
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. C. Gastpar, président du jury
Prof. M. Odersky, directeur de thèse

Prof. O. Lhoták, rapporteur
Dr C. Click, rapporteur

Prof. V. Kunčak, rapporteur

Design and implementation of an optimizing type-centric
compiler for a high-level language

THÈSE NO 7979 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 11 DÉCEMBRE 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE MÉTHODES DE PROGRAMMATION 1
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Dmytro PETRASHKO

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A fact is the most stubborn thing in the world.

— Voland, The Master and Margarita,

Mikhail Bulgakov

To my parents, Igor and Tatyana, who have put me on this enjoyable path.

Acknowledgements
First of all, I want to thank my advisor, Martin Odersky, for letting me be a part of Scala team

at EPFL. I was blessed with the opportunity to join you in developing a new compiler and it

was a great experience. I have learned a lot from you, especially about design and soft skills.

This was nothing short of awesome.

Second, I want to thank Ondřej Lhoták, who helped me in developing communication skills

that allowed me to share my knowledge more accessibly. Thank you for asking all the ques-

tions which unveiled a lot of possible misinterpretations of what was said and written by me.

Thank you for showing how to rephrase some ideas so that they become clearer and more

accessible without loosing the mathematical rigor and precision of the original formulation.

I also want to thank you for sharing your bright mood and inspiration. It was a pleasure to

work with you and I hope we will stay in touch.

I would also like to thank Brian Goetz, especially for our discussions during the JVM Language

Summit in 2016 and PLDI in 2017. Our discussions on design constraints of the Java program-

ming language have broadened my views on both the long-term evolution of programming

languages and the needs of industry. It was interesting to see how you design language fea-

tures for Java under constraints which are different from the ones that apply to Scala.

I am thankful to my colleagues in the LAMP laboratory, whom I have had a chance to collabo-

rate with over the years: Eugene Burmako, Denis Shabalin, Nicolas Stucki, Felix Mulder, Olivier

Blanvillain, Vojin Jovanovich, Nada Amin, Sébastien Doeraene, Manohar Jonnalagedda, San-

dro Stucki, Heather Miller and Samuel Grütter. I especially want to thank our secretaries,

Danielle Chamberlain and Natascha Fontana, for taking care of the administrative matters

relating to our research, and our system manager Fabien Salvi for a technical support.

Special thanks for my first experience in collaborating with the Scala team go to Alexandar

Prokopec. ScalaBlitz, the project we developed together, has taught me how to design good

libraries in Scala. It was also a great experience to beat Intel Thread Building blocks in bench-

marks in the middle of the night at the EPFL and walk back together, as the metro wasn’t

working that late.

i

Acknowledgements

Over those four years I have supervised several exceptional semester and a Master’s projects.

I want to thank Guillaume Martres for multiple Dotty related projects we have done together.

You are a remarkable student and I believe you’ll do great in your Ph.D. at LAMP. Also, I want

to thank Allan Renucci for his work on AutoCollections: you were the first to use the call

graph construction algorithm in a novel use-case and the first to find the tricky bugs hiding

within it. I want to thank Alexandre Sikiaridis for the preliminary exploration of specialization

techniques in Dotty. TreeTypeMaps that have been developed for your project have become

an important building block in Dotty. Also I want to thank Angel Axel, who contributed lazy

collection operations to Scala Blitz, the first project of mine at LAMP. I have had a great experi-

ence working with Alfonso Petersen on Delaying arrays; although we haven’t pushed this data

structure out yet, I believe it has strong potential.

I appreciate the knowledge that I’ve learned from the previous generations of the Scala team

at EPFL, namely Iulian Dragos, Michel Schinz, Lukas Rytz, and Adriaan Moors. You have

shared a lot of insights based on your years of experience developing Scala; these insights

saved me from repeating the mistakes of the past. You are the keepers of knowledge in the

Scala world and you have always been willing to share this with those who search for it. Thank

you.

I cannot write an acknowledgment without mentioning Yakir Michail, who taught me Math.

I’m very thankful for you accepting me into your class and teaching me the culture and the

artistry of Math. You have placed me and generations of students on the road to success in

life by teaching us how to reason elegantly and efficiently. And thanks for sharing your library

of the science magazine “Kvant". It is still my favorite magazine.

I want to thank my first programming teacher: Natalya Golubnycha. The mathematical &

computer programming problems that you gave during school breaks got me interested in

algorithms. While Michail’s study of mathematics allowed me to arrive at elegant methods,

you have taught me efficient methods in computer science. Unfortunately you had to leave

the school after my first year, but the love of algorithms that you shared still lives inside me.

I would also like to thank Natalya Bogomolova for providing me the right material to maintain

this love of algorithms and for your limitless kindness. Your classroom was the nicest place I

have ever been and I cherish the memories of all the nice tea parties that we had there.

Thanks also go to Kharitonova Ludmila, who showed me how to apply Math not only in

theoretical, but in practical areas that handle real properties of existing objects; chemistry

in particular. You taught me how to approximate complex Math quickly and this skill is

becoming more and more useful in my life.

ii

Acknowledgements

I thank Alexander Gasnikov, who taught me the beautiful science of probability theory, math-

ematical statistics and stochastic processes, with further application to traffic jams. The sem-

inar and laboratory organized by you was always a place where I could discover fascinating

facts in all areas of applied mathematics. It was a pleasure collaborating with you in making

Moscow a better place to drive for everybody.

Vera Petrova helped me both to appreciate the abstract part of science and showed me how

to teach it. Your wonderful lists of problems are a unique teaching tool and they show your

refined taste in math. Thank you for all the time you took to look through my solutions to all

368 of them, and for your time explaining how they could be solved more elegantly.

I thank Sergei Belyaev for showing me the connection between art and math and showing me

that Math can also be emotional. Your drawing of elephants in every detail was a surprising

way to explain how mathematical problems should be solved. And also thank you for making

me love compass-and-straightedge construction.

I want to thank Philip Adronov, with whom I’ve shared the first experience of working with big

data stores. Our joint work on building indexes for Cassandra let me appreciate the needs of

industry. This was instrumental in helping me understand the purpose tools, and in particular

compilers, serve and helped me to make my research more influential.

I would like to thank Elena Bunina and Maxim Babenko for organizing the Yandex School of

Data analysis, where I studied I/O efficient algorithms and machine learning. It allowed to

me both to deepen my knowledge in general of algorithms and to broaden it to compression,

machine learning, hashing and information retrieval at scale. This school creates a wonderful

unifying environment for people passionate about algorithms and data analysis and I enjoyed

my time there.

I want to thank the broad Scala community for building a great ecosystem with lots of useful

libraries. Though we don’t always agree on the direction we should move towards, we all act

to build a bright future for Scala. Through trials and errors we all are developing new methods

to build software that works well and is pleasant to deal with. Among the Scala community I

want to especially thank Jon Pretty for being a wonderful organizer of events, a great arbiter

of conflicts , and a good and reliable friend.

When it comes to personal friends, I want to thank Mark Bochkov. I have ways had great

adventures with you, either in the real world or in digital worlds. I hope we will continue our

friendship and share many more quests together.

I would also like to thank Alexander Zemtsov for the discussions about professionalism in

music that we had. In those discussions I have found strong similarities between computer

science and music and it helped me to overcome my laziness.

iii

Acknowledgements

I want to thank Yulia for her endless care and understanding — for helping me to endure hard

times of my Ph.D., and for being with me at moments of joy. I am glad that I have met you and

I’m looking forward to living long years together, my dear wife.

And finally, I would like to heartily thank my parents Igor and Tanya. You were always making

sure that I was doing great. Having you as role models in my life served me well and made me

who I am today.

Lausanne, 19 July 2017 D. P.

iv

Abstract
Production compilers for programming languages face multiple requirements. They should

be correct, as we rely on them to produce code. They should be fast, in order to provide a

good developer experience. They should also be easy to maintain and evolve.

This thesis shows how an expressive high level type system can be used to simplify the devel-

opment of a compiler. We demonstrate the system on a compiler for Scala.

First, we show how expressive types of high level languages can be used to build internal data

structures that provide a statically checked API, ensuring that important properties hold at

compile time.

Second, we also show how high level language features can be used to abstract the com-

ponents of a compiler. We demonstrate this by introducing a type-safe layer on top of the

bytecode emission phase. This makes it possible to abstract away the implementation details

of the compiler frontend and run the same bytecode emission phase in two different Scala

compilers.

Third, we present “MiniPhases”, a novel way to organize transformation passes in a compiler.

MiniPhases impose constraints on the organization of passes that are beneficial for main-

tainability, performance, and testability. We include a detailed performance evaluation of

MiniPhases which indicates that their speedup is due to improved cache friendliness and to a

lower rate of promotions of objects into the old generations of garbage collectors.

Finally, we demonstrate how the expressive type system of the language being compiled can

be used for static analysis. We present a novel call graph construction algorithm which uses

the typing context for context sensitivity. The resulting algorithm is both substantially faster

and more precise than existing alternatives. We demonstrate the applicability of this analysis

by extending common subexpression elimination to idempotent expression elimination.

Key words: compiler design, optimizing compiler, compiler performance, tree traversal fu-

sion, cache locality, call graphs, parametric polymorphism, static analysis, Scala

v

Résumé
Pour pouvoir être utilisé en production, le compilateur d’un langage de programmation doit

répondre à de multiples critères. Il doit être correct car le dévelopeur en dépend pour générer

du code. Il doit être rapide afin de fournir une bonne expérience utilisateur. Il doit être facile

à maintenir et à faire évoluer.

Cette thèse montre comment un système de typage de haut niveau peut être utilisé pour

simplifier le développement d’un compilateur. Le principe présenté est illustré dans un com-

pilateur pour Scala.

Nous commençons par montrer comment, à l’aide des types expressifs d’un langage de haut

niveau, nous pouvons construire des structures de données internes qui fournissent une

interface de programmation (API) vérifiée statiquement, garantissant à la compilation que

certaines propriétés importantes sont vérifiées.

Ensuite, nous montrons comment des fonctionnalités d’un langage de haut niveau peuvent

être utilisées pour abstraire les composants d’un compilateur. Nous démontrons ceci en intro-

duisant une couche d’abstraction à typage sûr par-dessus la phase de génération de bytecode.

Ceci permet d’abstraire les détails d’implémentation de la partie avant du compilateur (fron-

tend) et d’utiliser la même phase de génération de bytecode pour deux compilateurs Scala

différents.

Troisièmement, nous présentons les MiniPhases, une manière nouvelle d’organiser les passes

de transformations d’un compilateur. Les MiniPhases imposent des contraintes sur l’organi-

sation des passes, qui sont bénéfiques à la fois pour la maintenance et les performances du

compilateur, ainsi que pour sa capacité à être testé. Notre évaluation détaillée montre que les

bonnes performances des MiniPhases sont dues d’une part à une utilisation plus intelligente

du cache, et d’autre part à un taux inférieur d’objets promus dans les vieilles générations du

ramasse-miettes (garbage collector).

Enfin, nous démontrons comment, lors de la compilation d’un langage de haut niveau, son

système de typage peut être utilisé pour effectuer de l’analyse statique. Nous présentons un

nouvel algorithme de construction de graphe d’appels qui utilise le contexte de typage pour

être sensible au contexte. Cet algorithme est à la fois plus rapide et plus précis que les alterna-

vii

Acknowledgements

tives existantes. Nous montrons, en example de l’intérêt pratique de cette analyse, comment

l’utiliser pour étendre l’élimination de sous-expressions communes à l’élimination d’expres-

sions idempotentes.

Mots clefs : conception de compilateur, compilateur optimisant, performances d’un compi-

lateur, fusion de parcours d’arbres, graphes d’appels, polymorphisme paramétrique, analyse

statique, Scala

viii

Contents
Acknowledgements i

Abstract (English/Français) v

List of Figures xiii

List of Tables xv

List of Listings xvii

1 Introduction 1

1.1 Contributions . 2

1.2 Overview . 3

2 Structure of the Compiler 5

2.1 Names . 5

2.1.1 Tracking kinds of names . 6

2.1.2 Names are cached . 7

2.2 Signatures . 8

2.3 Trees . 9

2.3.1 Trees are immutable . 9

2.3.2 Type-safe usage of typed and untyped trees 10

2.3.3 Type-safe tracking of the kind of a typed tree 10

2.3.4 Tree copiers . 12

2.4 Types . 12

2.4.1 Classification of types . 12

2.5 Symbols . 16

2.6 Flags . 16

2.7 Runs . 18

2.8 Phases and Periods . 18

2.9 Compiler pipeline and laziness . 18

2.10 Denotations and Denotation Transformers . 20

2.11 Measurements . 22

2.11.1 Frequency of trees . 22

2.11.2 Frequency of types . 23

ix

Contents

2.11.3 Phase running time . 23

2.11.4 Denotation cycle length . 28

3 Shared Backend Interface 31

3.1 Abstracting over AST classes . 32

3.2 Pattern Matching on Abstract Types . 33

3.3 Providing Methods on Abstract Types . 34

3.4 Deconstructing Abstract Classes with Pattern Matching 34

3.5 Symbol interface . 35

3.6 Case study: removing Throw tree . 35

3.7 Deconstructors & Decorators: choice between singletons and fresh objects . . 39

3.8 Performance impact . 39

3.9 Related work . 42

3.9.1 Scala Reflect . 42

3.9.2 Project Amber . 42

4 Miniphases: Compilation using Modular and Efficient Tree Transformations 43

4.1 Introduction . 44

4.2 Background: Scala Compilers . 45

4.2.1 Experience with the Scala Compiler . 46

4.3 Target Performance Characteristics . 50

4.4 Design . 50

4.4.1 Prepares . 55

4.4.2 Initialization and Finalization of Phases 57

4.5 Evaluation . 57

4.5.1 Overall Time . 57

4.5.2 GC Object Allocation and Promotion . 60

4.5.3 CPU Performance Counters . 60

4.5.4 Comparison with Existing Production Compiler 66

4.6 Soundness and Limitations of Phase Fusion . 66

4.6.1 Fusion Criteria . 66

4.6.2 Example Violations of Fusion Criteria . 68

4.6.3 Phase Preconditions and Postconditions 69

4.7 Discussion . 70

4.7.1 Readability . 71

4.7.2 Predictable Performance Characteristics 71

4.7.3 Onboarding Process . 72

4.7.4 Experience with contributors . 72

4.8 Related Work . 73

4.8.1 Deforestation and Stream Fusion . 73

4.8.2 Sound Fusion in Tree Traversal Languages 73

4.8.3 Other Pass Fusion Approaches . 74

4.8.4 Compilers Based on Tree Transformation Passes 75

x

Contents

4.9 Conclusion and Future Work . 75

5 Types as Contexts in Whole Program Analysis 77

5.1 Introduction . 78

5.2 Motivation . 82

5.3 Background . 84

5.4 Algorithms . 86

5.4.1 T C Atypes: Propagation of Type Arguments 86

5.4.2 Propagation of Outer Type Parameters . 88

5.4.3 T C Atypes-terms: Propagation of Term Argument Types 90

5.5 Evaluation . 92

5.5.1 Analysis Evaluation . 95

5.5.2 Application to Specialization . 98

5.6 Related Work . 103

5.6.1 Specialization Techniques . 103

5.6.2 Call Graph Construction and Context Sensitivity 104

5.7 Conclusion . 106

6 Example analysis: Extending common subexpression elimination to Idempotent ex-

pression 107

6.1 Motivation . 107

6.1.1 Lazy Values . 108

6.1.2 Implicit conversions . 108

6.1.3 Domain specific knowledge . 110

6.2 Implementation . 110

6.2.1 Idempotency inference . 111

6.3 Evaluation results . 113

6.3.1 Research Questions . 114

6.3.2 Results . 114

6.4 Related Work . 115

6.4.1 Global value numbering . 115

6.4.2 Partial redundancy elimination . 115

6.4.3 Purity inference . 116

6.4.4 Side effect analysis . 116

6.4.5 Pure languages . 116

6.5 Conclusion . 116

7 Local optimizations 119

7.1 Motivation . 119

7.2 Local optimizations . 119

7.3 The great Simplifier . 121

7.4 Implemented optimizations . 121

7.4.1 InlineCaseIntrinsics . 121

xi

Contents

7.4.2 RemoveUnnecessaryNullChecks . 122

7.4.3 InlineOptions . 122

7.4.4 InlineLabelsCalledOnce . 122

7.4.5 Valify . 122

7.4.6 Devalify . 123

7.4.7 Jumpjump . 123

7.4.8 DropGoodCasts . 123

7.4.9 DropNoEffects . 123

7.4.10 InlineLocalObjects . 124

7.4.11 Varify . 125

7.4.12 bubbleUpNothing . 125

7.4.13 ConstantFold . 125

7.5 Example . 127

7.5.1 Pattern matching on case classes . 127

7.5.2 Pattern matching on tuples of booleans . 136

7.6 Evaluation . 138

8 Conclusions and Future Work 143

8.1 Conclusions . 143

8.1.1 MiniPhases . 143

8.1.2 CallGraph construction with types as contexts 143

8.2 Future work . 144

8.2.1 Term specialization . 144

8.2.2 The Inlining problem . 145

8.2.3 MiniPhasing more of the compiler . 147

8.2.4 Adding more pre and post-conditions and checking their completeness 147

Bibliography 149

Curriculum Vitae 157

xii

List of Figures
2.1 Denotation cycle for id . 22

2.2 Denotation cycle for class C . 23

2.3 Tree allocation counts when compiling Dotty . 24

2.4 Type allocation counts when compiling Dotty . 25

2.5 Dotty compilation time per phase . 26

2.6 Stdlib compilation time per phase . 27

2.7 Distribution of Denotation cycle length during the compilation of Dotty 28

2.8 Number of denotations created by each denotation transformer 29

3.1 Performance impact of BackendInterface . 41

4.1 Mega-phase based transformation of a tree . 47

4.2 Pipelining of a leaf-node through Miniphases . 51

4.3 Pipelining of an inner-node through Miniphases 51

4.4 Execution time of tree transformation passes, typechecker, and code generation

backend in Miniphase and Megaphase versions of the Dotty compiler. 58

4.5 Total size of GC object allocated, GBytes . 59

4.6 Total size of GC object tenured, GBytes . 59

4.7 Instructions and cycle counters . 61

4.8 L1 and LLC cache miss rates . 62

4.9 L1 dcache miss rates . 63

4.10 Number of memory reads . 64

4.11 L1 icache miss rate . 65

4.12 Execution time of stages of the Dotty and scalac compilers when compiling the

standard library and Dotty . 67

5.1 Inference rules of TCAexpand-this from [Ali et al., 2014, 2015] 85

5.2 Propagation of type arguments . 87

5.3 Propagation of term argument types . 91

5.4 Graphical representation of the data presented in Table 5.3, in milliseconds.

Lower is better. 99

5.5 Graphical representation of the data in Table 5.4, showing the bytecode size in

kilobytes. Lower is better. 102

xiii

List of Figures

6.1 Methods annotated as @idempotent . 113

7.1 Speedup by applying all optimizations . 138

7.2 Speedup by enabling a single optimization . 139

7.3 Speedup by enabling all optimizations but one 141

xiv

List of Tables
4.1 Phases in Scala 2.12.0 . 46

4.2 Phases in Dotty compiler. The horizontal lines indicate blocks of Miniphases(*)

that constitute a single transformation. 49

5.1 Results of the T C Aexpand-this, T C Atypes, and T C Atypes-terms analyses on the bench-

mark programs. The first two columns specify the benchmark program and the

analysis algorithm. The next three columns show the number of classes found

to be instantiated, including their superclasses, classes that have at least one

reachable method, and methods reachable by the analysis. The following two

columns show the total number of reachable method contexts and the maxi-

mum number of such contexts per method. If every reachable method were

specialized for all of the type arguments that the analysis determines may flow

to its type parameters, the next two columns show the total number of such

specialized methods that would be created and the factor by which this number

is greater than the number of reachable methods in the original program. . . . 93

5.2 Results of the T C Aexpand-this, T C Atypes, and T C Atypes-terms analyses on the bench-

mark programs. The next three columns show the percentage of call sites found

to be monomorphic, bimorphic, and megamorphic by each analysis. For con-

sistency, to enable comparisons between the three analyses, we take as the uni-

verse of all call sites only those in methods found to be reachable by the most

precise analysis, T C Atypes-terms. Otherwise, the results would be confounded by

the fact that each analysis discovers a different set of reachable methods and

therefore a different set of reachable call sites. The final column gives the run-

ning time of the analysis. 94

5.3 Benchmark running time, for 3 million elements. The time is reported in mil-

liseconds. Lower is better. 100

5.4 The bytecode size produced by specializing the ArrayBuffer and LinkedList

classes with different approaches. Lower is better. 102

xv

List of Listings
2.1 Types and terms can share the same name . 5

2.2 Term and type names . 6

2.3 Caching of names . 7

2.4 Method overloading example . 9

2.5 Signatures in Dotty . 9

2.6 Utility function that works both for typed and untyped trees 10

2.7 Trees . 11

2.8 Abstracting over the typedness of a tree in methods 11

2.9 Illustation on generic tracking of the kind of a tree 11

2.10 Surface syntax for types in Dotty . 12

2.12 Proxy types . 13

2.11 A, B, C and Example will have types that are TypeTypes 13

2.13 Refined types example . 14

2.14 Special values of hashes . 14

2.15 Avoiding special hashes . 15

2.16 Examples of ProtoTypes . 15

2.17 Symbols . 17

2.18 FlagSets in Dotty . 19

2.19 Periods . 20

2.20 Denotations in Dotty . 21

2.21 Example of denotation with symbol=NoSymbol 21

2.22 SingleDenotations and MultiDenotations in Dotty 22

3.1 AST node kinds in BackendInterface . 32

3.2 Example of pattern matching code from Backend 33

3.3 AST TypeTags in BackendInterface . 33

3.4 Decompiled version the of snippet above with type test 33

3.5 Decompiled version of the snippet above with decorated tree 34

3.6 Example of deconstructing in pattern matching code from Backend 35

3.8 Accessing a field of an abstract class . 35

3.7 Abstract type deconstructors . 36

3.9 Symbol API in the BackendInterface . 37

3.10 Changes performend to BackendInterfance implementation due to replacing

Throw node with synthetic Apply . 38

xvii

List of Listings

3.11 Singleton based implementation . 40

4.1 Sample Scala program . 48

4.2 Tree nodes . 52

4.3 Overall traversal . 52

4.4 Definition of a Miniphase . 53

4.5 Fusion algorithm for Miniphases . 54

4.6 Optimization for identity transforms and for transformations that keep the same

node kind . 55

4.7 MiniPhase extended with prepares . 56

4.8 Fusion with prepares . 56

4.9 Simplified version of TreeChecker . 71

5.1 Running example from scala.math.Ordering. 82

5.3 Desugared version of example program from Listing 5.2. 83

5.2 Example program that uses the compare method from Listing 5.1. 83

6.1 Idempotency examples . 109

6.2 Reachability example . 112

6.3 Constructor example . 113

6.4 SymDenotation.scala . 113

7.2 LocalOptimization . 119

7.1 The main loop of the Simplify phase . 120

8.1 Pushing virtual dispatch out of the cycle . 148

xviii

1 Introduction

There is no greatness where there

is no simplicity, goodness and truth.

— Leo Tolstoy

Compilers for a real world programming language face multiple requirements:

• Big compilers are developed by big groups of people. For example, the current Scala

compiler has over 300 contributors, and among them over 40 have contributed more

than 10,000 lines of code each. Collaboration on such a big codebase requires clear

structure and a clear separation of concerns in order to be maintainable.

• At the same time, a compiler is frequently invoked by users during their every-day de-

velopment. Every key stroke in the IDE fires up a compiler to parse, typecheck and

validate the correctness of the current state of the code in the IDE. It is vital for the de-

veloper’s productivity to keep response times after every key stroke short. This requires

a compiler to be fast measured both by throughput, as the file being edited can be big,

and by latency, to also respond quickly for small files.

It is commonly thought that the requirements indicated in the preceding two paragraphs

— modularity and performance — are mutually exclusive. Modularity comes in the form of

abstractions and abstractions have an inherent cost.

At the same time, an often-considered way to get performance is to side-step abstractions and

use inventive ways to work around existing infrastructure to speed up the application. Thus

it is usually thought that fast code is unnatural in a modular system as it may be inconsistent

with modularity.

This is a hard choice to make. Choosing maintainability and modularity over performance is

likely to make the compiler slow and its users unhappy due to long compilation times. You’ll

have a nicely organized compiler that is rarely used and thus is not well tested.

Choosing performance at the expense of maintainability introduces a huge burden on future

development of the compiler. Developing new features as well as fixing bugs becomes hard in

1

Chapter 1. Introduction

a code-base that uses ad-hoc escape hatches to side-step internal APIs which are considered

slow. At the same time, this provides the best user experience in the early days of the compiler,

as users get good performance right away, at the cost of future work for compiler developers.

This thesis shows that this is not a mutually exclusive choice — with a careful architecture one

can get both maintainability and good performance by design using:

• an expressive type system to guide the implementation of code in the compiler towards

correctness. This type system will make the code inside the compiler more uniform and

natural;

• high-level abstractions that are friendly both to contemporary CPUs with multi level

caches and to developers, by providing a convenient API that promotes a natural notion

of modularity in this system.

This work has been performed in the context of Scala, a functional object oriented language

with multiple trait inheritance that compiles into Java bytecode and runs on the Java Virtual

Machine. While there are proposals to add static dispatch to Scala [Petrashko et al., 2011], as

of this writing all calls to non-private methods in Scala are virtual.

1.1 Contributions

The Work performed in this thesis was targeted at improving techniques used to build compil-

ers and was demonstrated on a Scala compiler. It shows that expressive type systems and high

level abstractions of the host language can be used to build compilers which are maintainable,

modular, and fast.

This thesis claims to make the following contributions:

• a case study that shows that usage of expressive types of high level languages can be

used to build compiler components for a real-world programming language that is easy

to maintain and develop;

• MiniPhases, a practical way to organize phases in a production compiler that allows the

building of both a pipeline that is both maintainable and performant. This methodology

allows a compiler writer to define multiple transformations separately, but fuse them

into a single traversal of the intermediate representation when the compiler runs. The

evaluation shows that the proposed scheme behaves faster than expected and explains

that this performance is due to better cache locality;

• a callgraph analysis using the precision of the underlying type system of the language,

that is both more precise and faster than existing alternatives. The idea is applicable

to languages with parametric polymorphism. This analysis is context sensitive and

2

1.2. Overview

uses the typing environment as context. The use of static types from the caller as con-

text is effective because it allows more precise dispatch of call sites inside the callee.

The context-sensitive analysis runs two times faster than a context-insensitive one and

discovers 20% more monomorphic call sites at the same time. This analysis has been

designed with the intention to include it in the mainline compiler to power whole-

program optimizations.

These contributions have been validated by implementing an experimental compiler for Scala

called “Dotty”. This experiment has been proven successful. Practical evidence suggests that

developing new language features is considerably simpler in this compiler as most new Scala

features are first implemented in Dotty. A compiler based on Dotty is slated to become the

main compiler for the release of Scala 3.0.

1.2 Overview

This thesis is organized in the following way:

• Chapter 2 describes the high level organization of the Dotty compiler as well as data

structures used to represent the information necessary for program compilation.

• Chapter 3 demonstrates how high level abstractions can be used to separate compo-

nents of the compiler by presenting the abstractions used by BackendInterface in Dotty.

• Chapter 4 contains a detailed presentation and an evaluation of MiniPhases, a tech-

nique that was used to build a maintainable and fast compiler.

• Chapter 5 presents a call-graph construction algorithm that is both more precise and

faster than existing alternatives, making it practical for inclusion in a production com-

piler, and demonstrates its use to perform class and method specialization.

• Chapter 6 provides an example of an application of the call-graph analysis to perform

global idempotence inference which permits the extension of common subexpression

elimination to more complex expressions.

• Chapter 7 covers local optimizations that we use to speed up the compilation and gen-

erate better code, even in the absence of whole-world analysis.

3

2 Structure of the Compiler

It is common for compilers to use multiple different representations to store the program cur-

rently being compiled. Scala compilers are distinct in that they use the same data structures

during the entire compilation. In this section we will describe the motivation behind core

entities in the Dotty compiler and demonstrate how they work together. Dotty compiler is

compiling Scala programs and is itself is written in Scala.

Special attention is given to API decisions that had an impact on the coding style used inside

the Dotty compiler. These decisions made a substantial improvement in either type safety or

efficiency.

Attribution

The work presented in this chapter has been performed by Martin Odersky and is included

to serve as a background for other chapters of this thesis. While author of this thesis was the

first to use this API, provide the feedback and helped to fix bugs, the authorship of ideas, im-

plementation and terminology presented in this chapter is attributed to Martin Odersky. The

author of this thesis only claims the authorship of benchmarks and measurements presented

in Section 2.11.

2.1 Names

In Scala, a term and a type may share the same name:

1 trait A {
2 val member = 0
3 type member
4 }

Listing 2.1 – Types and terms can share the same name

While both the term member and the type member are named the same, they behave differently,

5

Chapter 2. Structure of the Compiler

5 abstract class Name { self =>
6
7 /** A type for names of the same kind as this name */
8 type ThisName <: Name { type ThisName = self.ThisName }
9 /** Is this name a type name? */

10 def isTypeName: Boolean
11
12 /** Is this name a term name? */
13 def isTermName: Boolean
14
15 def ++ (other: Name): ThisName = ...
16 ...
17 }
18
19 class TermName(chrs: Array[Char], start: Int, length: Int) extends Name {
20 type ThisName = TermName
21 def isTypeName: Boolean = false
22 def isTermName: Boolean = true
23 ...
24 }
25
26 class TypeName(val toTermName: TermName) extends Name {
27 type ThisName = TypeName
28
29 def isTypeName = true
30 def isTermName = false
31 ...
32 }

Listing 2.2 – Term and type names

one being a type, the other — a term.

In order to disambiguate names of terms and names of types, Dotty uses classes to represent

different kinds of names (see 2.2).

As such, even though they textually have the same name, they are semantically distinguish-

able.

2.1.1 Tracking kinds of names

It is very common to transform names while keeping their kinds; that is why we have intro-

duced a type-safe way to do it. We use a type member ThisName to be able to define a method

that is statically known to return the same kind of name as the receiver of the call. This sub-

stantially improves type-safety of names and reduces the number of casts needed in the code

base. This code pattern is quite common inside the Dotty codebase.

6

2.1. Names

2.1.2 Names are cached

Common names of identifiers such as i and apply are used in multiple scopes. Storing these

names multiple times would be wasteful, even if they do not refer to the same variable, field

or type. In order to lower the memory footprint, we reuse the same underlying character array

chrs in the entire compiler.

This is also beneficial as name comparison is a very frequent operation. In order to speed it

up, we also introduce an additional guarantee that two names are equal if, and only if, they

are referentially equal.

This allows us to reduce memory usage and optimize name comparisons at the cost of a

more complex procedure when allocating new names. Allocation of a new name now requires

determining if the same name has ever been allocated, which may require comparison with all

names allocated before. In order to reduce the number of comparisons, we hash all allocated

names and form linked lists of names that have the same hash:

33 /** Hashtable for finding term names quickly. */
34 private var table = new Array[SimpleName](InitialHashSize)
35

36 /** The number of defined names. */
37 private var size = 1
38

39 /** Create a term name from the characters in cs[offset..offset+len-1].
40 * Assume they are already encoded.
41 */
42 def termName(cs: Array[Char], offset: Int, len: Int): SimpleName = synchronized {
43 util.Stats.record("termName")
44 val h = hashValue(cs, offset, len) & (table.size - 1)
45

46 /** Make sure the capacity of the character array is at least ‘n‘ */
47 def ensureCapacity(n: Int) =
48 if (n > chrs.length) {
49 val newchrs = new Array[Char](chrs.length * 2)
50 chrs.copyToArray(newchrs)
51 chrs = newchrs
52 }
53

54 /** Enter characters into chrs array. */
55 def enterChars(): Unit = {
56 ensureCapacity(nc + len)
57 var i = 0
58 while (i < len) {
59 chrs(nc + i) = cs(offset + i)
60 i += 1
61 }
62 nc += len
63 }

7

Chapter 2. Structure of the Compiler

64

65 /** Rehash chain of names */
66 def rehash(name: SimpleName): Unit =
67 if (name != null) {
68 val oldNext = name.next
69 val h = hashValue(chrs, name.start, name.length) & (table.size - 1)
70 name.next = table(h)
71 table(h) = name
72 rehash(oldNext)
73 }
74

75 /** Make sure the hash table is large enough for the given load factor */
76 def incTableSize() = {
77 size += 1
78 if (size.toDouble / table.size > fillFactor) {
79 val oldTable = table
80 table = new Array[SimpleName](table.size * 2)
81 for (i <- 0 until oldTable.size) rehash(oldTable(i))
82 }
83 }
84

85 val next = table(h)
86 var name = next
87 while (name ne null) {
88 if (name.length == len && equals(name.start, cs, offset, len))
89 return name
90 name = name.next
91 }
92 name = new SimpleName(nc, len, next)
93 enterChars()
94 table(h) = name
95 incTableSize()
96 name
97 }

Listing 2.3 – Caching of names

This strategy is similar to the string interning performed by Java virtual machines, although

we use our own tables. This allows us to side-step efficiency problems related to active use of

interned strings [Shipilev, 2011].

2.2 Signatures

In Scala, multiple methods in the same class are allowed to have identical names, as long as

they have different signatures:

8

2.3. Trees

98 class Foo {
99 def foo(a: Int): Int

100 def foo(a: Short): Int
101 }

Listing 2.4 – Method overloading example

In this example, both foo methods may exist at the same time, as we can distinguish them by

their signature. A signature is a string that represents erased classes of arguments and return

type. There is a terminology clash with the JVM Specification [Lindholm and Yellin, 1999], as

our signatures are called “Method Descriptors” in the JVM specification, while what is called

a “signature” in the JVM Specification is referred to simply as “type” in our compiler.

102 case class Signature(paramsSig: List[TypeName], resSig: TypeName) {
103 ...
104 }

Listing 2.5 – Signatures in Dotty

There are two important details in how the Dotty compiler deals with signatures:

• Signatures are created by the Typer, a phase that does type inference and typechecking,

during early overload resolution. This is an interesting situation, as this requires being

able to erase types when we have not finished typing the compilation unit. DenotTrans-

formers (2.10) are instrumental in making this possible.

• Signatures are used to keep overload resolution stable until Erasure. This introduces

a limitation on what DenotTransformers (2.10) can do before erasure: changing the

signature of a denotation will break all the links to it from TermRefs. After erasure, all

links are symbolic and such changes are fine.

2.3 Trees

Trees, or, more formally, abstract syntax trees, represent the application currently being com-

piled. Trees are first created by Parser, which processes the code written by the user.

Later, these trees are typed by Typer, which attributes every tree with types that it infers and

removes syntactic sugar. These trees are later transformed by the compiler.

2.3.1 Trees are immutable

In order to simplify the API of the compiler, trees are immutable. This means that they do not

contain links to parent tree nodes, as otherwise there will have to be mutated to set it. This

allows trees to be reused in multiple places. In particular, all references to the same entity can

be potentially represented using the very same object. 1

1 ↑This is only true for synthetic trees however, as non-synthetic trees have to contain source positions that are
used by IDEs

9

Chapter 2. Structure of the Compiler

105 /** Checks whether predicate ‘p‘ is true for all result parts of this expression,
106 * where we zoom into Ifs, Matches, and Blocks.
107 */
108 def forallResults(tree: Tree, p: Tree => Boolean): Boolean = tree match {
109 case If(_, thenp, elsep) => forallResults(thenp, p) && forallResults(elsep, p)
110 case Match(_, cases) => cases forall (c => forallResults(c.body, p))
111 case Block(_, expr) => forallResults(expr, p)
112 case _ => p(tree)
113 }

Listing 2.6 – Utility function that works both for typed and untyped trees

2.3.2 Type-safe usage of typed and untyped trees

As Dotty uses the same trees both after Parser and after Typer, trees can exist in both typed

and untyped variants.

Sometimes it is useful to distinguish between typed and untyped trees. For example:

• we want to ensure that untyped trees can never be contained inside typed trees;

• we want to allow typed trees to be contained inside untyped ones;

• we want to be able to write utility methods, such as shown in Listing 2.6, that operate

on both typed and untyped trees. It would be wasteful to implement them twice.

In Dotty , we use Scala’s expressive type system to use the same runtime data structure to

represent both typed and untyped trees, while relying on the compile-time type system to

guarantee that untyped trees do not escape to places where only typed trees are expected.

This is achieved by having a generic class Tree (see Listing 2.7) that takes a type-argument.

Two instantiations of this class are provided, with type arguments Untyped and Type respec-

tively.

Using this technique, it is possible to indicate if a method is able to work only on typed trees,

or on both. More importantly, it is possible to write a single method that, given a typed tree,

will return a typed tree, and given an untyped tree will return an untyped tree, as shown in the

method findSubTree presented in Listing 2.8.

2.3.3 Type-safe tracking of the kind of a typed tree

It is also quite common that a utility method should return the same kind of AST node that it

was given. Consider a method withType(Listing 2.9) that assigns a type to a tree node: it will

return the same kind of node, but the new node will be known to be typed. This is the same

idiom as the one presented in Section 2.1.1.

10

2.3. Trees

114 object Trees{
115 abstract class Tree[-T >: Untyped] {
116 def tpe: Type
117 ...
118 }
119
120 case class Ident[-T >: Untyped](name: Name) extends RefTree[T]
121
122 abstract class Instance[T >: Untyped <: Type] {
123 type Tree = Trees.Tree[T]
124 type Ident = Trees.Ident[T]
125 type Select = Trees.Select[T]
126 type ValDef = Trees.ValDef[T]
127 ...
128 }
129 }
130
131 object tpd extends Trees.Instance[Type] {
132 ...
133 }
134
135 object untpd extends Trees.Instance[Untyped] {
136 ...
137 }

Listing 2.7 – Trees

138 def isPureExpr(tree: tpd.Tree): Boolean = ...
139
140 def findSubTree[T >: Untyped](pred: Tree[T] => Boolean)(inTree: Tree[T]): Tree[T]= ...

Listing 2.8 – Abstracting over the typedness of a tree in methods

141 object Trees {
142 abstract class Tree[-T >: Untyped] {
143 def withType(tpe: Type)(implicit ctx: Context): ThisTree[Type] = {
144 val tree =
145 if (myTpe == null || (myTpe eq tpe)) this

146 else clone
147 tree.asInstanceOf[Tree[Type]].overwriteType(tpe)
148 tree.asInstanceOf[ThisTree[Type]]
149 }
150
151 type ThisTree[T >: Untyped] <: Tree[T]
152 ...
153 }
154 case class Ident[-T >: Untyped](name: Name) extends RefTree[T]{
155 type ThisTree[-T >: Untyped] = Ident[T]
156 }
157 }

Listing 2.9 – Illustation on generic tracking of the kind of a tree

11

Chapter 2. Structure of the Compiler

2.3.4 Tree copiers

While trees are allocated very frequently inside the compiler, most transformations that are

performed on trees will, in practice, return the same tree unchanged. In order to reduce the

number of trees allocated during transformation, we developed TreeCopiers which checks if

the previous version of the tree can be used instead of allocating a new one.

The previous version of the tree is used in case:

• the updated tree has all the subtrees and attributes unchanged, or

• the type of the tree is assigned for the first time.

Systematic use of TreeCopiers allows the reuse of entire subtrees, reducing pressure on the

allocator and garbage collector and improving memory locality by reducing the size of the

working set.

2.4 Types

Types represent the semantic meaning of a tree. Here are several examples of the surface

syntax for types in Dotty:

158 val a: Int = ... // a has type Int
159 val b: a.type = ... // b has type which inciates that b stores value a
160 val c: Int | Double = ... // c is either an Int or a Double
161 val d: Serializable & Product = ... // d is both a Serializable and a Product
162 val e: List[Int] = ... // e has a type List{T} & {T = Int}
163 val f: Int @unchecked = ... // f is an annotated type
164 def g: Int = ... // g is an expression
165 def h(): Int = ... // h is a parameterless method
166 def k[T](): Int // k is a poly-method that returns a method
167

168 type A = [B] => (B, B) // type A has type type lambda
169 type C >: Int <: Any // type C has type typebounds
170 type D = Int // type D has type typebounds where both lower and
171 // upper bound are the same

Listing 2.10 – Surface syntax for types in Dotty

At the same time, there are some types that developers will never encounter but which are

still needed for correct compilation of Dotty sources, for example MethodType and LazyType.

2.4.1 Classification of types

In order to keep track of such a big variety of types, we have introduced several different

dimensions used to classify them.

12

2.4. Types

176 /** A marker trait for type proxies.
177 * Each implementation is expected to redefine the ‘underlying‘ method.
178 */
179 abstract class TypeProxy extends Type {
180
181 /** The type to which this proxy forwards operations. */
182 def underlying(implicit ctx: Context): Type
183
184 }
185
186 case class AnnotatedType(tpe: Type, annot: Annotation)
187 extends UncachedProxyType with ValueType {...}
188
189 abstract case class RefinedType(parent: Type, refinedName: Name, refinedInfo: Type)
190 extends CachedProxyType with ValueType {...}

Listing 2.12 – Proxy types

TypeTypes and TermTypes

First of all, we introduce a distinction between TypeTypes and TermTypes.

TypeTypes can only apply to definitions of types defined in the program: classes, traits, type

members and type arguments.

172 class Example[A] {
173 type B = Int
174 def foo[C] = 1
175 }

Listing 2.11 – A, B, C and Example will have types that are TypeTypes

TermTypes apply to terms: variables, methods and fields. They are by far the most common

types.

Proxy Types and Ground Types

We introduce a distinction between ground types, which are proper new types, and proxy

types, which somehow add information to already existing types. Examples of Proxy types

include AnnotatedType and RefinedType, see Listing 2.12.

An AnnotatedType indicates that the already existing type has been annotated, such as val f:

Int @unchecked. Here, the underlying type would be Int.

A refined type is used to refine a value of the already existing type member. The straightfor-

ward way would be to refine a member directly, as in the following example:

13

Chapter 2. Structure of the Compiler

191 trait A {
192 type T
193 }
194 val d: A { type T = Int }

Listing 2.13 – Refined types example

Dotty also uses refinement types to implement types of higher kind. For example: List[Int]

would be encoded as List {type List$T = Int }. For more details about this encoding see

[Odersky et al., 2016].

Cached Types and Uncached types

It would be wasteful if we had a new type allocated for each user-defined variable of type

Int. Instead, we cache a lot of types. This not only improves memory consumption, but

additionally allows us to speed up sub-typing checking through the usage of reference quality.

Caching is done through per-compilation hashmaps. Types are hashed and grouped by the

hashcode. A special hash code value is used to indicate that a type has a component that

is not hashed. Hashes are computed lazily and memoized; therefore an additional value is

needed to indicate that the hash has not been computed yet.

195 object Hashable {
196

197 /** A hash value indicating that the underlying type is not
198 * cached in uniques.
199 */
200 final val NotCached = 0
201

202 /** An alternative value returned from ‘hash‘ if the
203 * computed hashCode would be ‘NotCached‘.
204 */
205 private[core] final val NotCachedAlt = Int.MinValue
206

207 /** A value that indicates that the hash code is unknown
208 */
209 private[core] final val HashUnknown = 1234
210

211 /** An alternative value if computeHash would otherwise yield HashUnknown
212 */
213 private[core] final val HashUnknownAlt = 4321
214 }

Listing 2.14 – Special values of hashes

Due to the fact that there are several special values in the caching scheme, we should be very

careful to ensure that when mixing hashes from components of a type, we do not inadvertently

generate a special value. That is why, if a type hashes into a special value, we will put it into

a pre-defined alternative bucket. This means that two buckets — that would otherwise be

14

2.4. Types

hashed to special values — are empty, and their entries are moved to alternative buckets.

Those alternative buckets will have, on average, twice as many elements as other buckets.

215 private def avoidSpecialHashes(h: Int) =
216 if (h == NotCached) NotCachedAlt
217 else if (h == HashUnknown) HashUnknownAlt
218 else h

Listing 2.15 – Avoiding special hashes

SingletonTypes

SingletonTypes are known to contain only a single non-null inhabitant. Though they aren’t

very common in the Scala language itself, they are very common inside compiler data struc-

tures, as TermRef s, ThisTypes and SuperTypes are all singleton types. TermRefs represents the

majority of types allocated in Dotty (see Section 2.11.2).

NamedTypes: TermRefs and TypeRefs

Named types are the core abstraction in Dotty and are closely linked to Denotations, which

will be described later. They represent a reference to a named selection from a prefix. The

prefix is also represented by a type. A special prefix NoPrefix is used to indicate that a selection

is taken from a local scope.

ValueTypes

ValueTypes are types that can be the types of values. For example, a value can have a type Int,

but it can not have a type that is a MethodType.

ProtoTypes

Prototypes are not user-facing and describe an expected type that is used in Typer. A good

illustration would be SelectionProto, which indicates that the expression being typed is in a

location where we expect this tree to have a member with the name name whose type matches

memberProto.

219 abstract case class SelectionProto(name: Name, memberProto: Type, compat:
220 Compatibility, privateOK: Boolean)
221 extends CachedProxyType with ProtoType with ValueTypeOrProto {...}

Listing 2.16 – Examples of ProtoTypes

LazyTypes and Completers

Lazy types are assigned to symbols that have not yet been provided a type. A lazy type is

a suspended computation that will populate the type of a symbol on invocation. They are

15

Chapter 2. Structure of the Compiler

stored as temporary types and will be invoked when this type is needed. Lazy types are used

in Dotty to achieve two goals:

• avoiding loading classes and methods that are not necessary for the compilation;

• discovering and breaking false cycles during typechecking.

2.5 Symbols

Trees provide the information about the classes and methods that are currently being com-

piled. These methods may refer to classes and methods that have been compiled before in

a separate compilation, preceding the current one. We will have neither the trees nor the

source for those methods, but we still need a way to uniquely refer to their definitions, and

that creates the need for Symbols. These classes and methods are commonly loaded from the

bytecode and may come from other JVM languages, such as Java.

A Symbol uniquely identifies a definition. These definitions may be:

• classes, either top-level or inner or local;

• methods, either members of a class or local methods;

• fields, either mutable, or immutable or lazy;

• local variables;

• method parameters;

• type members of classes, including type arguments;

• temporary skolem symbols synthesized in subtyping checks.

At the same time, symbols generally exist only in a single run. Symbols do not store much

information(see Listing 2.17), but we do track if the type level of a symbol identifies a term or a

type. Among type symbols, we differentiate ClassSymbols that define a class or a trait and ad-

ditionally track which file this class came from. All the data describing the semantic meaning

of the symbol is stored inside the Denotation which this symbol refers to (see Section 2.10).

2.6 Flags

The most commonly used information about a symbol is stored in a way that is compact, fast

to access and operate: as the bits of a 64-bit integer.

16

2.6. Flags

222 class Symbol {
223 type ThisName <: Name
224
225 /** The last denotation of this symbol */
226 private[this] var lastDenot: SymDenotation = _
227
228 def denot: Denotation = ...
229
230 final def isTerm(implicit ctx: Context): Boolean =
231 denot.isTerm
232 final def asTerm(implicit ctx: Context): TermSymbol = {
233 assert(isTerm, s"asTerm called on not-a-Term $this");
234 this.asInstanceOf[TermSymbol]
235 }
236
237 final def isType(implicit ctx: Context): Boolean =
238 denot.isType
239 final def asType(implicit ctx: Context): TypeSymbol = {
240 assert(isType, s"isType called on not-a-Type $this");
241 this.asInstanceOf[TypeSymbol]
242 }
243
244 final def isClass: Boolean = isInstanceOf[ClassSymbol]
245 final def asClass: ClassSymbol = asInstanceOf[ClassSymbol]
246 ...
247 }
248
249 type TermSymbol = Symbol { type ThisName = TermName }
250 type TypeSymbol = Symbol { type ThisName = TypeName }
251
252 class ClassSymbol(val assocFile: AbstractFile) extends Symbol {
253 type ThisName = TypeName
254
255 }

Listing 2.17 – Symbols

17

Chapter 2. Structure of the Compiler

Some flags, such as the one indicating if a symbol is mutable, are only applicable to terms.

Other flags, such as the one indicating if a type is contra or co-variant, are only applicable to

types. There are also flags that are applicable to both terms and types such as the privateness

of a symbol.

Because of this, the first two bits of a FlagSet are reserved to indicate if this FlagSet is applicable

to types, terms, or both (see Listing 2.18).

2.7 Runs

A single Dotty compiler can be used for multiple compilations by creating different runs.

Knowledge from previous compilations, such as information from the Java standard library,

will be carried over between runs, speeding up subsequent compilations.

2.8 Phases and Periods

The compiler is split in multiple traversals over the Trees, which represent files being compiled.

These traversals are called phases, and every phase is assigned a single period. Periods may

span multiple phases, but are always in the same run (see Listing 2.19).

2.9 Compiler pipeline and laziness

The compiler definitely needs to read and analyze the entire codebase currently being com-

piled. At the same time, it is very uncommon for an application to refer to all classes and

methods available on the classpath. Loading and computing all the information about all

the classes available on the classpath is impractical; instead, definitions originating from the

classpath are loaded and transformed lazily.

This creates the need for two different pipelines:

• a pipeline of Tree transformations, which eagerly transforms the codebase that is cur-

rently being compiled. This is the main compilation pipeline — it drives the compila-

tion.

• a pipeline of Denotation transformations, that lazily transforms the meaning of types

and symbols. This pipeline is invoked lazily when the main pipeline requires semantic

information that has not yet been computed.

The other motivation for the need of several pipelines was presented in Section 2.2: we need

to erase types in Typer to resolve overloads. This creates two possibilities:

• the denotation pipeline for a symbol or type can be behind the global tree transforma-

18

2.9. Compiler pipeline and laziness

256 /** A FlagSet represents a set of flags. Flags are encoded as follows:
257 * The first two bits indicate whether a flagset applies to terms,
258 * to types, or to both. Bits 2..63 are available for properties
259 * and can be doubly used for terms and types.
260 * Combining two FlagSets with ‘|‘ will give a FlagSet
261 * that has the intersection of the applicability to terms/types
262 * of the two flag sets. We check that this intersection is not empty.
263 */
264 case class FlagSet(val bits: Long) extends AnyVal {
265 /** The union of this flag set and the given flag set
266 */
267 def | (that: FlagSet): FlagSet =
268 if (bits == 0) that
269 else if (that.bits == 0) this

270 else {
271 val tbits = bits & that.bits & KINDFLAGS
272 assert(tbits != 0, s"illegal flagset combination: $this and $that")
273 FlagSet(tbits | ((this.bits | that.bits) & ~KINDFLAGS))
274 }
275
276 /** The intersection of this flag set and the given flag set */
277 def & (that: FlagSet) = FlagSet(bits & that.bits)
278
279 /** The intersection of this flag set with the complement of the given flag set */
280 def &~ (that: FlagSet) = {
281 val tbits = bits & KINDFLAGS
282 if ((tbits & that.bits) == 0) this

283 else FlagSet(tbits | ((this.bits & ~that.bits) & ~KINDFLAGS))
284 }
285
286 /** Does this flag set have a non-empty intersection with the given flag set?
287 * This means that both the kind flags and the carrier bits have a non-empty

intersection.
288 */
289 def is(flags: FlagSet): Boolean = {
290 val fs = bits & flags.bits
291 (fs & KINDFLAGS) != 0 && (fs & ~KINDFLAGS) != 0
292 }
293 }

Listing 2.18 – FlagSets in Dotty

19

Chapter 2. Structure of the Compiler

294 /** A period is a contiguous sequence of phase ids in some run.
295 * It is coded as follows:
296 *
297 * sign, always 0 1 bit
298 * runid 17 bits
299 * last phase id: 7 bits
300 * #phases before last: 7 bits
301 *
302 */
303 class Period(val code: Int) extends AnyVal {
304
305 /** The run identifier of this period. */
306 def runId: RunId = code >>> (PhaseWidth * 2)
307
308 /** The phase identifier of this single-phase period. */
309 def phaseId: PhaseId = (code >>> PhaseWidth) & PhaseMask
310
311 /** The last phase of this period */
312 def lastPhaseId: PhaseId =
313 (code >>> PhaseWidth) & PhaseMask
314 ...
315 }

Listing 2.19 – Periods

tion pipeline if we have not needed information about this symbol yet;

• the denotation pipeline for a symbol can be ahead of of the global tree transformation

pipeline if we have needed to see the future type of this symbol, e.g. its erased type.

2.10 Denotations and Denotation Transformers

A denotation is the result of resolving a name during a given period. A denotation carries all

the semantic information for a symbol:

• name;

• type or completer;

• signature;

• flags;

• annotations;

• privateWithin, which defines a package within which this member is private;

• denotation validity period.

20

2.10. Denotations and Denotation Transformers

316 abstract class Denotation(val symbol: Symbol) {
317 /** The type info of the denotation, exists only for non-overloaded denotations */
318 def info(implicit ctx: Context): Type
319

320 /** The type info, or, if this is a SymDenotation where the symbol
321 * is not yet completed, the completer
322 */
323 def infoOrCompleter: Type
324

325 /** The period during which this denotation is valid. */
326 def validFor: Period
327

328 /** Is this a reference to a type symbol? */
329 def isType: Boolean
330

331 /** Is this a reference to a term symbol? */
332 def isTerm: Boolean = !isType
333

334 /** Is this denotation overloaded? */
335 final def isOverloaded = isInstanceOf[MultiDenotation]
336

337 /** The signature of the denotation. */
338 def signature(implicit ctx: Context): Signature
339 }

Listing 2.20 – Denotations in Dotty

Denotations contain a symbol, in case there is a single one that can identify all names that

the denotation resolves to. In case there is no such symbol, a sentinel NoSymbol is used. In

the snippet below, the denotation of the call to r.f will have symbol=NoSymbol.

340 class Foo { def baz: Int }
341 class Bar { def baz: Int }
342 val r: A | B =
343 if (random())
344 new Foo
345 else

346 new Bar
347

348 r.f

Listing 2.21 – Example of denotation with symbol=NoSymbol

A Denotation is either a SingleDenotation or a MultiDenotation. SingleDenotations store all

semantic information about a single member. A MultiDenotation indicates that there are

multiple entities with the same name (e.g., overloaded methods).

21

Chapter 2. Structure of the Compiler

349 abstract class SingleDenotation(symbol: Symbol) extends Denotation(symbol) {
350 /** The next SingleDenotation in this run, with wrap-around from last to first. */
351 protected var nextInRun: SingleDenotation = this

352

353 /** Produce a denotation that is valid for the period of the given context */
354 def current(implicit ctx: Context): SingleDenotation = ...
355

356 ...
357 }
358

359 case class MultiDenotation(denot1: Denotation, denot2: Denotation) extends Denotation(
NoSymbol) {

360 ...
361 }

Listing 2.22 – SingleDenotations and MultiDenotations in Dotty

SingleDenotations create circular linked lists, where every succeeding entry is the meaning of

the previous one in the next period and the last meaning is followed by the first one. Consider

the example below:

362 class C {
363 def id[T](t: T) = t
364 }

In this example, the type and the signature of the method id will be changed by erasure; the

denotation cycle is illustrated by Figure 2.1.

Figure 2.1 – Denotation cycle for id

Denotations for the entire compilation unit are illustrated in Figure 2.2

2.11 Measurements

This section contains various measurements that are helpful when reasoning about the per-

formance of the compiler.

2.11.1 Frequency of trees

Figure 2.3 presents allocation statistics for different kinds of trees during an entire compilation

run of Dotty compiling itself. This graph is instrumental in understanding the frequencies of

22

2.11. Measurements

Figure 2.2 – Denotation cycle for class C

different tree kinds. Ident, Apply and Select are the most frequent nodes and together cover

53.8% of trees.

2.11.2 Frequency of types

Figure 2.4 presents allocation statistics for different kinds of types during an entire compi-

lation run of Dotty compiling itself. As can be seen from the graph, term references are the

most frequent kind of type, accounting for more than 60% of all allocated types.

2.11.3 Phase running time

Figure 2.5 shows the distribution of compilation times during the compilation of the Dotty

compiler itself. This distribution is very characteristic of how Dotty compiles most com-

mon code bases. As can be seen, the frontend, which includes Parser and Typer, accounts

for around 40% of the entire compilation run, while bytecode generation takes around 18%.

Erasure takes around 8%. The remaining 24% are split among mini-phase blocks.

Figure 2.6 shows a similar distribution for compilation of the standard library. The standard

library contains many complex inheritance hierarchies. Checking the correctness of overrid-

ing as well as generating bridges takes more time for such code. As can be seen in the graph,

blocks which include mixin and refchecks take substantially larger portions of compilation

time. This is because the complexity transformations implemented by those phases, namely

overriding checks and trait composition is proportional to number of super classes in the in-

heritance hierarchy. Standard library contains classes with uncommonly large number super

classes and thus represents an irregular codebase.

23

Chapter 2. Structure of the Compiler

18.4%

18.1%

17.2%

8.3%

7.
3%

5.
9%

5.9%
4.7%

3.1%

Tree Class count
Ident 762635
Apply 749869
Select 713928
TypeTree 342121
Block 302485
ValDef 244627
DefDef 244374
This 194221
TypeApply 129870
If 89533
Literal 75250
CaseDef 43026
New 41523
Template 30801
Typed 26023
TypeDef 25750
Match 17628
Assign 15779
Closure 15238
Bind 10581
Others 64963

Tree Class count
UnApply 10292
PackageDef 9009
Thicket 9002
Super 7472
JavaSeqLiteral 6303
AppliedTypeTree 5496
Import 4544
SeqLiteral 4212
Try 1655
Inlined 1204
TypeBoundsTree 1136
NamedArg 1091
Annotated 1076
SingletonTypeTree 956
Return 642
Alternative 552
ByNameTypeTree 165
LambdaTypeTree 110
BackquotedIdent 23
RefinedTypeTree 18
AndTypeTree 5

Figure 2.3 – Tree allocation counts when compiling Dotty

24

2.11. Measurements

32
.1

%

29.7%

11
.3

%

6.6%

Type Class count
TermRefWithFixedSym 1040708
TermRefWithSignature 962673
CachedMethodType 364890
CachedWildcardType 213971
ImplicitMethodType 96569
CachedSelectionProto 82369
PolyType 77698
CachedExprType 69218
FunProto 64416
RealTypeBounds 58440
TypeRefWithFixedSym 35247
CachedConstantType 23558
CachedClassInfo 22470
CachedViewProto 22240
CachedThisType 19007
TypeVar 18079
HKTypeLambda 10870
CachedAndType 7976
CachedSuperType 7704
CachedJavaArrayType 7351
Other 32294

Type Class count
CachedHKApply 6304
UnapplySelectionProto 5588
UnapplyFunProto 5588
JavaMethodType 3262
CachedOrType 3059
FunProtoTyped 2871
ErrorType 2759
TempClassInfo 1877
LambdaParam 977
RecType 9

Figure 2.4 – Type allocation counts when compiling Dotty

25

Chapter 2. Structure of the Compiler

40
.5

%

3.8%
3.5%

5.1%

5.0%

4.8
%

7.
8%

3.6%

17.9%

Phases Time
frontend 18650 ms
sbt-deps 461 ms
posttyper 1727 ms
sbt-api 697 ms
pickler 1622 ms
firstTransform, checkReentrant, elimJavaPackages 467 ms
checkStatic, checkPhantomCast, elimRepeated, refchecks, normalize-
Flags, extmethods, expandSAMs, tailrec, byNameClosures, liftTry, hoist-
SuperArgs, classOf

2341 ms

tryCatchPatterns, patternMatcher, explicitOuter, explicitSelf, short-
cutImplicits, crossCast, splitter

2311 ms

vcInlineMethods, isInstanceOfEvaluator, seqLiterals, intercepted, get-
ters, elimByName, augmentScala2Traits, resolveSuper, simplify, primi-
tiveForwarders, functionXXLForwarders, arrayConstructors

2222 ms

erasure 3585 ms
elimErasedValueType, vcElideAllocations, mixin, LazyVals, memoize,
nonLocalReturns, capturedVars, constructors, functionalInterfaces, get-
Class, simplify

1676 ms

linkScala2Impls, lambdaLift, elimStaticThis, flatten, restoreScopes 1335 ms
transformWildcards, moveStatic, expandPrivate, selectStatic, collectEn-
tryPoints, collectSuperCalls, dropInlined, labelDef

708 ms

genBCode 8245 ms

Figure 2.5 – Dotty compilation time per phase

26

2.11. Measurements

32
.4

%3.6%7.0%

9.8%

10
.9

%

7.
5%

4.7%

15.1%

Phases Time
frontend 12357 ms
sbt-deps 270 ms
posttyper 1372 ms
sbt-api 2673 ms
pickler 1011 ms
firstTransform, checkReentrant, elimJavaPackages 313 ms
checkStatic, checkPhantomCast, elimRepeated, refchecks, normalize-
Flags, extmethods, expandSAMs, tailrec, byNameClosures, liftTry, hoist-
SuperArgs, classOf

3738 ms

tryCatchPatterns, patternMatcher, explicitOuter, explicitSelf, short-
cutImplicits, crossCast, splitter

939 ms

vcInlineMethods, isInstanceOfEvaluator, seqLiterals, intercepted, get-
ters, elimByName, augmentScala2Traits, resolveSuper, simplify, primi-
tiveForwarders, functionXXLForwarders, arrayConstructors

4144 ms

erasure 2866 ms
elimErasedValueType, vcElideAllocations, mixin, LazyVals, memoize,
nonLocalReturns, capturedVars, constructors, functionalInterfaces, get-
Class, simplify

1805 ms

linkScala2Impls, lambdaLift, elimStaticThis, flatten, restoreScopes 577 ms
transformWildcards, moveStatic, expandPrivate, selectStatic, collectEn-
tryPoints, collectSuperCalls, dropInlined, labelDef

325 ms

genBCode 5751 ms

Figure 2.6 – Stdlib compilation time per phase

27

Chapter 2. Structure of the Compiler

2.11.4 Denotation cycle length

Figure 2.7 presents statistics of the length of denotation lists. As can be seen, most denotations

have length 1. This is because these denotations represent methods and fields of classes

that were loaded during classpath parsing but were not necessary for compilation and their

denotation does not change during the compilation run.

Figure 2.8 shows which phases create new denotations. As can be seen, a small number of

phases, namely Frontend, Erasure and PatternMatcher, account for most allocated denota-

tions.

3.2%

20
.4

%

75.3%

Cycle length Count
10 1
9 11
8 80
7 379
6 406
5 851
4 2492
3 12415
2 79903
1 295090

Figure 2.7 – Distribution of Denotation cycle length during the compilation of Dotty

28

2.11. Measurements

fro
n

ten
d

306206

erasu
re

100274

p
attern

M
atch

er

23172

lam
b

d
aLift

14058

n
o

rm
alizeFlags

13245

h
o

istSu
p

erA
rgs

12548

reso
lveSu

p
er

5832
m

em
o

ize
5053

getters

4899

p
o

sttyp
er

4075

elim
E

rased
V

alu
eTyp

e

3263

selectStatic

2697

resto
reSco

p
es

2079

exp
licitO

u
ter

1959

elim
R

ep
eated

1931

au
gm

en
tScala2Traits

1615

O
th

ers

9606

DenotationTransformer denotations
frontend 306206
erasure 100274
patternMatcher 23172
lambdaLift 14058
normalizeFlags 13245
hoistSuperArgs 12548
resolveSuper 5832
memoize 5053
getters 4899
posttyper 4075
elimErasedValueType 3263
selectStatic 2697
restoreScopes 2079
explicitOuter 1959
elimRepeated 1931
augmentScala2Traits 1615
Others 9606

DenotationTransformer denotations
byNameClosures 1596
flatten 1507
LazyVals 1421
mixin 1303
extmethods 915
vcInlineMethods 843
constructors 553
expandPrivate 489
firstTransform 316
capturedVars 298
elimByName 183
vcElideAllocations 127
moveStatic 28
liftTry 18

Figure 2.8 – Number of denotations created by each denotation transformer

29

3 Shared Backend Interface

Careful choice of abstractions allows us to create maintainable code that reads nicely and

rarely needs to be modified.

In this chapter we will present the Backend interface. This abstraction was introduced during

the early days of Dotty with the goal of reusing the bytecode emission from scalac, the cur-

rent Scala compiler. It allows us to run the Backend in either Scalac or Dotty, as both these

compilers provide an implementations for BackendInterface.

We have chosen to use implementations of BackendInterface for demonstrating an advanta-

geous use of Scala abstractions:

• BackendInterface is probably the most abstract part of the Dotty compiler: it permits

us to use the same backend efficiently for both scalac and Dotty, although those two

compilers have different representations for the AST and classtable and do not cooper-

ate.

• BackendInterface has to describe both low-level bytecode specific notions as well as

Scala specific notions. It covers multiple layers that are well separated.

• This is one of the oldest parts of Dotty; its original design is unchanged since the very

early days.

• In order to be easier to maintain, BackendInterface uses high-level types to introduce a

post-hoc structure on both compilers.

• Over the course of Dotty development, as Dotty was implementing different design

decisions, BackendInterface demonstrated the effectiveness of this approach.

All the language features necessary to implement such an API are available both in Scala 2

and in Dotty.

31

Chapter 3. Shared Backend Interface

3.1 Abstracting over AST classes

Both scalac and Dotty use a tree-based representations for compilation units. They do not

use the same classes and BackedInterface should be able to work with classes provided by

both. For this purpose, it defines abstract types representing different AST nodes:

365 /* Interface to abstract over frontend inside backend.
366 * Intended to be implemented by both scalac and dotc
367 */
368 abstract class BackendInterface {
369 type Flags = Long
370

371 type Constant >: Null <: AnyRef
372 type Symbol >: Null <: AnyRef
373 type Type >: Null <: AnyRef
374 type Annotation >: Null <: AnyRef
375 type Tree >: Null <: AnyRef
376 type Modifiers >: Null <: AnyRef
377 type TypeDef >: Null <: Tree
378 type Apply >: Null <: Tree
379 type Select >: Null <: Tree
380 type TypeApply >: Null <: Tree
381 type ClassDef >: Null <: Tree
382 type Try >: Null <: Tree
383 type If >: Null <: Tree
384 type LabelDef >: Null <: Tree
385 type ValDef >: Null <: Tree
386 type Throw >: Null <: Tree
387 type Return >: Null <: Tree
388 ... // other trees
389 }

Listing 3.1 – AST node kinds in BackendInterface

Listing 3.1 introduces an API based on abstract types which are checked by the compiler but

are all erased to java.lang.Object.

This is very handy as the runtime classes used to represent ASTs are different in Dotty and

scalac. Those classes share no common base classes nor even interfaces.

We also need to create a way to use those classes uniformly inside backend. This requires:

• providing a way to pattern match over those abstract types, despite them being com-

pletely erased at runtime;

• providing a way to invoke methods on those abstract types, despite them sharing no

common interfaces;

• providing a way to deconstruct those classes, despite them having different data layouts

32

3.2. Pattern Matching on Abstract Types

and underlying representations

3.2 Pattern Matching on Abstract Types

390 tree match {
391 ...
392 case t: TypeApply =>
393 generatedType = genLoadIf(t, expectedType)
394 case _ =>
395 abort(s"Unexpected tree in genLoad: $tree/${tree.getClass} at: ${tree.pos}")
396 }

Listing 3.2 – Example of pattern matching code from Backend

Backend uses dispatch code similar to Listing 3.2 to handle different kinds of trees. If the

abstract type that defines TypeApply is erased, how do we support pattern matching over this

type?

Both Dotty and Scalac support allow us to provide an implicit ClassTag that would be used

during runtime to perform a type test:

397 abstract class BackendInterface {
398
399 implicit val TypeApplyTag: ClassTag[TypeApply]
400 implicit val ClassDefTag: ClassTag[ClassDef]
401 implicit val TryTag: ClassTag[Try]
402 implicit val AssignTag: ClassTag[Assign]
403 implicit val IdentTag: ClassTag[Ident]
404 implicit val IfTag: ClassTag[If]
405 implicit val LabelDefTag: ClassTag[LabelDef]
406 implicit val ValDefTag: ClassTag[ValDef]
407 implicit val ThrowTag: ClassTag[Throw]
408 implicit val ReturnTag: ClassTag[Return]
409 ... // other class tags
410 }

Listing 3.3 – AST TypeTags in BackendInterface

The unapply method of those ClassTags will be invoked instead of a type test during runtime:

411 var151_83 = interface().TypeApplyTag().unapply(var4_4);

412 if (var151_83.isEmpty() || var151_83.get() == null || !true)
413 throw interface().abort(new StringContext((Seq)Predef..MODULE$.wrapRefArray((Object

[])new String[]{"Unexpected tree in genLoad: ", "/", " at: ", ""})).s((Seq)Predef..
MODULE$.genericWrapArray((Object)new Object[]{tree, tree.getClass(), interface().
treeHelper(tree).pos()})));

414 else

415 generatedType = this.genTypeApply(var4_4);

Listing 3.4 – Decompiled version the of snippet above with type test

33

Chapter 3. Shared Backend Interface

3.3 Providing Methods on Abstract Types

You may have noticed that on Line 395 there is a call to method pos on an abstract type Tree

that did not define a method pos.

The way this works is that those methods are added by an implicit decorator.

416 implicit def treeHelper(a: Tree): TreeHelper
417

418 abstract class TreeHelper{
419 def symbol: Symbol
420 def tpe: Type
421 def isEmpty: Boolean
422 def pos: Position
423 def exists(pred: Tree => Boolean): Boolean
424 }

This makes it possible to provide an API for an abstract type that itself is left abstract without

requiring all implementations to collaborate by subclassing a common class.

The call compiles to the code below:

425 var151_83 = interface().TypeApplyTag().unapply(var4_4);
426 if (var151_83.isEmpty() || var151_83.get() == null || !true)
427 throw interface().abort(new StringContext((Seq)Predef..MODULE$.wrapRefArray((Object

[])new String[]{"Unexpected tree in genLoad: ", "/", " at: ", ""})).s((Seq)Predef..
MODULE$.genericWrapArray((Object)new Object[]{tree, tree.getClass(), interface().

treeHelper(tree).pos()})));
428 else

429 generatedType = this.genTypeApply(var4_4);

Listing 3.5 – Decompiled version of the snippet above with decorated tree

3.4 Deconstructing Abstract Classes with Pattern Matching

The simple pattern matching presented in Listing 3.2 is not the common case. The common

case includes pattern matching on structurally nested parts of the tree such as in the example

below:

34

3.5. Symbol interface

430 tree match {
431 ...
432 case app @ Closure(env, call, functionalInterface) =>
433 val (fun, args) = call match {
434 case Apply(fun, args) => (fun, args)
435 case t @ Select(_, _) => (t, Nil)
436 case t @ Ident(_) => (t, Nil)
437 }
438 ...
439 }

Listing 3.6 – Example of deconstructing in pattern matching code from Backend

In order to support this kind of pattern matching, we create deconstructors(Listing 3.7) that

support name-based pattern matching [Dotty, 2015]. Note that this feature was only docu-

mented in Dotty, though scalac also supports a variant of it as well [Phillips, 2013].

This also serves as a way to access fields, such as in the snippet below:

471 val ArrayValue(tpt, elems) = av

Listing 3.8 – Accessing a field of an abstract class

3.5 Symbol interface

Dotty and scalac have vastly different representations for internal datastructures. The biggest

disparity comes from Symbols: scalac symbols contain complete semantic information indi-

cating their origins, while in Dotty, all information is encapsulated inside a Denotation.

BackendInterface provides a high level common API for Symbols that encapsulates intentions

instead of low-level implementation details. For example, both Dotty and Scalac carefully

pack information about a class into flags, but exposing those flags would be very tricky. High

level methods, such isPublic: Boolean, are provided instead, that will be implemented using

low level operations on flags (see Listing 3.9). A similar approach is taken for other semantic

information, such as type, name and members of the symbol: the API conceals differences in

internal representations between compilers.

A similar approach has been taken for Types, Positions, Names and Annotates: through a

decorator we provide a high level API that hides internal representation details.

3.6 Case study: removing Throw tree

After two years of Dotty development we have decided to represent throw with a call to an

intrinsified method instead of having a separate tree kind for it. This was a convenient op-

portunity to see if BackendInterface provides the right level of abstraction. In Listing 3.10 can

find the entire patch needed to migrate from a separate tree to a kind of apply node:

35

Chapter 3. Shared Backend Interface

440 val Closure: ClosureDeconstructor
441 ..// other Deconstructors
442 val Select: SelectDeconstructor
443 val Apply: ApplyDeconstructor
444
445 abstract class DeconstructorCommon[T >: Null <: AnyRef] {
446 var field: T = null

447 def get: this.type = this

448 def isEmpty: Boolean = field eq null

449 def isDefined = !isEmpty
450 def unapply(s: T): this.type ={
451 field = s
452 this

453 }
454 }
455
456 abstract class ClosureDeconstructor extends DeconstructorCommon[Closure]{
457 def _1: List[Tree] // environment
458 def _2: Tree // meth
459 def _3: Symbol // functionalInterface
460 }
461
462 abstract class SelectDeconstructor extends DeconstructorCommon[Select]{
463 def _1: Tree // qual
464 def _2: Name // name
465 }
466
467 abstract class ApplyDeconstructor extends DeconstructorCommon[Apply] {
468 def _1: Tree // fun
469 def _2: List[Tree] // args
470 }

Listing 3.7 – Abstract type deconstructors

36

3.6. Case study: removing Throw tree

472 implicit def symHelper(sym: Symbol): SymbolHelper
473
474 abstract class SymbolHelper {
475 // names
476 def fullName(sep: Char): String
477 def fullName: String
478 def javaSimpleName: String
479 def javaBinaryName: String
480 ... // other name methods
481
482 // types
483 def info: Type
484 def thisType: Type
485
486 // tests
487 def isClass: Boolean
488 def isType: Boolean
489 def isAnonymousClass: Boolean
490 def isConstructor: Boolean
491 def isAnonymousFunction: Boolean
492 def isMethod: Boolean
493 def isPublic: Boolean
494 def isSynthetic: Boolean
495 ... // other tests
496
497 // members
498 def primaryConstructor: Symbol
499 def nestedClasses: List[Symbol]
500 def memberClasses: List[Symbol]
501 def annotations: List[Annotation]
502 ... // other kinds of members
503 }

Listing 3.9 – Symbol API in the BackendInterface

37

Chapter 3. Shared Backend Interface

504 @@ -48,7 +48,7 @@ class DottyBackendInterface()(implicit ctx: Context) extends
BackendInterface{

505 type Ident = tpd.Ident
506 type If = tpd.If
507 type ValDef = tpd.ValDef
508 - type Throw = tpd.Throw
509 + type Throw = tpd.Apply
510 type Return = tpd.Return
511 type Block = tpd.Block
512 type Typed = tpd.Typed
513 @@ -713,7 +713,16 @@ class DottyBackendInterface()(implicit ctx: Context) extends

BackendInterface{
514 }
515
516 object Throw extends ThrowDeconstructor {
517 - def get = field.expr
518 + def get = field.args.head
519 +
520 + override def unapply(s: Throw): DottyBackendInterface.this.Throw.type = {
521 + if (s.fun.symbol eq defn.throwMethod) {
522 + field = s
523 + } else {
524 + field = null
525 + }
526 + this
527 + }
528 }

Listing 3.10 – Changes performend to BackendInterfance implementation due to replacing
Throw node with synthetic Apply

38

3.7. Deconstructors & Decorators: choice between singletons and fresh objects

As can be seen from Listing 3.10, changing the underlying representation is very easy in such a

design. The only necessary changes were to 1) indicate that a different class is used at runtime

to represent nodes that have a semantic meaning of a Throw node; and 2) implement the

right technique to test if the Apply node represents a throw statement.

3.7 Deconstructors & Decorators: choice between singletons and

fresh objects

Consider the code presented in Listing 3.11, which is a simplified version of the working of

BackendInterface:

The Line 559 shows how the code is written against such an API, while Line 563 shows the

desugared versions of the same code.

Note that the call to Try.unapply on Line 566 stores the object a to the field of a globally

accessible singleton on Line 539. This is done to save allocation, but comes at the cost of

thread safety. A potential alternative implementation could have allocated an object per call

to the unapply. We benchmark both implementations.

3.8 Performance impact

In oder to see what performance impact those additional abstractions have, we have imple-

mented a BackendInterface implementation for scalac. We compared this implementation

against the original bytecode emission phase that uses the scalac-specific API directly. We

have benchmarked both the version that allocates a new object for every call and the version

that uses global singletons.

As can be seen from Figure 3.1, both implementations of BackendInterface incur a substantial

overhead on the first run. The overhead becomes substantially lower after the warmup. The

likely explanation is that indirection through BackendInterface introduces a substantial slow-

down for interpreted code, while higher tier compilers are able to eliminate and inline away

most of it. This optimisation is able to trigger because in the runtime only a single subclass of

BackendInterface is ever instantiated.

Unfortunately, the thread safe version with fresh objects performs 39% worse than the version

that uses globally accessible singletons to store intermediate values. That is why the version

used in Dotty is not thread safe.

39

Chapter 3. Shared Backend Interface

529 trait Interface {
530 type Try;
531 val Try: TryDeconstructor
532 implicit val TryTag: ClassTag[Try]
533
534 abstract class DeconstructorCommon[T >: Null <: AnyRef] {
535 var field: T = null

536 def get: this.type = this

537 def isEmpty: Boolean = field eq null

538 def unapply(s: T): this.type ={
539 field = s
540 this

541 }
542 }
543 abstract class TryDeconstructor extends DeconstructorCommon[Try]{
544 def _1: Tree // expr
545 def _2: List[Tree] // handlers
546 def _3: Tree // finalizer
547 }
548 }
549
550 object Implementation extends Interface {
551 type Try = tpd.Try
552 implicit val TryTag: ClassTag[Try] = ClassTag[Try](classOf[Try])
553 object Try extends TryDeconstructor {
554 def _1: Tree = field.expr
555 def _2: List[Tree] = field.cases
556 def _3: Tree = field.finalizer
557 }
558
559 def foo(a: Object) = a match {
560 case Try(exp, cases, fin) => <body>
561 }
562
563 def foo_desugared(a: Object) = {
564 val synth1:Option[Try] = TryTag.unapply(a)
565 if (synth1.isEmpty) throw ...
566 val synth2: Try = Try.unapply(synth.get())
567 if (synth2.isEmpty) throw ...
568 val synth3: Try = synth2.get()
569 val exp = synth3._1
570 val cases = synth3._2
571 val fin = synth3._2
572 <body>
573 }
574 }

Listing 3.11 – Singleton based implementation

40

3.8. Performance impact

n
o

in
terface,fi

rstru
n

20.5

n
o

in
terface,w

arm

12.7

in
terface

w
ith

fresh
o

b
jects,fi

rstru
n

29.3

in
terface

w
ith

fresh
o

b
jects,w

arm
ru

n

18.7

in
terface

w
ith

sin
gleto

n
s,fi

rstru
n

28.8

in
terface

w
ith

sin
gleto

n
s,w

arm
ru

n
13.5

Implementation running time %
no interface, first run 20.5
no interface, warm 12.7
interface with fresh objects, first run 29.3
interface with fresh objects, warm run 18.7
interface with singletons, first run 28.8
interface with singletons, warm run 13.5

Figure 3.1 – Performance impact of BackendInterface

41

Chapter 3. Shared Backend Interface

3.9 Related work

3.9.1 Scala Reflect

Scala Reflect[Coppel, 2008] is an API layer above Scalac trees that is used for meta-programming.

Similarly to the BackendAPI, the intention was to provide a high level API that would be used

to decouple code from the existing implementation. In the case of Scala Reflect, this was done

to discourage meta-programmers from using functions that were not intended as part of the

public API of the compiler.

The substantial difference is that Scala trees know about Scala Reflect, and in fact, they directly

inherit them, implementing the API directly. Given that there is a single implementation,

this was easier to achieve. In our case, two kinds of trees evolve separately and use slightly

different guidelines for the API design. Agreeing on a common interface to inherit between

two compilers is harder. This is true in particular because virtually all methods in Dotty take

an instance of Context that contains global information. In scalac, almost all classes are inner

classes of Global cake and don’t need a reference to it.

3.9.2 Project Amber

Project Amber[Goetz and Rose, 2017] explores a possible direction for supporting pattern

matching in the Java Language. One of the issues addressed in this project is how to extract

subpatterns without boxing.

The project proposes a compilation scheme based on method handles that would solve the

problem of multiple values returned by an inner patter, without introducing boxing. If this

project is successful, the techniques proposed there will become an alternative to currently

available approaches discussed in Section 3.7.

42

4 Miniphases: Compilation using Modu-
lar and Efficient Tree Transformations

Production compilers commonly perform dozens of transformations on an intermediate rep-

resentation. Running those transformations in separate passes harms performance. One ap-

proach to recover performance is to combine transformations by hand in order to reduce the

number of passes. Such an approach harms modularity, and thus makes it hard to maintain

and evolve a compiler over the long term, and makes reasoning about performance harder.

This section describes a methodology that allows a compiler writer to define multiple trans-

formations separately, but fuse them into a single traversal of the intermediate representation

when the compiler runs. This approach has been implemented in the Dotty compiler for the

Scala language. Our performance evaluation indicates that this approach reduces the running

time of tree transformations by 35% and shows that this is due to improved cache friendliness.

At the same time, the approach improves total memory consumption by reducing the object

tenuring rate by 50%. This approach enables compiler writers to write transformations that

are both modular and fast at the same time.

Attribution

The work presented in this chapter has been performed in collaboration with Martin Odersky

and Ondřej Lhoták. The author of this thesis has proposed the idea of mini-phases as well its

initial implementation — one that is close to the simplified version presented in this chapter.

Professor Odersky has computed performance goals presented in Section 4.3 and together

with the author of this thesis has developed a version that is currently in use in the Dotty

compiler. This version uses reflection to pre-compute the transformation plan, rather than

the function composition approach that was presented in this chapter. Ondřej Lhoták has

helped considerably during discussions to find corner cases and work out an accessible forms

of presentation.

This work has been published and presented at the 2017 ACM SIGPLAN International Confer-

ence on Programming Language Design and Implementation[Petrashko et al., 2017].

43

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

4.1 Introduction

Contemporary compilers are complicated, consisting of thousands to millions of lines of

code. The design of a compiler is constrained by multiple competing requirements, and

it is challenging to satisfy all of them simultaneously. A compiler needs to be correct, and

therefore easy to test. A compiler needs to be maintainable and easy to debug. To serve both

of these needs, the design of the compiler should be modular. But a compiler also needs to

be fast. Compiling a complicated programming language is computationally expensive, but

software developers run their compilers many times during development, and waiting for the

compiler hinders their productivity. A good compiler design must provide both modularity

and performance at the same time.

Balancing modularity and performance has been a difficult and long-running challenge in

the compiler for the Scala programming language. Compilation times have been a frequent

complaint from users. On many occasions, compiler developers had to make difficult trade-

offs between modularity, maintainability, and performance.

Most compilers are composed of a sequence of transformations of some intermediate repre-

sentation of the program being compiled. Often, a core part of the intermediate representa-

tion is an abstract syntax tree.

In this chapter, we propose a new design for tree transformations that is both modular and

efficient at the same time. This design is adopted in the Dotty compiler for Scala. We present

the design to demonstrate its modularity and we empirically evaluate its performance in the

Dotty compiler.

For modularity, each transformation of the intermediate representation should be expressed

as an independent traversal of the abstract syntax tree. However, the tree is much too large

to fit in cache, so each traversal of the whole tree is expensive. Our solution enables the com-

piler developer to implement, test, and reason about transformations as separate traversals.

However, our approach fuses the transformations performed at individual tree nodes so that

multiple logical transformation passes (“Miniphases”) are performed in a single traversal of

the abstract syntax tree.

The remainder of this chapter is organized as follows:

• Section 4.2 shows the conflict between modularity and performance requirements

based on experience with Scala 2.x compilers;

• Section 4.3 presents target performance characteristics that we had in mind when de-

signing the Miniphases framework;

• Section 4.4 introduces proposed design abstractions and describes the implementation

inside the Dotty compiler;

44

4.2. Background: Scala Compilers

• Section 4.5 presents the results of experiments that evaluate the impact of the Miniphases

framework on GC object promotion rate and CPU cache misses;

• Section 4.6 covers limitations of the framework and soundness of fusion;

• Section 4.7 discusses real-world experience with the framework, such as maintenance

cost and the on-boarding process for new contributors;

• Section 4.8 presents related work;

• Section 4.9 concludes.

4.2 Background: Scala Compilers

The current Scala compiler has been the production compiler since version 2.0 of Scala in

2006. The Miniphase approach that we study in this chapter is being implemented in Dotty

, a next-generation compiler for experimenting with new language features and compiler

designs for Scala.

Both compilers share the following common structure. The major internal data structures

are trees, which describe the syntax of the program being compiled, and are gradually trans-

formed by the compiler pipeline; and types and symbols, which describe semantic infor-

mation and the relationships between program entities. The program being compiled is

represented as a sequence of compilation units. Every compilation unit is a single source file

which may define multiple top-level classes.

The tree nodes in both compilers are logically immutable and do not have a link to their

parent node. This allows us to reuse trees in multiple locations, and simplifies debugging

since no mutation to trees is possible. When trees are modified, they are rebuilt using copiers.

An optimization avoids this copying in the (quite common) case where a transform returns a

tree with the same fields as its input.

Symbols are unique identifiers for definitions, including members and local variables, coming

both from sources currently being compiled as well as their binary dependencies. Types are

used not only to describe the type of an entity, but can also serve as references to program

definitions such as methods or variables. In the Dotty compiler, this has been generalized

to a point where all references to other program parts are embodied in types. This is possi-

ble, and convenient, because the Scala type system includes singleton types [Odersky, 2014],

which guarantee that an expression has the same value as some entity such as a field or vari-

able, and are thus equivalent to references to those fields and variables. Types also encode

constants [Leontiev et al., 2016] and with higher kinds.

The execution of the compiler can be broadly divided into the front-end, the tree transfor-

mation pipeline, and the code generator. The front-end parses and type-checks source code,

and generates trees annotated with type information. The tree transformations gradually

45

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

phase name id description
parser 1 parse source into ASTs, perform simple desugaring
namer 2 resolve names, attach symbols to named trees

packageobjects 3 load package objects
typer 4 the meat and potatoes: type the trees

patmat 5 translate match expressions
superaccessors 6 add super accessors in traits and nested classes

extmethods 7 add extension methods for inline classes
pickler 8 serialize symbol tables

refchecks 9 reference/override checking, translate nested objects
uncurry 10 uncurry, translate function values to anonymous classes

fields 11 synthesize accessors and fields, including bitmaps for lazy vals
tailcalls 12 replace tail calls by jumps

specialize 13 @specialized-driven class and method specialization
explicitouter 14 this refs to outer pointers

erasure 15 erase types, add interfaces for traits
posterasure 16 clean up erased inline classes

lambdalift 17 move nested functions to top level
constructors 18 move field definitions into constructors

flatten 19 eliminate inner classes
mixin 20 mixin composition

cleanup 21 platform-specific cleanups, generate reflective calls
delambdafy 22 remove lambdas

jvm 23 generate JVM bytecode
terminal 24 the last phase during a compilation run

Table 4.1 – Phases in Scala 2.12.0

desugar and lower the Scala-like code to a simpler form that is close to Java bytecode. The

code generator emits Java bytecode from the lowered trees. In this chapter, our focus is on the

middle phases, which constitute the tree transformation pipeline.

4.2.1 Experience with the Scala Compiler

In this section, we review the accumulated experience from the past ten years of developing

the Scala compiler, focusing especially on modularity and performance.

The compiler that has been used for Scala versions 2.0 to 2.12 is organized as a sequence

of phases. Each phase is a function that takes the tree of a compilation unit as input and

returns a transformed tree as output. The implementation of each phase can be arbitrary

Scala code, and there are no restrictions on how it, for example, traverses the tree. This

Megaphase approach is illustrated in Figure 4.1. In the compiler for Scala version 2.12.0, there

are 24 such phases, listed in Table 4.1.

The Megaphase approach was originally intended to be modular in that each phase is an

46

4.2. Background: Scala Compilers

Figure 4.1 – Mega-phase based transformation of a tree

47

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

575 trait Interface {
576 def interfaceMethod = 1
577 lazy val interfaceField = 2
578 }
579
580 class Increment(by: Int) extends Interface {
581 def incOrZero(b: Any) = b match {
582 case b: Int => b + by
583 case _ => 0
584 }
585 }

Listing 4.1 – Sample Scala program

independent transformation of the tree.

A drawback is that each phase that implements a specific language feature must traverse the

entire tree to find uses of that feature. When a use of the feature is found, the phase transforms

the relevant tree node. All ancestor nodes are also rebuilt because the tree is immutable. For

example, the program presented in Listing 4.1 uses pattern matching, lazy vals, and mixins.

To compile this program, at least five transformations are needed to implement the three lan-

guage features, to create a constructor for the class Increment, and to normalize the method

interfaceMethod to take an empty list of arguments. When implemented as independent

Megaphases, each of these transformations must traverse the entire tree. In this example,

each of the phases changes only a single node in the tree, yet five traversals are needed to

change five nodes.

To improve performance, consecutive phases have been joined at the source level by hand,

making the resulting phase contain code to perform multiple transformations simultaneously.

Even though the Megaphase design was intended to be modular, performance considerations

pressured the developers to mix unrelated transformations in individual phases. This reduc-

tion in the number of phases makes the compiler faster, at a cost of hard-to-predict interac-

tions between different transformations. Over the years, this has led to a code base that is

hard to maintain and evolve.

For example, Scala supports method definitions with multiple argument lists. The phase

called uncurry was originally written to flatten the argument lists in such definitions into a

single list of arguments. For the sake of performance, several unrelated transformations were

added to this phase. In particular, this phase also finds try blocks used as subexpressions

of some expression and lifts them into separate methods. This transformation is necessary

because Java try blocks are statements, not expressions, so the JVM implementation of ex-

ception handlers does not provide a way to communicate an expression context from the try

block to the exception handler. This transformation is completely unrelated to the original

purpose of the uncurry phase. In the Dotty compiler, this transformation is done in its own

Miniphase called LiftTry.

48

4.2. Background: Scala Compilers

phase name id description

FrontEnd 1 Compiler frontend: scanner, parser, namer, typer
sbt.ExtractDependencies 2 Sends information on classes’ dependencies to sbt via callbacks

PostTyper 3 Additional checks and cleanups after type checking
sbt.ExtractAPI 4 Sends a representation of the API of classes to sbt via callbacks

Pickler 5 Generate TASTY info
FirstTransform 6 Some transformations to put trees into a canonical form

CheckReentrant 7 Internal use only: Check absence of data races involving globals
RefChecks* 8 Various checks related to abstract members and overriding

CheckStatic* 9 Check restrictions that apply to @static members
ElimRepeated* 10 Rewrite vararg parameters and arguments

NormalizeFlags* 11 Rewrite some definition flags
ExtensionMethods* 12 Expand methods of value classes with extension methods

ExpandSAMs* 13 Expand single abstract method closures to anonymous classes
TailRec* 14 Rewrite tail recursion to loops
LiftTry* 15 Lift try expressions that execute on non-empty stacks

ClassOf* 16 Expand ‘Predef.classOf‘ calls.
TryCatchPatterns* 17 Compile cases in try/catch

PatternMatcher* 18 Compile pattern matches
ExplicitOuter* 19 Add accessors to outer classes from nested ones.

ExplicitSelf* 20 Make references to non-trivial self types explicit as casts
CrossCastAnd* 21 Normalize selections involving intersection types.

Splitter* 22 Expand selections involving union types into conditionals
VCInlineMethods* 23 Inlines calls to value class methods

IsInstanceOfEvaluator* 24 Issue warnings for unreachable statements in match expressions
SeqLiterals* 25 Express vararg arguments as arrays

InterceptedMethods* 26 Special handling of ‘==‘, ‘|=‘, ‘getClass‘ methods
Getters* 27 Replace non-private vals and vars with getter defs

ElimByName* 28 Expand by-name parameters and arguments
AugmentScala2Traits* 29 Expand traits defined in Scala 2.11 to simulate old mixin

ResolveSuper* 30 Implement super accessors and add forwarders to trait methods
ArrayConstructors* 31 Intercept creation of (non-generic) arrays and intrinsify.

Erasure 32 Rewrite types to JVM model, erasing all type parameters& etc.
ElimErasedValueType* 33 Expand erased value types to their underlying types

VCElideAllocations* 34 Peep-hole optimization to eliminate value class allocations
Mixin* 35 Expand trait fields and trait initializers

LazyVals* 36 Expand lazy vals
Memoize* 37 Add private fields to getters and setters

LinkScala2ImplClasses* 38 Forward calls to the implementation classes of Scala 2.11 traits
NonLocalReturns* 38 Expand non-local returns

CapturedVars* 39 Represent vars captured by closures as heap objects
Constructors* 40 Collect initialization code in primary constructors

FunctionalInterfaces* 41 Rewrites closures to implement @specialized types of Functions.
GetClass* 42 Rewrites getClass calls on primitive types.

LambdaLift* 43 Lifts out nested functions, populating environments
ElimStaticThis* 44 Replace ‘this‘ references to static objects by global identifiers

Flatten* 45 Lift all inner classes to package scope
RestoreScopes* 46 Repair scopes broken by phases of the group
ExpandPrivate* 47 Widen private definitions accessed from nested classes

SelectStatic* 48 get rid of selects that would be compiled into GetStatic*
CollectEntryPoints* 49 Find classes with main methods

CollectSuperCalls* 50 Find classes that are called with super
DropInlined* 51 Drop Inlined nodes, since backend has no use for them
MoveStatics* 52 Move static methods to companion classes

LabelDefs* 53 Converts calls to labels to jumps
GenBCode 54 Generate JVM bytecode

Table 4.2 – Phases in Dotty compiler. The horizontal lines indicate blocks of Miniphases(*)
that constitute a single transformation.

49

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

As another example, the Scala compiler contains a phase called refchecks, originally written

to check that overriding methods conform to the types of the superclass methods that they

override. Originally, the phase was intended to only inspect but not modify the tree. However,

the current implementation of this phase performs multiple transformations of the tree. In

particular, it replaces local (singleton) object definitions by local variables containing the

object, it replaces calls to factory methods with calls to class constructors, and it eliminates

conditional branches when their condition is statically known. None of these transformations

are related to the original purpose of the refchecks phase, nor to each other.

In this chapter, we propose a framework that removes the need to make this trade-off. The

proposed framework allows separate transformations to be defined in separate phases, yet,

for performance, applies the transformations in a common traversal of the tree. Thus, it frees

compiler developers from the pressure to combine unrelated transformations in the same

phase.

Currently, the code of the Dotty compiler is modularized into 54 phases, listed in Table 4.2. We

expect that the number of phases could increase to around 100 once the compiler is finished.

4.3 Target Performance Characteristics

While designing the framework, we had approximate performance characteristics in mind.

Based on user feedback about existing versions of the Scala compiler, we would like to be able

to compile about 4000 lines per second (on a MacBook Pro 14”, 2014). The current scalac

compiler can compile 1000–2000 lines per second on such a machine, depending on the

application being compiled.

The tree transformation pipeline uses about one-third of the compilation time. The rest of

the time is spent in the typechecker and the code generator, which are independent of the

tree transformation pipeline. Thus, the tree transformations should process 12000 lines of

code per second. A typical line of code corresponds to about 12 tree nodes. We estimate that

the compiler performs about 100 distinct transformations, each of which justifies a separate

phase. We would like the framework to spend no more than 20% of the time traversing the

tree, leaving 80% of the time for useful transformations. Thus, a Megaphase approach would

need to visit each node in about 14 nanoseconds, or 28 CPU cycles. If we can perform the 100

transformations in only 10 traversals, we can use 140 nanoseconds, or 280 CPU cycles per tree

node visit.

4.4 Design

Listing 4.2 presents a simplified structure of the tree nodes used in the Dotty compiler. Each

tree node has a withNewChildren method that creates a new node with a modified list of

50

4.4. Design

Figure 4.2 – Pipelining of a leaf-node through Miniphases

Figure 4.3 – Pipelining of an inner-node through Miniphases

51

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

586 abstract sealed class Tree {
587 def tpe: Type
588 def withNewChildren(list: List[Tree]): Tree
589 def children: List[Tree]
590 }
591 class Ident(sym: Symbol) extends Tree
592 class Select(from: Tree, name: String) extends Tree
593 ...
594 class ValDef(sym: Symbol, rhs: Tree) extends Tree
595 class DefDef(sym: Symbol, rhs: Tree) extends Tree
596 class CompilationUnit(trees: List[Tree]) extends Tree

Listing 4.2 – Tree nodes

597 def compileUnits(units: List[CompilationUnit], phases: List[Phase]) = {
598 var units1 = units
599 for (phase <- phases)
600 units1 = units1.map(unit => phase.runPhase(unit))
601 }

Listing 4.3 – Overall traversal

children.

The tree transformation pipeline has the overall structure given in Listing 4.3. For each phase,

and for each compilation unit, the compiler applies the phase to the compilation unit. In

the Miniphase approach, this high-level structure remains the same. However, multiple

Miniphase transformations are fused together and performed in a single phase.

To support this fusion, all Miniphases must traverse the tree in a consistent order. A Miniphase

is therefore implemented as a phase whose runPhase does a postorder traversal over the tree,

as shown in Listing 4.4. When visiting each node, it calls the transform method, which dis-

patches to a specific node transformation function depending on the type of the tree node.

By default, the node transformations are all identity methods. An implementation of a spe-

cific transformation is expected to override the transformation methods of the types of node

relevant to the transformation.

The advantage of imposing a uniform postorder traversal is that multiple Miniphases can

now be fused together, after being combined by functions presented in Listing 4.5. The fused

Miniphase traverses the tree only once. While visiting each tree node, it applies the trans-

formations implemented by all of its constituent Miniphases. The valDefTransform method

applies the valDefTransform method of the first Miniphase (and similarly for other node

types), but for subsequent Miniphases it must call the general transform method, because

the first Miniphase might have changed the type of the node. This is illustrated in Figures 4.2

and 4.3. In Figure 4.2, the blue leaf node is transformed by three Miniphases (yellow, green,

orange), yielding an orange node, before any of the other blue nodes are processed. In the

next step, in Figure 4.3, the parent of the now orange node is processed by the same three

52

4.4. Design

602 class Phase {
603 def runPhase(t: Tree): Tree
604
605 val runsAfter: Set[MiniPhase] = Set.empty
606 def checkPostCondition(t: Tree): Boolean = true
607 }
608
609 class MiniPhase extends Phase {
610 val valDefTransform: ValDef => Tree = id
611 val defDefTransform: DefDef => Tree = id
612 val identTransform: Ident => Tree = id
613 ...
614 val selectTransform: Select => Tree = id
615
616 final def transform(t: Tree) = t match {
617 case a: ValDef => valDefTransform(a)
618 case a: DefDef => defDefTransform(a)
619 ...
620 case a: Select => selectTransform(a)
621 }
622
623 final def runPhase(t: Tree): Tree = {
624 val newChildren =
625 t.children.map(sub => runPhase(sub))
626 val reconstructed = t.withNewChildren(newChildren)
627 transform(reconstructed)
628 }
629 }

Listing 4.4 – Definition of a Miniphase

53

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

630 private def chainMiniPhases(first: MiniPhase, second: MiniPhase) = {
631 new MiniPhase {
632 val valDefTransform = { x: ValDef =>
633 val newTree = first.valDefTransform(x)
634 second.transform(newTree)
635 }
636
637 ... // similar to valDefTransform for all node kinds
638
639 val runsAfter: Set[MiniPhase] =
640 second.runsAfter -- first ++ first.runsAfter
641
642 def checkPostCondition(t: Tree) =
643 first.checkPostCondition(t) &&
644 second.checkPostCondition(t)
645 }
646 }
647
648 def combine(a: Array[MiniPhase]): MiniPhase =
649 a.reduceRight((phase, acc) =>
650 chainMiniPhases(phase, acc)
651)

Listing 4.5 – Fusion algorithm for Miniphases

Miniphases.

A set of fused Miniphases has the following properties, which must be taken into account by

implementors:

• The transform method is called on all nodes of the compilation unit in a post-order

traversal order.

• When the transform method of Miniphase m is called on a tree node t , t has already

been transformed by all Miniphases that come before m, and the children of t have been

transformed by all Miniphases that have been fused with m, including ones that come

both before and after m. In Figure 4.3, the yellow and green Miniphases process a node

whose child is already orange, even though the orange Miniphase comes after the green

one. Though it is surprising that Miniphase m “sees the future” in its child subtrees, we

have found that this rarely creates any problems, since most phases simplify the trees

and introduce new invariants, rarely breaking existing ones.

We will discuss in Section 4.6 the criteria that developers of transformation phases must

consider in deciding whether a phase can be fused with other phases.

Two important optimizations can be applied to the basic fusion technique. Both these opti-

mizations are shown in the modified version of the Miniphase fusion implementation given

54

4.4. Design

652 private def chainMiniphases(first: Miniphase, second: Miniphase) = {
653 new Miniphase {
654 val valDefTransform =
655 if (first.valDefTransform == id)
656 second.valDefTransform
657 else if (second.valDefTransform == id)
658 first.valDefTransform
659 else { x: ValDef =>
660 val newX = phase.valDefTransform(x)
661 newX match {
662 case newX: ValDef =>
663 second.valDefTransform(x)
664 case other: Tree =>
665 second.transform(other)
666 }
667 ... // similar changes form all AST nodes
668 }
669 }

Listing 4.6 – Optimization for identity transforms and for transformations that keep the same
node kind

in Listing 4.6.

First, since most Miniphases transform only a small subset of the types of tree nodes, the

fusion code explicitly checks (Section 4.4, Listing 4.6) if the transformation in one of the

Miniphases is the identity, and if so, the transformation in that Miniphase is skipped.

Second, since most transformations do not change the type of the tree node, a fast path that

explicitly checks for this case was added that avoids the dispatch in the transform method,

and instead calls the node transformation method for the relevant node type directly.

4.4.1 Prepares

The Miniphase framework presented so far is sufficiently general to implement all but four

Miniphases present in the Dotty compiler. The remaining four phases, however, perform

transformations that depend on the ancestors of the current tree node, so it may seem that a

post-order traversal is not ideal.

One example is the LiftTry transformation which was described in Section 4.2.1. This transfor-

mation lifts try blocks within an expression into independent methods. When it encounters

a try block, this phase needs to know whether the block is part of a larger expression, and thus

it needs information about its ancestors in the tree.

In order to accommodate such phases without abandoning the consistent post-order traversal

that enables phase fusion, prepare methods have been added to the framework that mutate

55

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

670 class MiniPhase extends Phase {
671 ... //members introduced in previous listings
672 val valDefPrepare: ValDef => Unit = empty
673 val defDefPrepare: DefDef => Unit = empty
674 val identPrepare: Ident => Unit = empty
675 ...
676 val selectPrepare: Select => Unit = empty
677 }

Listing 4.7 – MiniPhase extended with prepares

678 private def chainMiniPhases(first: MiniPhase, second: MiniPhase) = {
679 new MiniPhase {
680 val valDefTransform = ... // as before
681
682 ... // as before
683
684 val runsAfter: Set[MiniPhase] = ... // as before
685
686 def checkPostCondition(t: Tree) = ... // as before
687
688 val valDefPrepare =
689 if (first.valDefPrepare == empty)
690 second.valDefPrepare
691 else { t: ValDef =>
692 first.valDefPrepare(t)
693 second.valDefPrepare(t)
694 }
695 ... // similar to valDefPrepare for all AST nodes
696 }
697 }

Listing 4.8 – Fusion with prepares

the internal state of a phase when entering a given type of subtree. Specifically, the LiftTry

phase maintains a boolean state which is an over-approximation of whether the current sub-

tree is inside an expression that requires try blocks to be lifted into methods. Before processing

a tree node using the transform method, the runPhase method first calls the corresponding

prepare method to update the state of the Miniphase.

The chainMiniPhases method now also needs to chain prepares, as shown in Listing 4.8.

In the current implementation, there is a separate prepare method for each type of tree node,

just as there are node-specific transform methods. Only very few phases have non-empty

prepare methods, and those that do need to prepare for most kinds of tree node types. There-

fore, it may have been sufficient (and simpler) to only have a single prepare method that is

executed for every node regardless of its type.

56

4.5. Evaluation

4.4.2 Initialization and Finalization of Phases

Later, during development, we have found it helpful to extend Miniphases with the ability to

prepare for a compilation unit and transform a compilation unit. compilationUnitPrepare

is the proper place to initialize the initial internal state of the phase, such as populating global

references used by the phase, while compilationUnitTransorm is a natural place to clean the

internal state to avoid a high memory footprint and memory leaks.

4.5 Evaluation

We have performed an empirical evaluation of the performance benefits of the Miniphase ap-

proach. We compared the current version of the Dotty compiler, which uses Miniphases, with

a modified version in which the groups of Miniphases were split up, so that each Miniphase

performed a separate tree traversal, as in the Megaphase approach. We ran both versions

of the compiler on two significant input programs: the Scala standard library (34 000 LOC)

and the Dotty compiler itself (50 000 LOC). In addition to the overall running time, we com-

pared data from the JVM garbage collector, specifically the number of objects allocated and

promoted to the old generation, and data collected using low-level CPU counters to explain

cache behavior. The benchmarks were executed on a server with two Intel(R) Xeon(R) CPU

E5-2680 v2 @ 2.80 GHz CPUs, running on a fixed frequency of 2.4 Ghz with HyperThreading

disabled. This CPU has a 25 MB L3 cache. Every one of the 10 cores in this CPU additionally

has a 256 KB L2 cache and 32 KB L1-icache and L1-dcache. In this architecture, the L2 cache

is not inclusive and the L3 cache is inclusive on all levels above it: data contained in the core

caches must also reside in the last level cache [Intel Corporation, 2016].

This server has 64 GB of 4-channel memory and runs 64-bit Ubuntu Linux with kernel version

4.4.0-45-generic. We have used the Oracle Hotspot Java VM version 1.8.0_111, build 25.111-

b14. In order to ensure consistency between the runs and reduce variance due to disk seeks,

all data needed for compilation is stored in tmpfs, a Linux filesystem that is an in-memory

store.

4.5.1 Overall Time

Figure 4.4 shows the overall running time of the frontend, tree transformation pipeline, and

backend. The tree transformations use a significant fraction of the overall compilation time:

in the Megaphase approach, they take more time than either the frontend or the backend.

The graph also shows that Miniphases decrease the time taken by the tree transformations

by 37% when compiling the standard library and 34% when compiling the Dotty compiler.

Overall, the total compilation time (including the frontend and backend) decreases by 15%

and 16%, respectively. In the following sections, we look in more detail at the likely reasons

for this improvement.

57

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

Figure 4.4 – Execution time of tree transformation passes, typechecker, and code generation
backend in Miniphase and Megaphase versions of the Dotty compiler.

58

4.5. Evaluation

Figure 4.5 – Total size of GC object allocated, GBytes

Figure 4.6 – Total size of GC object tenured, GBytes

59

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

4.5.2 GC Object Allocation and Promotion

In this section, we investigate the performance of the garbage collector. The reported values

were obtained by parsing the GC logs that were obtained by passing -XX:+PrintGCDetails

-XX:+PrintGCTimeStamps to the Oracle Hotspot Java VM. The entire compiler pipeline was

executed 50 times from a cold start, which represents a common setup for batch compilation

in a big project.

We measured how many managed objects are allocated and then promoted to the old genera-

tion by garbage collection. We performed our measurements during the compilation of the

compiler itself and the standard library.

Figure 4.5 shows the total size of the objects allocated in the tree transformation pipeline.

Miniphases reduce the amount of memory allocated by 5% during compilation of the Dotty

compiler itself and 9% during compilation of the Scala standard library. This is explained

by the fact that we need to recreate a path from the modified part of the tree to the root less

frequently. It is important to note that the absolute amount of memory allocated is high,

from 7 to 9 GB, so even a decrease of 9% amounts to a lot of memory. Note that this refers

to the total size of objects allocated during the entire execution of the compiler, not the total

consumed amount of memory at any particular point in time.

The decrease in the number of objects promoted to the old generation is much more signif-

icant, even in a relative sense, as shown in Figure 4.6. The reduction thanks to Miniphases

is a full 49% and 55% for the standard library and Dotty compiler, respectively. In absolute

terms, Miniphases reduce the promoted objects by over 1 GB in both cases. Many tree nodes

that are created in a Miniphase are replaced by subsequent Miniphases in the same traversal,

so they die young. In contrast, in the Megaphase approach, a node created in one phase is

not replaced until the next traversal of the whole tree, and by that time, the node may already

have been promoted to the old generation.

4.5.3 CPU Performance Counters

Focusing now on CPU behaviour, we used the perf utility that is shipped with Ubuntu Linux

16.04 with Linux kernel 4.4.0-45-generic to measure low-level CPU counters. This measure-

ment approach is less intrusive than tracing or sampling profiling and allows to explain details

of how the code was executed by the CPU.

To isolate the tree transformation pipeline from the front end and the code generator, we

made two modified versions of the Dotty compiler: one stops execution after the front end,

and the other stops execution after the tree transformations. The data collected during 50

executions of each of these versions was very consistent, with a variability less than 0.5%

across runs. We subtracted the counts of the two versions to approximate the effect of the tree

transformations on the performance counters.

60

4.5. Evaluation

Figure 4.7 – Instructions and cycle counters

61

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

Figure 4.8 – L1 and LLC cache miss rates

62

4.5. Evaluation

Figure 4.9 – L1 dcache miss rates

63

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

Figure 4.10 – Number of memory reads

64

4.5. Evaluation

Figure 4.11 – L1 icache miss rate

65

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

Figure 4.7 shows the number of instructions executed, the number of clock cycles taken,

and the number of stalled cycles during the execution of the tree transformations. The total

number of instructions decreased by 10%, but the number of cycles used to execute those

instructions decreased by a much larger 35%.

This is explained by Section 4.5.2, which shows that Miniphases decreased the cache miss

rate by 47%, 17% and 40% for L1 cache loads, L1 cache stores and last level cache loads,

respectively. Section 4.5.2 indicates that the total number of cache accesses decreased by only

10%. Section 4.5.2 shows that the total number of accesses that miss all on-chip caches and

access main memory decreased by 47%, from 512 million to 278 million accesses.

Section 4.5.2 presents the L1-instruction cache miss count, which decreased by 24%. We

believe that this is explained by the fact that CPU caches are inclusive and eviction from the

last level cache would also trigger eviction from lower level caches. By improving the hit rate

in data caches, Miniphases also indirectly reduce evictions from the L1-instruction cache.

We conclude that the main reason for the performance improvements of the Miniphase ap-

proach compared to the Megaphase approach is that the Miniphase approach makes more

effective use of the CPU caches.

4.5.4 Comparison with Existing Production Compiler

To put the running times of the Dotty compiler with Miniphases in perspective, Figure 4.12

compares its performance to the existing Scala production compiler, scalac, which imple-

ments the Megaphase approach. It must be noted that they are different compilers, so con-

founding factors other than Miniphases also influence differences in their performance. Nev-

ertheless, we observe that Dotty spends only 42% and 39% as much time in tree transforma-

tions as scalac when compiling the standard library and Dotty , respectively. Dotty ’s type

checker is also faster than that of scalac, although this is unrelated to Miniphases, and the

performance of the backends is about the same. Overall, Dotty compiles the standard library

and itself in only 51% and 58% of the time taken by scalac, respectively.

4.6 Soundness and Limitations of Phase Fusion

4.6.1 Fusion Criteria

We do not formally define criteria that would give soundness guarantees in the form of a

promise that fusing phases does not change their behaviour. To be sound, any such formal

criteria would have be conservative. Such criteria can supply guarantees for simple programs

in which tree traversals affect a small number of well-behaved data structures. However, these

criteria would be too conservative to apply to the setting of a complex production compiler

in which the tree traversals indirectly interact with files, tools external to the compiler itself

and other kinds of global mutable state.

66

4.6. Soundness and Limitations of Phase Fusion

Figure 4.12 – Execution time of stages of the Dotty and scalac compilers when compiling the
standard library and Dotty .

67

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

Instead, we provide high-level criteria that must be interpreted with an understanding of

the overall design of the compiler and the high-level relationships among the major global

data structures. The following requirements are sufficient for a Miniphase to be fusible into a

block:

1. A phase does not break invariants registered by previous phases in the same block.

2. A phase can successfully transform trees whose children have already been transformed

by future phases in the same block.

3. A phase does not require that previous phases in the same block have finished trans-

forming the entire compilation unit. Usually, when this is required, it is due to global

data structures outside of the tree being transformed, such as the symbol table.

We have built a system for expressing phase invariants and postconditions that are enforced

by dynamic checkers during testing. In our experience, these checkers are able to catch cases

when these three requirements for phase fusion are violated. We will discuss these checkers

in Section 4.6.3; but first, we examine examples of phases that are not fused because they

violate the fusion criteria.

4.6.2 Example Violations of Fusion Criteria

Ideally, all the Miniphases in the compiler would be fused into a single traversal of the tree.

In practice, our compiler has six separate blocks of Miniphases, marked with (*) in Table 4.2.

Miniphases in the same block are fused together, but each block requires a separate traver-

sal of the tree. Here, we describe some of the reasons that prevented us from fusing all

Miniphases.

We have found that phases that violate rule 1 are uncommon. While we did have phases

that relax some invariants of previous phases, we were able to implement them in a more

maintainable way following rule 1.

Rule 2 Example: Pattern Matching

The Scala language has a very expressive pattern matching construct. A pattern matching

phase translates this construct into complicated code with many branches and instructions

similar to gotos. This phase also introduces a split between groups of Miniphases because

it makes major changes to the structure of the trees, and because it would be difficult for

other phases to handle both the high-level pattern matching constructs and the low-level

control flow generated by this phase. One example of such a conflicting phase is tail recursion

elimination, which transforms self-recursive methods with tail-calls into loops within the

method (which do not grow the stack). Since both the pattern matching phase and the tail

68

4.6. Soundness and Limitations of Phase Fusion

recursion elimination phase make non-local changes in the control flow, it would be very

difficult to design them so that they can both execute in a single tree traversal. Following rule

2, pattern matching introduces a split between Miniphases in the phase-plan.

Rules 2 and 3 Example: Erasure

Since Java bytecode does not have generic types, a Scala compiler needs to erase type argu-

ments from generic types. The phase that performs type erasure modifies the types of many

trees. Since types are the main carriers of semantic information, it would be difficult to write

other transformation phases that work on trees with both unerased and erased versions of

types, violating rule 2.

At the same time, erasure has some global assumptions about trees that it sees. In particular

it assumes the absence of member selections on union types [Pierce, 1991]. Union types

are eliminated by the splitter phase, which must transform the entire compilation unit to

eliminate all of them. Therefore, the type erasure phase introduces a split between groups of

Miniphases because it violates both rules 2 and 3.

4.6.3 Phase Preconditions and Postconditions

Since the criteria from Section 4.6.1 are not verified statically, the Miniphase framework uses

a system of dynamic assertions exercised by a large test suite to ensure correctness, and to

localize any bugs to specific phases.

Each Miniphase defines postconditions that must hold about the tree nodes after the phase

has transformed them. The checkPostcondition method (Listing 4.4) of the Miniphase im-

plements the runtime tests that enforce postconditions. The intended meaning of the post-

conditions is that if one Miniphase establishes a postcondition, all later Miniphases must

preserve it.

During testing, a checker pass is inserted between phases. A simplified version of its imple-

mentation is shown in Listing 4.9. The pass first checks various global invariants that are

expected to always hold between any phases. For example, the checker removes all types

from the tree and reconstructs them bottom-up, and checks that the reconstructed types are

the same as the types that were associated with the tree. After checking global invariants,

the checker pass runs the postcondition checks of not only the last executed Miniphase, but

also of all the Miniphases that executed before it. This ensures not only that each Miniphase

has established its postconditions, but also that no other Miniphases have invalidated them.

In practice, we have found this mechanism to be very effective in localizing bugs to a given

Miniphase. In particular, bugs that involve interactions between different Miniphases would

be difficult to track down without these checks. But if a postcondition of phase X fails after

executing phase Y, we know immediately that phase Y breaks the invariant that phase X is

intended to establish. For example, if a phase reintroduces a tree that contains pattern match-

69

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

ing after the phase that eliminates pattern matching, we know immediately which phase is to

blame.

Miniphases also define preconditions by reference to the postconditions of other Miniphases.

That is, a Miniphase specifies which other Miniphases must execute before it. For example,

the phase that removes pattern matching requires that the tail recursion elimination phase

finish processing all the trees before it can finish executing. Any preconditions specific to

a Miniphase are usually the postconditions of some earlier Miniphase. To specify precondi-

tions, a Miniphase defines two methods. The runsAfter method returns a set of Miniphases

that must precede the current Miniphase. The runsAfterGroupsOf method returns a set of

Miniphases that must strictly precede the fused Megaphase containing the current Miniphase.

In other words, a Miniphase in runsAfterGroupsOf must completely finish transforming the

tree before the current Miniphase can run. These two methods are used to specify the ordering

criteria between Miniphases, in particular rule 2 from Section 4.6.1. If Miniphase X requires

the postcondition of Miniphase Y to hold for only the node that X is immediately processing,

X includes Y in runsAfter. If X requires the postcondition of Y to hold for all nodes of the tree,

in particular for the children of the node that X is immediately processing, X includes Y in

runsAfterGroupsOf. The phase ordering requirements specified by these two methods are

checked when the Dotty compiler runs, not when it is compiled; however, they are checked

as soon as the compiler starts up, so any violations are caught immediately, independent of

any test input.

The runtime overhead of the dynamic checks depends significantly on the specific code being

compiled, but the approximate slowdown in the running time of the compiler is about 1.5x.

The dynamic checks are enabled on every run of the test suite. The Dotty compiler has an

extensive test suite that includes the tests from the test suite of the current production scalac

compiler.

A similar dynamic invariant checking pass was initially implemented in the current produc-

tion scalac compiler. However, in practice, it has not been maintained in a passing state:

some Megaphases invalidate the postconditions of other Megaphases. For example, the pat-

tern matching elimination phase creates references to symbols that are created only later, by a

later phase. In general, because each Megaphase does multiple unrelated things, and because

related transformations need to be split into different Megaphases, it has proven infeasible in

practice to allocate to specific Megaphases the postconditions that should logically belong to

the individual transformations.

4.7 Discussion

In this section, we discuss further experience with the Miniphase framework, including the

onboarding process, code readability and maintenance, and common patterns that work well

together with Miniphases.

70

4.7. Discussion

698 class TreeChecker(previousPhases: List[Phase], typer: Typer) extends Phase {
699 def runPhase(t: Tree): Tree = {
700 t.forAllSubtrees{subt =>
701 val reTyped = typer.typeCheck(subt.stripTypes)
702
703 reTyped.hasSameTypes(subt) &&
704 checkNoDoubleDefinitions(subt) &&
705 checkValidJVMNames(subt) &&
706 checkcheckNoOrphanTypes(subt) &&
707 /* other non-phase-specific sanity checks*/
708 previousPhases.forAll { phase =>
709 phase.checkPostCondition(subt)
710 }
711 }
712 }
713 ... // implementations of hellper methods such as checkNoDoubleDefinitions
714 }

Listing 4.9 – Simplified version of TreeChecker

4.7.1 Readability

The Scala and Dotty compilers are developed by several disconnected teams and open-source

contributors. Most open-source contributors contribute their time voluntarily, and wish to

start contributing quickly, without spending a lot of time just getting started. Most contrib-

utors want to solve the specific problem that bothers them. With the Miniphase framework,

contributors find the phases easier to understand for two reasons:

First, each Miniphase is smaller and does a single transformation. A new developer needs to

initially understand only one small phase, rather than a large Megaphase in which multiple

different transformations are interleaved. This leads to less coupling and easier understand-

ing.

Second, the Miniphase framework insists on a specific uniform structure of phases. While

this makes it harder to write the initial implementation in this framework, it helps over the

long term by making phases have similar structure and renders them easier to understand

and maintain.

This is a very substantial improvement over the situation in the Scala 2.0-2.12 compiler, where

fusing multiple complex phases together by hand made it very hard to keep track of what

every phase does and how it does it.

4.7.2 Predictable Performance Characteristics

The Miniphase approach imposes a specific structure that makes it easy for external contribu-

tors to join and reason about performance of a Miniphase. In most cases, the obvious solution

71

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

that is suggested by the framework is the most efficient. This is very helpful in the presence

of open-source contributors, since it reduces the number of iterations needed to polish the

performance of contributed code.

4.7.3 Onboarding Process

Open-source contributors frequently ask how they can get involved and learn about the inter-

nals of the compiler. A good way for new contributors to start working on the compiler is by

extending either the tree checkers or phase postconditions. The new contributor learns which

properties can be relied on in which phases, and can check her assumptions in test execu-

tions of the compiler. At the same time, the contributor improves the compiler with stronger

checkers that make it possible to catch bugs earlier and simplify development and debugging.

Moreover, the added postcondition checkers can serve as documentation of invariants for

other new contributors.

4.7.4 Experience with contributors

When a new phase is being developed, we need to decide where the phase should be run

in the pipeline. Deciding whether two phases should be fused is a complex question that

depends on how much high-level information the phase needs and whether it can co-exist in

the same phase block. The former is commonly trivial while the latter is covered by the rules

presented in Section 4.6.

Based on our experience, most people who contribute to the compiler lie on one of two

extremes: either they are experts who have been working on the compiler for a long time and

know the entire pipeline, or they only appear to make a small contribution once in a while.

While the first group doesn’t need any guidance on where to place a phase, the second group

commonly starts by discussing the idea of a phase in a mailing list, online chat, or personal

communication. In this discussion, experts will suggest how the phase should be written and

where it should be in the pipeline.

After an initial implementation is written, it is contributed as a pull request to a github repos-

itory and goes through review by experts who maintain the repository. At the same time,

continuous integration systems run tests that verify that pre- and post-conditions hold for

the entire test suite, which includes the compiler itself, the standard library, and several thou-

sands of programs contributed by the community.

72

4.8. Related Work

4.8 Related Work

4.8.1 Deforestation and Stream Fusion

The original inspiration for the Miniphase approach was prior work on “deforestation” [Coutts

et al., 2007; Gill, 1996; Wadler, 1990]. These approaches compose multiple functions that trans-

form lists or trees without explicitly constructing the intermediate data structures between

the composed functions. A limitation of these general approaches is that the functions to be

composed must be in so-called treeless form. In the specific case of a Scala compiler, this

condition is violated because the tree transformations inspect nodes nested inside subtrees

and construct new subtrees that are consumed by subsequent phases. Thus, the general

deforestation technique cannot be applied because it would change the semantics of the

transformations.

4.8.2 Sound Fusion in Tree Traversal Languages

In this section, we describe several domain-specific tree traversal languages and frameworks

that, while being more general than the functions that can be fused by deforestation, are still

sufficiently restricted to enable static analysis of the patterns of data accesses in a traversal.

This enables automatic sound reordering of the node visits in multiple traversals.

Attribute Grammar Scheduling Attribute grammars [Knuth, 1968] are a formalism that de-

fines computation on trees as evaluation of a set of pure functions for each node that may

depend on the attribute values computed for other nodes. The formalism has been applied in

many practical compiler implementations over the decades. As an example, JastAdd [Ekman

and Hedin, 2007] is a recent attribute grammar framework that continues to be actively main-

tained, developed, and extended. A key problem is to find an order in which to evaluate the

attributes of tree nodes that respects the dependencies between the attribute functions. For a

particular parse tree, it suffices to topologically sort the pairs of tree nodes and their attributes,

since the dependencies are explicit in the attribute evaluation functions. Various restricted

classes of attribute grammars have been defined for which an evaluation order can be pre-

computed ahead of time, independently of a particular parse tree. Some of these classes can

be evaluated in a single pass over the parse tree, with a single visit of each node [Kastens,

1980, 1991; Lewis et al., 1974]. More general classes of attribute grammars require multiple

passes; algorithms have been proposed for finding evaluation orders that minimize the num-

ber of such passes [Alblas, 1991; Riis Nielson, 1983]. These techniques have been extended

to evaluation of attributes of multiple tree nodes in parallel [Jourdan, 1991]. Meyerovich et

al. [Meyerovich et al., 2013] combines parallel attribute scheduling techniques with program-

mer input in the form of sketches to synthesize GPU and multicore CPU implementations of

tree manipulating programs.

73

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

Locality in Tree Traversals Techniques have been proposed to enhance data locality by

rewriting recursive programs that traverse trees [Jo and Kulkarni, 2011, 2012; Weijiang et al.,

2015]. Jo and Kulkarni [Jo and Kulkarni, 2011] proposed point blocking, a transformation

similar to loop interchange, in which an outer loop of multiple tree traversals is interchanged

with the traversal of the tree nodes. This yields a single traversal that executes the previously

outer loop at each node that it visits. The transformation is applicable when the outer loop

is parallelizable. Jo and Kulkarni [Jo and Kulkarni, 2012] extended the idea of point blocking

into a similar but more sophisticated technique: traversal splicing. This strategy improves the

locality of irregular tree traversals that traverse only a subset of the nodes of the tree. Weijiang

et al. [Weijiang et al., 2015] defined a static dependence test for a domain specific language

for tree traversals. The dependence test analyzes tree access path expressions in the code

that visits each tree node to determine which visits of which nodes can be reordered. The

dependence test makes it possible to soundly apply point blocking, traversal splicing, and

parallelization to a larger set of tree traversal algorithms.

MADNESS Passes Rajbhandari et al. [Rajbhandari et al., 2016a,b] propose and prove correct

a technique that is able to compose recursive operators that are implemented using a set

of primitive recursive operators. They demonstrate significant speedup obtained by fusion.

Their approach is able to find an optimal schedule for fusion, while in our case the schedule

is pre-defined. Compared to the dependence test of Weijiang et al. [Weijiang et al., 2015],

the MADNESS system is more general in that it applies to both pre-order and post-order

traversals.

The main benefit of the techniques described in this section is that they identify cases when

the soundness of fusion can be proven automatically. There are two reasons why they cannot

be applied in the Dotty compiler. First, Dotty transformations modify the tree and construct

new subtrees. Second, the implementations of Miniphase transformations are not purely

functional: they manipulate non-local mutable data structures such as symbol tables, and

they even cause additional files to be parsed and type-checked and transformed when they

are referenced.

4.8.3 Other Pass Fusion Approaches

ASM [Bruneton et al., 2002] is Java bytecode instrumentation and emission library based on

the visitor design pattern. A visitor transforms instructions in a sequence of bytecode in-

structions. ASM allows multiple visitors to be fused, so that part of the bytecode sequence

is processed by all of them before continuing with the rest of the sequence. The obvious

difference is that ASM transforms sequences, while Miniphases transform trees. For se-

quences, there is one obvious traversal order, while for trees, various traversal orders are

possible. Miniphases impose a post-order traversal but provide the mechanism of prepares,

discussed in Section 4.4.1, to implement transformations that would otherwise require differ-

ent traversal orders. Another difference is that in Dotty , the meaning of a tree often depends

74

4.9. Conclusion and Future Work

significantly on its subtrees, so the issue of a phase observing children that have already been

transformed by other trees is comparatively more important. In contrast, the meaning of a

bytecode instruction usually does not depend on preceding instructions, at least not directly.

Instead, it depends strongly on context, such as the state of the JVM operand stack, which

ASM transformers usually maintain in additional data structures, rather than as part of the

instructions themselves. In contrast, in the tree-based representation of Dotty , information

about the operands of an expression node is associated with its child nodes. In general, both

the input and the output of an ASM pass is JVM bytecode. In contrast, the purpose of the

transformations in Dotty is to translate an intermediate representation that is similar to Scala

source code to one similar to Java bytecode, so the types of nodes that appear in the tree

gradually change as the tree passes through the sequence of transformations.

Lepper [Lepper and Trancón y Widemann, 2011] proposes to optimize a sequence of traversals

of trees by multiple visitors by detecting which visitors are interested in processing which

nodes of the tree. This is done by using reflection to identify visitors that do not override the

default visit methods for certain types of tree nodes. The optimized traversal can then skip

the traversal of entire subtrees whose types ensure that none of the visitors are interested in

visiting any of their nodes. A key difference is that these optimized visitors only traverse the

tree, but do not generate different trees to pass from one visitor phase to the next.

4.8.4 Compilers Based on Tree Transformation Passes

The Nanopass Framework [Sarkar et al., 2005] is a compiler intended for teaching courses on

compiler construction. In the framework, each individual transformation is done in a separate

pass. Fusing the phases is suggested as possible future work. Due to practical considerations

when compiling a complex language such as Scala, we need to have additional prepare passes,

which the Nanopass Framework does not have.

Like Dotty , the Polyglot compiler [Nystrom et al., 2003] is structured as a sequence of passes

that successively transform trees, in this case from various extensions of Java to Java itself.

As in Dotty , tree nodes are immutable, so each pass that replaces a tree node with a new

one rebuilds the spine of the tree up to the root. The Miniphase approach of fusing tree

transformations could also be used to improve the performance of Polyglot.

4.9 Conclusion and Future Work

The Miniphase approach removes the need to choose between modularity and efficiency in

the implementation of tree transformations in a compiler. The resulting compiler is thus

more modular and more efficient than using the Megaphase approach. This methodology

simplifies both development and maintenance. Our evaluation indicates that using fused

Miniphases allows speedups for tree transformations up to 1.6x. We demonstrated these

speedups on real code bases with a real-world Scala compiler. Our detailed evaluation shows

75

Chapter 4. Miniphases: Compilation using Modular and Efficient Tree Transformations

that the biggest contributing factor is improved cache friendliness, which leads to better CPU

utilization.

Our approach is applicable not only to trees, but can be extended to directed acyclic graphs.

We are also interested in using Miniphase-based approaches for executing independent com-

piler phases in parallel.

While our work was primarily focused on a compiler for Scala, we believe that the approach is

general enough to be used in other compilers which share the same internal representation

for significant parts of their pipelines.

Acknowledgments

We want to thank Iulian Dragos for sharing his experience based on 12 years work on Scala

compilers, starting before the time of Scala 2.0 — even before the Scala compiler had boot-

strapped itself. His knowledge was very helpful in understanding the evolution of the Scala 2.0-

2.12 codebase.

76

5 Types as Contexts in Whole Program
Analysis

Contemporary object oriented languages provide a natural paradigm, but at the cost of run-

time overhead. Method specialization or inlining could reduce this cost, but they require

precise call graph analysis.

Existing static call graph analyses do not take advantage of the information provided by the

rich type systems of contemporary languages, in particular generic type arguments. Many

existing approaches analyze Java bytecode, in which generic types have been erased. This sec-

tion shows that this discarded information is actually very useful in providing the context for

a context-sensitive analysis, where it significantly improves precision and keeps the running

time short. Specifically, we propose and evaluate call graph construction algorithms in which

the contexts of a method are (i) the type arguments passed to its type parameters; and (ii) the

static types of the arguments passed to its term parameters. The use of static types from the

caller as context is effective because it allows more precise dispatch of call sites inside the

callee.

Our evaluation indicates that the average number of contexts required per method is small.

We implement the analysis in the Dotty compiler for Scala, and evaluate it on programs

that use the type-parametric Scala collections library and on the Dotty compiler itself. The

context-sensitive analysis runs twice as fast as a context-insensitive one and discovers 20%

more monomorphic call sites at the same time. When applied to method specialization, the

imprecision in a context-insensitive call graph would require the average method to be cloned

22 times, whereas the context-sensitive call graph involves a much more practical 1.00 to 1.50

clones per method.

We applied the proposed analysis to automatically specialize generic methods. The resulting

automatic transformation achieves the same performance as state-of-the-art techniques re-

quiring manual annotations, while reducing the size of the generated bytecode by up to five

times.

77

Chapter 5. Types as Contexts in Whole Program Analysis

Attribution

The work presented in this section was performed in collaboration with Vlad Ureche and

Ondřej Lhoták. Vlad Ureche helped in the comparison with the miniboxing technique. This

work is based on previous work by Ondřej Lhoták; his help was instrumental in simplifying

the algorithm and the presentation. The actual algorithm was proposed, implemented and

evaluated by the author of this thesis.

This work has been published in and was presented at the 2016 ACM SIGPLAN International

Conference on Object-Oriented Programming, Systems, Languages, and Applications [Pe-

trashko et al., 2016].

5.1 Introduction

Modern programming languages support modularity and scalability using abstraction facil-

ities such as generic methods, interfaces and abstract type members. Unfortunately, these

abstractions incur non-negligible performance costs. Optimizing compilers are very good at

eliminating performance overheads when they can analyze the whole code fragment. How-

ever, abstraction facilities encourage code to be distributed between multiple methods which

are called using dynamic dispatch. The call sites are often megamorphic1. Most compilers

do not try to remove or inline megamorphic dispatch, which prevents other optimization

opportunities. To reduce the performance overhead of modern abstraction facilities, a first

step is to inline, or at least devirtualize, the method calls in hot code fragments.

For this reason, state-of-the-art JIT compilers perform inlining as one of the first, and crucial,

optimization steps. The JIT setting enables precise techniques such as profile-directed and

speculative inlining. However, the optimization opportunities necessary to eliminate the

performance overhead of abstraction facilities often arise only after many levels of inlining.

In many cases, JIT compilers do not inline enough to reach those opportunities [Click, 2011].

JIT compilers also do not have access to the rich type information available at the source code

level.

Devirtualization and inlining are possible if the call site is proven to be monomorphic2. In

order to be sound and computable, a static analysis must be conservative: in some cases,

it must overestimate the set of potential dispatch targets. We say that a call graph is more

precise than another if it contains fewer spurious dispatch targets that could never be called

at run time. One possible approach to improving precision is to construct context-sensitive

call graphs by specializing a given call site for the different contexts in which it is executed.

A call site that dispatches to a different call target in each different context is megamorphic

in a context-insensitive call graph, even though each context-sensitive instance of that call

site may be monomorphic. Unfortunately, context sensitive analysis is often costly, and the

1 ↑have 3 or more potential dispatch locations
2 ↑has only one possible dispatch location

78

5.1. Introduction

resulting context-sensitive call graphs are large, making the client analyses that use them

costly as well [Lhoták and Hendren, 2008; Smaragdakis et al., 2011].

Analysis of call targets has long benefited from static types. Class hierarchy analysis [Dean

et al., 1995] relies entirely on the static types of receivers to determine call targets. In propagation-

based points-to analysis for Java (which is used in precise call graph construction algorithms),

it has long been recognized that filtering points-to sets using static type information is critical

for precision and efficiency [Lhoták and Hendren, 2003].

Existing approaches to call graph construction do not take full advantage of the information

provided by the type systems of modern programming languages. Most recent work in the

context of object oriented languages targets Java bytecode. When Java programs are compiled

to bytecode, generic type parameters and arguments are erased, so they are not available to

bytecode-based analyses. In this chapter, however, we show that this discarded type informa-

tion is actually very useful: it enables us to construct more precise call graphs efficiently to

enable devirtualization, and it provides the information necessary for specialization.

An interprocedural analysis is context-sensitive if it analyzes each method multiple times in

different contexts. Ideally, the static contexts are selected so that invocations of the method

with dissimilar run-time behaviours are abstracted by different analysis contexts, enabling

the analysis to focus precisely on each behaviour. In the specific case of a call graph analysis,

it is possible that a call site dispatches to multiple target methods overall, but is monomorphic

in each specific analysis context. Unfortunately, in many analyses, the number of contexts

often grows very large. As a result, the analysis becomes expensive and its output large, which

makes client analyses expensive as well.

Our novel insight is that static type arguments, which have been erased in most previous

work, are actually very effective contexts for call graph construction. Often, the static type of

the receiver at a call site is a type parameter of the method in which the call site appears, or

of the enclosing class of that method. Analyzing the enclosing method separately for each

argument type provides static type information that is often precise enough to resolve the

call to a single target method (i.e., monomorphically). Moreover, the number of contexts

in which the average method needs to be analyzed remains small. At a given call site (in a

given context), only one static type is passed as the argument for each type parameter, so the

number of contexts grows only when a type parameter is actually used with different type

arguments in multiple places in the program.

Call graphs contain the information needed for devirtualization, but building them with static

types as context also provides the information needed for specialization. One common spe-

cialization criterion is to create distinct implementations of polymorphic methods, and of

methods in generic classes, for each type argument with which the method or containing class

is instantiated. The context-sensitive call graph provides exactly the set of type arguments

with which each parameter may be instantiated, and this is the set of specialized methods

that need to be generated.

79

Chapter 5. Types as Contexts in Whole Program Analysis

The context-sensitive call information is well suited to devirtualization after specialization

has been applied. In particular, the context-sensitive call graph may say that a call site is

monomorphic, but only in some specific context. Since the analysis contexts correspond

directly to the specialized method implementations, this is exactly the information that is

needed to know that a call site in a specific specialized implementation can be devirtualized.

In this Chapter, we propose and evaluate call graph construction algorithms designed for

static devirtualization and specialization [Dragos and Odersky, 2009]. The specialization is in-

tended both to enable a static optimizer to perform further performance optimizations using

knowledge of high-level language features, as well as to enable a JIT compiler to perform low-

level optimizations on the devirtualized and specialized code. Our call graph construction

algorithms use the rich type information available at the source code level to define context

abstractions that are both effective in supporting devirtualization and keeping the size of the

resulting context-sensitive call graphs manageable.

We will present our analysis for Scala [Odersky and Zenger, 2005]. It is possible to apply the

proposed techniques to other languages that have abstraction features such as multiple inher-

itance, generics or type members. With a few exceptions, generic type parameters have been

largely ignored in the literature on call graph construction. One reason for this is that, at least

in the case of Java, most call graph construction algorithms are studied on Java bytecode, in

which type parameters have been erased. Yet our results show that modeling type parameters

precisely significantly improves call graph precision. Future work should evaluate to what

extent this is also true for other languages, and the practice of analyzing erased bytecode

instead of generic Java source code should be reexamined.

Our use of static types as contexts is distinct from the dynamic type tags used as contexts in

the “type-sensitive” analysis of [Smaragdakis et al., 2011, 2014]. That analysis traces the flow

of objects (abstracted by their dynamic type tags) from allocation sites along dataflow paths

through the program all the way to each call site, and then analyzes the target of the call site in

a separate context for each possible dynamic type of the receiver (and optionally of the other

arguments [Agesen, 1995]). In contrast, the context that we propose is formed from the static

types of the receiver and arguments that are available locally at the call site. Unlike dynamic

type tags, the static type does not need to be propagated from the allocation site to the call

site. Moreover, a given call site may be reached by objects of many different runtime types,

which gives rise to many contexts for the target method in the “type-sensitive” analysis. In

contrast, only a single static type argument is passed for each type parameter, so the number

of contexts in our proposed analysis remains small.

This Chapter makes the following contributions:

— The Chapter proposes two extensions to the Scala call graph construction algorithm of [Ali

et al., 2014]. In the first extension, we define the contexts in which a method is analyzed using

the actual (but static) type arguments that are substituted for the generic type parameters of

the method. In the second extension, we further refine the contexts by replacing the declared

80

5.1. Introduction

types of the method’s term parameters with more precise subtypes. Different combinations

of choices of possible subtypes define distinct contexts. This form of context sensitivity is

similar to that used in Agesen’s Cartesian Product Algorithm [Agesen, 1995]. In the case of

type class instances passed using Scala’s implicit mechanism, our analysis can often specialize

the parameter type to a singleton type that represents one specific instance of the type class.

— The chapter presents experimental results showing that

• the context-sensitive analyses are around two times faster than a context-insensitive

analysis on substantial programs;

• the context-sensitive analyses discover significantly more monomorphic call sites; and

• the precision due to context-sensitivity reduces the number of times that the average

method would have to be specialized from 22 to a much more reasonable 1.00 to 1.50

times.

The rest of the chapter is organized as follows.

• In Section 5.2, we present an example program that motivates the need for specializa-

tion and therefore for precise call graphs.

• In Section 5.3, we provide a background discussion of the T C Aexpand-this analysis of [Ali

et al., 2014], on which our extensions are formulated.

• We define our context-sensitive analyses in Section 5.4.

• Section 5.5 presents and discusses our experimental results.

• We discuss related work in Section 5.6, and

• We conclude in Section 5.7.

81

Chapter 5. Types as Contexts in Whole Program Analysis

5.2 Motivation

715 implicit def Iterable[T](implicit ord: Ordering[T]): Ordering[Iterable[T]] =
716 new Ordering[Iterable[T]] {
717 def compare(x: Iterable[T], y: Iterable[T]): Int = {
718 val xe = x.iterator
719 val ye = y.iterator
720

721 while (xe.hasNext && ye.hasNext) {
722 val res = ord.compare(xe.next(), ye.next())
723 if (res != 0) return res
724 }
725

726 Boolean.compare(xe.hasNext, ye.hasNext)
727 }
728 }

Listing 5.1 – Running example from scala.math.Ordering.

We will motivate the need for a more precise call graph abstraction using the example method

in Listing 5.1. This method is taken from the scala.math.Ordering class in the Scala standard

library. Given any ordering ord for the type T, the method implicitly generates a lexicographic

ordering for the type Iterable[T]. Since the compare method on Line 717 is called many

times at run time, in loops, it is beneficial to specialize and inline the call sites within it as

much as possible, especially those within the while loop on Line 721. In particular, a high-

performance code generator should specialize the compare method for each value ord for

which it is generated.

A context-insensitive call graph will contain a path to the compare method on Line 717 from

the Arrays.sort method in the Java standard library. Therefore, for every type T that is ever

sorted anywhere in the whole program, a sound analysis should find that an object of every

such type could reach the parameters x and y of compare. In particular, in a large program,

this is likely to include most of the possible subtypes of Iterable. In the Scala standard library,

the trait Iterable has 214 concrete subtypes.

As a result, the calls to x.iterator and y.iterator on lines 718 and 719 will be highly poly-

morphic and not inlineable.

As a consequence, the sets of possible types of xe and ye will be highly imprecise. There are

44 concrete subtypes of Iterator in the Scala standard library.

Therefore, the calls to xe.hasNext and ye.hasNext on Line 721 will also be highly polymorphic

and infeasible to inline; this is also true for calls to xe.next() and ye.next() on Line 722.

The bodies of these four methods are usually small, and are called for every element of the

iterables; therefore they need to be inlined to achieve good performance.

Finally, the call to ord.compare on Line 722 is statically considered to be dispatched to every

implementation of Ordering[T] that reaches the ord parameter. Therefore, this call is also

82

5.2. Motivation

732 def lexicographicSort[T](a: Seq[Iterable[T]])(implicit o: Ordering[T]) = a.sorted
733
734 lexicographicSort[Char](
735 Predef.wrapRefArray[WrappedString](
736 new Array(
737 Predef.wrapString("world"),
738 Predef.wrapString("Hello")
739)
740)
741)(Ordering.Char)

Listing 5.3 – Desugared version of example program from Listing 5.2.

highly polymorphic in a context-insensitive call graph.

Let us consider how the static polymorphism could be reduced using context sensitivity (or,

equivalently, specialization). We will illustrate this with the example client program in List-

ing 5.2.

729 def lexicographicSort[T](a: Iterable[T]*)(implicit o: Ordering[T]) = a.sorted
730

731 lexicographicSort("world", "Hello")

Listing 5.2 – Example program that uses the compare method from Listing 5.1.

The snippet defines a generic method lexicographicSort that creates a sorted list of values

of type Iterable[T] by calling the sorted method of SeqLike. The * after the Iterable[T]

parameter type indicates that the method takes a variable number of parameters, each of type

Iterable[T]. The lexicographicSort method is called with two strings on Line 731.

Type inference and implicit resolution in the early stages of the Scala compiler desugar the

program as shown in Listing 5.3.

One of the most serious impediments to good performance of the compare method is the

need to box and unbox values of primitive Java types such as char. The bytecode version of

the Iterator.next method has a return type of Object. This is incompatible with primitive

types, so each char that it returns must be boxed in a Character. Inside the compare method

of Ordering.Char, the Character must again be unboxed into a primitive Char.

Our first proposed improvement to the call graph is to analyze the entire outer Iterable

method from Listing 5.1 separately in the context of each possible type argument with which

the type parameter T is instantiated. In this example, T is specialized to Char. As a result,

the type of xe and ye becomes Iterator[Char], and the calls to xe.next() and ye.next() in

Line 722 can be redirected to versions of the methods that return a primitive Char without

boxing. Similarly, the type of ord becomes Ordering[Char], so the call of ord.compare can be

redirected to a version with primitive Char parameters that do not need to be unboxed. Thus,

all of the boxing and unboxing can be removed from the while loop.

Our second proposed improvement is to analyze methods separately in the contexts of the

83

Chapter 5. Types as Contexts in Whole Program Analysis

more precise types of their parameters that are available at the call site. In our running

example, we can determine that when T is Char, the comparemethod is only called with a small

number of concrete types of Iterables. In particular, we can analyze compare specifically in

the context in which both of its parameters are of the type WrappedString, that is returned by

Predef.wrapString. The calls to x.iterator and y.iterator in Lines 718 and 719 become

monomorphic, which enables the analysis to give a precise type to xe and ye. As a result, the

calls to hasNext and next() become monomorphic as well. We can now rewrite the known

monomorphic calls to target specific statically known versions of their target methods, which

makes it easy for the Java JIT compiler to inline and aggressively optimize them. The resulting

optimized code is a simple loop over the arrays underlying the implementations of the strings

that are being compared, much like the typical loop that one would write in C to compare two

strings.

5.3 Background

The existing state of the art in call graph construction for Scala is the T C Aexpand-this algorithm

of [Ali et al., 2014, 2015]. To enable comparison of our results with previous work, we formulate

our improvements as extensions to this existing framework. In this section, we present this

baseline framework.

The main inference rules of the formulation are shown in Figure 5.1. The algorithm iterates

the rules until a fixed point is reached, using worklists to keep track of new facts and to

determine which rules need to be reevaluated. The set R keeps track of the methods reachable

from the entry points through the call graph constructed so far. The set Σ̂ keeps track of the

types of objects that may be allocated in these reachable methods. The rule T C A
expand-this
M A I N

initializes R with the main entry point. The rule T C A
expand-this
N E W finds object instantiations

in reachable methods and adds the types to Σ̂. The rule T C A
expand-this
C A L L resolves a call site

e.m(. . .) using the static type of the receiver e to determine all possible target methods M ′.
The rule T C A

expand-this
A B S T R A C T- C A L L handles the specific case of a call site at which the static type T of

the receiver e is an abstract type. In this case, the T C Aexpand-this algorithm uses the function

expand() to determine the possible concrete types with which T could be instantiated. The

expand() function is computed by additional inference rules that find all the concrete types

with which the abstract type T could ever be instantiated. We do not show those rules here;

for details, refer to [Ali et al., 2014, 2015]. The rule T C A
expand-this
T H I S - C A L L is a variation of T C A

expand-this
C A L L

that is more precise in the specific case when the receiver of the call is the this pointer in the

caller (i.e. the receiver of the callee is the same object as the receiver of the caller). In this case,

the rule adds precision by using the additional precondition that the caller M must also be a

member of some type C that the callee M ′ is a member of. The rule T C A
expand-this
L O C A L - C A L L handles

calls to local functions that are nested inside some other function rather than being members

of a class. This rule was not given explicitly by [Ali et al., 2014, 2015], but we have added it here

for completeness. Calls to such functions do not have a receiver, and they are not dispatched

dynamically: the method specified at the call site is the exact method that is executed.

84

5.3. Background

T C A
expand-this
M A I N

main ∈ R
T C A

expand-this
N E W

“new C ()” occurs in M
M ∈ R

C ∈ Σ̂

T C A
expand-this
C A L L

call e.m(. . .) occurs in method M
C ∈ SubTypes(StaticType(e))

method M ′ has name m
method M ′ is a member of type C

M ∈ R C ∈ Σ̂

M ′ ∈ R

T C A
expand-this
A B S T R A C T- C A L L

call e.m(. . .) occurs in method M
StaticType(e) is an abstract type T

C ∈ SubTypes(expand(T))
method M ′ has name m

method M ′ is a member of type C
M ∈ R C ∈ Σ̂

M ′ ∈ R

T C A
expand-this
T H I S - C A L L

call D.this.m(. . .) occurs in method M
D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C
method M is a member of type C

M ∈ R C ∈ Σ̂

M ′ ∈ R

T C A
expand-this
L O C A L - C A L L

call M ′(. . .) occurs in method M
M ′ is method nested inside method M ′′

M ∈ R

M ′ ∈ R

Figure 5.1 – Inference rules of TCAexpand-this from [Ali et al., 2014, 2015]

85

Chapter 5. Types as Contexts in Whole Program Analysis

5.4 Algorithms

5.4.1 T C Atypes: Propagation of Type Arguments

We now introduce the first extension to the TCA algorithm. The main idea is to construct

a context-sensitive call graph in which each context for a given method is a substitution of

concrete types for the type parameters of that method. Specifically, the elements of the set

R, which were the reachable methods in TCA, now become pairs consisting of a reachable

method and a type substitution. The inference rules for the extended algorithm are shown in

Figure 5.2. Changes from the original algorithm are shaded .

The rule T C A
types
M A I N pairs the main method with the empty substitution �, since the entry point

of the program has no type parameters.

The rule T C A
types
N E W iterates over all reachable method-substitution pairs, ignores the substi-

tution, and adds the types instantiated in each reachable method to Σ̂, as in the original

algorithm.

In the rule T C A
types
C A L L , for each reachable pair (M ,σ), where M is a method and σ is a substitu-

tion, σ is applied to the static type of the receiver e. We use the postfix notation StaticType(e)σ

to denote substitution application. From the actual type arguments passed to the callee M ′

at the call site, we define the substitution σ′ that replaces each type parameter of M ′ with

the argument that is passed for it. In the conclusion of the T C A
types
C A L L rule, the caller’s context

substitution σ is composed with the call site substitution σ′. As a result, if σ′ uses one of

the type parameters of the caller, it will be replaced, using σ, with the concrete type that it is

instantiated with in the specific caller context. We use the notation σ′σ to denote substitution

composition. We restrict the resulting composed substitution to only the type parameters of

M ′, formally dom(σ′). The notation σ′σ|dom(σ′) will denote this restriction.

We apply similar modifications to the rules T C A
expand-this
T H I S - C A L L and T C A

expand-this
A B S T R A C T- C A L L to obtain the

new rules T C A
types
T H I S - C A L L and T C A

types
A B S T R A C T- C A L L .

Because the set of possible types is unbounded, the set of reachable methods paired with type

substitutions could grow without bound. In particular, this happens in the case of polymor-

phic recursion in the following example:

742 def foo[A](a: List[A], d: Int): List[_] =
743 if (d == 0) a
744 else foo(a.zip(a), d - 1)

The method foo in context [A �→ Int] calls foo in context

[A �→ (Int, Int)], which later calls foo in context

[A �→ ((Int, Int), (Int, Int))], and so on. To ensure the termination of call graph con-

struction, we define a limit for the number of contexts under which each method is consid-

ered. If this limit is exceeded, then instead of creating a new context (M , [Ni �→ Ti]), we loosen

86

5.4. Algorithms

T C A
types
M A I N

(main,�) ∈ R
T C A

types
N E W

“new C ()” occurs in M
(M , . . .) ∈ R

C ∈ Σ̂

T C A
types
C A L L

call e.m [σ′] (. . .) occurs in method M

C ∈ SubTypes(StaticType(e)σ)

method M ′ has name m
method M ′ is a member of type C

(M ,σ) ∈ R C ∈ Σ̂

(M ′,σ′σ|dom(σ′)) ∈ R

T C A
types
A B S T R A C T- C A L L

call e.m [σ′] (. . .) occurs in method M

StaticType(e)σ is an abstract type T

C ∈ SubTypes(expand(T))
method M ′ has name m

method M ′ is a member of type C
(M ,σ) ∈ R C ∈ Σ̂

(M ,σ′σ|dom(σ′)) ∈ R

T C A
types
T H I S - C A L L

call D.this.m [σ′] (. . .) occurs in method M
D is the declaring trait of M

C ∈ SubTypes(D)
method M ′ has name m

method M ′ is a member of type C
method M is a member of type C

(M ,σ) ∈ R C ∈ Σ̂

(M ′,σ′σ|dom(σ′)) ∈ R

T C A
types
L O C A L - C A L L

call M ′ [σ′] (. . .) occurs in method M
M ′ is a method nested inside method M ′′

(M ,σ) ∈ R

(M ′,σ′σ|dom(σ′)) ∈ R

Figure 5.2 – Propagation of type arguments

87

Chapter 5. Types as Contexts in Whole Program Analysis

the precision of the last created context for the same method (M , [Ni �→ T′i]) by replacing each

type it contains with the least upper bound of the type in the old context and the type in the

new context: (M , [Ni �→ l ub(Ti ,T′i)]). The loosened context conservatively over approximates

the types in both the old, last created context for the method and the new context that we

intended to create.

We did not encounter any cases of such unbounded growth in any of the benchmark programs

that we evaluated.

5.4.2 Propagation of Outer Type Parameters

In the previous section, the context of each method substituted concrete types only for the

direct type parameters of that method. For even greater precision, we can extend the context

with the type parameters of the classes and methods that the method is nested within. Specif-

ically, in our implementation, each element of Σ̂ is not just an instantiated type C , but a pair

(σ,C). Here, σ is a substitution that assigns a concrete type to every type parameter that is in

scope at the program location where C is instantiated.

An equivalent method to achieve the same precision is to split the analysis into two phases.

The first phase transforms the code using a transformation similar to lambda lifting [Johnsson,

1985], but applied to type parameters. Specifically, whenever a class or method has some type

parameter T that can be implicitly used in methods nested within it, we add T as an explicit

type parameter to each of those nested methods, and pass it explicitly at every call site. The

second phase is then to perform the simple analysis described in the previous section. For per-

formance reasons, our implementation uses the first approach of associating a substitution

with each instantiated type. In the interest of clarity of presentation, our description in this

paper follows the second approach, which decouples the issue of instantiating parameters of

enclosing classes and methods from the analysis itself.

We illustrate the transformation with the following example program, in which method bar is

nested in method foo, which itself is nested in class C:

745 class C[T] {
746 def foo[U](t: T, u: U) = {
747 def bar[V](t: T, u: U, v: V) = {...}
748

749 bar[Double](t, u, 1.0)
750 }
751 }
752 (new C[Int]).foo[String](5, "")

The above program would be transformed as follows:

88

5.4. Algorithms

753 class C[T] {
754 def foo[T2, U](t: T2, u: U) = {
755 def bar[T3, U2, V](t: T3, u: U2, v: V) = {...}
756

757 bar[T2,U,Double](t, u, 1.0)
758 }
759 }
760 (new C[Int]).foo[Int,String](5, "")

The type parameter T of class C has been explicitly added to the methods foo and bar nested

within it as T2 and T3. The type parameter U of method foo has been explicitly added to the

method bar that is nested within it as U2.

Type parameters need to be passed explicitly when an outer method calls an inner one. When

a given type parameter comes from a method in the original program, it is available at the call

site as an explicit parameter of the caller method in the transformed program: for example,

in the call of bar from foo, type parameters T2 and U of foo are passed as arguments for the

parameters T3 and U2 of bar. When a given type parameter comes from a class in the original

program, it is also available at the call site as an argument in the type of the receiver: for

example, in the call to foo, the type argument Int in the type C[Int] of the receiver determines

the type argument to be passed for the parameter T2 of foo.

Note that the erasure of both the original and the transformed program is the same; therefore

the runtime behavior is left unchanged.

In addition to type parameters, we also transform the abstract type members of each class

in the same way, turning them into explicit type parameters of all methods nested inside the

class. Consider the following program:

761 abstract class Buffer {
762 type U
763 type T <: Seq[U]
764 def elements: T
765 def length = elements.length
766 }
767 class Buffer123 extends Buffer {
768 type U = Int
769 type T = List[Int]
770 def elements = List(1, 2, 3)
771 }
772

773 Buffer123.length()

The program is transformed to:

89

Chapter 5. Types as Contexts in Whole Program Analysis

774 abstract class Buffer {
775 type U
776 type T <: Seq[U]
777 def elements[U2, T2 <: Seq[U2]]: T2
778 def length[U2, T2 <: Seq[U2]] =
779 elements[U2, T2].length
780 }
781 class Buffer123 extends Buffer {
782 type U = Int
783 type T = List[Int]
784 def elements[U2 = Int, T2 = List[U2]]: T2 =
785 List(1,2,3)
786 }
787

788 Buffer123.length[Buffer123.U, Buffer123.T]()

A consequence of this transformation is that the body of each method refers only to the type

parameters defined on the method itself, and does not refer to any type parameters or type

members of outer enclosing classes or methods. As a result, in the transformed program, the

substitution context defined in the previous section now provides arguments for all the type

parameters of each method. This includes those that came indirectly from outer classes and

methods in the original program.

It is now easy to prove inductively that the range of every substitution σ that ever appears in a

pair in R consists only of fully instantiated types (which do not contain any type parameters).

Suppose that this is true of the substitution context σ of a method M that contains a call

site e.m[σ′](). The only type variables used in the argument substitution σ′ are the direct

type parameters of M . The context substitution σ provides fully instantiated types for all of

these type parameters. Therefore, when σ′ and σ are composed, the range of the composed

substitution contains only fully instantiated types. It is this composed substitution with fully

instantiated types that becomes the new context for the target method called by the call site.

Therefore, the static type of the receiver of a call, StaticType(e)σ, is never abstract after the

caller-context substitution σ has been applied to it. The rule T C A
types
A B S T R A C T- C A L L is thus never

needed and can be removed from the algorithm, together with the rules for computing the

expand() sets for abstract types.

5.4.3 T C Atypes-terms: Propagation of Term Argument Types

It is very common for the receiver at a call site to be one of the (term) parameters of the method

containing the call site. The implicit receiver parameter this is the most common such

receiver, but other parameters are common as well. As an example, consider the following

code:

90

5.4. Algorithms

T C A
types-terms
M A I N

(main,�, Array[String]) ∈ R
T C A

types-terms
N E W

“new C ()” occurs in M
(M , . . . , . . .) ∈ R

C ∈ Σ̂

T C A
types-terms
C A L L

call e.m[σ′](ar g s) occurs in method M

C ∈ SubTypes(StaticType(π ,e)σ)
method M ′ has name m

method M ′ is a member of type C
(M ,σ, π) ∈ R C ∈ Σ̂

π′ = (e :: ar g s).map(ar g ⇒ StaticType(π, ar g)σ)

(M ′,σ′σ|dom(σ′), π′) ∈ R

T C A
types-terms
L O C A L - C A L L

call M ′[σ′](ar g s) occurs in method M

M ′ is a method nested inside method M ′′

(M ,σ, π) ∈ R

π′ = ar g s.map(ar g ⇒ StaticType(π, ar g)σ)

(M ′,σ′σ|dom(σ′), π′) ∈ R

T C A
types-terms
T H I S - C A L L

call D.this.m[σ′](ar g s) occurs in method M

D is the declaring trait of M
C ∈ SubTypes(D)

method M ′ has name m
method M ′ is a member of type C
method M is a member of type C

(M ,σ, π) ∈ R C ∈ Σ̂

π′ = (D.this :: ar g s).map(ar g ⇒ StaticType(π, ar g)σ)

(M ′,σ′σ|dom(σ′), π′) ∈ R

Figure 5.3 – Propagation of term argument types

91

Chapter 5. Types as Contexts in Whole Program Analysis

789 def internalHashCode[T](el: T, nullRep: Object) =
790 if (el != null)
791 el.hashCode
792 else

793 nullRep.hashCode
794

795 internalHashCode[Int](42, "null")

The receivers el and nullRepof the calls to hashCode are both parameters of internalHashCode.

When the type of the receiver is itself a type variable of the caller, the propagation of type argu-

ments that we have described above helps to resolve the call precisely. In the example, the type

of el is the type parameter T, which the context substitution instantiates to Int; consequently

we know that the target of el.hashCode is the implementation of hashCode in Int. However, in

the call nullRep.hashCode, we need to assume that the runtime type of the receiver nullRep

may be any subtype of Object. To further improve precision, the analysis can be extended

further to propagate the type of the argument from the call site of internalHashCode, which

is String, into the context in which internalHashCode is analyzed. As a result, the analysis

could then determine that the call nullRep.hashCode calls only the String implementation

of hashCode.

To implement this precision improvement in our call graph construction algorithm, we further

extend the method contexts contained in the set R. Each element of R becomes a triple

that contains a reachable method M and a type parameter substitution σ as before, and, in

addition, a list π of more precise types for the term parameters of M (including the implicit

this receiver parameter).

The inference rules for the extended algorithm are shown in Figure 5.3. Changes from Fig-

ure 5.2 are shaded . The StaticType function is extended to take a list π of more precise

parameter types. If e is a parameter of M , then StaticType(π,e) returns the more precise type

of e given by π; otherwise it just returns the same static type of e as in the previous analyses.

We also extend StaticType to map over a sequence of terms and return a sequence of their

types. The last premise of the T C A
types
C A L L rule uses StaticType to get the precise types of the

arguments passed at the call site. The substitution σ is applied to these types. These precise

types π′ are then included in the context that is added to R at the conclusion of the rule.

5.5 Evaluation

We have implemented the T C Aexpand-this analysis of Ali et al. [2014, 2015] and our two exten-

sions T C Atypes and T C Atypes-terms on top of the Dotty compiler3, a new compiler for the future

evolution of the Scala language. Although Dotty is not yet finished, it is not a research proto-

type: it is intended to eventually replace the current nsc, becoming the standard production-

3 ↑https://github.com/lampepfl/dotty

92

5.5. Evaluation

P
ro

gr
am

A
lg

o
ri

th
m

#
In

st
an

ti
at

ed
cl

as
se

s

#
C

la
ss

es
w

it
h

re
ac

h
ab

le
m

et
h

o
d

#
R

ea
ch

ab
le

m
et

h
o

d
s

#
R

ea
ch

ab
le

co
n

te
xt

s

#
M

ax
im

u
m

co
n

te
xt

s
p

er
m

et
h

o
d

#
D

is
co

ve
re

d
sp

ec
ia

li
za

ti
o

n
s

C
o

d
e

gr
ow

th
fa

ct
o

r

List
creation

T C Aexpand-this 149 64 207 207 1 3469 16.75
T C Atypes 117 33 90 90 1 90 1.00
T C Atypes-terms 117 31 83 101 2 83 1.002

List &
Vector
creation

T C Aexpand-this 152 79 268 268 1 6358 24.73
T C Atypes 130 36 95 114 2 114 1.20
T C Atypes-terms 130 34 90 138 4 112 1.24

List
create
and sort

T C Aexpand-this 157 65 209 209 1 3919 18.75
T C Atypes 126 34 92 92 1 92 1.00
T C Atypes-terms 126 34 89 147 2 89 1.00

List & Vector
create and sort

T C Aexpand-this 170 83 357 357 1 7725 21.64
T C Atypes 142 39 115 140 2 140 1.21
T C Atypes-terms 142 37 109 147 5 131 1.20

List create,
sort and print

T C Aexpand-this 171 68 212 212 1 4146 19.56
T C Atypes 131 37 95 95 1 95 1.00
T C Atypes-terms 131 35 92 206 6 92 1.00

lexicographic
Sort

T C Aexpand-this 182 88 293 293 1 5529 18.87
T C Atypes 134 41 102 104 2 104 1.01
T C Atypes-terms 134 41 98 231 3 102 1.04

Page rank
T C Aexpand-this 229 92 341 341 1 12490 36.63
T C Atypes 145 50 127 173 3 173 1.36
T C Atypes-terms 145 45 118 293 5 165 1.40

Round robin

T C Aexpand-this 189 76 252 252 1 6272 24.89
T C Atypes 147 46 130 174 1 174 1.34
T C Atypes-terms 147 44 123 310 3 165 1.34

Dotty type-
checker

T C Aexpand-this 1028 822 10694 10694 1 45278 4.23
T C Atypes 832 695 9347 14011 4 14011 1.50
T C Atypes-terms 832 629 8992 37992 43 13122 1.46

Table 5.1 – Results of the T C Aexpand-this, T C Atypes, and T C Atypes-terms analyses on the bench-
mark programs. The first two columns specify the benchmark program and the analysis
algorithm. The next three columns show the number of classes found to be instantiated,
including their superclasses, classes that have at least one reachable method, and methods
reachable by the analysis. The following two columns show the total number of reachable
method contexts and the maximum number of such contexts per method. If every reachable
method were specialized for all of the type arguments that the analysis determines may flow
to its type parameters, the next two columns show the total number of such specialized meth-
ods that would be created and the factor by which this number is greater than the number of
reachable methods in the original program.

93

Chapter 5. Types as Contexts in Whole Program Analysis

P
ro

gr
am

A
lg

o
ri

th
m

%
m

o
n

o
m

o
rp

h
ic

ca
ll

si
te

s

%
b

im
o

rp
h

ic
ca

ll
si

te
s

%
m

eg
am

o
rp

h
ic

ca
ll

si
te

s

R
u

n
n

in
g

ti
m

e,
se

co
n

d
s

List
creation

T C Aexpand-this 80.2 7.0 12.8 0.76
T C Atypes 93.0 4.7 2.3 1.30
T C Atypes-terms 95.4 2.3 2.3 1.32

List &
Vector
creation

T C Aexpand-this 73.2 4.1 22.3 1.89
T C Atypes 86.0 2.1 11.9 1.58
T C Atypes-terms 88.1 4.5 7.5 1.41

List
create
and sort

T C Aexpand-this 77.6 6.4 16.0 0.77
T C Atypes 87.2 9.6 3.2 1.54
T C Atypes-terms 89.4 8.5 2.1 1.58

List & Vector
create and sort

T C Aexpand-this 72.2 2.4 25.2 2.30
T C Atypes 85.5 3.8 9.7 1.64
T C Atypes-terms 89.2 2.6 8.2 1.47

List create,
sort and print

T C Aexpand-this 78.6 4.1 17.4 1.29
T C Atypes 87.8 9.2 3.1 5.43
T C Atypes-terms 89.8 8.2 2.0 3.25

lexicographic
Sort

T C Aexpand-this 72.7 2.8 24.5 1.50
T C Atypes 85.8 7.6 5.6 5.91
T C Atypes-terms 89.1 6.5 4.40 4.08

Page rank
T C Aexpand-this 59.4 8.5 32.1 10.28
T C Atypes 77.4 7.6 15.1 11.22
T C Atypes-terms 85.9 9.9 4.3 6.24

Round robin

T C Aexpand-this 72.6 8.1 19.3 9.69
T C Atypes 87.9 8.1 4.0 8.79
T C Atypes-terms 87.9 8.9 3.2 3.91

Dotty type-
checker

T C Aexpand-this 55.6 1.8 42.6 893.52
T C Atypes 82.3 0.6 17.1 1071.71
T C Atypes-terms 90.7 2.6 6.7 637.10

Table 5.2 – Results of the T C Aexpand-this, T C Atypes, and T C Atypes-terms analyses on the bench-
mark programs. The next three columns show the percentage of call sites found to be mo-
nomorphic, bimorphic, and megamorphic by each analysis. For consistency, to enable com-
parisons between the three analyses, we take as the universe of all call sites only those in
methods found to be reachable by the most precise analysis, T C Atypes-terms. Otherwise, the
results would be confounded by the fact that each analysis discovers a different set of reach-
able methods and therefore a different set of reachable call sites. The final column gives the
running time of the analysis.

94

5.5. Evaluation

quality compiler for Scala. We tested our implementation on the full test suite of Dotty, which

includes 1403 Scala programs. To the best of our knowledge, our analyses soundly handle the

entire Scala language dialect supported by Dotty, including Dotty-specific extensions to Scala

such as trait parameters4 and repeated by name parameters5.

The analysis runs after the type checker stage of Dotty. At this stage, all expressions have

their original, unerased and unsimplified Scala types. This means that our implementation

correctly handles types that may contain generic types and path dependent types [Odersky,

2014, §3.5]. When the analysis requires subtyping checks, we use the implementation of

subtype testing included in the Dotty compiler.

In this section, we first evaluate the T C Atypes-terms analysis implemented in Dotty, and then

show how it can be used for program performance.

5.5.1 Analysis Evaluation

We have evaluated our implementation on the nine Scala programs listed in Tables 5.1 and

5.2. The first six programs were selected to exercise the Scala collections library, which is

implemented in a very generic style with multiple layers of abstraction. The collections library

is also highly megamorphic: for example, it contains 214 named subclasses of Iterable. The

next two benchmarks are moderately sized applications implemented in idiomatic Scala.

The largest benchmark is the parser and type checker of the Dotty compiler itself. The Dotty

compiler is still under development, and only recently became able to bootstrap itself. Further

development of the Dotty compiler is necessary before it can compile more mainstream Scala

applications.

To construct each call graph, we provided all of the dependencies written in Scala as source

code to the analysis. All Scala programs also implicitly depend on the Java Standard Library,

which is in the form of Java bytecode that our implementation does not analyze. We made con-

servative assumptions about the effects of the Java library, and used the Separate Compilation

Assumption [Ali and Lhoták, 2012; Ali and Lhoták, 2013] to construct a sound partial call graph

for the parts of the program that were written in Scala and therefore available for analysis. The

only methods of the Java standard library called by any of our benchmark programs and their

Scala dependencies are the methods of the java.lang.Object and java.lang.Comparable

classes.

We ran all of our experiments on a machine with a quad core 2.8 GHz Intel i7-4980HQ CPU

(running in 64-bit mode) and capped available memory for experiments to 768 MB of RAM.

4 ↑http://docs.scala-lang.org/sips/pending/trait-parameters.html
5 ↑http://docs.scala-lang.org/sips/pending/repeated-byname.html

95

Chapter 5. Types as Contexts in Whole Program Analysis

Research Questions

Our evaluation aims to answer the following Research Questions:

RQ1. How do the three analysis algorithms compare in regard to the precision of the call

graphs that they generate?

RQ2. Type and term argument propagation increase the size of the set R by tracking meth-

ods multiple times with different type and term arguments. How severe is the increase?

RQ3. How usable are the call graphs generated by the three analysis algorithms for the

purposes of specialization and inlining?

RQ4. How many call sites can the algorithms prove to be monomorphic?

RQ5. How does tracking of type and term arguments affect the running time of the analysis?

Results

RQ1. Relative to T C Aexpand-this, call graphs constructed by T C Atypes have 22% fewer reach-

able classes and 56% fewer reachable methods on average. The most significant cause of

the precision improvement was that T C Atypes precisely resolved calls on generic super classes

where T C Aexpand-this was imprecise. For example, while a call on a Seq[T] could dispatch to

both List[Int] and Vector[Double] according to T C Aexpand-this, T C Atypes would analyze the

call separately within the context of the two different type arguments.

On the Dotty typechecker, the T C Atypes call graph has 15 % fewer reachable methods than the

T C Aexpand-this call graph. The improvement is smaller because Dotty makes little use of the

generic collections in the standard library. For example, Dotty uses its own custom-tuned

implementations of sets. Of 629 classes with reachable methods, only 40 are from the standard

library.

On average over all of the benchmark programs, the analysis T C Atypes-terms further reduces the

number of reachable methods by 5% compared to T C Atypes.

The number of megamorphic call sites is, on average, 70% lower with T C Atypes than with

T C Aexpand-this. T C Atypes-terms further reduces the number of megamorphic call sites to 32%

fewer than T C Atypes.

On the Dotty type checker, T C Atypes-terms reduces the number of megamorphic call sites by

96

5.5. Evaluation

60% compared to T C Atypes. The main source of this improvement is apply methods, which

implement closures.

RQ2. We might expect that the number of reachable contexts would grow as the amount of

context sensitivity is increased. In fact, due to the substantial improvement in precision and

the decrease in the number of reachable methods, the average number of reachable contexts

is 53% smaller in T C Atypes than in T C Aexpand-this. T C Atypes-terms does generate more reachable

contexts than T C Atypes, but, in general, still fewer than T C Aexpand-this.

The Dotty typechecker is a special case in this regard. It has a substantial number of clo-

sures that are passed as arguments, with multiple different closures being passed to the same

method. Tracking all of these closures requires four times as many reachable method contexts

in T C Atypes-terms as there are reachable methods in T C Aexpand-this.

As we mentioned in Section 5.4.1, it is theoretically possible for the number of contexts to

grow without bound, and we must stop generating new contexts after a fixed limit has been

exceeded in order for the analysis to terminate. We did not observe unbounded growth in any

of the benchmark programs. To determine how to select the limit, we counted the maximum

number of contexts for any given reachable method for each benchmark. The maximum

number of contexts was six or less for all of the benchmarks, except for the special case of the

Dotty typechecker. This contains a function track(String)(Closure) that is used to track

the number of times a particular computation is performed. This function is called with 43

different closures, and term argument type propagation tracks all of them as separate contexts.

Aside from this function, only five other functions in the Dotty typechecker are analyzed with

more than 10 contexts.

RQ3. The call graphs generated by the three algorithms provide information about the con-

crete type arguments with which each type parameter in the program can be instantiated.

Our intended application is to specialize each generic method for each of the type arguments

that it may be called with. Each method that has been specialized in this way can be easily

inlined as an additional step, either in a static optimizer or in a JIT compiler.

The type argument information provided by the context-insensitive T C Aexpand-this analysis is

too imprecise to be practical for this application. It indicates that each method should be

specialized 22 times on average.

Both of the context-sensitive analyses, T C Atypes and T C Atypes-terms, provide much more usable

information for specialization. They indicate that, on average, methods need to be specialized

1.50 times.

RQ4. Our intended applications of call graphs, specialization and inlining, apply to call

sites that have only a single possible target method (are monomorphic). The precision of

97

Chapter 5. Types as Contexts in Whole Program Analysis

many other analyses such as points-to analysis and escape analysis benefits significantly

from precise knowledge of the targets of virtual calls. We therefore measure the ability of

different algorithms to resolve each call site to a unique target method.

Adding type propagation in T C Atypes substantially increases the percentage of call sites that

are statically monomorphic compared to T C Aexpand-this, by around 10 percentage points on

small programs and by around 20 percentage points on large programs. T C Atypes-terms further

increases monomorphic call sites by up to eight percentage points on large programs.

RQ5. We might expect that the more precise context-sensitive analyses require more time

than T C Aexpand-this. This is indeed the case on some of the small programs that exercise the

library: T C Atypes takes up to four times as long as T C Aexpand-this. This is due to more complex

rules that require more work to process each call site. However, on the three larger programs,

T C Atypes takes on average only 20% more time than T C Aexpand-this, and T C Atypes-terms is actually

always faster than T C Aexpand-this. This is explained by the more precise (and therefore smaller)

sets R and Σ̂ computed by the context-sensitive algorithms. A major source of the speedup

of T C Atypes-terms over T C Atypes is that the implementation of substituting a type for a type

parameter that occurs inside a complicated type is slow. In many cases, term argument type

propagation can copy the entire (already substituted type) faster than it would take to replace

the type parameters within it.

5.5.2 Application to Specialization

The evaluation so far has focused on the output of the T C Atypes-terms analysis. In this section,

we show how the analysis improves the effectiveness of specialization.

Generic classes and methods can be compiled to low-level code using two approaches. A

heterogeneous approach duplicates the generic code and adapts it for every set of type ar-

guments [Kennedy and Syme, 2001; Morrison et al., 1991]. This produces many low-level

versions of a generic class or method, each adapted to efficiently handle a single type of data.

A homogeneous approach generates a single copy with the type parameters erased to their

upper bound, commonly Object, that can accommodate values of any type [Bracha et al.,

1998].

Similar approaches have also been developed for functional languages with polymorphic

types. Intentional type analysis [Harper and Morrisett, 1995] introduces user-facing syntax

that is similar to runtime reflection that can be used to inspect types and generate specialized

classes at run time. For functional programs requiring boxing, [Henglein and Jørgensen, 1994]

introduces a rewriting algorithm that places the boxing and unboxing operations to minimize

the number of coercions executed according to a formal optimality criterion.

Both approaches have benefits and drawbacks. Although the homogeneous approach mini-

mizes the amount of generated low-level code, it has poor performance: each time a value of

98

5.5. Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

ArrayBu er.create ArrayBu er.reverse ArrayBu er.contains LinkedList.create LinkedList.hashCode LinkedList.contains

Re
la

tiv
e

tim
e

Erasure
Specialization - Naive

Specialization - Call Graph
Miniboxing - Naive

Miniboxing - Call Graph

Figure 5.4 – Graphical representation of the data presented in Table 5.3, in milliseconds.
Lower is better.

primitive type flows in to and out of generic code, it must be boxed into a freshly-allocated

object and respectively unboxed back to its primitive type [Leroy, 1992]. The heterogeneous

approach avoids boxing and unboxing, but it requires knowing the set of possible type argu-

ments. Furthermore, the number of combinations of type arguments used to instantiate a

generic class or method grows exponentially with the number of type parameters, making the

heterogeneous approach impractical. Both Java and Scala use the homogeneous translation

by default, despite its negative effect on performance.

Specialization is a technique that allows compiling selected classes and methods using the

heterogeneous approach [Dragos, 2010; Dragos and Odersky, 2009; Goetz, 2014], while leav-

ing the rest of the generic code to use the default homogeneous translation. In Scala, spe-

cialization allows the programmer to annotate the type parameter of a class or method as

@specialized. Based on this annotation, the compiler generates 10 versions of the code, one

for the universal Object type and one for each of the nine primitive Scala types. When the

class or method has n type parameters annotated as @specialized, the compiler generates

10n versions of the code. The compiler also allows a more fine-grained annotation to spe-

cialize a type parameter only for a specified subset of the primitive types. For example, the

annotation @specialized(Int) would cause two versions of the code to be generated, one

for primitive integers and the other for the universal Object type (in which all other primitive

types can be encoded using boxing). To make use of these newly created code variants, the

compiler rewrites each generic class instantiation and each generic method call to refer to the

appropriate specialized version indicated by the type arguments.

Specialization produces significant speedups, sometimes in excess of 10x, because boxing

and unboxing operations often end up in hot loops [Dragos, 2010; Dragos and Odersky, 2009].

However, the increase in code size quickly becomes impractical. For example, specializing

a map data structure, which has two type parameters, generates 100 variants, which makes

distribution infeasible. A function type with two arguments and one return value requires

three type parameters, and therefore an unreasonable 1000 variants.

99

Chapter 5. Types as Contexts in Whole Program Analysis

ArrayBuffer.append ArrayBuffer.reverse

time speedup time speedup
Erasure 37.3 ± 0.1 1x 12.5 ± 0.1 1x
Specialization - Naive 13.0 ± 0.1 2.9x 1.7 ± 0.1 7.4x
Specialization - Call Graph 13.0 ± 0.1 2.9x 1.7 ± 0.1 7.4x
Miniboxing - Naive 19.9 ± 0.1 1.9x 1.7 ± 0.1 7.4
Miniboxing - Call Graph 19.9 ± 0.1 1.9x 1.7 ± 0.1 7.4x

ArrayBuffer.contains LinkedList.contains

time speedup time speedup
Erasure 3108.0 ± 59.1 1x 2871.8 ± 19.2 1x
Specialization - Naive 445.8 ± 4.2 7.0x 2286.1 ± 11.6 1.3x
Specialization - Call Graph 442.8 ± 2.2 7.0x 2296.0 ± 15.8 1.3x
Miniboxing - Naive 453.4 ± 3.6 6.9x 2303.9 ± 13.7 1.2x
Miniboxing - Call Graph 457.2 ± 3.7 6.8x 2333.5 ± 24.8 1.2x

LinkedList creation LinkedList.hashCode

time speedup time speedup
Erasure 171.2 ± 40.3 1x 17.0 ± 0.1 1x
Specialization - Naive 34.1 ± 0.7 5.0x 16.9 ± 0.1 1.0x
Specialization - Call Graph 33.7 ± 0.8 5.1x 16.9 ± 0.1 1.0x
Miniboxing - Naive 31.0 ± 0.6 5.5x 16.2 ± 0.1 1.0x
Miniboxing - Call Graph 31.1 ± 0.6 5.5x 16.2 ± 0.1 1.0x

Table 5.3 – Benchmark running time, for 3 million elements. The time is reported in millisec-
onds. Lower is better.

Miniboxing [Ureche et al., 2013] is an alternative heterogeneous approach that encodes mul-

tiple primitive values in a single (larger) slot, thus reducing the number of variants from 10n

to 3n . Using miniboxing, the map data structure, Map[Key, Value], requires only nine vari-

ants, while the two-argument function, Function2[T1, T2, R], requires 27 variants. As we

will see later, the T C Atypes analysis can further reduce the number of variants generated by

miniboxing.

The fundamental problem remains: both specialization and miniboxing trigger excessive

bytecode growth, making them infeasible to use as the default compilation scheme for gener-

ics. To avoid this excessive bytecode growth, programmers must carefully choose which type

parameters are to be specialized. Furthermore, they must decide the exact primitive types

that each type parameter should be specialized for, as this can reduce the generated bytecode.

These two decisions require deep knowledge of the entire code base, including dependent

libraries and applications. Yet different applications use a library in different ways, and no

specific set of annotations of a library is ideal for all applications that may use it. Additionally,

when an annotation (or a primitive type within an annotation) is missing, it can significantly

harm performance [Ureche et al., 2015]. Therefore, when good performance is required, pro-

grammers often err on the side of specializing for all primitive types, accepting the consequent

large increases in bytecode size.

100

5.5. Evaluation

The T C Atypes analysis solves this problem by inferring the specialization annotations automat-

ically. In particular, the necessary information is, for each generic class or method, the set

of type argument instantiations of its type parameters. This set is exactly the set of contexts

explored by the T C Atypes analysis. Note that this information is not generally obtainable from

just a (context-insensitive) call graph. The automatic inference of the specialization annota-

tions depends on the specific contexts that we have introduced in the T C Atypes analysis.

When the T C Atypes analysis is employed, the specialization annotations generated contain

the exact primitives used in the code and nothing more, reducing the bytecode generated as

much as possible while avoiding the boxing operations completely. In the case of miniboxing,

the T C Atypes analysis can indicate if any of the miniboxing encodings is redundant, again

saving the creation of redundant heterogeneous variants.

Specialization guided by the T C Atypes analysis results is fully correct in an open-world context.

The specialization transformation does not depend on any soundness assumptions about

the specialization annotations, which are normally provided by the programmer. If a type

parameter is instantiated by a type argument that was not included in the annotation, the

generated code falls back to the default universal Object-based implementation and its asso-

ciated boxing and unboxing. Therefore, unanalyzed code that passes type arguments that the

analysis is not aware of will still work correctly, although, understandably, it will not enjoy the

same performance improvement as the analyzed code.

To test the effectiveness of our analyses, we have applied them to specialization and mini-

boxing, reproducing the performance experiments from the miniboxing paper [Ureche et al.,

2013]. The benchmarks are adapted from two collection classes in the Scala standard library,

ArrayBuffer and (linked) List, and selected to cover code patterns commonly used through-

out the collection library. They cover a wide range of scenarios: both contiguous and sparse

memory storage, custom equality checks, hash code computations, and tight loops that can be

further optimized by the JIT compiler (e.g., ArrayBuffer.reverse). Each benchmark method

is exercised by a driver program that executes it on collections of three million integers. The

setup is similar to the one used in the miniboxing paper.

To evaluate the automated inference of specialization annotations, we used the following

experimental setup: We first compiled the benchmark programs with the Dotty compiler and

the T C Atypes analysis. In general, the T C Atypes-terms analysis could be more precise, but on these

benchmark programs, both analyses produce the same results. The type contexts found by the

analysis were translated into specialization annotations inserted into the code. The annotated

code was then compiled with the standard Scala compiler and evaluated for performance. We

used the standard Scala compiler for this last step for consistency with the experiments in

the miniboxing paper, and because the porting of the specialization transformations from

the standard Scala compiler to Dotty is still in progress. Once the specialization feature is

completely ported to Dotty, the overall process can be implemented in a single compilation

pass that performs the analysis and applies the specializations.

101

Chapter 5. Types as Contexts in Whole Program Analysis

Specialization - Naive
Miniboxing - Naive
Miniboxing - Call Graph
Specialization - Call Graph
Erasure

 0 20 40 60 80 100
Bytecode size (KBytes)

Figure 5.5 – Graphical representation of the data in Table 5.4, showing the bytecode size in
kilobytes. Lower is better.

We ran the benchmarks on a server machine with an 8-core Intel i7-4770 processor with

the frequency fixed at 3GHz, running the Oracle Java distribution 1.7.0-79 on the Ubuntu

12.04.5 LTS operating system. We used the JMH benchmarking framework [Shipilev, 2016]

as a harness, due to its close integration with the OpenJDK execution platform: for each

benchmark, JMH started the Java Virtual Machine (JVM) with 3GB of memory, warmed up

the benchmark code until it was compiled by the HotSpot Just-in-time (JIT) C2 compiler, and

then took 20 measurements. To minimize the noise, the process was repeated 10 times for

each benchmark. This ensured that the variability introduced by the JIT compiler, the garbage

collector (GC) and other processes running on the server was reduced as much as possible.

The performance results are shown in Table 5.3 and Figure 5.4. The “Erasure” results are for

an unannotated program compiled using a homogeneous translation. The “Specialization -

Naive” results simulate a fully heterogeneous translation by annotating every type parameter

with @specialize, and using the implementation of the specialization transformation in the

standard Scala compiler to generate clones of the methods. The “Specialization - Call Graph”

results evaluate a program with annotations for specialization inferred by the T C Atypes analy-

sis, and specialized by the standard implementation in the Scala compiler. The same types of

naive vs call-graph-based annotations are shown for the “Miniboxing” transformation.

Transformation Bytecode Size (Bytes)
Specialization - Naive 86146
Miniboxing - Naive 31372
Miniboxing - Call Graph 18918
Specialization - Call Graph 16458
Erasure 7291

Table 5.4 – The bytecode size produced by specializing the ArrayBuffer and LinkedList classes
with different approaches. Lower is better.

Although the last four compilation strategies achieve similar speedups over the baseline “Era-

sure” configuration, there is a stark difference in the size of the generated bytecode. The total

102

5.6. Related Work

bytecode size for the two data structures is shown in Table 5.4. Figure 5.5 shows the same

data graphically. The fully heterogeneous translation (“Specialization - Naive”) requires a

prohibitive 11.8x increase in the size of the code compared to the standard homogeneous

translation. Miniboxing (“Miniboxing - Naive”) reduces this overhead to a still substantial

4.3x. Using the T C Atypes analysis to drive the two heterogeneous transformations produces

the same performance while further reducing the bytecode size by 5.2x for specialization and

1.7x for miniboxing (the “Specialization - Call Graph” and “Miniboxing - Call Graph” entries,

compared with their “Naive” counterparts).

In fact, the code size increase can easily be reduced even further by a tighter integration of

the analysis and the specialization transformation. In the current implementation of special-

ization, if two or more type parameters are annotated, the compiler generates specialized

versions of the code for the outer product of the possible argument types. For example, if

the keys and values of a map can each be of type Int or Long, the compiler generates all four

combinations. However, the analysis could have more precise information that indicates,

for example, that only Map[Int,Int] and Map[Long,Long] are ever instantiated. Using this

information, the specialization transformation would generate only two versions instead of

four. However, the current annotation mechanism is not expressive enough to encode this

precise information that the analysis provides.

5.6 Related Work

We survey two separate areas of related work. First, we discuss the main intended application

of our analysis: specialization techniques that have been proposed for Scala and similar

languages. Second, we discuss context sensitivity in call graph construction in general, in

various programming languages, and compare our analysis to other related analyses.

5.6.1 Specialization Techniques

In the context of generating efficient Java bytecode from Scala programs, [Dragos, 2010] ob-

serves that “compilation of polymorphic code through type erasure gives compact code but

performance on primitive types is significantly hurt”. Consider the following method foo:

796 def foo[A](a: A) = a
797

798 foo[Int](1)

This code is compiled as follows

799 def foo(a: Object) = a
800

801 foo(new Integer(1)).asInstanceOf[Integer].value

Dragos proposes a specialization technique for Scala that requires the programmer to mark

103

Chapter 5. Types as Contexts in Whole Program Analysis

methods to be specialized. The compiler generates specialized versions of each such method

for each primitive type. If such a @specialized annotation were applied to the foo method in

our example, the compiler would generate the following code:

802 def foo(a: Object) = a
803 def foo_i(a: Int) = a // synthetic clone
804

805 foo_i(1)

The implementation conservatively generates clones for all nine of the primitive types in

Scala, as well as the reference type (erased to Object). For a method with n type parameters,

10n clones are needed. This limits the use of specialization in Scala. For example, the stan-

dard library type Function2 that represents a function with two parameters has three type

parameters (one for the type of each parameter, and a third for the return type). Specializing

Function2 would require 103 = 1000 clones, which is impractical.

Miniboxing [Ureche et al., 2013] is a technique that reduces the number of clones required

from 10n to 2n . It encodes all primitive types into a single type, a 64-bit long, and uses a marker

byte to indicate the original type. For each type parameter, only two clones are needed: one

for primitive types (encoded as long), and one for reference types (encoded as Object). This

approach makes it viable to mark as @miniboxed methods with up to six type parameters.

Wider use of miniboxing suggested that similar specialization techniques could harm perfor-

mance if specialized code is called frequently from generic code and vice versa [Ureche et al.,

2015]. Consider the following example:

806 def foo[A](a: A) = a
807 def bar[@miniboxed A](a: A) = while(true) foo(a)
808 def bar1[A](a: A) = while(true) foo(a)

In order to call the generic method foo, the specialized method bar will need to box a in every

iteration. In contrast, the value a in the generic method bar1 will already be boxed before bar1

is called, so it will not have to be boxed again in every iteration of the loop. The miniboxing

implementation tries to help users solve this problem by providing comprehensive warnings

that suggest possible changes to the code [Ureche et al., 2015].

Similar techniques are available as part of the .Net runtime [Kennedy and Syme, 2001] and

are under development for Java as part of Project Valhalla [Goetz, 2014].

5.6.2 Call Graph Construction and Context Sensitivity

Context sensitivity has been studied extensively in call graphs for dynamically typed func-

tional languages [Shivers, 1988]. However, because of Scala’s expressive static type system,

call graph construction algorithms for statically-typed languages are more closely related. In

object-oriented languages, call graph construction and points-to analysis are interdependent,

104

5.6. Related Work

because virtual calls are resolved using the runtime type of the receiver object pointed to by

the call site.

For Java, the most thoroughly studied forms of context are call strings [Shivers, 1988] and

object sensitivity [Milanova et al., 2002, 2005]. Analyses using these forms of context sensitiv-

ity have a high cost, and much work has been done to balance the analysis cost against the

precision of the analysis results [Bravenboer and Smaragdakis, 2009; Kastrinis and Smarag-

dakis, 2013; Smaragdakis et al., 2011, 2014; Sridharan and Bodík, 2006; Xu and Rountev, 2008;

Xu et al., 2009; Yan et al., 2011]. In Java, context sensitivity has been found to improve the

precision of pointer information. Its effect on call graph precision is more modest [Lhoták and

Hendren, 2006; Lhoták and Hendren, 2008; Smaragdakis et al., 2011, 2014], unless very sophis-

ticated context abstractions are used [Feng et al., 2015]. In Scala, where the use of generic type

parameters and abstract type members is pervasive, our static-type-based context-sensitive

analysis, that can precisely model these features, significantly improves call graph precision.

The technique of using type arguments as context is most closely related to the C# type analy-

sis of [Sallenave and Ducournau, 2012]. Their analysis adds type arguments as context to types

of instantiated objects (their analogue of the set Σ̂). In contrast, our analysis adds context to

reachable methods (the set R). The goal of their analysis is to specialize the memory layout

of objects, in contrast to our goal of specializing method implementations. As we discussed

in Section 5.4.2, the transformation that propagates type parameters from outer classes and

methods into inner methods already gives our analysis the precision that would be gained

from adding context to instantiated object types.

The technique of using term argument types as context is most closely related to the Cartesian

Product Algorithm [Agesen, 1995] and object sensitivity [Milanova et al., 2002, 2005]. Both

of these techniques analyze a method in contexts determined by the runtime types of their

parameters (CPA) or of only their receiver (object sensitivity). The key difference compared

with our technique is that these contexts are estimates of the dynamic types of the objects

that may flow to the parameters, while our contexts are the statically declared types of the

arguments at the call site of the method. This difference is important for scalability. In the

existing approaches, the number of contexts grows with the number of types instantiated

anywhere in the program that flow to the parameters (raised to the power of the number

of parameters in the case of CPA). In our approach, the number of contexts of a method is

bounded by the number of its call sites (although those call sites may themselves be replicated

in different contexts of the caller).

As we indicated in Section 5.3, our analysis is defined as an extension of the context-insensitive

Scala call graph construction analysis of [Ali et al., 2014]. Our implementation analyzes only

the Scala source code presented to the Dotty compiler, not any of the Java bytecode that forms

the rest of the complete program. We use the Separate Compilation Assumption to construct

a sound partial call graph for the part of the program that is available for analysis [Ali and

Lhoták, 2012; Ali and Lhoták, 2013].

105

Chapter 5. Types as Contexts in Whole Program Analysis

5.7 Conclusion

We have presented several extensions to the T C Aexpand-this algorithm of [Ali et al., 2014] that

both improve call graph precision and decrease analysis time for non-trivial Scala programs.

Our algorithms consider type arguments and term argument types, and use them to select

more precise targets for virtual dispatch.

We implemented the algorithms in the context of the Dotty compiler and compared their

precision and running times on a collection of Scala programs. We have found that T C Atypes is

significantly more precise than T C Aexpand-this, indicating that tracking type parameters would

allow a great improvement in precision for common Scala code. Furthermore, we showed that

T C Atypes-terms is slightly more precise than T C Aexpand-this, but is substantially faster, indicating

that tracking the static types of the arguments at each call site is beneficial. In particular, the

call graphs generated by the context-insensitive T C Aexpand-this algorithm are too imprecise

to be usable for method specialization and inlining. The call graphs from both the T C Atypes

and T C Atypes-terms algorithms are very precise for this client optimization: they would require

specializing the average method only 1.5 times in the worst case, and often much less.

Our work suggests that expressive type systems can not only protect users from writing incor-

rect code, but could also be used to gather more knowledge about the program in order to

enable additional performance optimizations.

While our work was primarily focused on Scala, the ideas contained therein are applicable to

other statically typed languages with generic types. In particular, type and term propagation

could be used to improve call graph construction algorithms for Java, C#, C++, Haskell, Swift,

and D.

106

6 Example analysis: Extending com-
mon subexpression elimination to
Idempotent expression

Common subexpression elimination (CSE) is a popular compiler optimization that can im-

prove performance by removing redundant computations if they are idempotent. It is usually

done only for primitive operations because these are easily determined to be idempotent.

Due to the functional nature of Scala, many non-primitive methods are also idempotent. In

this paper, we identify several common idioms in Scala programs whose performance can

benefit from CSE. We present an analysis that finds idempotent methods and the calls to them.

We have implemented and evaluated this analysis in the Dotty Linker.

6.1 Motivation

The original research pertaining to common subexpression elimination was performed for

imperative languages and was aimed at reducing the number of repeated arithmetic opera-

tions performed in a method. The eliminated operations were pure, which meant that the

optimization was preserving semantics, and users were unable to observe the difference.

While putting the previous research into the perspective of common high-level functional

languages, such as Scala, we can observe that arithmetic operations are uncommon [Chitil,

1998]. We observe that the optimization preserves semantics even in cases where the methods

are not strictly pure. We introduce the weaker notion of idempotence and we demonstrate

that idempotent methods are common in the Dotty compiler.

We define a method to be idempotent if, when called twice from another method with the

same values as arguments, the second call does not perform observable side-effects and

returns the same value as the first call.

This property should hold independently of the values of the arguments. Listing 6.1 pro-

vides several examples of methods that are idempotent and some that are not. In particular,

cachedApply is idempotent, while apply is not, because if they are each called twice with the

107

Chapter 6. Example analysis: Extending common subexpression elimination to
Idempotent expression

same arguments, apply would produce any side effects in fun twice.

Note that every strictly pure function is idempotent according to this definition, because

it does not have side-effects (not only on the first call), and its return value depends only

on the arguments that are passed. The Scala language has a strong functional background

and has several features that are idempotent and could benefit from the reuse of already

pre-computed values.

6.1.1 Lazy Values

The Scala Language Specification [Odersky, 2014] defines the notion of lazy value definitions

as values that are computed the fist time they are accessed. If the computation is successful,

future accesses to the same lazy value should return the already computed value.

Lazy values are often used by programmers as well as by library designers in order to simplify

and organize their code. Consider the code pattern presented below.

In this example, taken from Dotty Namer, the lazy val lhsType is not a normal val, because

the computed value may not be needed, and it is not a def, because the computation is costly;

if it is needed, then it should be computed only once.

844 lazy val lhsType = fullyDefinedType(cookedRhsType, "right-hand side", mdef.pos)
845

846 if (sym.is(Final, butNot = Method) && lhsType.isConstantType)
847 lhsType
848 else inherited

Reading a lazy value is an idempotent operation according to the definition of the semantics

of lazy values. Although the implementation of lazy values is optimized to make subsequent

reads fast, the runtime cost is still substantial. CSE is obviously applicable to reads of lazy val-

ues, and it can significantly improve the performance of programs that use them extensively.

6.1.2 Implicit conversions

The Scala Language Specification [Odersky, 2014] defines the notion of implicit conversion

as a user-defined method that is inserted by the compiler when an instance of one type is

needed but an instance of a different type is provided. Consider the following example:

849 implicit def wrapIntArray(xs: Array[Int]): WrappedArray[Int] =
850 if (xs ne null) new WrappedArray.ofInt(xs) else null

851

852 def takesIntSeq(seq: Seq[Int]) = seq.length
853

854 takesIntSeq(Array(1, 2, 3))

Because the Array type is a Scala representation of Java arrays, it is not a subtype of Seq. In

108

6.1. Motivation

809 object Idempotent{ // those examples are idempotent
810 def fibonacci(id: Int): = {
811 if(id <= 1) 1
812 else fibbonacci(id - 1) + fibbonacci(id - 2)
813 }
814
815 private val cache = mutable.Map[Int, Int]()
816 def cachedApply(fun: Int => Int, arg: Int): R = {
817 if (cache.contains(arg)) cache(arg)
818 else {
819 result = fun(arg)
820 cache(arg) = result
821 result
822 }
823 }
824
825 def compose[A, B, C](fun1: A => B, fun2: B => C) = {
826 arg: A =>
827 fun2(fun1(arg))
828 }
829 }
830
831 object NotIdempotent {
832 // those examples are not idempotent
833 def echo(a: String) = println(a)
834
835 def apply(fun: Int => Int, arg: Int): Int =
836 fun(arg)
837
838 var field = 0
839 def readField = field
840 def setField(newValue: Int) = {
841 field = newValue
842 }
843 }

Listing 6.1 – Idempotency examples

109

Chapter 6. Example analysis: Extending common subexpression elimination to
Idempotent expression

order for the call of takesIntSeq to compile, the implicit conversion wrapIntArray is inserted

by the compiler:

855 takesIntSeq(wrapIntArray(Array(1, 2, 3)))

Implicit conversions are silently applied by the compiler, so their presence is not obvious in

the source code. Because of this, most implicit conversions defined by programmers in the

Scala community are pure and thus idempotent (though this is not required by the language

specification).

6.1.3 Domain specific knowledge

Many methods are intended to inquire about information concerning some logically im-

mutable object, and therefore return the same result if called twice. This is ubiquitous in

purely functional libraries, but is often found in other areas, as well. We have found several

examples of complex computations inside the Dotty compiler which are idempotent based

on the domain specific knowledge:

• The Dotty compiler uses a logically immutable Tree class to represent nodes of the

abstract syntax tree. Some of these nodes are lazy because they need to be lazily loaded

from TASTY, the serialization format used for separate compilation. After the first access

that loads the tree node, the node no longer changes, so operations on it are idempotent.

This applies to the ValDef, DefDef and Template tree nodes.

• An object of the Denotation class defines the meaning of a name in the context of

some specific object expression. Computing the Denotation is a costly operation that

may require re-reading the classpath and recomputing members of other symbols using

involved logic, but after it is computed, it stays the same during a given phase. Therefore,

operations on a Denotation are idempotent.

• A Name is the representation of an identifier in the source program. Dotty defines many

operations which compute various properties of a name, such as isConstructor. All of

these operations are idempotent because Name objects are immutable.

As will be shown later in Section 6.3.1, this initial user-provided information was enough to

infer idempotence of many derived methods in Dotty that are commonly used by compiler

developers, such as tree.symbol

6.2 Implementation

The analysis and transformation have been implemented as a part of the Dotty Linker, an

optimizing compiler based on Dotty, a compiler for the Scala Language.

110

6.2. Implementation

We have introduced an additional annotation @idempotent that can be used by users to mark

some methods as idempotent. The compiler checks that if a subclass overrides a method

that is annotated as @idempotent, then the overriding method must also be annotated as

@idempotent.

6.2.1 Idempotency inference

In order for the transformation to decide which results of method calls can be reused, it needs

to know which methods are idempotent. The implemented transformation starts with the

following assumptions:

• lazy vals are idempotent as specified by the Scala Language specification[Odersky,

2014];

• accesses to immutable local variables are idempotent;

• calls to accessors of immutable fields are idempotent;

• arithmetic operations are pure;

• methods annotated by the developer as @idempotent are idempotent.

Starting with this initial set, the inference algorithm discovers additional idempotent methods

using a simple observation: if a method calls only idempotent methods, it is idempotent itself.

This inference rule is iterated until a fixed point is reached.

The algorithm takes as input a call graph of the program that is currently being compiled.

Our proposed implementation uses the technique of Chapter 5 to construct the input call

graph. For every method m reachable through the call graph from program entry points, the

algorithm generates a list of all target methods that m could call from any of its call sites.

In order to account for dynamic dispatch, the call graph is used to determine which target

methods could be called from each call site.

The inference algorithm is shown below. In the algorithm, the set of all possible targets that

could be invoked by a method is written as method.calls.

The use of a precise call graph makes it possible to infer the idempotency of a method that calls

a target method t even if t is overridden by non-idempotent methods, as long as the call graph

construction algorithm can prove that those non-idempotent overriding methods are not ac-

tually called from the call site. In the example presented in Listing 6.2, the method foo defined

in trait Interface and called in method main has a non-idempotent implementation defined

in class DebugImplementation. A closed-world call-graph construction algorithm is able to

infer the call to foo to be idempotent in this example, because the DebugImplementation class

is never allocated.

111

Chapter 6. Example analysis: Extending common subexpression elimination to
Idempotent expression

856 def inferIdempotency(idempotentMethods: Set[Method],
857 allMethods: Set[Method]) = {
858 val newMethods = allMethods.filter(method =>
859 method.calls ⊂ idempotentMethods
860) \ idempotentMethods
861
862 if (newMethods.isEmpty) idempotentMethods
863 else inferIdempotency(newMethods ∪ idempotentMethods, allMethods)
864 }

865 trait Interface {
866 def foo(a: Int): Int
867 }
868

869 class Implementation {
870 def foo(a: Int) = 1
871 }
872

873 class DebugImplementation extends Implementation {
874 def foo(a: Int) = {
875 println("foo")
876 super.foo(a)
877 }
878 }
879

880 object Main{
881 def main(args: Array[String]): Unit = {
882 val i: Interface = new Implementation
883 i.foo
884 }
885 }

Listing 6.2 – Reachability example

On idempotence of immutable field accessors There is an exception to the idempotence

of accessors of immutable fields: they are not necessarily idempotent inside constructors,

because constructors initialize (i.e., mutate) the immutable field. Consider the example pre-

sented in Listing 6.3. This class uses some intricacies of the Scala field initialization order to

observe an uninitialized value.

The crucial observation here is that multiple values of field accessors can only be observed

inside a constructor itself. This is because only constructors can initialize the underlying

fields of vals with new values. Any other method, even if called from a constructor, would

always consistently observe the same value returned by getters during its entire execution,

because it cannot change the value stored inside the val.

112

6.3. Evaluation results

886 class HasConstructor {
887 println(field + 1)
888 // prints 1
889 val field = 2
890 println(field + 1)
891 // prints 3
892 }

Listing 6.3 – Constructor example

Denotation.info,

Symbol.denot,

SymDenotation.flags,

SymDenotation.is,

TypeProxy.underlying,

NamedType.denot.

Figure 6.1 – Methods annotated as @idempotent

This means that while optimizing the body of the constructor, we cannot assume the idempo-

tence of accessors of the fields of the class being constructed. However, this assumption does

hold in all other methods.

6.3 Evaluation results

We have evaluated the implemented algorithm on the Dotty source code. Dotty has 55807

lines of source code excluding blank lines or comments that define 3595 classes, 437 traits

and 64 objects. We have annotated a very small set of methods used in Dotty as @idempotent,

using domain specific knowledge. The full list of annotated methods is provided in Figure 6.1.

Most of these methods need to be annotated because they encapsulate a carefully controlled

laziness. For example, consider SymDenotation.is:

893 private[this] var myFlags: FlagSet = adaptFlags(initFlags)
894

895 /** The flag set */
896 @Idempotent
897 final def flags(implicit ctx: Context): FlagSet = { ensureCompleted(); myFlags }
898

899 /** Has this denotation one of the flags in ‘fs‘ set? */
900 @Idempotent
901 final def is(fs: FlagSet)(implicit ctx: Context) = {
902 (if (fs <= FromStartFlags) myFlags else flags) is fs
903 }

Listing 6.4 – SymDenotation.scala

113

Chapter 6. Example analysis: Extending common subexpression elimination to
Idempotent expression

In this example, if the flags being passed to is in the fs argument are are a subset of

FromStartFlags, the evaluation could proceed without needing to force the computation of

flags done by the flags method. This method cannot statically be proven idempotent, as it

accesses a mutable variable myFlags directly. This is a common pattern seen in the methods

named above.

6.3.1 Research Questions

RQ1. How many methods can be discovered to be idempotent using only language specific

knowledge?

RQ2. How quickly does the number of idempotent methods grow based on the number of

methods annotated by hand?

RQ3. How long does the inference algorithm take to run?

RQ4. Without the closed-world assumption, how many idempotent methods would be in-

ferred?

RQ5. Without language specific knowledge about immutable fields and lazy vals, how many

idempotent methods would have been inferred?

6.3.2 Results

RQ1. When not annotating any methods as idempotent and using only the assumptions

provided in Section 6.2.1, we start with a set of 835 methods that are idempotent due to

the language specification as accessors of immutable fields or lazy val getters. By using the

inference algorithm we can additionally infer 7112 methods, out of 23401 methods in Dotty,

as idempotent.

RQ2. By annotating six more definitions in Dotty as idempotent, as presented in Figure 6.1,

we started with a set of 841 methods assumed to be idempotent and have inferred 7356

methods as idempotent based on this, adding 244 new methods. Those methods include

some of commonly used methods in the Dotty codebase such as Symbol.name, Tree.symbol,

and SymDenotation.enclosingClass.

RQ3. Every iteration of this algorithm needs to consider all the calls from all the methods.

An example can be constructed to show that there are programs on which the algorithm is

114

6.4. Related Work

cubic in the number of definitions. In those examples, the algorithm would need a linear

number of iterations and every iteration would take quadratic time to perform.

In practice we have found the running time of this algorithm to be very low. For the full Dotty

codebase, it takes six iterations for the fixed-point computation to converge.

RQ4. Without a closed-world assumption, the algorithm needs to be modified to infer idem-

potency only if a method is known to be final, as otherwise it could be overridden by a non-

idempotent method. We have run the inference algorithm with this additional restriction and

the number of inferred methods is 510 and 496 respectively with and without user-defined

annotations. Note that the Dotty codebase uses final methods extensively, defining 4960

effectively final methods.

RQ5. If we drop the language specific knowledge about immutable fields and lazy vals, and

only assume that arithmetic operations are idempotent, we can infer only 210 methods as

idempotent.

6.4 Related Work

6.4.1 Global value numbering

C2, the Java HotSpot Server Compiler, performs common subexpression elimination, con-

stant propagation, global value numbering, and global code motion. The implementation

does not make any language specific assumptions and, thus, cannot optimize any of the exam-

ples presented in this paper (except for the first example illustrating common subexpressions

in an arithmetic expression). It uses an implementation based on [Click, 1995; Rosen et al.,

1988] that has been rigorously tested for two decades in production environments. The im-

plementation is very fast and runs in near-linear time: an important attribute for just-in-time

compilers.

6.4.2 Partial redundancy elimination

Partial redundancy elimination [Briggs and Cooper, 1994; Chow et al., 1997] is a related

technique that eliminates expressions that are computed redundantly on some of the paths

through the program. It is a generalization of common subexpression elimination as it would

also eliminate redundant expressions that are computed on all the paths.

Unlike common subexpression elimination, partial redundancy elimination may introduce

computations that were not required on a specific path, which may slow down the running

time of the program. In order to account for this, both static [Horspool and Ho, 1997] and

profiling-based [Gupta et al., 1998] cost analyses have been proposed.

115

Chapter 6. Example analysis: Extending common subexpression elimination to
Idempotent expression

Partial redundancy elimination cannot be extended to idempotent expressions in a straight-

forward way. It uses code motion to reorder the computation of expressions. If those compu-

tations are idempotent, but not pure, the first calls to those expressions may have observable

side effects, and reordering them changes the behavior of the program.

6.4.3 Purity inference

This work can benefit from specialized analysis and inference systems that infer properties

stronger then idempotency. Methods inferred to be pure by purity inference algorithms [Huang

et al., 2012] can be used to increase the size of the seed for the idempotency inference algo-

rithm.

6.4.4 Side effect analysis

Several effect systems have been implemented for Scala. Rytz [Rytz, 2014] proposes a practical

effect system that is able to additionally express conditional purity based on the types of

arguments, such as the purity of the apply function presented in Listing 6.1, if it is given a

pure argument. Our implementation is currently not able to express this, but we expect this

extension to be straightforward. Side effect analysis is an area of on-going active research and

the proposed optimizations would benefit from advances in this area.

6.4.5 Pure languages

In languages such as Haskell, where all expressions are pure and referentially transparent,

all expressions are idempotent. Though seemingly straightforward, the implementation of

common subexpression elimination in the Glasgow Haskell Compiler is quite tricky, as it may

affect the laziness of the program [ghc, 2016b]. Instead, there is a predefined set of patterns

that the Glasgow Haskell Compiler optimizes. The F.A.Q. section [ghc, 2016a] suggests that

users who care about common subexpression elimination should do it by hand.

The previous work for Haskell indicates that common subexpressions are uncommon in

Haskell [Chitil, 1998]. The evaluation approach defines several syntactic restrictions. The

study has found that subexpressions meeting those restrictions are rarely introduced in Haskell

programs, either by Haskell programmers or by the Glasgow Haskell Compiler itself. In their

conclusion, however, they acknowledge that their results are difficult to transfer to other func-

tional languages.

6.5 Conclusion

We have proposed a notion of method idempotency and a common subexpression elimina-

tion technique that allows the enlargement of the set of expressions that can be optimized

116

6.5. Conclusion

to include calls to user and library-defined idempotent methods. We have explained the

interaction with the kinds of control flow present in Scala.

We have found that language specific knowledge is sufficient to discover a substantial number

of idempotent functions, even in the absence of user input. We have proposed an algorithm

that uses language-specific knowledge as a seed and is able to infer idempotency of other

methods. We have demonstrated the viability of this strategy on the Dotty compiler, where

approximately one third of methods were proven idempotent using the proposed technique.

We believe that there is a substantial opportunity to optimize repeated calls to these methods

and we are working on a transformation that would either prove or refute this hypothesis.

117

7 Local optimizations

7.1 Motivation

Performing global call graph analysis requires significant resources. We have found that per-

forming optimizations to a single method locally before global optimizations amounts to a

simplification that allows us to:

• generate smaller code that runs faster in the interpreter;

• perform language-specific optimizations that general JVM optimizers are not able to

perform;

• speed up global analysis by simplifying local trees that serve as input for global analysis;

• permit other phases to be simpler by generating code with minor inefficiencies that will

be later removed by local optimizations.

7.2 Local optimizations

In this chapter, we will use the term local optimizations to refer to optimizations that optimize

a single method and do not possess whole-program knowledge.

Local optimizations are pairs of visitor and transformer:

937 trait LocalOptimisation {
938 /** Gathers information on trees, to be run first. */
939 def visitor(implicit ctx: Context): Tree => Unit
940 /** Does the actual Tree => Tree transformation. */
941 def transformer(implicit ctx: Context): Tree => Tree
942 /** Clears all the local state, to be run last. */
943 def clear(): Unit
944 }

Listing 7.2 – LocalOptimization

119

Chapter 7. Local optimizations

904 override def transformDefDef(tree: DefDef)(implicit ctx: Context, info: TransformerInfo
): Tree = {

905 ...
906 var rhs0 = tree.rhs
907 var rhs1: Tree = null

908 ...
909 while (rhs1 ne rhs0) {
910 rhs1 = rhs0
911 val (visitors, transformers, names) =
912 ptimizations.map(x => (x.visitor, x.transformer, x.name)).unzip3
913 while (names.nonEmpty) {
914 val nextVisitor = visitors.head
915 val nextTransformer = transformers.head()
916 val name = names.head
917 rhs0.foreachSubTree(nextVisitor)
918 val rhst = new TreeMap() {
919 override def transform(tree: Tree)(implicit ctx: Context): Tree = {
920 val innerCtx =
921 if (tree.isDef && tree.symbol.exists)
922 ctx.withOwner(tree.symbol)
923 else ctx
924 nextTransformer(ctx)(super.transform(tree)(innerCtx))
925 }
926 }.transform(rhs0)
927
928 rhs0 = rhst
929 }
930 names = names.tail
931 visitors = visitors.tail
932 transformers = transformers.tail
933 }
934 if (rhs0 ne tree.rhs) tpd.cpy.DefDef(tree)(rhs = rhs0)
935 else tree
936 }

Listing 7.1 – The main loop of the Simplify phase

120

7.3. The great Simplifier

Two traversals of the tree are done. The first traversal collects data necessary to decide which

rewritings to apply, while the second one performs those rewritings. Calls to the function

returned by visitormutate the inner state of LocalOptimization that returned it and populate

the information that would be necessary for the transformer.

Attribution

Work presented in this chapter was originally performed by the author of this thesis as part of

the Dotty Linker project.

Since then this work has been upstreamed to the main Dotty project by Olivier Blanvillain.

Olivier has proposed and implemented the bug isolation technique that was described in this

section. The upstreamed version currently has an inferior InlineLocalOpts that is not able to

rewrite non-trivial code; therefore the speedups obtained by local optimizations in the Dotty

upstream are lower than presented in this section.

7.3 The great Simplifier
Local optimizations are performed by a MiniPhase called Simplifier. A short version of Simpli-

fier is presented in Listing 7.1. This miniphase applies local optimisations to the given method

one after another until a fixed point has been reached. As such, there is a requirement for

all the optimizations to share a termination measure that will ensure that a fixed point will

actually be reached.

Because of this, all implemented optimizations are strictly shrinking.

7.4 Implemented optimizations

The following rewritings were implemented, listed in order of execution:

7.4.1 InlineCaseIntrinsics

Rewrites calls to Dotty and Scala2 case class methods that have known behavior: For Dotty

case classes CC:

• CC.apply(...)→ new CC(...)

• CC.unapply(arg): CC→ arg

• CC.unapply(arg): Boolean→ true

For Scala2 case classes:

121

Chapter 7. Local optimizations

• CC.unapply(arg): Option[CC]→
if (arg.isInstanceOf[CC])new Some(new TupleN (arg._1, ...)) else None

This prepares the code that works with case classes to be further optimized by the next rewrit-

ings.

7.4.2 RemoveUnnecessaryNullChecks

This rewriting tracks null checks that have already been performed either explicitly(through a

condition) or implicitly (through a method call) and removes the null checks that are known

to always succeed. Specific rules are: a eq null is replaced by false when:

• a has a singleton type. This covers ThisType, Super and Literal constants;

• there has been a method call on a before this check;

• in case a.tpe.isNotNull, which will trigger when Dotty will be extended with non-

nullable types.

7.4.3 InlineOptions

Inline calls on Options that are statically known:

• Some(foo).isEmpty→ false

• Some(foo).isDefined→ true

• Some(foo).get→ foo

• None.isEmpty→ true

• None.isDefined→ false

7.4.4 InlineLabelsCalledOnce

Inlines code blocks that are accessible through jumps and only from a single location.

7.4.5 Valify

Replaces mutable variables that are never written after the first read with vals. The transfor-

mation is equivalent to the following rewriting

122

7.4. Implemented optimizations

945 var a = expr1;
946 /* code that does not read a, but may assign to it */
947 a = expr2;
948 /* code that may read a */

to

949 expr1;
950 /* code that does not read a, with assigmnet to a dropped, but computations of assigned

value kept */
951 val a = expr2;
952 /* code that may read a */

7.4.6 Devalify

Inlines immutable variables that are aliases to other immutable variables or to immutable

fields accessed multiple times through an immutable path. Here is an illustration:

953 val a = expr1;
954 val b = a; // will be eliminated, all references to b will be replaced by a
955

956 case class C(int a)
957

958 val c = new C(a)
959 val d = c.a
960 val e = c.a // will be eliminated, all referenced to e will be replaced with d

7.4.7 Jumpjump

Replaces jumps to blocks that contain only a single jump with the later jump.

7.4.8 DropGoodCasts

Eliminates casts, type tests and null tests for values whose type is either statically known at

compile time or has been tested before.

7.4.9 DropNoEffects

Removes side-effect free expressions from block statements and flattens nested blocks. The

following rewriting is performed:

• drop pure references that have their value discarded;

• for a selection of a pure field from a qualifier that has its value discarded, drop the

123

Chapter 7. Local optimizations

selection but keep the computation of the qualifier;

• for a nested label method that has its returned value always discarded, change the

method to return Unit.

7.4.10 InlineLocalObjects

Finds instances of case classes with trivial constructors that never escape the scope and that

only receive calls to field accessors; creates local variables to store copies of the fields of those

objects and rewrites writes to those fields to also write to those local variables; replaces calls

to field accessors by references to those local variables.

This transformation is necessarily quite involved because it is able to handle nested label

methods generated by pattern matching.

This does not actually eliminate the local object, but rewrites the code so that is is never read.

This object will be removed by a combination of Devalify and DropNoEffects.

Here is an example:

961 <label> def bar = new Tuple(3, 4)
962 val a = if (test) new Tuple(1, 2) else bar
963 println(a._1 + a._2)

is rewritten to

964 <label> def bar = {
965 a$$1 = 3
966 a$$2 = 4
967 new Tuple(a$$1, a$$2)
968 }
969

970 var a$$1 = 0
971 var a$$2 = 0
972 val a = if (test) {
973 a$$1 = 1
974 a$$2 = 2
975 new Tuple(a$$1, a$$2)
976 } else bar
977

978 println(a$$1 + a$$2)

124

7.4. Implemented optimizations

7.4.11 Varify

Removes vals that are aliases to existing vars that are not mutated anymore:

979 var a = 1
980 /* code that may mutate a */
981 val b = a
982 /* code that does not mutate a*/

is transformed to

983 var a = 1
984 /* code that may mutate a */
985 /* code that does not mutate a, with b substituted by a*/

7.4.12 bubbleUpNothing

The only way that a type-safe expression can have type “Nothing” is if it either never termi-

nates or never returns, as there are no elements of this type.

This means that all expressions that follow a computation of a Nothing-typed expression will

never be computed and all pure expressions that directly precede a Nothing-typed expression

will not be observed. This warrants the following rewritings (where “???” represents a Nothing-

typed expression):

• Block(stats1::pureStat::???:::others, expr) → Block(stats1, ???)

• if (???) then thenp else elsep → ???

• recv.func(args1..., ???, ...)→ Block(recv :: args1, ???)

This transformation can be seen as a language-specific extension of dead code elimination.

7.4.13 ConstantFold

Constant expressions are folded to their result. Arithmetic expressions are regularized to have

their constants on the left side. For example:

2 * a * b * 5 + 3 * (c + 1)→ 3 + 10 * a * b + 3 * c.

This rewriting is also responsible for simplifying the if expressions with the following rules:

• if (test1) {code1} else {code1}

→
test1; code1

125

Chapter 7. Local optimizations

• if (test1) {if (test2) code1 else code2} else {code2}

→
if (test1 && test2) code1 else code2

• if (test1) {if (test2) code1 else code2} else {code2}

→
if (test1 && !test2) code2 else code1

• if (test1) {code1} else {if (test2) code1 else code2}

→
if (test1 || test2) code1 else code2

• if (test1) {code1} else {if (test2) code2 else code1}

→
if (test1 || !test2) code1 else code2

126

7.5. Example

7.5 Example

7.5.1 Pattern matching on case classes

Consider the method foo in the example below:

986 case class CC(a: Int, b: Object)
987 def foo(x: Any): Int = {
988 val (a, b) = x match {
989 case CC(s @ 1, CC(t, _)) =>
990 (s , 2)
991 case _ => (42, 43)
992 }
993 a + b
994 }

Without local optimizations, the method will be transformed to the bytecode equivalent of

the following Java code:

995 public int foo(Object x) {
996 var3_2 = x;
997 if (!(var3_2 instanceof CC)) ** GOTO lbl-1000
998 var4_3 = (CC)var3_2;
999 var5_4 = CC$.MODULE$.unapply((CC)var3_2);

1000 s = var5_4._1();
1001 var7_6 = var5_4._2();
1002 if (1 != s) ** GOTO lbl-1000
1003 var8_7 = s;
1004 if (var7_6 instanceof CC) {
1005 var9_8 = (CC)var7_6;
1006 var10_9 = CC$.MODULE$.unapply((CC)var7_6);
1007 var11_10 = var10_9._2();
1008 v0 = Tuple2..MODULE$.apply((Object)BoxesRunTime.boxToInteger((int)1), (

Object)BoxesRunTime.boxToInteger((int)2));
1009 } else lbl-1000: // 3 sources:
1010 {
1011 v0 = Tuple2..MODULE$.apply((Object)BoxesRunTime.boxToInteger((int)42), (

Object)BoxesRunTime.boxToInteger((int)43));
1012 }
1013 var2_11 = v0;
1014 a = BoxesRunTime.unboxToInt((Object)var2_11._1());
1015 b = BoxesRunTime.unboxToInt((Object)var2_11._2());
1016 return a + b;
1017 }

With the above optimizations enabled, the following code is generated:

127

Chapter 7. Local optimizations

1018 public int foo(Object x) {
1019 CC cC;
1020 int n = 0;
1021 int n2 = 0;
1022 if (x instanceof CC && 1 == (cC = (CC)x)._1() && cC._2() instanceof CC) {
1023 n = 1;
1024 n2 = 2;
1025 } else {
1026 n = 42;
1027 n2 = 43;
1028 }
1029 return n + n2;
1030 }

Here we will show how the optimizations described above allowed us to generate this more

efficient code. We start with the following code generated by the Dotty pipeline:

128

7.5. Example

1031 def foo(x: Any): Int = {
1032 val 1: (Int, Int) = {
1033 case val selector12: Any = x
1034 {
1035 def case31(): (Int, Int) = {
1036 def case41(): (Int, Int) = {
1037 def matchFail21(): (Int, Int) = throw new MatchError(selector12)
1038 {
1039 {
1040 Tuple2.apply[Int^, Int̂](42, 43)
1041 }
1042 }
1043 }
1044 if selector12.isInstanceOf[CC] then {
1045 case val x21: CC = selector12.asInstanceOf[CC]
1046 {
1047 case val x31: CC = CC.unapply(selector12.asInstanceOf[CC])
1048 {
1049 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1050 case val p41: Object = x31._2
1051 if 1.==(s) then {
1052 case val x51: Int(1) = s
1053 if p41.isInstanceOf[CC] then {
1054 case val x61: CC = p41.asInstanceOf[CC]
1055 {
1056 case val x71: CC = CC.unapply(p41.asInstanceOf[CC])
1057 {
1058 case val p81: Object = x71._2
1059 {
1060 Tuple2.apply[Int^, Int^](1, 2)
1061 }
1062 }
1063 }
1064 } else case41()
1065 } else case41()
1066 }
1067 }
1068 } else case41()
1069 }
1070 case31()
1071 }
1072 }
1073 val a: Int = 1._1
1074 val b: Int = 1._2
1075 a.+(b)
1076 }

129

Chapter 7. Local optimizations

The first phase to run is InlineCaseIntrinsics. It replaces two case-class apply calls and two

unapply calls, resulting in the following code (changed parts are bold):

1077 def foo(x: Any): Int = {
1078 val 1: (Int, Int) = {
1079 case val selector12: Any = x
1080 {
1081 def case31(): (Int, Int) = {
1082 def case41(): (Int, Int) = {
1083 def matchFail21(): (Int, Int) = throw new MatchError(selector12)
1084 {{
1085 new Tuple2[Int, Int](42, 43)

1086 }}
1087 }
1088 if selector12.isInstanceOf[CC] then {
1089 case val x21: CC = selector12.asInstanceOf[CC]
1090 {
1091 case val x31: CC = selector12.asInstanceOf[CC]

1092 {
1093 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1094 case val p41: Object = x31._2
1095 if 1.==(s) then {
1096 case val x51: Int(1) = s
1097 if p41.isInstanceOf[CC] then {
1098 case val x61: CC = p41.asInstanceOf[CC]
1099 {
1100 case val x71: CC = p41.asInstanceOf[CC]

1101 {
1102 case val p81: Object = x71._2
1103 {
1104 new Tuple2[Int, Int](1, 2)

1105 }
1106 }
1107 }
1108 } else case41()
1109 } else case41()
1110 }
1111 }
1112 } else case41()
1113 }
1114 case31()
1115 }
1116 }
1117 val a: Int = 1._1
1118 val b: Int = 1._2
1119 a.+(b)
1120 }

130

7.5. Example

InlineLabelsCalledOnce has inlined case31, and removed matchFail21, as it was never called

(this pattern match never fails).

1121 def foo(x: Any): Int = {
1122 val 1: (Int, Int) = {
1123 case val selector12: Any = x
1124 {
1125 { // this all has been inlined
1126 def case41(): (Int, Int) = {

1127 {{

1128 new Tuple2[Int, Int](42, 43)

1129 }}

1130 }

1131 if selector12.isInstanceOf[CC] then {

1132 case val x21: CC = selector12.asInstanceOf[CC]

1133 {

1134 case val x31: CC = selector12.asInstanceOf[CC]

1135 {

1136 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]

1137 case val p41: Object = x31._2

1138 if 1.==(s) then {

1139 case val x51: Int(1) = s

1140 if p41.isInstanceOf[CC] then {

1141 case val x61: CC = p41.asInstanceOf[CC]

1142 {

1143 case val x71: CC = p41.asInstanceOf[CC]

1144 {

1145 case val p81: Object = x71._2

1146 {

1147 new Tuple2[Int, Int](1, 2)

1148 }

1149 }

1150 }

1151 } else case41()

1152 } else case41()

1153 }

1154 }

1155 } else case41()

1156 }

1157 }
1158 }
1159 val a: Int = 1._1
1160 val b: Int = 1._2
1161 a.+(b)
1162 }

Later, Devalify has eliminated the redundant local variables a, b, selector12, x21, x51,

x61, p82, generating the following code:

131

Chapter 7. Local optimizations

1163 def foo(x: Any): Int = {
1164 val 1: (Int, Int) = {
1165 {
1166 {
1167 def case41(): (Int, Int) = {
1168 {
1169 {
1170 new Tuple2[Int, Int](42, 43)
1171 }
1172 }
1173 }
1174 if x.isInstanceOf[CC] then {
1175 x.asInstanceOf[CC]

1176 {
1177 case val x31: CC = x.asInstanceOf[CC]
1178 {
1179 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1180 case val p41: Object = x31._2
1181 if 1.==(s) then {
1182 s

1183 if p41.isInstanceOf[CC] then {
1184 p41.asInstanceOf[CC]

1185 {
1186 case val x71: CC = p41.asInstanceOf[CC]
1187 {
1188 x71._2

1189 {
1190 new Tuple2[Int, Int](1, 2)
1191 }
1192 }
1193 }
1194 } else case41()
1195 } else case41()
1196 }
1197 }
1198 } else case41()
1199 }
1200 }
1201 }
1202 1._1.+(1._2)
1203 }

132

7.5. Example

As you can see, there are some casts in the statement positions remaining after Devalify, as

it does not know if they will succeed. DropGoodCasts will remove those two casts that are

known to succeed:

1204 def foo(x: Any): Int = {
1205 val 1: (Int, Int) = {
1206 {
1207 {
1208 def case41(): (Int, Int) = {
1209 {
1210 {
1211 new Tuple2[Int, Int](42, 43)
1212 }
1213 }
1214 }
1215 if x.isInstanceOf[CC] then {
1216 // cast removed
1217 {
1218 case val x31: CC = x.asInstanceOf[CC]
1219 {
1220 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1221 case val p41: Object = x31._2
1222 if 1.==(s) then {
1223 s
1224 if p41.isInstanceOf[CC] then {
1225 // cast removed
1226 {
1227 case val x71: CC = p41.asInstanceOf[CC]
1228 {
1229 x71._2
1230 {
1231 new Tuple2[Int, Int](1, 2)
1232 }
1233 }
1234 }
1235 } else case41()
1236 } else case41()
1237 }
1238 }
1239 } else case41()
1240 }
1241 }
1242 }
1243 1._1.+(1._2)
1244 }

Now, dropNoEffects is eliminating all the pure expressions that have their value discarded

and will flatten blocks:

133

Chapter 7. Local optimizations

1245 def foo(x: Any): Int = {
1246 val 1: (Int, Int) = {
1247 def case41(): (Int, Int) = new Tuple2[Int, Int](42, 43)
1248 if x.isInstanceOf[CC] then {
1249 case val x31: CC = x.asInstanceOf[CC]
1250 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1251 case val p41: Object = x31._2
1252 if 1.==(s) then
1253 if p41.isInstanceOf[CC] then {
1254 case val x71: CC = p41.asInstanceOf[CC]
1255 new Tuple2[Int, Int](1, 2)
1256 } else case41()
1257 else case41()
1258 } else case41()
1259 }
1260 1._1.+(1._2)
1261 }

InlineLocalObjects will implement a strategy to get rid of the local tuple 1 that never escapes

the scope and will replace it by two local variables representing fields:

1262 def foo(x: Any): Int = {
1263 var $1$$_1: Int = 0

1264 var $1$$_2: Int = 0

1265 val 1: (Int, Int) = {
1266 def case41(): (Int, Int) = {
1267 $1$$_1 = 42

1268 $1$$_2 = 43

1269 new Tuple2[Int, Int]($1$$_1, $1$$_2)

1270 }
1271 if x.isInstanceOf[CC] then {
1272 case val x31: CC = x.asInstanceOf[CC]
1273 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1274 case val p41: Object = x31._2
1275 if 1.==(s) then
1276 if p41.isInstanceOf[CC] then {
1277 case val x71: CC = p41.asInstanceOf[CC]
1278 {
1279 $1$$_1 = 1

1280 $1$$_2 = 2

1281 new Tuple2[Int, Int]($1$$_1, $1$$_2)

1282 }
1283 } else case41()
1284 else case41()
1285 } else case41()
1286 }
1287 $1$$_1.+($1$$_2)

1288 }

134

7.5. Example

ConstantFold has figured out that the two branches of the if statement are the same and has

joined them:

1289 def foo(x: Any): Int = {
1290 var $1$$_1: Int = 0
1291 var $1$$_2: Int = 0
1292 val 1: (Int, Int) = {
1293 def case41(): (Int, Int) = {
1294 $1$$_1 = 42
1295 $1$$_2 = 43
1296 new Tuple2[Int, Int]($1$$_1, $1$$_2)
1297 }
1298 if x.isInstanceOf[CC] then {
1299 case val x31: CC = x.asInstanceOf[CC]
1300 case val s: Int(1) = x31._1.asInstanceOf[Int(1)]
1301 case val p41: Object = x31._2
1302 if 1.==(s).&&(p41.isInstanceOf[CC]) then {
1303 case val x71: CC = p41.asInstanceOf[CC]
1304 {
1305 $1$$_1 = 1
1306 $1$$_2 = 2
1307 new Tuple2[Int, Int]($1$$_1, $1$$_2)
1308 }
1309 } else case41()

1310 } else case41()

1311 }
1312 $1$$_1.+($1$$_2)
1313 }

At this point the second iteration of the optimization loop takes place. The first transformation

that had effect was Devalify, which removed x71, 1, s, p41. The most important removal

is 1, as it will allow us to eliminate tuple creation later.

1315 def foo(x: Any): Int = {
1316 var $1$$_1: Int = 0
1317 var $1$$_2: Int = 0
1318 { // result of this blog used to be assigned to 1
1319 def case41(): (Int, Int) = {
1320 $1$$_1 = 42
1321 $1$$_2 = 43
1322 new Tuple2[Int, Int]($1$$_1, $1$$_2)
1323 }
1324 if x.isInstanceOf[CC] then {
1325 case val x31: CC = x.asInstanceOf[CC]
1326 if 1.==(x31._1.asInstanceOf[Int(1)]).&&(x31._2.isInstanceOf[CC]) then {
1327 p41.asInstanceOf[CC]

1328 {
1329 $1$$_1 = 1
1330 $1$$_2 = 2

135

Chapter 7. Local optimizations

1331 new Tuple2[Int, Int]($1$$_1, $1$$_2)
1332 }
1333 } else case41()
1334 } else case41()
1335 }
1336 $1$$_1.+($1$$_2)
1337 }

As before, we have casts left by Devalify that have their results discarded and will never fail.

p41.asInstanceOf[CC] will be eliminated by dropGoodCasts. Now, dropNoEffects is able to

eliminate tuple allocations!:

1338 def foo(x: Any): Int = {
1339 var $1$$_1: Int = 0
1340 var $1$$_2: Int = 0
1341 def case41(): (Int, Int) = {
1342 $1$$_1 = 42
1343 $1$$_2 = 43
1344 ()
1345 }
1346 if x.isInstanceOf[CC] then {
1347 case val x31: CC = x.asInstanceOf[CC]
1348 if 1.==(x31._1.asInstanceOf[Int(1)]).&&(x31._2.isInstanceOf[CC]) then {
1349 $1$$_1 = 1
1350 $1$$_2 = 2
1351 ()
1352 } else case41()
1353 } else case41()
1354 $1$$_1.+($1$$_2)
1355 }

This is the set of iterations that allowed us to generate much improved code. There are still sev-

eral rewriting opportunities that are missed, however: case41 is called in both else branches

of the if statements, but the inner if needs some pre-initialization before it will be able to

make the test.

7.5.2 Pattern matching on tuples of booleans

Consider the code snippet below:

1356 def booleans(a: Object) = {
1357 val (b1, b2) = (a.isInstanceOf[CC], a.isInstanceOf[List[Int]])
1358 (b1, b2) match {
1359 case (true, true) => true
1360 case (false, false) => true
1361 case _ => false
1362 }
1363 }

136

7.5. Example

The current Dotty with optimizations disabled will compile it to bytecode equivalent to the

Java code below:

1364 public boolean booleans(Object a) {
1365 Tuple2 tuple2 = Tuple2..MODULE$.apply((Object)BoxesRunTime.boxToBoolean((

boolean)(a instanceof CC)), (Object)BoxesRunTime.boxToBoolean((boolean)(a
instanceof List)));

1366 boolean b1 = BoxesRunTime.unboxToBoolean((Object)tuple2._1());
1367 boolean b2 = BoxesRunTime.unboxToBoolean((Object)tuple2._2());
1368 Tuple2 tuple22 = Tuple2..MODULE$.apply((Object)BoxesRunTime.boxToBoolean((

boolean)b1), (Object)BoxesRunTime.boxToBoolean((boolean)b2));
1369 Option option = Tuple2..MODULE$.unapply(tuple22);
1370 if (option.isDefined()) {
1371 Tuple2 tuple23 = (Tuple2)option.get();
1372 boolean bl = BoxesRunTime.unboxToBoolean((Object)tuple23._1());
1373 boolean bl2 = BoxesRunTime.unboxToBoolean((Object)tuple23._2());
1374 if (bl) {
1375 boolean bl3 = bl;
1376 if (bl2) {
1377 boolean bl4 = bl2;
1378 return true;
1379 }
1380 }
1381 }
1382 Option option2 = Tuple2..MODULE$.unapply(tuple22);
1383 if (!option2.isDefined()) return false;
1384 Tuple2 tuple24 = (Tuple2)option2.get();
1385 boolean bl = BoxesRunTime.unboxToBoolean((Object)tuple24._1());
1386 boolean bl5 = BoxesRunTime.unboxToBoolean((Object)tuple24._2());
1387 if (bl) return false;
1388 boolean bl6 = bl;
1389 if (bl5) return false;
1390 boolean bl7 = bl5;
1391 return true;
1392 }

With local optimizations enabled, this bytecode is generated instead:

1393 public boolean booleans(Object a) {
1394 boolean bl = a instanceof CC;
1395 boolean bl2 = a instanceof List;
1396 if (bl && bl2 || !bl && !bl2) {
1397 return true;
1398 }
1399 return false;
1400 }

137

Chapter 7. Local optimizations

7.6 Evaluation

We have evaluated the performance impact of running the full suite of rewritings on the Dotty

compiler itself. We have evaluated the implementation in the following modes:

• enabling a single transformation;

• enabling all optimizations at once;

• enabling all optimizations but one.

We have used Dotty itself as an application to evaluate these optimizations. The measured

times have been scaled so that the speed of Dotty without local optimizations is taken to be

100%. The results are presented in Figure 7.1, Figure 7.2 and Figure 7.3.

Figure 7.1 indicates that these optimizations introduce a substantial speedup for the gener-

ated code, amounting to 22% less time needed to compile Dotty with an optimized Dotty.

A
ll

78

N
o

n
e

100

Optimizations running time %
All 78
None 100

Figure 7.1 – Speedup by applying all optimizations

Figure 7.2 shows that none of the optimizations are very powerful in isolation. Each one of

these optimizations triggers rarely and has a small effect, but they frequently trigger each

other. The biggest speedup provided by a transformation in isolation is 3%; this is obtained

by DropNoEffects.

138

7.6. Evaluation

A
ll

78

N
o

n
e

100

In
lin

eC
aseIn

trin
sics

100

R
em

oveN
u

llC
h

ecks

99

In
lin

eO
p

tio
n

s

101

In
lin

eLab
elsC

alled
O

n
ce

99

V
alify

98

D
evalify

98

Ju
m

p
ju

m
p

100

D
ro

p
G

o
o

d
C

asts

100

D
ro

p
N

o
E

ffects

97

In
lin

eLo
calO

b
jects

100

V
arify

98
b

u
b

b
leU

p
N

o
th

in
g

99

C
o

n
stan

tFo
ld

100

Optimizations running time %
All 78
None 100
InlineCaseIntrinsics 100
RemoveNullChecks 99
InlineOptions 101
InlineLabelsCalledOnce 99
Valify 98
Devalify 98
Jumpjump 100
DropGoodCasts 100
DropNoEffects 97
InlineLocalObjects 100
Varify 98
bubbleUpNothing 99
ConstantFold 100

Figure 7.2 – Speedup by enabling a single optimization

139

Chapter 7. Local optimizations

Figure 7.3 Shows the impact of disabling individual transformations. This graph helps classify

transformations by their importance. In particular:

• Disabling any one of InlineCaseIntrinsics, InlineOptions, InlineLabelsCalledOnce, De-

valify, ConstantFold, or DropNoEffects makes the performance to regress to 94–95%. All

these rewritings are necessary to efficiently optimize pattern matching; disabling any

one of them stops optimization early. Disabling any of these transformations loses 17%

of the speedup out of 22%.

• InlineLocalObjects is in the second “cohort” by order of importance. Disabling it leaves

us with 11% speedup, leaving 11% of potential additional speedup unattained.

• Disabling RemoveNullChecks would remove 6% of the speedup.

• Valify, Varify and BubbleUpNothing are minor transformations that rarely enable others

and thus don’t contribute much to the speedup. Varify actually stops other transforma-

tions from happening by marking locals as vars and introduces a slowdown.

140

7.6. Evaluation

A
ll

78

N
o

n
e

100

-In
lin

eC
aseIn

trin
sics

96

-R
em

oveN
u

llC
h

ecks

84

-In
lin

eO
p

tio
n

s

95

-In
lin

eLab
elsC

alled
O

n
ce

95

-V
alify

80

-D
evalify

94

-Ju
m

p
ju

m
p

95

-D
ro

p
G

o
o

d
C

asts

81

-D
ro

p
N

o
E

ffects

94

-In
lin

eLo
calO

b
jects

89
-V

arify

76

-B
u

b
b

leU
p

N
o

th
in

g

78

-C
o

n
stan

tFo
ld

94

Optimizations running time %
All 78
None 100
-InlineCaseIntrinsics 96
-RemoveNullChecks 84
-InlineOptions 95
-InlineLabelsCalledOnce 95
-Valify 80
-Devalify 94
-Jumpjump 95
-DropGoodCasts 81
-DropNoEffects 94
-InlineLocalObjects 89
-Varify 76
-BubbleUpNothing 78
-ConstantFold 94

Figure 7.3 – Speedup by enabling all optimizations but one

141

8 Conclusions and Future Work

8.1 Conclusions

We have demonstrated that the strength of expressive type systems can be used to create

compilers that are both maintainable and fast. We have also shown that the underlying type

system can be used to create a natural context for context-sensitive analyses, in particular,

call graph construction algorithms.

These findings are part of the Dotty project that started as an experiment searching for a

better architecture for a Scala compiler. The architecture and code decisions presented in

this thesis are the current design of the Dotty compiler at the moment of writing and have not

been changed for the last 2 years. This design has been a success and future version of Scala 3

language is planned to be using Dotty as the main compiler [Moors, 2011], [Petrashko, 2011].

8.1.1 MiniPhases

A MiniPhases-based design for compiler has been shown to be a practical high level design of

tree transformations in a pass-based compiler. It introduces a natural separation of concerns

that helps maintainability by i) fixing traversal oder for transformation to be in-order traversal;

ii) separating transformations for different tree node kinds. This introduces a uniform way to

write transformations that improves maintainability. At the same time, both these invariants

can be utilized to efficiently fuse multiple transformations. This achieves both maintainability

and performance in a single design.

8.1.2 CallGraph construction with types as contexts

We have presented T C Atypes-terms, a context sensitive callgraph construction algorithm that

uses typing context for context-sensitivity. This kind of context is able to take advantage of the

underlying type system of a language. For programming languages that have highly expressive

type systems, such context sensitivity allows to build call graphs that are both more precise

143

Chapter 8. Conclusions and Future Work

and faster to build.

8.2 Future work

8.2.1 Term specialization

The work presented in this thesis for call-graph construction has been demonstrated on class

specialization for type parameters. But the callgraph both in the formalization and in the

implementation treats type parameters and term parameters uniformly. This suggests that

the same analysis can be used to create copies of methods or classes where either arguments

or parts of the environment have types that are more precise than the static types observed at

the definition site:

1401 def delegate[T](arg: T)(fun: T => T) = doApply[T](arg, fun)
1402 def doApply[T](arg: T, fun: T => T) = fun(arg)
1403

1404 delegate(1)(x => x) + delegate(2)(x => x + 1) + delegate(3)(x => x + 2)

Will be rewritten to

1405 def delegate[T](arg: T)(fun: T => T) = doApply[T](arg, fun)
1406 def doApply[T](arg: T, fun: T => T) = fun(arg)
1407

1408 // duplicated due to term specialization
1409

1410 def delegate1(arg: 1.type)(fun: Lambda1) = doApply1(arg, fun)
1411 def doApply1(arg: 1.type)(fun: Lambda1) = fun(arg)
1412 // where Lambda1 is type that indicates that this is a lambda
1413 // with underlying function x: 1.type => x
1414

1415 def delegate2(arg: 2.type)(fun: Lambda2) = doApply2(arg, fun)
1416 def doApply2(arg: 2.type)(fun: Lambda2) = fun(arg)
1417 // where Lambda2 is type that indicates that this is a lambda
1418 // with underlying function x: 2.type => x + 1
1419

1420

1421 def delegate3(arg: 3.type)(fun: Lambda3) = doApply3(arg, fun)
1422 def doApply3(arg: 3.type)(fun: Lambda3) = fun(arg)
1423 // where Lambda3 is type that indicates that this is a lambda
1424 // with underlying function x: 3.type => x + 2
1425

1426

1427 delegate1(1)(x => x) + delegate2(1)(x => x + 1) + delegate3(1)(x => x + 2)

In particular, it would be nice to see this approach applied to The Inlining problem.

144

8.2. Future work

8.2.2 The Inlining problem

In 2011, Dr. Cliff Click presented an Inlining problem that stops contemporary JVMs from

optimizing functional-style code. Consider a snippet below:

1428 def foo(a: Int, b: Int) = {
1429 a ^ b
1430 }
1431 def compute(until: Int): Int = {
1432 var s = 0;
1433 for (i <- 0 to until)
1434 s = foo(s, i)
1435

1436 s
1437 }

and compare it with seemingly equivalent Java snippet:

1438 public int foo(int a, int b) {
1439 return a ^ b;
1440 }
1441 public int compute(int until) {
1442 int s = 0;
1443 for (int i = 0; i <= until; i++)
1444 s = foo(s, i);
1445 return s;
1446 }

Unfortunately these two snippets behave substantially differently performance-wise in a real-

world system. The reason is clear after we consider the desugaring of the Scala snippet:

1447 def foo(a: Int, b: Int): Int = {
1448 a.^(b)
1449 }
1450 def compute(until: Int): Int = {
1451 val s: scala.runtime.IntRef = scala.runtime.IntRef$create(0)
1452 scala.runtime.RichInt.to$extension0(intWrapper(0), until).foreach(
1453 {
1454 new Function1{ def apply(i: Int): Unit =
1455 {
1456 val ev$1: Int = this.foo(s.elem, i)
1457 s.elem = ev$1
1458 }
1459 }
1460)
1461 s.elem
1462 }

It becomes clear that the for loop is desugared in Scala into a call to foreach that takes the

145

Chapter 8. Conclusions and Future Work

body of the cycle as a lambda.

1463 // scala.immutable.collection.Range
1464 final override def foreach[@specialized(Unit) U](f: Int => U) {
1465 val isCommonCase = (start != Int.MinValue || end != Int.MinValue)
1466 var i = start
1467 var count = 0
1468 val terminal = terminalElement
1469 val step = this.step
1470 while(
1471 if(isCommonCase) { i != terminal }
1472 else { count < numRangeElements }
1473) {
1474 f(i)
1475 count += 1
1476 i += step
1477 }
1478 }

Consider Line 1474. All bodies of possible for-cycles on ranges are called on this line. In a

simple micro-benchmark, there will be a single target for this call. In real code, the invocation

on Line 1474 is always megamorphic.

This call would become monomorphic if foreach was inlined here, but unfortunately this

rarely happens: foreach is likely to become hot first and it will be compiled first and will not

be re-compiled and re-profiled for other callers.

Quoting a short summary by Dr. Cliff Click:

“The Problem” is simply this: new languages on the JVM (e.g. JRuby) and new

programming paradigms (e.g. Fork Join) have exposed a weakness in the current

crop of inlining heuristics. Inlining is not happening in a crucial point in hot code

exposed by these languages, and the lack of inlining is hurting performance in a

major way.

Dr. Cliff Click also proposed a possible solution: ask programmers to write their programs

in a “megamorphic inlining friendly” coding style, and move virtual dispatch outside of the

cycle by hand. Unfortunately, it is very hard do this operation manually if the cycle is inside

the standard library of the language, like in the example above.

But it can be done automatically, with good call graph construction. Both in this example and

in a lot more complex ones, the call graph construction algorithm presented in Chapter 5 is

able to figure out that a specific lambda defined by a for-loop reaches the call on Line 1474.

This knowledge can be used to implement either of two rewritings that would make the code

above inlinable:

146

8.2. Future work

• Use term specialization to duplicate the path from the lambda to Line 1474. This makes

the call monomorphic again and brings back performance but has the disadvantage

of also duplicating the code that does not need to be duplicated, such as Lines 1466-

1469. This is easy to implement and a prototype was implemented that works for this

test-case.

• Use knowledge from the call graph to move the cycle on Lines 1470-1477 inside the iter-

ator, see Listing 8.1. This dupplicates the body of the cycle into the class that represents

the labmda and is close to the suggestion of Dr. Click. This is harder to implement as it

needs to be able to detect nesting in a cycle across virtual dispatches.

Note that the body of foreach$apply method is completely identical in every anony-

mous subclass created from Function$Range$Foreach. The reason that we do not just

inherit a single implementation from the Function$Range$Foreach class is to make the

call to apply inside it monomorphic.

Note that both proposed techniques can be used in an open world and do not require the

closed world assumption as they keep the generic path intact.

8.2.3 MiniPhasing more of the compiler

As has been seen in Chapter 1, a substantial amount of time in the compiler is spent outside

of the MiniPhases, in particular in Typers(Frontend and Erasure) and Backend. It would be

nice to see if parts of the work that are currently performed by them can be converted into

MiniPhases. The author of this thesis has successfully moved substantial amount of the logic

that was previously in the Backend into small MiniPhases, namely, collection of entry points,

creation of static method in the right place, preparation of static calls and preparation of local

methods that will be compiled into local jumps.

8.2.4 Adding more pre and post-conditions and checking their completeness

Currently, the completeness of pre and post-conditions of the MiniPhses are not checked

either statically or dynamically.

One possible technique to dynamically check both post and pre-conditions is to fuzz-test

phase ordering. During compilation with phases reordered randomly, either compilation

should succeed and emit the right result, or post-&pre- conditions should have triggered.

147

Chapter 8. Conclusions and Future Work

1479 def foo(a: Int, b: Int): Int = {
1480 a.^(b)
1481 }
1482 def compute(until: Int): Int = {
1483 val s: scala.runtime.IntRef = scala.runtime.IntRef$create(0)
1484 scala.runtime.RichInt.to$extension0(intWrapper(0), until).foreach(
1485 {
1486 new Function$Range$Foreach{
1487 def apply(i: Int): Unit = {
1488 val ev$1: Int = this.foo(s.elem, i)
1489 s.elem = ev$1
1490 }
1491 def foreach$apply(r: Range, isCommonCase: Boolean,
1492 terminal: Int, step: Int): Unit = {
1493 while(if (isCommonCase) { i != terminal }
1494 else { count < numRangeElements }
1495) {
1496 apply(i)
1497 count += 1
1498 i += step
1499 }
1500 }
1501 }
1502 }
1503)
1504 s.elem
1505 }
1506
1507 // scala.immutable.collection.Range
1508 final override def foreach[@specialized(Unit) U](f: Int => U) {
1509 val isCommonCase = (start != Int.MinValue || end != Int.MinValue)
1510 var i = start
1511 var count = 0
1512 val terminal = terminalElement
1513 val step = this.step
1514 if (f.isInstanceOf[Function$Range$Foreach])
1515 f.asInstanceOf[Function$Range$Foreach].apply(this, isCommonCase, terminal, step)
1516 else {
1517 while(
1518 if(isCommonCase) { i != terminal }
1519 else { count < numRangeElements }
1520) {
1521 f(i)
1522 count += 1
1523 i += step
1524 }
1525 }
1526 }

Listing 8.1 – Pushing virtual dispatch out of the cycle

148

Bibliography

(2016a). Haskell wiki: Faq.

(2016b). Haskell wiki: Ghc optimisations.

Agesen, O. (1995). The Cartesian product algorithm. In ECOOP ’95, Object-Oriented Program-

ming: 9th European Conference, volume 952 of Lecture Notes in Computer Science, pages

2–51.

Alblas, H. (1991). Attribute evaluation methods. In Alblas, H. and Melichar, B., editors, At-

tribute Grammars, Applications and Systems: International Summer School SAGA Prague,

Czechoslovakia, June 4–13, 1991 Proceedings, pages 48–113, Berlin, Heidelberg. Springer

Berlin Heidelberg.

Ali, K. and Lhoták, O. (2012). Application-only call graph construction. In Noble, J., editor,

ECOOP 2012 - Object-Oriented Programming - 26th European Conference, Beijing, China,

June 11-16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer Science, pages

688–712. Springer.

Ali, K. and Lhoták, O. (2013). Averroes: Whole-program analysis without the whole program.

In Castagna, G., editor, ECOOP 2013 - Object-Oriented Programming - 27th European Con-

ference, Montpellier, France, July 1-5, 2013. Proceedings, volume 7920 of Lecture Notes in

Computer Science, pages 378–400. Springer.

Ali, K., Rapoport, M., Lhoták, O., Dolby, J., and Tip, F. (2014). Constructing call graphs of scala

programs. In Jones, R., editor, ECOOP 2014 – Object-Oriented Programming, volume 8586

of Lecture Notes in Computer Science, pages 54–79. Springer Berlin Heidelberg.

Ali, K., Rapoport, M., Lhoták, O., Dolby, J., and Tip, F. (2015). Type-based call graph construc-

tion algorithms for Scala. ACM Trans. Softw. Eng. Methodol., 25(1):9:1–9:43.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. (1998). Making the Future Safe for

the Past: Adding Genericity to the Java Programming Language. In Proceedings of the

13th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and

Applications, OOPSLA ’98, pages 183–200, New York, NY, USA. ACM.

149

Bibliography

Bravenboer, M. and Smaragdakis, Y. (2009). Strictly declarative specification of sophisticated

points-to analyses. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference on

Object oriented programming systems languages and applications, pages 243–262, New

York, NY, USA. ACM.

Briggs, P. and Cooper, K. D. (1994). Effective partial redundancy elimination. In ACM SIGPLAN

Notices, volume 29, pages 159–170. ACM.

Bruneton, E., Lenglet, R., and Coupaye, T. (2002). Asm: a code manipulation tool to implement

adaptable systems. Adaptable and extensible component systems, 30(19).

Chitil, O. (1998). Common subexpressions are uncommon in lazy functional languages. In

Clack, C., Hammond, K., and Davie, T., editors, Implementation of Functional Languages:

9th International Workshop, IFL’97 St. Andrews, Scotland, UK September 10–12, 1997 Se-

lected Papers, pages 53–71, Berlin, Heidelberg. Springer Berlin Heidelberg.

Chow, F., Chan, S., Kennedy, R., Liu, S.-M., Lo, R., and Tu, P. (1997). A new algorithm for partial

redundancy elimination based on ssa form. In ACM SIGPLAN Notices, volume 32, pages

273–286. ACM.

Click, C. (1995). Global code motion/global value numbering. In ACM SIGPLAN Notices,

volume 30, pages 246–257. ACM.

Click, C. (2011). Fixing the inlining “problem”.

Coppel, Y. (2008). Reflecting scala.

Coutts, D., Leshchinskiy, R., and Stewart, D. (2007). Stream fusion: from lists to streams to

nothing at all. In Hinze, R. and Ramsey, N., editors, Proceedings of the 12th ACM SIGPLAN

International Conference on Functional Programming, ICFP 2007, Freiburg, Germany, Octo-

ber 1-3, 2007, pages 315–326. ACM.

Dean, J., Grove, D., and Chambers, C. (1995). Optimization of object-oriented programs using

static class hierarchy analysis. In ECOOP ’95, Object-Oriented Programming: 9th European

Conference, volume 952 of Lecture Notes in Computer Science, pages 77–101.

Dotty, t. (2015). Dotty documentation: Name based pattern matching.

Dragos, I. (2010). Compiling Scala for Performance. PhD thesis, IC, Lausanne.

Dragos, I. and Odersky, M. (2009). Compiling generics through user-directed type specializa-

tion. In Proceedings of the 4th workshop on the Implementation, Compilation, Optimization

of Object-Oriented Languages and Programming Systems, pages 42–47. ACM.

Ekman, T. and Hedin, G. (2007). The JastAdd system – modular extensible compiler construc-

tion. Science of Computer Programming, 69(1):14–26.

150

Bibliography

Feng, Y., Wang, X., Dillig, I., and Lin, C. (2015). EXPLORER : query- and demand-driven

exploration of interprocedural control flow properties. In Proceedings of the 2015 ACM

SIGPLAN International Conference on Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA 2015, part of SLASH 2015, Pittsburgh, PA, USA, October 25-30,

2015, pages 520–534. ACM.

Gill, A. J. (1996). Cheap deforestation for non-strict functional languages. PhD thesis, University

of Glasgow, UK.

Goetz, B. (2014). State of the Specialization.

Goetz, B. and Rose, J. (2017). Pattern matching for java – runtime and translation.

Gupta, R., Berson, D. A., and Fang, J. Z. (1998). Path profile guided partial redundancy elim-

ination using speculation. In Computer Languages, 1998. Proceedings. 1998 International

Conference on, pages 230–239. IEEE.

Harper, R. and Morrisett, G. (1995). Compiling polymorphism using intensional type analysis.

In Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles of programming

languages, pages 130–141. ACM.

Henglein, F. and Jørgensen, J. (1994). Formally optimal boxing. In Proceedings of the 21st

ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 213–

226. ACM.

Horspool, R. N. and Ho, H. (1997). Partial redundancy elimination driven by a cost-benefit

analysis. In Computer Systems and Software Engineering, 1997., Proceedings of the Eighth

Israeli Conference on, pages 111–118. IEEE.

Huang, W., Milanova, A., Dietl, W., and Ernst, M. D. (2012). Reim & reiminfer: Checking

and inference of reference immutability and method purity. In ACM SIGPLAN Notices,

volume 47, pages 879–896. ACM.

Intel Corporation (2016). Intel 64 and IA-32 architectures optimization reference manual.

Jo, Y. and Kulkarni, M. (2011). Enhancing locality for recursive traversals of recursive structures.

In Proceedings of the 2011 ACM International Conference on Object Oriented Programming

Systems Languages and Applications, OOPSLA ’11, pages 463–482, New York, NY, USA. ACM.

Jo, Y. and Kulkarni, M. (2012). Automatically enhancing locality for tree traversals with traver-

sal splicing. In Leavens, G. T. and Dwyer, M. B., editors, Proceedings of the 27th Annual

ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, OOPSLA 2012, part of SPLASH 2012, Tucson, AZ, USA, October 21-25, 2012, pages

355–374. ACM.

Johnsson, T. (1985). Lambda lifting: Transforming programs to recursive equations. In Func-

tional programming languages and computer architecture, pages 190–203. Springer.

151

Bibliography

Jourdan, M. (1991). A survey of parallel attribute evaluation methods. In Alblas, H. and

Melichar, B., editors, Attribute Grammars, Applications and Systems: International Summer

School SAGA Prague, Czechoslovakia, June 4–13, 1991 Proceedings, pages 234–255, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Kastens, U. (1980). Ordered attributed grammars. Acta Informatica, 13(3):229–256.

Kastens, U. (1991). Implementation of visit-oriented attribute evaluators. In Alblas, H. and

Melichar, B., editors, Attribute Grammars, Applications and Systems: International Summer

School SAGA Prague, Czechoslovakia, June 4–13, 1991 Proceedings, pages 114–139, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Kastrinis, G. and Smaragdakis, Y. (2013). Hybrid context-sensitivity for points-to analysis. In

Boehm, H. and Flanagan, C., editors, ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013, pages 423–434.

ACM.

Kennedy, A. and Syme, D. (2001). Design and implementation of generics for the. net common

language runtime. In ACM SigPlan Notices, volume 36, pages 1–12. ACM.

Knuth, D. E. (1968). Semantics of context-free languages. Mathematical systems theory,

2(2):127–145.

Leontiev, G., Burmako, E., Zaugg, J., Moors, A., and Phillips, P. (2016). Sip-23 - literal-based

singleton types. https://github.com/scala/scala/pull/4706. Accessed: 2016-10-24.

Lepper, M. and Trancón y Widemann, B. (2011). Optimization of visitor performance by

reflection-based analysis. In Cabot, J. and Visser, E., editors, Theory and Practice of Model

Transformations: 4th International Conference, ICMT 2011, Zurich, Switzerland, June 27-28,

2011. Proceedings, pages 15–30, Berlin, Heidelberg. Springer Berlin Heidelberg.

Leroy, X. (1992). Unboxed Objects and Polymorphic Typing. In Proceedings of the 19th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’92, pages

177–188, New York, NY, USA. ACM.

Lewis, P., Rosenkrantz, D., and Stearns, R. (1974). Attributed translations. Journal of Computer

and System Sciences, 9(3):279 – 307.

Lhoták, O. and Hendren, L. (2003). Scaling Java points-to analysis using Spark. In Hedin, G.,

editor, Compiler Construction, 12th International Conference, volume 2622 of LNCS, pages

153–169, Warsaw, Poland. Springer.

Lhoták, O. and Hendren, L. (2006). Context-sensitive points-to analysis: is it worth it? In

Mycroft, A. and Zeller, A., editors, Compiler Construction, 15th International Conference,

volume 3923 of LNCS, pages 47–64, Vienna. Springer.

152

Bibliography

Lhoták, O. and Hendren, L. (2008). Evaluating the benefits of context-sensitive points-to

analysis using a BDD-based implementation. ACM Trans. Softw. Eng. Methodol., 18(1):1–

53.

Lindholm, T. and Yellin, F. (1999). Java Virtual Machine Specification. Addison-Wesley Long-

man Publishing Co., Inc., Boston, MA, USA, 2nd edition.

Meyerovich, L. A., Torok, M. E., Atkinson, E., and Bodik, R. (2013). Parallel schedule synthesis

for attribute grammars. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, PPoPP ’13, pages 187–196, New York, NY, USA. ACM.

Milanova, A., Rountev, A., and Ryder, B. G. (2002). Parameterized object sensitivity for points-

to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT International

Symposium on Software Testing and Analysis, pages 1–11. ACM Press.

Milanova, A., Rountev, A., and Ryder, B. G. (2005). Parameterized object sensitivity for points-

to analysis for Java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41.

Moors, A. (2011). Scala 2.12 & beyond.

Morrison, R., Dearle, A., Connor, R. C. H., and Brown, A. L. (1991). An Ad Hoc Approach to the

Implementation of Polymorphism. ACM Trans. Program. Lang. Syst., 13(3):342–371.

Nystrom, N., Clarkson, M. R., and Myers, A. C. (2003). Polyglot: An extensible compiler frame-

work for java. In Hedin, G., editor, Compiler Construction: 12th International Conference,

CC 2003 Held as Part of the Joint European Conferences on Theory and Practice of Software,

ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings, pages 138–152, Berlin, Heidel-

berg. Springer Berlin Heidelberg.

Odersky, M. (2014). The scala language specification v 2.9.

Odersky, M., Martres, G., and Petrashko, D. (2016). Implementing higher-kinded types in

dotty. In Proceedings of the 2016 7th ACM SIGPLAN Symposium on Scala, SCALA 2016,

pages 51–60, New York, NY, USA. ACM.

Odersky, M. and Zenger, M. (2005). Scalable component abstractions. In OOPSLA ’05: Proceed-

ings of the 20th annual ACM SIGPLAN conference on Object oriented programming systems

languages and applications, pages 41–57, New York, NY, USA. ACM Press.

Petrashko, D. (2011). Announcing dotty 0.1.2-rc1, a major step towards scala 3.

Petrashko, D., Doeraene, S., and Odersky, M. (2011). Sip 25 - @static fields and methods in

scala objects(si-4581).

Petrashko, D., Lhoták, O., and Odersky, M. (2017). Miniphases: Compilation using modular

and efficient tree transformations. In Proceedings of the 38th ACM SIGPLAN Conference on

Programming Language Design and Implementation, PLDI 2017, pages 201–216, New York,

NY, USA. ACM.

153

Bibliography

Petrashko, D., Ureche, V., Lhoták, O., and Odersky, M. (2016). Call graphs for languages with

parametric polymorphism. In Proceedings of the 2016 ACM SIGPLAN International Con-

ference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2016, pages 394–409, New York, NY, USA. ACM.

Phillips, P. (2013). scalac2 pull request: Pattern matcher: extractors become name-based.

Pierce, B. C. (1991). Programming with intersection types, union types. Technical report, and

polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University.

Rajbhandari, S., Kim, J., Krishnamoorthy, S., Pouchet, L., Rastello, F., Harrison, R. J., and

Sadayappan, P. (2016a). A domain-specific compiler for a parallel multiresolution adaptive

numerical simulation environment. In West, J. and Pancake, C. M., editors, Proceedings

of the International Conference for High Performance Computing, Networking, Storage and

Analysis, SC 2016, Salt Lake City, UT, USA, November 13-18, 2016, pages 40:1–40:12. ACM.

Rajbhandari, S., Kim, J., Krishnamoorthy, S., Pouchet, L.-N., Rastello, F., Harrison, R. J., and

Sadayappan, P. (2016b). On fusing recursive traversals of K-d trees. In Proceedings of the

25th International Conference on Compiler Construction, pages 152–162. ACM.

Riis Nielson, H. (1983). Computation sequences: A way to characterize classes of attribute

grammars. Acta Informatica, 19(3):255–268.

Rosen, B. K., Wegman, M. N., and Zadeck, F. K. (1988). Global value numbers and redundant

computations. In Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, pages 12–27. ACM.

Rytz, L. (2014). A Practical Effect System for Scala. PhD thesis, IC, Lausanne.

Sallenave, O. and Ducournau, R. (2012). Lightweight generics in embedded systems through

static analysis. In Wilhelm, R., Falk, H., and Yi, W., editors, SIGPLAN/SIGBED Conference

on Languages, Compilers and Tools for Embedded Systems 2012, LCTES ’12, Beijing, China -

June 12 - 13, 2012, pages 11–20. ACM.

Sarkar, D., Waddell, O., and Dybvig, R. K. (2005). Educational pearl: A nanopass framework

for compiler education. J. Funct. Program., 15(5):653–667.

Shipilev, A. (2011). Jvm anatomy park #10: String.intern().

Shipilev, A. (2016). OpenJDK JMH Project.

Shivers, O. (1988). Control flow analysis in scheme. In Proceedings of the ACM SIGPLAN 1988

Conference on Programming Language Design and Implementation, pages 164–174. ACM

Press.

Smaragdakis, Y., Bravenboer, M., and Lhoták, O. (2011). Pick your contexts well: under-

standing object-sensitivity. In Ball, T. and Sagiv, M., editors, Proceedings of the 38th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,

TX, USA, January 26-28, 2011, pages 17–30. ACM.

154

Bibliography

Smaragdakis, Y., Kastrinis, G., and Balatsouras, G. (2014). Introspective analysis: context-

sensitivity, across the board. In O’Boyle, M. F. P. and Pingali, K., editors, ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh,

United Kingdom - June 09 - 11, 2014, page 50. ACM.

Sridharan, M. and Bodík, R. (2006). Refinement-based context-sensitive points-to analysis

for Java. In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN Conference on Programming

Language Design and Implementation, pages 387–400, New York, NY, USA. ACM Press.

Ureche, V., Stojanovic, M., Beguet, R., Stucki, N., and Odersky, M. (2015). Improving the

interoperation between generics translations. In Proceedings of the Principles and Practices

of Programming on The Java Platform, PPPJ ’15, pages 113–124, New York, NY, USA. ACM.

Ureche, V., Talau, C., and Odersky, M. (2013). Miniboxing: improving the speed to code size

tradeoff in parametric polymorphism translations. In ACM SIGPLAN Notices, volume 48,

pages 73–92. ACM.

Wadler, P. (1990). Deforestation: Transforming programs to eliminate trees. Theoretical Com-

puter Science, 73(2):231–248.

Weijiang, Y., Balakrishna, S., Liu, J., and Kulkarni, M. (2015). Tree dependence analysis. In

Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’15, pages 314–325, New York, NY, USA. ACM.

Xu, G. and Rountev, A. (2008). Merging equivalent contexts for scalable heap-cloning-based

context-sensitive points-to analysis. In ISSTA ’08: Proceedings of the 2008 International

Symposium on Software Testing and Analysis, pages 225–236, New York, NY, USA. ACM.

Xu, G., Rountev, A., and Sridharan, M. (2009). Scaling CFL-reachability-based points-to analy-

sis using context-sensitive must-not-alias analysis. In Drossopoulou, S., editor, ECOOP

2009 - Object-Oriented Programming, 23rd European Conference, Genoa, Italy, July 6-

10, 2009. Proceedings, volume 5653 of Lecture Notes in Computer Science, pages 98–122.

Springer.

Yan, D., Xu, G. H., and Rountev, A. (2011). Demand-driven context-sensitive alias analysis for

Java. In Dwyer, M. B. and Tip, F., editors, Proceedings of the 20th International Symposium

on Software Testing and Analysis, ISSTA 2011, Toronto, ON, Canada, July 17-21, 2011, pages

155–165. ACM.

155

Dmytro Petrashko
École Polytechnique Fédérale de Lausanne

Lausanne, Switzerland
dmitry.petrashko@gmail.com

INTERESTS Static analysis;
Compiler construction;
Developer productivity;
Programming language theory and implementation;
I/O efficient algorithms.

HIGHLIGHTS Designed and implemented compiler middle-end and backend for Dotty compiler, the
future Scala compiler, together with Martin Odersky. Designed abstractions for the
compiler that substantially lowered maintenance cost as well as barriers to entry for
new contributors while at the same time reducing compilation time.

Contributed 800+ commits, 160k+ lines of code to Dotty, boostrapped the compiler
and fixed 200+ issues. Introduced an extensive self-verification system into compiler
that allows to discover and localize bugs easily.

EXPERIENCE Doctoral Assistant, École Polytechnique Fédérale de Lausanne
September 2013 - Present, Lausanne, Switzerland
Working on evolution of Scala (http://www.scala-lang.org/), an object-oriented func-
tional programming and scripting statically typed language, designed to concisely
express solutions in an elegant, type-safe and lightweight manner.

Dotty (http://dotty.epfl.ch/) is a compiler for Scala that is being developed by EPFL
that is faster, easier to maintain and evolve. On the language level, it simplifies Scala
by removing extraneous syntax (e.g. no XML literals), and boiling down Scala’s types
into a smaller set of more fundamental constructs.

Activities & contributions:
• Co-designed architecture of compiler middle-end and backend;
• Bootstrapped the compiler;
• Tracked down a major performance bottleneck in current Scala compiler that is

bad memory locality and long object retention;
• Co-designed and implemented the notion of Mini-Phases, that avoids the bottleneck
found in current Scala compiler. Mini-Phases are also a convenient abstraction
that allows to express AST transformations in an isolated and maintainable way,
while fusing them together in runtime for performance;

• Co-designed and implemented YCheck, extensible self-verification infrastructure
of Dotty that is the basis of the continuous integration and testing of the Dotty
compiler;

• Co-designed Typed AST(TASTY) – a new interchange format to be used by Scala
compilers and tools in Scala ecosystem.

• Implemented many phases of compiler, including: type erasure, recursive call
optimization, lazy vals transformation, pattern matching;

157

ScalaBlitz (https://scala-blitz.github.io/). A data-parallel programming framework
that optimizes collection operations and offers superior performance to that provided
by the Scala standard library collections, by reducing abstraction overheads and tak-
ing advantage of code-patterns that contemporary Java VMs and CPUs can execute
efficiently.

Activities & contributions:
• Co-designed and implemented macro-based parallel collections;
• Performed rigorous benchmarking, including low-level assembly benchmarking;
• Obtained performance comparable to hand-tuned code written in C++ that uses

Intel Threading Building Blocks library;
• Developed a method that allows applying optimizations available in ScalaBlitz
without modifying legacy code.

Co-founder, technical lead, Center of Distance Education
February 2008 - June 2012, Moscow, Russia

Co-founded a startup together with two professors from Moscow Institute of Physics
and Technology. A startup around a distributed system for performing big-scale near-
realtime video broadcasting. The intended user-base are students that plan to take high
school exit exams and want to get tutoring from best teachers available in university.

Most notorious event had to do with one of our big video broadcasts to around 18000
students (1 Mbit/second per student on average. More at peak times that happen
at the same time for all students). Our load triggered connectivity issues in several
data-centers that ignored our warnings that were sent weeks upfront. This was a good
trial of our fail-over mechanism that worked perfectly, hiding the issue from users.

Responsibilities & activities:
• Designing a high-throughput distributed system from scratch with hard require-

ments on user-experience and failover times;
• Optimizing the system to reduce operational costs;
• Hiring people to perform various tasks for project, including forming new teams
of developers and tracking their progress as well as training them to use novel
technology;

• Performing long-term technical planning and participating and evaluating long-
term technical opportunities for the business;

• Making sure that system can run under high load safely if I’m on an multi-hour
exam and team has knowledge how to react in case of failures in my absence.

Project Lead, Moscow Institute of Open Education
June 2012 - July 2014, Moscow, Russia

All Russian students take subject exams at the same day after finishing high-school. I
was leading governmental project to migrate those exams from paper to an automatic
web-based system that would severely reduce operational costs and time needed to
check the exams.

The system had to be easy to use both for students as well as people checking the
submissions. Semi-automatic graders were provided to ease the work of people evaluating
the solutions such as pre-grading and custom techniques used to assign similar solutions
to the same graders.

Responsibilities & activities:

158

• Gathering and analyzing requests from business and governmental customers.
• Taking care of formal standards of private data protection and data retention.

Preparing system for governmental certification;
• Developing project architecture and documentation, based on orchestration of
multiple cloud systems(Amazon AWS and MS Azure) to support project server
architecture during high-load;

• Collaborating with other teams to integrate statistical intrusion detection system
and reporting to track causality in the running production system;

• Managing a team of 5 developers.

Software Developer intern, Wikimart.ru
February 2012 - July 2012, Moscow, Russia

The Wikimart is a Amazon-like system where users can look for products offered by
Wikimart. The most common type of query was a range query, e.g. a query on product
price. The underlying system used Cassadra, where those queries are executed very
inefficiently, requiring a full scan of stored data. Most known algorithms that improve
execution time of such queries require use of locks and hence are inefficient in distributed
systems. On the contrary, Fenwick trees does not require forced synchronization and
provide eventual consistency guaranties with logarithmic time per operation.

Responsibilities & activities:
• Analyzing production system to isolate a bottleneck in performance;
• Designed a novel algorithm for range queries, implemented and deployed it.
Which led to reduction of the average response time from 300ms to 20ms, while
99-percentile decreased from 1500ms to 300ms.

Researcher, Keldysh Institute of Applied Mathematics
June 2011 - July 2013, Moscow, Russia

Responsibilities & activities:
• Modification of Treibers Intelligent Driver Model for multiple number of road

lanes, training it on the transport flow of Moscow and then applying it to analyze
the behavior on the Moscow Ring Road;

• Development of the practical algorithm that finds the shortest path with specified
accuracy in graphs with the known dynamics of edge changes, e.g. the graph
obtained from the trained Treibers Intelligent Driver Model. This algorithm is a
modification of Dijkstras algorithm in the external memory, with ALT-modification
and NaturalCuts heuristics.

SCIENTIFIC
PUBLICATIONS

• Petrashko D., Lhoták O., Odersky M. “Miniphases: Compilation using Modular
and Efficient Tree Transformations”. Object-oriented Programming, Systems,
Languages, and Applications (OOPSLA), 2016;

• Petrashko D., Lhoták O., Ureche V., Odersky M. “Call Graphs for Languages with
Parametric Polymorphism”. Object-oriented Programming, Systems, Languages,
and Applications (OOPSLA), 2016;

• Odersky M., Martres G., Petrashko D.“Implementing Higher-Kinded Types in
Dotty”, Scala Symposium 2016, October 3031, 2016, Amsterdam, P. 51-60;

• Prokopec A., Petrashko D., Odersky M. “Efficient Lock-Free Work-stealing It-
erators for Data-Parallel Collections.” Parallel, Distributed and Network-Based
Processing (PDP), 2015 23rd Euromicro International Conference on. IEEE;

• Petrashko D. “Investigation on transport flow behavior depending on safe dis-
tance”(in Russian) 54th Moscow Institute of Physics and Technology conference:

159

Problems of fundamental, applied and technical sciences in contemporary society,
2012, Russia, Moscow, P. 99-103;

• Gasnikov A., Dorn Y., Ivkin N., Ishmanov M., Obidina T., Petrashko D, Holodov
Y., Hohlov M., Chehovich Y. “Some actual problems of traffic flow mathematical
modeling”(in Russian) Intelligent Information Processing of the 9th International
Conference, IIP-2012, Montenegro, Budva, P. 211-214;

• Gasnikov A., Gasnikova E., Petrashko D. “Macro-system approach to web-page
ranking models”(in Russian); Information Technology and Systems conference,
2012, Russia, Petrozavodsk.

TEACHING
EXPERIENCE

• Teaching assistant. Advanced Compiler Construction, Spring 2016.
École Polytechnique Fédérale de Lausanne

• Teaching assistant. Functional programming, Winter 2015.
École Polytechnique Fédérale de Lausanne

• Teaching assistant. Advanced Compiler Construction, Spring 2015.
École Polytechnique Fédérale de Lausanne

SUPERVISED
STUDENTS

At EPFL, research groups offer substantial projects for B.Sc./M.Sc. students to complete
for credit. EPFL PhD students design and supervise these projects, as well as M.Sc.
thesis projects.

• M.Sc. project by Renucci A. “AutoCollections” 2016;

• B.Sc. project by Peterssen A. “Delaying arrays: efficient immutable arrays” 2016;

• M.Sc. project by Renucci A. “Common Subexpression Elimination in Dotty”
2015;

• M.Sc. project by Sikiaridis A. “ Implementing Method Type Specialisation in
Dotty” 2015;

• M.Sc. thesis by Martres G. “Implementing value classes in Dotty, a compiler for
Scala”. 2015;

• M.Sc. project by Martres G. Co-supervised with Nada Amin. “Investigating
subtyping in Dotty”. 2014;

• M.Sc. project by Angel A. “BlitzViews: parallel macro-generated lazy collections”.
2014.

OPEN SOURCE
PROJECTS

Dotty (https://github.com/lampepfl/dotty) Dotty is a platform to try out new language
concepts and compiler technologies for Scala.

ScalaBlitz (https://scala-blitz.github.io/). A data-parallel programming framework that
optimizes collection operations.

SELECTED
CONFERENCE
TALKS

• D. Petrashko “ Dotty is coming: how to prepare for migration”, Scala Days 2017,
Chicago, USA , April 18th-21st, 2017;

• D. Petrashko “What should every (Dotty) developer know about hardware”, Scala
eXchange 2016, London, UK , December 8th-9th, 2016;

• D. Petrashko “How do we make the Dotty compiler fast”, Invited talk, Virtual
Machine Meetup 2016, Lugano, Switzerland , September 1st-2nd, 2016;

• D. Petrashko “How do we make the Dotty compiler fast”, JVM Language summit
2016 organized by Oracle Corporation, Santa Clara, August 1st-4th, 2016;

• D. Petrashko “Dotty Linker: Precise Types Bring Performance”, ScalaDays 2016,
New York, May 9th-13th, 2016;

• D. Petrashko “Dotty Linker: Precise Types Bring Performance”, ScalaDays 2016,
Berlin, June 13th-17th, 2016;

160

• D. Petrashko “Scala & Dotty current status”, invited keynote, ScalaUA 2016,
Kiev, April 8th, 2016;

• D. Petrashko “Making sense of initialization order in Scala”, invited keynote,
Scalar 2016, Warsaw, April 16th, 2016;

• D. Petrashko “AutoSpecialization in Dotty”, FlatMap(2016) a functional pro-
gramming conference, Oslo, Norway, May 2nd-3rd, 2016;

• D. Petrashko “From Scala to Dotty”(in Russian), invited keynote, Scala Meetup ,
Kiev, December 30th, 2015;

• D. Petrashko “Whats new in Dotty”, Fby.by: functional conference of Belarus,
Minsk, Nov 28, 2015;

• D. Petrashko “Dotty: Exploring the future of Scala”, invited, ScalaWorld Lake
District, UK, 2015;

• D. Petrashko “Making your Scala applications smaller and faster with the Dotty
linker“, Scaladays, Amsterdam, Jun 8-10, 2015;

• D. Petrashko “Efficient Lock-Free Work-stealing Iterators for Data-Parallel Col-
lections“, 23rd Euromicro International Conference on Parallel, Distributed and
Network-based Processing, Turku, Finland, March 4-6, 2015;

• D. Petrashko “Lightning-Fast Standard Collections With ScalaBlitz”, Scala Days,
Berlin, Jun 16-18, 2014;

• A. Prokopec, D. Petrashko “Macro-based Scala Parallel Collections”, Scala eX-
change, London, Dec 2-3, 2013.

161

