius of the PSF

along both dimensions.

Lateral Axial

A 1.004 1.026
µ -0.067 -0.811 µm
σ 0.226 0.913 µm

FWHM 0.532 2.150 µm
re−2 0.452 1.826 µm

Table 4.2 – Gaussian fit parameters of the poli-OCM PSF
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Figure 4.10 – Integrated poli-OCM signal in the whole imaging volume over the imaging period.
500 3D poli-OCM tomograms were acquired continuously at a rate of 1/6Hz.

Contrast stability of live cell poli-OCM imaging We demonstrate the stability of the pho-

tothermal contrast of our poli-OCM by monitoring the total signal intensity for each of the

3D tomograms over the entire time series. Unlike most fluorescent dyes, we expect stable

poli-OCM signal even with prolonged continuous imaging. Fig. 4.10 shows the behavior of the

poli-OCM signal over a span of 3000 seconds, which clearly shows no decrease in signal inten-

sity.
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4.1. 3D time-lapse imaging and quantification of mitochondrial dynamics

S.4. Image processing & analysis algorithm

The poli-OCM, as we have briefly described in S.3. of the supporting information, is a Spectral

Domain OCM system. Its underlying interferometric principle enables 3D volumetric imaging

with only x-y scanning. [27, 34, 93, 163] Fig. 4.11 summarizes the algorithm we used to gener-

ate 3D tomograms. We subtracted a measured background spectrum from the interference

spectrum acquired at every position on the x-y plane. We then applied “k-mapping” which

converts our spectra that is linear with wavelength λ to spectra linear in wavenumber k. We

then obtain the 3D tomogram after a Fast Fourier Transform of these spectra. This procedure

is repeated for all acquisition in the time series resulting in a 3D time-lapse data set.

poli-OCM signal

Background

Background 

subtracted

k-mapping

k

x

y
z

3D Tomogram

Figure 4.11 – Schematic of 3D tomogram calculation.

We then calculate the temporal autocorrelation of our poli-OCM signal following like in Eq. 2.1

and Eq. 4.1. [150, 151, 157]

GV (τ) =
〈δiV (t )δiV (t +τ)〉
〈iV (t )〉〈iV (t +τ)〉

= (T −τ)

∑T−τ
t=0 δiV (t )δiV (t +τ)
∑T−τ

t=0 iV (t )
∑T

τ iV (t )
. (4.5)

We then average the autocorrelation over a volume of 2×2×2 voxels (0.58µm×0.58µm×2.05µm)

then fit the diffusion model using non-linear least squares solver; specifically we use the

lsqcurvefit function of Matlab R2015b. Averaging over this sub-volume decreases the num-

ber of voxels our diffusion parameter maps (i.e. an initial 40×40×20 voxel space will be reduced

to 20×20×10). To reduce computation time, we generate a mask using the dfOCM image of

the cell to exclude voxels outside the cell volume.

For the last part of our analysis, we only consider sub-volumes with autocorrelations fitted

with an R2 ≥ 0.85. In addition, we also excluded sub-volumes having autocorrelations similar

to sub-volumes outside the cell. Diffusion parameters were extracted only from the remaining
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sub-volumes. Regions inside the cell that were excluded correspond to areas without AuNP

labeled mitochondria.

S.5. Diffusion parameter maps
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Figure 4.12 – Probability distribution and rendered 3D map of a) mean number of AuNP
labeled mitochondria and b) diffusion constant per sub-volume. Scalebar: 5µm

In addition to quantifying mitochondrial dynamics with the diffusion time, we extract the

diffusion constant D and 1/G (0) . Similar to Fig 4.3, we show the probability distribution and a

rendered 3D map of these physical parameters in Fig. 4.12. We calculate the diffusion constant

D following

D =
r 2

0

4τD
(4.6)

where τD is the extracted diffusion time an r0 is the same as in Table 4.2. We divide both

pd f (D) and pd f (1/G (0)) into 5 color-coded segments each corresponding to 20% of the cell

volume and use these to generate the 3D maps.

The diffusion coefficient can be further related to viscosity by the Stokes-Einstein relation
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4.1. 3D time-lapse imaging and quantification of mitochondrial dynamics

given by

D =
kB T

6πηrh
(4.7)

kB is the Boltzmann constant, T the temperature, η is the viscosity, and rh is the hydrodynamic

radius of the diffusing particle.

S.6. Details on diffusion time map

We separate the diffusion time map in 4.3f and Fig. 4.13a into the 5 intervals (Fig. 4.13b-f)

of the probability distribution in Fig 4.3e. Furthermore, we include a 6th region, shown in

white (Fig 4.13 a-f), which represents the volume within the cell where we extract no diffusion

parameters. In this volume, we do not measure any poli-OCM signal and consider it as a region

of“infinite” diffusion time. In addition, we observe that this volume has a good correlation

with the location in the dfOCM images with lower scattering signal (darker or lower contrast).

We expect the nucleus of the cell to be located within this volume.

a)

d)

b)

e)

c)

f)

Figure 4.13 – 3D rendering of AuNP labeled mitochondria diffusion time for each of the
different cell segments (see main text Fig. 4.3) including a volume with infinite diffusion time
supposedly corresponding to the nucleus. Scalebar: 5µm
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4.2 poli-OCM autocorrelation analysis for finite sized particles

In the preceding section, we quantified mitochondrial dynamics using a temporal autocorrela-

tion analysis that is widely used in conventional FCS experiments. This analysis is based on

the free diffusion model, which assumes pointlike diffusers. Unfortunately, this assumption

only holds true for particles that are much smaller than the observation volume [164–167].

Mitochondria are large organelles known to have diameters of 500nm or bigger while the

poli-OCM has a measured PSF with lateral beam waist ω0 ≈0.42µm (4.1.5). For the case of

FCS, a number of publications have already investigated the effect of finite sized diffusers to

the extracted diffusion parameters. It has been consistently confirmed that maintaining the

assumption of pointlike diffusers leads to overestimated values of τD [164, 165]. A common

approach for correcting the effects of large diffusers is to modify the molecular detection

function (MDF).

The MDF is a more complete description of an FCS experiment, which defines the spatial

probability distribution of detecting fluorescence signal within the observation volume. Con-

sidering spherically symmetric diffusing particles with a finite extent, Mueller et al. [164]

proposed modifying the MDF, U (r), as

U (r) =
∫

dr’v(|r−r’|)U (r’) (4.8)

where v(r) describes the particle over the three-dimensional space r. Assuming rotational

symmetry of the MDF and orienting the optical axis along the z direction, Equation 4.8 can be

rewritten in cylindrical coordinates (ρ, z) as

U (ρ, z) =
∫∞

0
dkz

∫∞

0
dkρ kρ ṽ(kρ ,kz )Ũ (kρ ,kz )J0(kρρ)exp[−i kz z] . (4.9)

J0 is the zero order Bessel function of the first kind and ṽ(kρ ,kz ) and Ũ (kρ ,kz ) correspond to

the coefficients of Fourier-Bessel expansions of v(r) and U (r’) respectively. We determine the

effect of mitochondria size by modifying the effective MDF as in Eq. 4.9.

In the previous section, we used a model that approximated the MDF, U (r), of the poli-OCM

as a Gaussian in three-dimensions

U (ρ, z) ∝ exp

[
−2

(
ρ2

ω2
0

+
z2

z2
0

)]
, (4.10)
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with parameters ω0 = 0.452µm and z0 = 1.83µm determined by measuring the PSF (4.1.5). We

modeled the mitochondria as spherical particles with radius a and considered three different

cases of AuNP labeling distributions defined by v(r),

v0(r) = δ(r) all AuNPs in a single point (center), (4.11a)

v1(r) =





1 r ≤ a

0 otherwise
uniform labeling over the whole sphere, and (4.11b)

v2(r) =





1 a1 < r ≤ a2

0 otherwise
labeling on an outer shell a =

a1 +a2

2
. (4.11c)

Fig. 4.14a shows the U (ρ, z) for each of the cases in 4.11, calculated using a mitochondria

with radius a = 375nm following Equation 4.9. For each AuNP labeling distribution, the auto-

correlation function g (τ) was calculated by simulating 10,000 diffusing mitochondria in 3D

and taking the mean. In addition we randomized the radii of the mitochondria following a

normal distribution centered at 375nm with a standard deviation of 100nm. This was done to

approximate the variability in size of mitochondria inside a cell. The resulting g (τ) for the three

labeling distributions and a diffusion constants of D = 1×10−3µm2/s are shown in Fig. 4.14b.

As expected, the mitochondria labeled at the center had a g (τ) that is characteristic of a point

particle. Because of their size, not pointlike diffusers take a longer time to pass through the

observation volume which is evident from the larger MDF. This translates to shifts in the g (τ)

of both the uniformly labeled and shell labeled mitochondria resulting in the overestimation

of their τD . Interestingly, this effect is more pronounced with the shell-labeled mitochondria.

So far, we have investigated the effects of the size of AuNP-labeled mitochondria for a Gaussian

approximation of the MDF. However, the Bessel-beam illumination of the poli-OCM produces

prominent side lobes as seen in Fig 4.9. We account for this different illumination profile by

changing U (ρ, z) to

U (ρ, z) ∝ exp

(
−2

ρ2

ω2
B

)
J0(kBρ)exp

(
−2

z2

z2
B

)
. (4.12)

Physically, the parameters ωB , kB , and zB are determined by the beam waist of the heating

beam (ωB ), the angle of the axicon (kB ), and the bandwidth of the broadband light source

(zB ). For our simulation we obtained the values of these parameters by fitting the PSF of the

poli-OCM.
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Figure 4.14 – a) Modified molecular detection functions for different labeling distribution of
the mitochondria with 375nm radius (point, uniform sphere, and 20nm shell) shown as 2D
slices and 3D intensity isosurfaces. b) Mean autocorrelation functions of 10000 diffusing mito-
chondria for different AuNP labeling distribution. The shift of g (τ) indicates the overestimation
of τD for large diffusers.

The modified MDF for the different labeling distributions and their respective autocorrelation

functions are shown in Fig. 4.15. As expected, we observe similar results compared to those in

4.14. The size of the mitochondria enlarged the modified MDFs causing the g (τ) to shift.

We aim to quantify the impact of mitochondria size and AuNP labeling distribution to temporal

autocorrelation analysis based on poli-OCM imaging by establishing a “correction factor”. We

calculated the g (τ) using the modified MDFs in Figures 4.14 and 4.15 for a range of diffusion

constants from 10−4 to 10−2µm2/s. Like in the previous calculations, 10,000 mitochondria with

randomized radii were simulated for each diffusion constant. The diffusion parameters were

extracted by fitting the resulting g (τ) with 4.2. We use 4.2 to extract the diffusion parameters

so we can quantify the discrepancy between the theoretical diffusion of the mitochondria and

the one measured using the free diffusion model for pointlike particles.

We plot the extracted diffusions parameters against the theoretical values and fit a curve

to relate the two values. Fig. 4.16 shows the diffusion constants and τD along with their

corresponding fits for both Gaussian and Bessel-beam PSFs. Based on these results, we observe
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Figure 4.15 – a) Modified molecular detection functions for different labeling distribution of
the mitochondria with 375nm radius (point, uniform sphere, and 20nm shell) considering the
Bessel-beam illumination of the poli-OCM shown as 2D slices and 3D intensity isosurfaces. b)
Mean autocorrelation functions of 10000 diffusing mitochondria for different AuNP labeling
distribution. The shift of g (τ) indicates the overestimation of τD for large diffusers.

slower diffusion for Bessel-beam illumination compared to the Gaussian approximation for all

cases of AuNP labeling distribution. This is simply attributed to the larger size of the MDFs due

to the prominent side lobes of the Bessel-beam. Interestingly, the simulations predicted the

same shift in g (τ) for the shell AuNP labeling distribution with Gaussian PSF and the uniform

spherical AuNP labeling with Bessel-beam illumination. This resulted in a measured diffusion

constant that is lower by a factor of 0.62 and 0.60 for the two cases respectively (1.63 and 1.62

for τD ). In other words, the free diffusion model interprets the modification introduced by

side lobes of the Bessel-beam like a shell surrounding a finite sized particle.

According to the results of these simulations, the modification of the MDF induced by the

mitochondria size and AuNP labeling distribution resulted in a linear shift of the observed τD .

This means that the “correction factor” is simply the slope of the line relating the calculated

and theoretical values. The most pronounced effect was observed for the shell AuNP labeling

with Bessel-beam illumination resulting in a calculated τD that was overestimated by a factor

of 2.
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Figure 4.16 – Calculated diffusion constant(a) and time(b) plotted against theoretical values
in logarithmic scale. The slope of the fitted line determines the “correction factor” needed to
account for mitochondria size, AuNP labeling distribution, and Bessel-beam illumination of
the poli-OCM.

Finally, we modify our simulations to investigating the impact of mitochondria size on their

diffusion constant in addition to the modification it introduces to the MDFs. According to

the Stokes-Einstein relation (Eq. 4.7) the size or hydrodynamic radius of a particle affects

its diffusion coefficient. This holds true for mitochondria assuming they are in the same

environmental conditions; that is, inside a medium with viscosity η and temperature T . In

other words, instead of invoking that the 10000 simulated mitochondria are diffusing at the

same constant D , we impose the condition that they are in the same medium . We implement

this condition by assigning a theoretical diffusion constant D theo for a mitochondrion with a

radius of rmi to = 375nm. We further assume that the hydrodynamic radius of the mitochondria

scales linearly with its physical radius such that the effective diffusion constant Di for each

mitochondrion with randomized radius ri is given by

Di = D theo
rmi to

ri
. (4.13)

Fig. 4.17 shows the observed effective diffusion constant and time extracted from the simu-

lations. These results display very similar effects as seen in 4.16. Autocorrelation analysis on

imaging results using Bessel-beam illumination still measured slower diffusion. Similarly, the

Gaussian PSF with shell labeling and the Bessel-beam PSF with uniform labeling returned

nearly equal correction factors; ≈ 0.5 and ≈ 1.9 for diffusion constant and time respectively.

The main noticeable difference between Fig. 4.16 and Fig. 4.17 are the “correction factors.”
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In particular the “correction factor” for τD in the case of Bessel-beam illumination and shell

AuNP labeling is now ≈2.4 instead of 2. This configuration is definitely the most significant for

quantifying mitochondrial dynamics since we expect the AuNP labels to be mostly present on

the outer mitochondrial membrane forming a shell. Therefore, a factor of 2.4 must be applied

to the previously extracted diffusion parameters(Fig. 4.3) to achieve a more accurate quan-

tification of mitochondria dynamics. It is important to point out that we did not investigate

the impact of different distribution mitochondria size heterogeneity. As previously mentioned

our simulations only considered a normal distribution of mitochondria radii with a mean of

375nm and standard deviation of 100nm.
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Chapter 4. Quantification of mitochondrial dynamics

4.3 Quantifying mitochondrial dynamics via 3D single particle track-

ing

Quantification of mitochondrial dyanmics using poli-OCM imaging and temporal autocorre-

lation analysis encounters issues with its accuracy due to the size of mitochondria. Because

of the relative size of the mitochondria compared to the PSF of the poli-OCM, it is not viable

to assume pointlike particles as in the conventional free diffusion model applied in FCS. We

demonstrated that, in addition to the size of the mitochondria, the distribution of AuNP labels

and the side lobes of the Bessel-beam introduces an overestimation of τD by as much as a

factor of two. One way to circumvent this limitation is to use single particle tracking, which

has achieved localization precision well bellow the size of the imaging PSF.

Journal article

Submitted in: Optics Letters, October 2017.

Quantifying mitochondrial dynamics via
3D single particle tracking

Miguel Sison1*, Jérôme Extermann1,2, Sabyasachi Chakrabortty3,4, Tanja Weil3,4, Theo Lasser1

1Laboratoire d’Optique Biomédicale, École Polytechnique Fédérale de Lausanne, 1015 Lausanne,

Switzerland 2Hepia, University of Applied Sciences of Western Switzerland (HES-SO), 4 rue de la Prairie,

CH-1202 Genève, Switzerland 3Department of Organic Chemistry III/Macromolecular Chemistry, Ulm

University, Albert-Einstein-Allee 11, 89081 Ulm, Germany 4Max-Planck-Institute for Polymer Research,
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Mitochondria are highly dynamic organelles involved in a majority of cellular activities.

In this letter we assessed mitochondrial dynamics by combining live cell photothermal

optical coherence microscopy with single particle tracking analysis. Functionalized gold

nanoparticles were used as mitochondria specific labels for poli-OCM imaging. For each

cell sample, mitochondria diffusion and directional motion were measured based on time

resolved mean square displacement data. Our results complement published work and

demonstrate the usefulness of particle tracking for quantification of the slow mitochon-

drial mobility. Furthermore, we demonstrate the possibility of using our technique for dis-

tinguishing transitions between diffusive and directional mitochondria motion.
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4.3. Quantifying mitochondrial dynamics via 3D single particle tracking

4.3.1 Introduction

Recent advances in bioimaging have given researchers powerful tools for investigating dynamic

intracellular processes [132–134, 168]. In particular, quantification of disease linked enzyme

activity and inhibition [169], spatially resolved protein dynamics inside the nucleus [170],

protein-lipid binding [171], and the transport efficiency of membrane-anchored motors [172]

were achieved using fluorescence correlation spectroscopy or single particle tracking in com-

bination with these novel methods. However, the majority of these studies have mostly dealt

with small particles or even single molecules. Larger organelles (≈ 1µm) do not only diffuse at

a slower speed but are also often susceptible to crowding and confinement [161, 173], which

imposes difficult border conditions to these so far successful correlation methods.

Mitochondria form a continuously reorganizing malleable meshwork [13] and are the primary

producers of cellular ATP. Depending on cell activity, mitochondria undergo migration, fusion,

and fission to sustain the cell’s energy requirements [1, 137]. Since they play a crucial role in

many cellular processes, abnormalities and dysfunction of mitochondrial dynamics have been

associated with an array of human diseases [1, 13, 174].

M. Sison et al. [175] were able to quantify mitochondrial dynamics by merging photothermal

optical coherence microscopy (OCM) [100, 175] with temporal autocorrelation analysis. They

functionalized biocompatible gold nanoparticles (AuNPs) with mitochondria targeting groups,

enabling three-dimensional mitochondria specific imaging of live cells for up to 3000 seconds.

This allowed measurement and mapping of diffusion parameters demonstrating the high

heterogeneity of mitochondrial dynamics inside living cells. Their temporal autocorrelation

approach is closely related to fluorescence correlation spectroscopy and is therefore inherently

limited by the molecular detection function (MDF).

In this letter, we quantified mitochondrial dynamics using three-dimensional particle tracking

of AuNP-labeled mitochondria imaged using photothermal optical lock-in OCM (poli-OCM).

We demonstrated the accuracy of our approach for slowly diffusing large (not pointlike)

mitochondria confirming previously published data. In addition, we revealed the potential of

particle tracking to easily distinguish and quantify between directional and diffusive motion

of the mitochondria.

4.3.2 Methodology

The functionalized AuNPs used for targeting mitochondria act as localized hot spots while

absorbing light from a photothermal heating beam. The heat dissipation into their immediate

vicinity induces a local temperature increase causing thermal lensing, which is detected by a

separate probe beam. Modulating the heating beam with a known fixed frequency induces a

synchronously scattered signal with the same frequency, which is selectively filtered via lock-in
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detection [100]. Photothermal contrast has been shown as an effective mechanism for adding

specificity to optical coherent tomography [176, 177] and microscopy [100, 175].
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Figure 4.18 – a) Schematic of poli-OCM. An axicon in the illumination beam path ensures an
extended focus. AOMs are used for intensity modulation of the photothermal heating beam
and phase modulation of the reference beam. b) The spectrum of the broadband light source,
centered at 800 nm (∆λ = 135 nm) for OCM imaging. c) The three-dimensional PSF of the
poli-OCM shown in intensity iso-surfaces and slices along the y=0 (top) and z=0 (bottom)
planes with line scans. Scale bars = 1 µm

.

The specifics of the poli-OCM as seen in Figure 4.18a, have been discussed in great detail [100].
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4.3. Quantifying mitochondrial dynamics via 3D single particle tracking

Fundamentally, poli-OCM is based on dark-field OCM [30] with additions for photothermal

excitation and optical lock-in detection. A broadband laser (Ti-Sa laser, Femtolasers Inc.,

Austria) centered at 800 nm with a bandwidth of ∆λ = 135 nm (Figure 4.18b) is used as the

probe for photothermal OCM imaging. Along the illumination path, an axicon (176° apex angle,

Del Mar Photonics Inc., USA) shapes the light into a Bessel beam that propagates through

a series of relay lenses and the scan unit [27]. The illumination beam is focused on to the

sample with a 25× NA = 0.8 water immersion objective (Carl Zeiss). As demonstrated in [27],

the Bessel beam illumination provides a uniform lateral resolution over an extended depth of

focus spanning far more than the entire thickness of a cell. Photothermal response is induced

by exciting the AuNPs at their broad plasmonic resonance using an intensity modulated

(Ω = 150 kHz) 532 nm diode pumped solid state laser (Roithner Lasertechnik Inc., Austria).

This photothermal heating beam is coupled into the scan unit using a dichroic mirror (D1;

720DCXR, Chroma Technology). On the reference path a pair of AOMs adds a synchronized

phase modulation (Ω) on the reference field determined by the difference of their carrier

frequencies (Ω=ω1 −ω2). The backscattered field is superimposed with the phase modulated

reference field and the resulting interference signal is detected by a custom built spectrometer.

Switching Ω to 0 or 150 kHz allows choosing between the two imaging modalities of poli-OCM:

(1) the dark-field mode for imaging the whole cell morphology and (2) the poli-mode for

mitochondria specific imaging. The poli-OCM, as currently configured, has a measured (in

PDMS) point spread function (PSF) with lateral and axial FWHM of 0.53 µm and 2.15 µm

respectively (Figure 4.18c). During imaging, the cells were illuminated with 5 mW of the probe

and 3 mW of the photothermal excitation beams inducing a temperature increase in the order

of ≈1 K [100].

The mitochondria of living HeLa cells were labeled with functionalized AuNPs following the

procedure published in [175]. During imaging the cells were housed inside a custom built

temperature stabilized (37°C) micro-incubator with a constant supply of humidified premixed

air (5% CO2). Time-lapse images of both mitochondria motion and full cell morphology were

acquired by alternating between the two modalities of the poli-OCM.

An integration time of 250 µs with a line scan rate of 3.9 kHz was used for the tomogram acqui-

sition in accordance with [100]. The scan range was adjusted to fit the entire cell within the

field of view while maintaining spatial sampling at ≈0.41 µm/pixel. The effective frame rate is

therefore determined by the size of the cell being imaged. The trajectories of the AuNP-labeled

mitochondria were acquired using the Trackmate plugin of Fiji [178, 179]. Figure 4.19a shows

three-dimensional volume renderings of the time-lapse tomograms illustrating the whole cell

in grey and the AuNP-labeled mitochondria as yellow spheres. Two representative trajectories

are shown in Figure 4.19b with the corresponding tracked AuNP-labeled mitochondria marked

by red spheres (Figure 4.19 a and b).
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Figure 4.19 – a)Three-dimensional rendering of the full cell morphology (grey) and the AuNP-
labeled mitochondria (yellow and red spheres). b) Representative trajectories (time color-
coded from purple to white) of 2 tracked AuNP-labeled mitochondria (red spheres). c) Kymo-
graphs along the x- and y-planes showing the motion of the AuNP-labeled mitochondria; the
color depicts movement along the z-directions as indicated by the colorbar

4.3.3 Results and Discussion

The probability p(r, t |r0,∆t ) of finding a particle, undergoing free diffusion in three-dimensions,

at position r after a time interval ∆t is

p(r |r0,∆t ) =
(

1

4πD∆t

) 3
2

exp

(
−

(r − r0)2

4D∆t

)
; (4.14)

where D is the diffusion constant and r0 is its initial position [180]. The mean square displace-

ment msd(∆t ) of the diffusing particle can then be derived from Equation 4.14 as

msd(∆t ) =
〈

(r − r0)2〉= 6D∆t . (4.15)

Figure 4.20 shows the mean msd(∆t ) (black lines) obtained by averaging the msd(∆t ) traces

of all mitochondria trajectories within one cell and the blue shaded regions mark the standard

error of the mean. Mitochondria diffusion coefficients were then extracted from the weighted
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4.3. Quantifying mitochondrial dynamics via 3D single particle tracking

fits (red line) following Equation 4.15. The weights were based on the statistical degrees of

freedom of the mean msd(∆t ).

The diffusion coefficients of Cell 1 and 2 (Figure 4.20 a and b), obtained via particle tracking, are

1.8×10−3µm2/s and 5.3×10−3µm2/s respectively. These values fall within the range published

in [175] but both generally imply slightly faster mitochondria diffusion. This offset between

the diffusion coefficient measured by the two techniques can be attributed to how the PSF

and dimensions of the mitochondria affect particle tracking and correlation analysis. Unlike

correlation analysis, the accuracy of particle tracking is more dependent on the precision

of localization rather than the resolution of the optical system. An optical microscope has

a PSF with FHWM of ≈ 0.5 µm, whereas particle tracking and localization algorithms have

demonstrated localization precision well below <100 nm [178, 181, 182]. In our measurements

we record a median step size of 117 nm laterally and 144 nm axially (mean 215 nm and

256 nm respectively). This high localization precision enables discriminating changes in

position smaller than the resolution limit, which is necessary for accurately describing slowly

diffusing particles like mitochondria. In contrast, correlation analysis measures the signal

fluctuation as a diffusing particle transitions through an observation volume characterized by

the PSF. Typically, correlation analysis assumes point diffusers. However, it has been shown

that maintaining this assumption for large diffusing particles like the mitochondria results in

underestimated diffusion constants [164, 165].

As opposed to the first two cell samples, Cell 3 features a non-linear msd(∆t ) that increases at

larger ∆t. Adding a drift or flow with constant velocity V f to free diffusion [183, 184] modifies

the probability function in Equation 4.14 to

p f (r |r0,∆t ) =
(

1

4πD∆t

) 3
2

exp

(
−

(
r − r0 −V f ∆t

)2

4D∆t

)

= p(r |r0,∆t )exp

(
V f

(
2(r − r0)−V f ∆t

)

4D

)
;

(4.16)

with msd(t ) given by

msd(∆t ) =
〈

(r − r0)2〉= 6D∆t +V 2
f ∆t 2. (4.17)

From these equations, it is easy to see that the inclusion of directional motion results in a non-

zero first moment of the probability distribution. However, even accounting for a constant flow,

Equation 4.17 still does not sufficiently characterize the motion of AuNP-labeled mitochondria

for Cell 3. Inspecting the raw data, we saw that starting at the ≈5000 second mark (dashed

line in Figure 4.20c), the AuNP-labeled mitochondria transitions from free diffusion to a

more directed flow. We segmented the trajectories and recalculated the msd(∆t ) only starting

from the 5000 second mark. We then fitted Equation 4.17 on the msd(∆t ) of this segment as
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Figure 4.20 – a)-c) msd(∆t ) of Cells 1 to 3 with the corresponding diffusion constant and
velocity obtained from the fits following Equations 4.15 or 4.17. d) Gives the msd(∆t ) from
segmented trajectories of Cell 3 starting from 5000 to 6450 seconds.

seen in 4.20d. This allowed us to quantify two distinct dynamic states of the AuNP-labeled

mitochondria. The velocity of the AuNP-labeled mitochondria increased by more than 3×,

from 0.49×10−3µm/s to 2.2×10−3µm/s while the diffusion coefficient was reduced by almost

half, from 1.5×10−3µm2/s to 0.8×10−3µm2/s.

4.3.4 Conclusion

The execution of numerous cellular activities involves mitochondrial dynamics. The size of

mitochondria makes them prone to intracellular crowding and confinement rendering quan-

tification of mitochondrial diffusion difficult for fluorescence correlation spectroscopy and

other similar techniques. Here we have demonstrated the practicability of three-dimensional

particle tracking analysis based on time-lapse poli-OCM imaging for quantifying mitochon-

drial dynamics. Furthermore, we have demonstrated that the high localization of particle

tracking translates to improved accuracy ideal for measuring the slow mitochondria diffusion.
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4.3. Quantifying mitochondrial dynamics via 3D single particle tracking

Lastly, we establish the capability of our approach for identifying the transition between diffu-

sive and directional mitochondrial motion as well as quantitatively differentiating these states.

Transitioning between these states of motion comes with complexity not easy to integrate

in a correlation analysis. The simplicity and accuracy of poli-OCM based particle tracking

complements the three-dimensional mapping of mitochondrial dynamics achievable with

correlation analysis [175].
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4.4 Summary

In this chapter we developed two techniques for quantifying mitochondrial dynamics based

on time-lapse poli-OCM imaging. The first technique (4.1) employed temporal autocorrelation

analysis and fitting with a classical free diffusion model to extract mitochondrial diffusion

parameters. With this analysis we demonstrate the high heterogeneity of mitochondrial dif-

fusion inside a living cell. Furthermore, these quantified parameters are spatially resolved

and can be linked to each voxel within the cell. This allowed us to generate three-dimensional

diffusion parameter maps, which we can use to identify and locate regions inside the cell

where mitochondria undergo fast and slow diffusion.

In 4.2 we also investigated the effect of assuming point like diffusers as in the classical diffusion

model despite the non-negligible dimensions of the mitochondria compared to the size of the

PSF. Furthermore, we determined the effect of using a Bessel-like illumination PSF, like with the

poli-OCM, compared to the conventional Gaussian PSF. We also considered the non-uniform

size of mitochondria within a cell and different AuNP labeling distributions. We conducted this

analyses by numerical simulations while modifying the effective molecular detection function

of the system. The simulations revealed that, as expected, maintaining the assumption of

point-like diffusers and a Gaussian PSF results in overestimated diffusion times. Our analysis

gave as a means to address this over estimation depending on the parameters of our system

using a “correction factor” which can be calculated through the simulations.

Finally, the second technique we developed, as presented in 4.3, made use of single particle

tracking (SPT). An SPT approach, unlike temporal autocorrelation analysis, is not limited

by the PSF of the system. Different localization and tracking algorithms have demonstrated

localization precisions that are well below the dimensions of the PSF as long as the signal to

noise ratio (SNR) is sufficient. Considering this, mitochondria specific poli-OCM imaging is

very well suited for SPT due to the high sensitivity of the poli-OCM signal. Furthermore, the

stability of the AuNP labels allowed us to image continuously for more than 6000 seconds

without any observable degradation of contrast. The better localization precision of SPT

enabled us to extract diffusion constants with more accuracy. We also showed the possibility

of using SPT for identifying and differentiating the change in mitochondrial dynamics from

diffusive to directional motion. However, SPT as we have implemented it does not allow us to

map the diffusion parameters within the cell.

Temporal autocorrelation analysis and SPT, individually, have their advantages. These two

techniques can be used to complement each other in quantifying mitochondrial dynamics

and provide us with a more complete understanding of this phenomenon.
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5 Outlook: Mitochondrial dynamics in

the Cockayne Syndrome

The Cockayne syndrome (CS) is a very rare yet severe genetic disorder causing neurodegener-

ation and developmental deficiency [37]. Its is inherited in an autosomal recessive manner,

which means both parents need to carry the mutation for it to be transmitted [185]. Muta-

tions in the CSA or CSB gene products are the known causes of CS [186, 187]. Despite its low

incidence, CS causes dramatic premature aging leading up to eventual death often within the

first or second decade of life [188]. Patients afflicted with this disease suffer through dental

caries, visual and hearing impairment, photosensitivity, microcephaly, ataxia, and muscle

weakening and atrophy while they live [37, 185, 189, 190]. Including these symptoms, CS shares

phenotypic similarities with other neurodegenerative and mitochondrial diseases [191].

CS is also categorized as DNA repair-deficient disease characterized by defective transcription-

coupled nucleotide excision repair (TCR) [38,39]. TCR allows the cell to remedy damaged DNA

by removing DNA lesions or adducts [192]. Impaired TCR could explain the photosensitivity of

CS patients by preventing the cell from repairing UV-induced damage to the DNA. Mutations

with CSA or CSB are also known causes of another TCR-deficient disease called UV-sensitive

syndrome (UVSS) [193]. Whereas UVSS exhibits photosensitivity and mild skin abnormalities,

it is not known to share the other symptoms of CS relating to neurodegeneration and aging

[194]. The impact of CSB and UV stimulated scaffold protein A (UVSSA, a gene associated

with UVSS) mutations to ROS were investigated, which revealed CSB-deficient cells exhibited

elevated levels of ROS while the UVSSA mutants did not [38]. It was proposed that, on top of its

other roles, CSB acts as an electron sink arresting increased ROS levels and protecting against

nuclear DNA damage [38]. These seem to indicate the uncoupling of CS impact to UV response

and mitochondrial function. In a study by Aamann et al., CSB-deficient cells experienced a

decrease in mitochondrial base excision repair (BER) activity [37], which may lead to increased

levels of oxidized DNA [195] and mtDNA [38, 196]. Consequently, this reduced BER activity

promoted mitochondrial dysfunction that could increase ROS production, which in turn

expose mtDNA to ROS-induced damage even more [37]. This cyclic interaction between ROS
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and mitochondrial dysfunction is reminiscent of AD and might point to the cause of the rapid

aging experienced by CS patients. CSB impairment has also been linked to abnormal mtDNA

replication by deregulating the mitochondrial DNA polymerase γ (POLG1) [39]. CSB-deficient

cells revealed mitochondrial function impairment and reduced OXPHOS due to the depletion

of POLG1, which could be reversed to some degree via treatment with ROS scavengers [39].

There is clearly a need to investigate the role of mitochondrial dysfunction in the pathogenisis

of CS. In this pilot study, we exploited the AuNP based mitochondria specific poli-OCM

imaging and analysis techniques we developed to investigate the mitochondrial dynamics

of CS cell lines. To the best of our knowledge there is no existing method for imaging and

quantifying the effect of CS on mitochondrial dynamics. In our experiments we used the

CSB-deficient CS1AN-SV and CSB-proficient MRC5-SV, both which are immortalized Simian

Virus 40 transformed human fibroblast. For specific poli-OCM imaging, we used the same

mitochondria targeting AuNP labels described in 4.1.2.

5.1 CS cell viability with AuNP-mitochondria labeling

Before initiating the time-lapse poli-OCM imaging experiments, we first examined the viability

of both MRC5-SV and CS1AN-SV incubated with the mitochondria targeting AuNPs. The

test we conducted was qualitative with the aim of establishing cell viability in conditions

approximating what they will be exposed to during imaging. Different cultures were prepared

each having different concentration of AuNPs. Specifically we used 0.031 nM, 0.155 nM, 0.31

nM, 1.55 nM, and 3.10 nM as well as a control group without AuNPs for a total of 6 cases. For

both cell lines each case was replicated 4 times and cell growth was monitored over 5 days or

until the cultures reached confluency. The cell cultures were kept in an environment similar to

an actual poli-OCM imaging experiment excluding the intermittent exposure to laser light. We

observed no appreciable difference in cell growth among the different AuNP concentrations,

all of which grew to confluency at the same rate as the control group. The only noticeable

discrepancy was the difference in growth rate between the two cell lines. The MRC5-SV cultures

reached confluency after 4 day while the CS1AN-SV cultures needed approximately 1 day more.

We used the same seeding concentration in all wells which was 2000-4000 cells per 1 cm2 of

growth area. For a more quantitative analysis on the impact of the AuNP labels to the CS cell

lines a test similar to that described in 4.1.4 should be conducted.

5.2 Quantifying CS mitochondrial dynamics

After ensuring the viability of the CS cell lines with AuNP labeling we proceeded with the

time-lapse poli-OCM imaging experiment to acquire the necessary data for quantifying CS

mitochondrial dynamics. We labeled MRC5-SV and CS1AN-SV cell cultures with mitochondria

64



5.2. Quantifying CS mitochondrial dynamics

targeting AuNPs following the procedures discussed in 3.1, 4.1.4, and 4.3.2. Briefly, we plated

≈2000–4000 cells per well onto Ibidi µ-slide 8-well with 250 µL of cell culture medium. We

incubated the cells with 0.31 nM of AuNP labels for 12 hrs and then washed prior to the

experiment. During imaging the cells were housed inside a the micro-incubator at 37°C with

5% CO2 humidified air. The tomograms were acquired with 5 mW of photothermal heating

and 6 mW of OCM probe beam powers.

Sample images of CS1AN-SV cells with AuNP-labeled mitochondria acquired with the poli-

OCM are shown in Fig. 5.1. In particular, Fig. 5.1 a and b feature cross-sectional and orthogonal

slices along the dashed yellow line of dfOCM and poli-OCM tomograms respectively. The

dfOCM image clearly shows the morphology of these cells including the well discernible

lamellipodia. We also observe that these fibroblasts are very thin; except for one or two that

seem to be swelling, most are <10 µm thick. From our experience with imaging HeLa cells,

round swollen cells that are still well attached are indicative of cells about to go into mitosis.

Fig. 5.1c is a depth color coded maximum intensity projection of the poli-OCM image showing

the location of the AuNP labeled mitochondria inside the cells. As seen from the color of

this image, most of the AuNPs are found within 5 µm of depth, which further alludes to the

thinness of these cells.

a) c)b)

130 μm

Figure 5.1 – Cross-sectional slices of a) dfOCM and b) poli-OCM tomograms and orthogonal
slices taken along the dashed yellow line. c) is a maximum intensity projection of the poli-OCM
tomogram with the color code indicating depth information. Scalebar: 35 µm.

In order to quantify mitochondrial dynamics, we then conducted time-lapse poli-OCM imag-

ing of MRC5-SV and CS1AN-SV cells with AuNP-labeled mitochondria. Similar to 4.1.4 and

4.3.2, we limit ourselves to one cell per time-lapse data set and adjusted the scan range to

cover its whole area while maintaining a pixel sampling of 0.41 µm along the lateral direc-

tion. We acquired alternating dfOCM and poli-OCM tomograms using an integration time

of 250 µs in accordance with [100]. This means that the acquisition rate or time difference

65



Chapter 5. Outlook: Mitochondrial dynamics in the Cockayne Syndrome

between two successive three-dimensional tomograms is determined by the size of the cell

being imaged. For each cell we imaged continuously for a total of 2 hours (7200 seconds).

In Fig. 5.2 we show histograms of mitochondrial diffusion time, τD , from four cells of each

cell line. The τD and other mitochondrial diffusion parameters were extracted via temporal

autocorrelation analysis and fitting with a classical diffusion model. As with the results in

4.1.2, these τD values are spatially resolved and can be mapped in three-dimensions to their

respective voxels within the cell. These histograms characterize the probability distribution of

τD and illustrate the heterogeneity of mitochondrial dynamics within one cell and across the

cell line. Furthermore, these histograms have a logarithmic time scale to better visualize the

broad distribution of τD values that goes from ≈50-5000 seconds.

Looking at these histograms, we see that there is a slightly larger variation with the mean τD

for MRC5-SV (≈400-1500 seconds) compared to CS1AN-SV (≈500-1300 seconds). Interestingly,

it also appears that the τD distributions of the CS1AN-SV cells are more uniform compared to

the MRC5-SV cells. The τD distributions of CS1AN-SV Cell 1, 2, and 4 have more or less the

same shape with similar peaks at ≈200-250 seconds. Whereas CS1AN-SV Cell 3 was slightly

different, having a broader τD distribution with a peak that is not as well defined. In contrast,

the τD distributions of the MRC5-SV cells are more varied. MRC5-SV Cell 1 and 2 have τD

values that are distributed more evenly over the entire range of the histogram. On the other

hand, the τD distribution of MRC5-SV Cell 3 has a very well defined peak and the distribution

decays soon after 2000 seconds. As for MRC5-SV Cell 4, it also had a narrower distribution with

a peak at ≈150-200 seconds similar to MRC5-SV Cell 3. However, unlike MRC5-SV Cell 3, the

distribution of MRC5-SV Cell 4 had a second peak after 2000 seconds and is in fact closer to

CS1AN-SV Cell 2 and 4. Despite these noticeable differences there is still no clear or defining

characteristic that differentiates the τD probability distributions of MRC5-SV from CS1AN-SV.

We also analyzed the time-lapse data set using the single particle tracking analysis that was

discussed in 4.3. Fig. 5.3 shows the mean msd(∆t ) plots for each of the 8 cells with their corre-

sponding fits and diffusion constants. The mean msd(∆t ) is calculated from the trajectories

of all tracked AuNP-labeled mitochondria within each cell. The blue shaded region around the

mean msd(∆t ) represents the range covered by the standard error of the mean. As in 4.3.3, the

diffusion constants were obtained from the slopes of the weighted fits of the mean msd(∆t )

with Eq. 4.15. Again, we used the statistical degrees of freedom of the mean msd(∆t ) as weights

since there were much fewer points used to calculate the msd(∆t) at larger ∆t ’s. This is the

reason why the fitted lines are more representative of msd(∆t ) at smaller ∆t ’s. Based on the

acquired diffusion constants, it is again difficult to differentiate MRC5-SV from CS1AN-SV. All

8 cells had diffusion constants ranging from ≈0.9-4.0 ×10−3µm2/s with the MRC5-SV cells

having a slightly shorter range of ≈1.6-3.7 ×10−3µm2/s. What is more interesting is the shape

of the mean msd(∆t ) plots. Aside from CS1AN-SV Cell 3 and MRC5-SV Cells 3 and 4, most of
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the cells had linear mean msd(∆t ) plots. This linear trend indicates free diffusion according

to Eqs. 4.14 and 4.15 and as discussed in 4.3.3. The mean msd(∆t) plot of CS1AN-SV Cell 3

could still approximate a linear trend in spite of the non-negligible undulation from ∆t = 2200

to 4500 seconds. The standard error of the mean also has its largest values within this range

before decreasing starting at ∆t=4200 seconds. This tend of the standard error of the mean

is unique to CS1AN-SV Cell 3 and not shared by the other samples. Lastly, both MRC5-SV

Cells 3 and 4 mean msd(∆t ) plot that started with an initially linear slope that progressively

decreased with increasing ∆t . This kind of mean msd(∆t ) could indicate a diffusing particle

that is restricted by a potential or that the diffusion area is shrinking [197, 198].

5.3 Summary

We conducted time-lapse mitochondria specific poli-OCM imaging of immortalized CS dis-

eased and control cell lines, CS1AN-SV cells and MRC5-SV respectively. From this time-lapse

data we quantified the mitochondrial dynamics of both cell lines using temporal autocorrela-

tion and single particle tracking analyses. The characteristics of the resulting τD probability

distributions were insufficient to definitively distinguish the two cell lines from each other.

Similarly, the variation of extracted diffusion constant from the single particle tracking and

msd(∆t) analysis was not significant to differentiate these cells. It is clear that more data

is needed to establish statistically significant information before we can conclude on the

difference or similarities of these known CS cell models.

We should take note that this was only a pilot study with the purpose of exploring the posibility

of quantifying the mitochondrial dynamics of CS cell lines using mitochondria specific poli-

OCM imaging. It was important to establish the viability of these cell lines with AuNP labeling

as not to perturb the biological phenomena we aim to investigate. It was equally important to

achieve time-lapse poli-OCM over extended time durations without causing cell death or any

appreciable adverse cell reaction. We were able to achieve continuous mitochondria specific

poli-OCM imaging for up to 2 hours (7200 seconds) using 5 mW and 6 mW of photothermal

heating and OCM probe beam powers respectively. Furthermore, the stability and contrast of

the poli-OCM was sufficient to perform temporal autocorrelation and single particle tracking

analyses on the same datasets. Based on these findings, we are convinced that further investi-

gation of CS mitochondrial dynamics based on poli-OCM imaging is definitely worth pursuing.

As previously mentioned, it is important to acquire time-lapse data from a statistically sig-

nificant number of cells for each cell line being investigated. By doing so, we can establish

parameters that will allow us to characterize different cell lines and analyze the relationship

between the Cockayne Syndrome and mitochondrial dynamics. Once achieved, future studies

can delve into imaging and quantifying the response of CS mitochondrial dynamics to various

stimulants, physiological conditions, or proposed treatment at a cellular level.
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6 Conclusion

This thesis was aimed at developing imaging based techniques for the quantification of mi-

tochondrial dynamics. This was achieved by exploiting the speed, stability, and specificity

provided by poli-OCM. Specifically, we accomplished three-dimensional mitochondria spe-

cific imaging using functionalized AuNPs as photothermal bio-markers for poli-OCM imaging.

We quantified mitochondrial dynamics by extending methods for analysis, mostly reserved

to fluorescence techniques, to three-dimensional time-lapse poli-OCM imaging. Moreover,

we presented initial results demonstrating the possibility of using the techniques we devel-

oped for investigating the mitochondrial dynamics of diseased cell lines. This is arguably an

unprecedented achievement that, to the best of our knowledge, has not been attempted on

this time scale.

The functionalization of AuNPs played a crucial role in realizing the goals of this thesis. One

distinctive limitation of the OCM is its lack of specificity. Unfortunately, coherence based

techniques do not have an established counterpart to the fluorophores that provide molecular

specificity to confocal microscopy. For OCM imaging this limitation was surmounted by the

invention of poli-OCM. Photothermal imaging using functionalized AuNPs as bio-markers

has substantial advantages over confocal fluorescence microscopy. In general, AuNPs are

chemically stable, biocompatible, and do not photobleach. In this thesis we presented two

biopolymer based surface coatings that were used to functionalize the AuNPs. Surface function-

alization of AuNPs with these polymer coatings improved biocompatibility, cellular uptake,

and solubility in biological media. Both surface coatings utilized triphenyl-phosphonium

(TPP), a molecule known for selective accumulation to the mitochondria, to impart the AuNPs

with mitochondria specific labeling. The first surface coating we present is based on the poly-

cationic denatured blood plasma protein human serum albumin (dcHSA-PEO-TAT-TPP). This

copolymer coating has an increased number of reactive sites that allows for more chemical

modifications, which can further lead to a multifunction nanolabel or nanotransporter [124].

We optimized the labeling concentration of dcHSA-PEO-TAT-TPP functionalized AuNPs for
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poli-OCM imaging and showed that above 13.4 nM the improvement with the poli-OCM signal

diminishes. The second surface coating we used is based on globular cationic bovine serum

albumin (gcBSA-TPP). We were able to achieve mitochondria specific time-lapse poli-OCM

imaging using gcBSA-TPP AuNPs at only 0.31 nM labeling concentration. Despite this low

concentration, the poli-OCM signal had sufficient contrast, lasting for at least 2 hours without

any observable decrease in signal strength, and allowed us to quantify mitochondrial dynamics

using temporal autocorrelation and single particle tracking analysis. As a demonstration of

the versatility of our method, we also conducted poli-OCM imaging using gold nanorods and

fluorescent nanodiamond gold nanoparticle dimers [127].

These novel biopolymer surface coatings and uniquely structured functionalized nanolabels

give us a few possibilities for future studies. First, the use of multifunctional copolymer coat-

ings allows for targeted drug delivery with gold nanotransporters, which we can monitor via

poli-OCM imaging. Furthermore, using the techniques we develop, we are well-equipped to

investigate and quantify the impact of these nanotransporters and the substances they deliver

to cellular activities such as mitochondrial dynamics. Second, the use of uniquely structured

AuNPs or AuNRs may lead to “multicolor” poli-OCM imaging and even a three-dimensional

photothermal imaging analogue to fluroescence cross-correlation spectroscopy.

The two techniques we developed to quantify mitochondrial dynamics relied heavily on the

high sensitivity and stability of poli-OCM imaging, which allowed us to continuously image

AuNP-labeled mitochondria without any loss of contrast. The first technique (1) is based on

temporal autocorrelation analysis combined with a classical diffusion model. Autocorrelation

analysis is the concept behind fluorescence correlation spectroscopy (FCS); arguably one of

the most well-established techniques for quantifying dynamic processes in chemistry and

biophysics. In our approach, we extended this analysis to three-dimensional poli-OCM imag-

ing allowing us to extract spatially resolved mitochondria diffusion parameters. We showed

three dimensional diffusion parameter maps, which we can use to identify and locate regions

inside the cell where there is fast or slow mitochondrial diffusion. The diffusion parameters we

measured illustrate the high degree of heterogeneity in the cell with diffusion times spanning

over three orders of magnitude (10 to 1.5×103 seconds). This characterized the variation in

mitochondrial activity within the cell and illustrated the intracellular crowding experienced by

a relatively massive organelle. However, the classical diffusion model used with our temporal

autocorrelation analysis assumes point-like diffusers. Previous studies in FCS have shown that

maintaining this assumption for diffusers with comparable dimensions to the point spread

function (PSF) of the instrument results in an overestimation of the measured diffusion time.

In the case of the poli-OCM, this is complicated even more by the Bessel-like illumination

beam, which results in focal volume with prominent side lobes. We investigated the effect of

mitochondria size and the unique shape of the poli-OCM PSF by incorporating them as modi-

fication to the molecular detection function. Through simulations we showed that compared

72



to the ideal assumption of the classical diffusion model, temporal autocorrelation analysis of

poli-OCM imaging data resulted to diffusion times that were ≈ 2.4× larger. The MDF modifica-

tion we implemented can be used to calculate a “correction factor” depending on the system

parameters. The second technique (2) we developed exploits the higher localization precision

of single particle tracking (SPT). SPT algorithms have demonstrated localization precision well

below the size of the PSF, which is of particular significance in quantifying the dynamics of

nearly static or slowly diffusing particles like the mitochondria. The high sensitivity and signal

stability of poli-OCM imaging is perfect for SPT analysis, which typically requires high signal

to noise ratio. Moreover, we demonstrated the possibility of poli-OCM based SPT analysis in

identifying and differentiating the transition from diffusive to directional mitochondrial mo-

tion. This complex dynamic phenomena is not as straightforwardly addressed with temporal

autocorrelation analysis.

The ability to extract spatially resolved diffusion parameters with temporal correlation analysis

is well complemented by the accuracy and versatility of single particle tracking. The two

techniques we developed work well together in quantifying mitochondrial dynamics and

provide researchers with a set of tools that aid in obtaining a more complete understanding

of this important cellular phenomenon. Due to their involvement in energy production and

ensuring cell health and survival, mitochondrial dysfunction has been implicated with numer-

ous human disorders. Despite many studies linking abnormal mitochondria dynamics to the

pathogenesis of these diseases, few have investigated them through imaging and quantifica-

tion of mitochondrial motion. This is arguably due to the absence of an established technique

that allows continuous imaging of the same cell over long time durations while still providing

the specificity necessary to study the mitochondria.

In this thesis we also attempted to quantify the mitochondrial dynamics of the Cockayne

syndrome (CS). CS is a severe genetic disorder that causes neurodegeneration, developmental

deficiencies, premature aging, and death. Currently, mutations in either CSA or CSB gene

products are the known causes of CS. We conducted mitochondria specific three-dimensional

time-lapse imaging using the poli-OCM on two immortalized cell lines: (1) the diseased CSB-

deficient CS1AN-SV and (2) the control CSB-proficient MRC5-SV. We extracted mitochondrial

diffusion parameters using the two analysis techniques that we developed. The initial re-

sults we presented contained mitochondrial diffusion parameters of four cells from each cell

line. Interestingly, the extracted diffusion parameters show that the MRC5-SV cells displayed

more variation with their mitochondrial dynamics compared to the CS1AN-SV cells. This

was observed in both temporal autocorrelation and single particle tracking analysis. Despite

quantifying mitochondrial dynamics, the data we have collected at this point was insufficient

to differentiate between the CS1AN-SV and MRC5-SV. However, it is worth noting that this was

a pilot study. It was important to establish the viability of the CS cell lines upon exposure to the

AuNP labels. We demonstrated incubation of both CS1AN-SV and MRC5-SV with AuNP labels
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for over 5 days without any appreciable difference with the unlabeled control. We were also

able to achieve continuous time-lapse poli-OCM imaging for two hours without observing

cell death, using 5 mW and 6 mW of photothermal heating and OCM probe beam powers.

Furthermore, the quality of the three-dimensional poli-OCM images were sufficient to perform

temporal autocorrelation and single particle tracking analyses on the same datasets. These

findings convinced us that investigating CS mitochondrial dynamics via poli-OCM imaging

is worth pursuing. Evidently, future studies would benefit from collecting a larger data set

that would reach statistical significance. Such a study would establish a set of parameters

characterizing the impact of CS to mitochondrial dynamics and vice versa. Once achieved, this

study could serve as a foundation for investigating the response of CS mitochondrial dynamics

to various stimulants including experimental treatment methods. Furthermore, this would be

a first step in studying other human diseases that have been associated with mitochondrial

dysfunction using the techniques developed in this thesis.
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