
ReCache: Reactive Caching for Fast Analytics over
Heterogeneous Data

Tahir Azim?, Manos Karpathiotakis? and Anastasia Ailamaki? †

?École Polytechnique Fédérale de Lausanne †RAW Labs SA
{tahir.azim, manos.karpathiotakis, anastasia.ailamaki}@epfl.ch

ABSTRACT
As data continues to be generated at exponentially growing rates
in heterogeneous formats, fast analytics to extract meaningful in-
formation is becoming increasingly important. Systems widely use
in-memory caching as one of their primary techniques to speed up
data analytics. However, caches in data analytics systems cannot
rely on simple caching policies and a fixed data layout to achieve
good performance. Different datasets and workloads require differ-
ent layouts and policies to achieve optimal performance.

This paper presents ReCache, a cache-based performance accel-
erator that is reactive to the cost and heterogeneity of diverse raw
data formats. Using timing measurements of caching operations
and selection operators in a query plan, ReCache accounts for the
widely varying costs of reading, parsing, and caching data in nested
and tabular formats. Combining these measurements with infor-
mation about frequently accessed data fields in the workload, Re-
Cache automatically decides whether a nested or relational column-
oriented layout would lead to better query performance. Further-
more, ReCache keeps track of commonly utilized operators to make
informed cache admission and eviction decisions. Experiments on
synthetic and real-world datasets show that our caching techniques
decrease caching overhead for individual queries by an average of
59%. Furthermore, over the entire workload, ReCache reduces ex-
ecution time by 19-75% compared to existing techniques.

PVLDB Reference Format:
Tahir Azim, Manos Karpathiotakis and Anastasia Ailamaki. ReCache: Re-
active Caching for Fast Analytics over Heterogeneous Data. PVLDB, 11(3):
xxxx-yyyy, 2017.
DOI: 10.14778/3157794.3157801

1. INTRODUCTION
The volume of raw data generated everyday, ranging from sen-

sor readings to Web logs to images and video, continues to grow at
an exponential rate. The volume, variety and velocity of data gen-
eration makes pre-processing and loading of raw data extremely
expensive. As a consequence, an entire industry now addresses the
need to analyze raw data directly and glean useful insights from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were invited to present
their results at The 44th International Conference on Very Large Data Bases,
August 2018, Rio de Janeiro, Brazil.
Proceedings of the VLDB Endowment, Vol. 11, No. 3
Copyright 2017 VLDB Endowment 2150-8097/17/11... $ 10.00.
DOI: 10.14778/3157794.3157801

0 100 200 300 400 500 600

Query Sequence

0.0

0.1

0.2

0.3

0.4

0.5

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

All attributes Only non-nested attributes

Parquet
Rel. Columnar

Figure 1: Execution times for a sequence of queries on nested data,
cached using Parquet and relational columnar layouts. Depending
on the workload, different layouts result in significantly different
query execution times.

it. Nevertheless, the sheer volume of data makes analysis a time-
consuming process. In addition, the raw data generated by sensors
and Web-based systems often has widely varying, heterogeneous
formats. Data in some formats, such as nested JSON data, can be
much more expensive to parse than its relational equivalent [28,
35]. This makes performant analytics on heterogeneous data sig-
nificantly more challenging.

Data analytics systems commonly use on-the-fly caching of pre-
viously parsed data and intermediate operator results to improve
performance [9, 6, 28, 37, 26]. The basic idea is that when raw
data is queried the first time, the system caches in memory either
all of the data after parsing, or just the results of intermediate query
operators. Since the data resides in an efficient binary format in
memory, the cache enables faster responses to future queries on the
same data.

Caching is, of course, a well-studied technique in computer sys-
tems. Unlike CPU caches where data is loaded into the cache for
free before being used, database caches incur additional overhead
reading, parsing and storing intermediate results into an in-memory
cache. For the sake of simplicity, however, commercial DBMS
and analytics systems use relatively straightforward caching poli-
cies [14, 33]. First, they cache data in memory using a fixed,
pre-defined layout [8, 14, 33]. Moreover, they use relatively naive
cache admission and eviction policies. The usual approach is to ad-
mit everything into the cache and evict the least-recently-used item
(LRU). Another common approach is based on the five-minute rule
[21] and its follow-up [20], which suggest caching disk pages that
are reused every 5 minutes or less. Recent work on Vectorwise and
MonetDB [37, 26] has shown promising results using cost-based

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


caching algorithms, but is designed for binary relational data stored
in an in-memory database.

This paper focuses on efficient caching mechanisms for hetero-
geneous raw data formats that can contain both relational and hi-
erarchical data. Existing caching policies result in significantly
slower query performance on such diverse data formats.

First, the cost of reading and parsing raw data varies widely
across different data formats. As a result, cost-oblivious caching al-
gorithms like LRU under-perform on this data. On the other hand,
cost-based algorithms need to be redesigned to capture the costs
involved in processing queries over raw data.

Second, and to the best of our knowledge, there is no existing
way to automatically determine the data layout for the cache that
delivers the best query performance over richer data formats, such
as nested data. Purely relational data layouts are not always well-
suited for efficiently querying nested data. Instead, nested colum-
nar layouts (e.g. Dremel/Apache Parquet [35, 30]) are considered
a more suitable option than relational row-oriented and column-
oriented layouts. Figure 1 illustrates how nested and relational
column-oriented layouts for nested data differ in performance in
two separate scenarios. The first 300 queries in the query sequence
access attributes chosen at random from the list of all attributes.
The last 300 queries, on the other hand, only choose from the set
of non-nested attributes. The figure shows that neither a relational
columnar layout nor a Parquet-based layout provides optimal per-
formance in all cases. Instead, the optimal layout depends on the
characteristics of the workload and the dataset. Furthermore, the
nested nature of the data renders existing layout selection tech-
niques for relational data [7, 22] inapplicable.

Third, caching intermediate results adds overhead to a query
[37]. The amount of overhead depends on the type of data stored
in the cache. Caching only the file offsets of satisfying tuples is
cheaper, but also reduces the potential benefits of the cache. Pars-
ing and storing complete tuples in memory has higher overhead,
but enables better cache performance. Existing systems [28] pro-
vide support for statically choosing one of these caching modes,
but leave open the problem of dynamically navigating this tradeoff.

This paper presents ReCache, a cache-based performance accel-
erator for read-only analytical queries over raw heterogeneous data.
ReCache improves cache decision-making by using empirical esti-
mates of the time cost of executing selection operators and caching
their results. Additionally, it monitors the current query workload
to automatically choose the optimal memory layout for caching re-
sults from relational and nested data sources. All of these statistics
also enable ReCache to make intelligent cost-based cache admis-
sion and eviction decisions. Finally, if the overhead of caching an
operator’s results is too high, it reacts quickly by switching to a
less costly caching scheme. Together, these optimizations enable
ReCache to reduce overhead for individual queries, and achieve
high cache performance over a query workload.

Contributions. This paper makes the following contributions:

• We present a cost-based approach towards caching that uses tim-
ing measurements and workload monitoring to make automatic
decisions about caching policy. Using this information, our ap-
proach automatically switches to the best performing in-memory
layout for caching nested data. These measurements further en-
able it to make more informed cache eviction decisions than
LRU. Finally, our proposed approach avoids high caching over-
head by choosing dynamically between a low and high overhead
caching scheme for previously unseen queries.

• Based on this approach, we implement ReCache, a cache-based
performance accelerator that optimizes query response time by

caching the results of intermediate selection operators in queries
over CSV and JSON files. ReCache uses just-in-time code gen-
eration both to compute query results as well as to generate cache
creation code tailored to the chosen caching policy.

• We show that ReCache outperforms existing analytics techniques
on synthetic and real-world datasets. We present evaluations of
ReCache with synthetic TPC-H data using multiple data formats,
showing that ReCache’s layout selection strategy results in exe-
cution time that is 53% closer to the optimal than Parquet and
43% closer than the relational columnar layout. Compared to
LRU, its cost-based cache eviction policy reduces the execution
time for TPC-H based workloads by 6-24% (which is 9-60%
closer to that of a system with infinite cache size). Its cache ad-
mission policy reduces the response time for individual queries
by an average of 59% compared to one that simply caches entire
tuples in memory. Finally, on a real-world dataset, it improves
query performance by 75% compared to a system that uses rela-
tional columnar layout and LRU eviction.

The next section overviews related work in more detail. Sec-
tion 3 introduces ReCache’s overall architecture. Section 4 then
dives into ReCache’s automatic layout selection algorithm and the
fundamental insights driving the algorithm. Next, Section 5 de-
scribes ReCache’s cache admission and eviction algorithms. Fi-
nally, Section 6 evaluates the performance benefits of ReCache on
synthetic and real-world datasets, and Section 7 concludes.

2. RELATED WORK
Caching is a well-studied problem in computer systems in gen-

eral. In the area of databases, a large body of work exists on the
problem of caching the results of previous query executions and
reusing them to enhance performance. Table 1 provides a summa-
rized comparison of ReCache relevant existing work. The rest of
this section surveys related work in more detail and highlights how
ReCache pushes the state-of-the-art further.

Caching Disk Pages. All database systems retain disk pages in
memory buffers for a period of time after they have been read in
from disk and accessed by a particular application. The key ques-
tion while caching is to decide which pages to keep in memory to
get the best performance. Based on contemporary performance and
price characteristics of memory and disk storage, the 5-minute rule
[21] proposed caching randomly accessed disk pages that are re-
used every 5 minutes or less. A revised version of the paper ten
years later found the results to be mostly unchanged [20].

When caching disk pages or other data items with approximately
identical costs, the provably optimal eviction algorithm is to re-
move the element that is accessed farthest in the future [10]. How-
ever, since future query patterns cannot be predicted with perfect
accuracy, past history is often used to guide cache behavior. The
assumption is that future behavior of the system will be similar
to past history. History-based policies such as least-recently-used
(LRU), least-frequently-used (LFU) and others attempt to approxi-
mate optimal behavior in this way and are widely implemented in
computer systems.

Cost-based Caching. Cost-based caching algorithms, such as
the family of online Greedy-Dual algorithms [46, 24, 12], im-
prove cache performance in cases where the cost of reading dif-
ferent kinds of data can vary widely. These algorithms prioritize
the eviction of items with lower cost in order to keep expensive
items in cache. This is especially important on the Web where the
latency to access different pages can vary significantly. At the same
time, these algorithms account for recency of access: recently ac-
cessed items are less likely to be evicted than those accessed farther



Table 1: Comparison with Related Work: a checkmark indicates if an area of related work addresses a given requirement.

Research Area Low Overhead Optimizes For
Heterogeneous Data Improved Net Performance

Caching Disk Pages X X
Cost-based Caching X X
Caching Intermediate Query Results X
Caching Raw Data X X
Automatic Layout Selection X
Reactive Cache (ReCache) X X X

in the past. In addition, Greedy-Dual algorithms have a theoretical
guarantee that they are k-competitive with an optimal offline algo-
rithm, i.e. they perform within a constant factor k of the optimal
offline algorithm. More recently, cost-based algorithms have been
used for adaptive caching in Hadoop-based analytics systems [19].

Unlike algorithms for data items with identical costs, there is no
provably optimal, polynomial time cache eviction algorithm [12].
However, offline algorithms exist which can approximate the opti-
mal to within a logarithmic factor of the cache size [24].

Caching Intermediate Query Results. While caching interme-
diate results of query execution has been frequently studied [43,
31] it has not been widely deployed due to its potential overhead
and additional complexity. Recent work towards caching interme-
diate results of queries over relational data [37, 26] shows further
promise in this direction. This work uses a cost-based approach to
decide which tuples to admit to and evict from the cache. The costs
are computed based on fine-grained timing measurements and sizes
of the cached data. In addition to caching operator results, [16] also
proposes caching internal data structures created as a side-effect
of join operations. ReCache adds to this body of work by taking
into account the cost of reusing a cached result, adding support for
lower-overhead caches that only cache offsets of satisfying tuples,
and automatically choosing the fastest data layout for the cache.

Querying Raw Data. Multiple systems address the need to per-
form queries over data that do not reside in databases. The tradi-
tional approach of fully loading raw data in a DBMS before launch-
ing queries is a blocking point for use cases where deriving insights
rapidly is necessary. Apart from full loads, DBMS offer an exter-
nal tables functionality (e.g.,via a custom storage engine [36]), in
which case every query pays to parse the raw dataset from scratch.
Hadoop-oriented solutions [45, 41, 9] rely on file adapters per file
format. For example, when a dataset is stored in CSV files, a CSV-
specific adaptor will convert all values in a binary representation
as part of the querying process, thus paying for the entire conver-
sion upfront, even if parts of the dataset are not touched by queries.
Other systems [15, 5] operate in a “hybrid” mode, loading data
in a DBMS on-demand based on the workload patterns or when
there are available system cycles [13]. Vertical partitioning for raw
data [47] assumes knowledge of the dataset and workload in ad-
vance in order to optimize workload execution time by loading the
optimal subset of raw data into a DBMS.

Finally, numerous systems advocate processing raw data in situ,
and propose techniques to mask the costs of repeatedly accessing
raw data [6, 29, 28, 25, 27, 11, 40], such as indexing structures,
caching, code-generated custom access paths, metadata-driven data
skipping, etc.

Caching Raw Data. The NoDB [6] and Proteus [28] query
engines for raw heterogeneous data both use caching to improve
query performance. While caching enables them to optimize their
query response time, their caching policies are relatively adhoc and
straightforward. For example, they admit everything into the cache

and use LRU for eviction with the caveat that JSON caching is as-
sumed to be always costlier than CSV. Proteus also introduces the
concept of degree of eagerness: caching only offsets of satisfying
tuples constitutes a low degree of eagerness, while caching the en-
tire tuple represents a high degree of eagerness. However, it does
not suggest automatic policies to determine the degree of eagerness
for a cached data item.

Automatic Data Layout Selection. Columnar databases of-
fer substantial performance speedups on workloads that access a
small subset of attributes of a table [4, 3, 23, 42]. Row-oriented
databases, in contrast, perform better when queries access entire
tuples instead of a small subset of attributes. Recent work ex-
tensively studies automatic selection of row-oriented or column-
oriented layout for a database. HyRise [22] makes use of advance
workload information to decide the best layout for an in-memory
database. H2O [7] supplements this work to automatically choose a
row-based, column-based or hybrid layout that minimizes response
time for a dynamically changing workload. However, both H2O
and HyRise only consider the space of relational queries over re-
lational data, an assumption that allows them to compute cost of
a query by estimating the number of CPU cache misses it would
incur. Instead, ReCache considers the cross product of flat / nested
queries over flat / nested data, which is significantly more complex.
In particular, data cache misses are insufficient for estimating query
cost because the Parquet format also has significant computational
cost. On the other hand, the relational columnar layout often pro-
vides sub-optimal performance, as shown by Figure 1.

ReCache builds on and advances the state-of-the-art in automatic
layout selection by proposing a novel algorithm for automatically
choosing the fastest layout for caches of nested data in the presence
of a dynamic query workload. ReCache handles the complexity of
nested data using a high-level query algebra [17] and runtime pro-
filing. The algebra enables ReCache to reason about nested data
and unnest hierarchies via an explicit operator. Combined with
runtime profiling, the algebra enables ReCache to gather statistics
about the data in nested and flattened formats, and thus make in-
formed layout selection decisions.

ReCache also proposes new cache admission and eviction tech-
niques which account for the heterogeneity of previously unseen
raw data. All of these decisions are made using heuristics informed
by measurements of time overhead and workload characteristics.

Finally, ReCache uses existing established layout schemes (i.e.,
columnar and Parquet) to maximize compatibility with existing state-
of-the-art and reduce engineering effort for developers that poten-
tially want to incorporate it into existing systems.

3. ReCache ARCHITECTURE
Following the efficient code-generation techniques of modern re-

search databases like HyPer [38, 39], ReCache is built on top of a
just-in-time, code generation based query engine. The code gen-
eration infrastructure enables ReCache to generate the code that is



responsible for cache creation, and also generate the code that en-
ables caches of arbitrary contents and layouts to be reused by subse-
quent queries. These code generation capabilities enable the overall
system to fine-tune itself and, instead of acting like a static system
(e.g., column store or row store), operate over custom storage that
has been put together just-in-time based on the query workload.

3.1 The Proteus Query Engine Generator
We have implemented ReCache as an extension of the Proteus

query engine generator [28]. Proteus relies on a high-level query
algebra [17] to express and optimize queries over heterogeneous
datasets, such as CSV and JSON files, as well as binary data. In
addition, Proteus uses code generation techniques [32, 38] to pro-
duce a specialized query engine for each combination of incoming
query and dataset instance.

Figure 2: System Architecture.

Figure 2 shows the overall architecture of the system. After each
query is parsed by the query parser, the optimizer uses informa-
tion from ReCache to find any matches in the cache, replace opera-
tors with cached items and generate a query plan. The optimizer
also updates ReCache with statistics about the data sources and
attributes in the current query workload. Proteus then generates
the query engine code, using ReCache to inject code that performs
cache creation, timing measurements and layout switching.

Proteus handles data and query heterogeneity in two steps which
end up complementing each other. To deal with input data hetero-
geneity, Proteus exposes a different input plugin for each type of
data format [29]. The plugin is responsible for generating special-
ized code that considers each file format’s characteristics when ac-
cessing data. For textual formats such as CSV and JSON, the corre-
sponding input plugin populates a positional map [6, 28]; an index
that acts as the “skeleton” of a file, capturing its internal structure
and binary offsets of some data fields. The positional index then
facilitates navigation in the file in subsequent queries, and reduces
the cost of repeatedly parsing already accessed raw data.

Regarding query heterogeneity, Proteus ensures efficient query
execution over relational and/or hierarchical data by generating the
engine most suitable for the query at hand. Specifically, using static
query operators that must process both relational and hierarchical
data would result in these operators being too abstract, and intro-
duce significant interpretation overhead [32, 38, 28]. Thus, each
operator of Proteus generates code to “hard-code” itself to the cur-
rent query and the model of the incoming data.

The final result of the code generation process is a custom piece
of code. Proteus stitches together the code stubs generated by its
input plug-ins and its query operators, in a manner that enables data
pipelining through the code.

3.2 Cache Building and Matching
On receiving a query, ReCache uses a cost-based optimizer to

generate an efficient physical query plan. For each select operator

in the plan, it inserts a “materializer” as the parent of the operator
(Figure 3a). A “materializer”creates and populates a cache of the
tuples that satisfy its child operator. Finally, ReCache generates,
stitches together and compiles the code for the entire query using
the LLVM compiler infrastructure [1, 34].

In case ReCache encounters an operator in a query whose results
it has previously cached, it reuses the cache in order to speed up the
query. A cached operator exactly matches an operator in the current
query if both i) perform the same operation (e.g., selection), ii) have
the same arguments (i.e., evaluate the same algebraic expressions),
and iii) their children also match each other respectively. To do this,
ReCache changes the query plan by removing the subtree under the
operator. It then replaces the subtree with an in-memory scan over
the previously created cache instead (Figure 3b).

(a) A materializer added as the parent of
an operator caches its results.

(b) If an exactly matching cache is found,
a scan over the cache containing pre-
parsed binary data replaces the operator
executed over the original file scan.

Figure 3: Creating and reusing a cache.

3.3 Query Subsumption Support
Exact matches across multiple queries are relatively uncommon.

More commonly, the cache contains data that is a superset of the
data required by a new query. In this case, it is much faster to apply
the query on the cached superset than on the raw data. The data
required by the query is said to be subsumed by the data available
in the cache [18, 44].

ReCache currently provides support for query subsumption on
range predicates in select operators. ReCache reuses a cache if it is
the result of a range predicate and if the range of a new predicate is
completely covered by that of the cache. It also reuses the results of
a range predicate if the predicate subsumes a clause in a conjunctive
SELECT operation.

A naive approach to implement support for this kind of subsump-
tion would be to iterate over every cached data item, and check if
its range predicate covers the predicate of the new query. This ap-
proach runs in linear time to the number of objects in the cache.
ReCache makes the lookup process faster by using a spatial in-
dex based on a balanced R-tree. For every numeric field in every



relation, ReCache maintains a separate spatial index. It adds the
bounding box for every cached range predicate into the index. On
encountering a new range predicate, ReCache looks up the corre-
sponding spatial index to find all existing caches that fully cover
the new predicate. Since the R-tree is balanced, subsuming caches
can be discovered in logarithmic time. While inserting into the R-
tree is more expensive than appending to an array, our experiments
show that this overhead is negligible over a variety of workloads,
ranging from 2-15µs.

Figure 4: For query subsumption, a scan over the original data
source is replaced by a scan over an in-memory binary cache con-
taining a superset of the data requested.

If a subsuming cache is found, a scan over an underlying data
source is replaced by a scan over the in-memory cache. Since the
cache is still just a subsuming cache (as opposed to an exact match),
the operator still needs to be applied on top of the scan in order to
obtain the correct results from the subsuming cache. The required
query rewrite in this case is illustrated in Figure 4.

Note that the techniques and insights of ReCache are applicable
to all query types and operators. This paper focuses on subsump-
tion of range predicates because select operators are a typical bot-
tleneck of in-situ data accesses [6, 29, 28]: queries over raw data
pay a high cost to access the data and filter out unwanted values
before forwarding the data to operators higher in the query tree.
In addition, ReCache focuses on cases of subsumption and reuse
for select operators that are low in the query tree to increase the
probability of future queries being able to re-use a cached result.

4. AUTOMATIC CACHE LAYOUT
One of the key questions for caching heterogeneous data is choos-

ing the cache layout that yields the best performance. To maxi-
mize the performance of an in-memory cache, ReCache monitors
the query workload to decide the best layout for the cache.

Automatically determining in-memory or on-disk data layout is
a deeply studied area of database research, as described in Section
2. Heterogeneous data adds a further dimension to ReCache’s lay-
out selection strategy, since it does not fit the relational model di-
rectly. Specifically, nested data needs to first be flattened in order to
make it fit into the relational model. One approach is to “shred” the
nested data into multiple tables with foreign keys used to connect
the tables together. The more prevalent technique, however, is to
simply flatten the data into a single relational table and then sepa-
rate out its columns. For instance, the JSON entry {"a":1,"b":4,
"c":[4,6,9]} would be flattened into three rows to match the cor-
responding relational format: {"a":1,"b":4,"c":4}, {"a":1,
"b":4,"c":6} and {"a":1,"b":4,"c":9}. Naturally, this leads
to data duplication if any field in the JSON entry is an array. Data
duplication in the cache is problematic because each query has to
process more data, resulting in lower performance.

The column striping approach used by Dremel/Parquet [35, 30]
addresses this problem by storing each field in a separate column
without duplication, and attaching a few bits of additional meta-
data with each column entry. In order to reconstruct the original
nested structure, Parquet initializes a finite state machine (FSM)
which points to the start of each column. The state of the FSM cor-
responds to its current position in each column. Before each state
transition, the FSM outputs the data stored in the current position
for each column. The FSM then transitions to a new state based
on the metadata values associated with each column’s current posi-
tion. The FSM terminates when all columns have been completely
read. By eliminating duplication, this technique reduces memory
accesses. This also makes Parquet an ideal layout for accessing
data on disk. On the other hand, the FSM-based reconstruction
algorithm requires significantly more computation and adds more
CPU pipeline-breaking branches into the instruction stream [35].

4.1 Characterizing the Tradeoffs
Accessing Shorter Columns. A pair of experiments help ex-

plain the factors affecting cache performance using Parquet or a
relational columnar layout. One of the key benefits claimed by
Parquet is that some columns can be significantly shorter than oth-
ers. So, in theory, if an analytics query only accesses the shorter
columns, it can be executed much more quickly.

Our first experiment tests this claim by running two different
kinds of queries on nested JSON data. The experiment uses a
2.5 GB JSON data file named orderLineitems, generated from the
TPC-H SF1 lineitem and orders tables. Each line in the file is a
JSON object mapping an order record to a list of lineitem records.
Each lineitem record is itself a JSON object with a set of nested
fields describing the lineitem. On average, about four lineitem
records are associated with each order record. For this experiment,
the queries in the workload are a sequence of 600 select-project-
aggregate queries with the following format:

SELECT agg(attr_1), ..., agg(attr_n)
FROM orderLineitems
WHERE <range predicates with random selectivity
over randomly chosen numeric attributes>

For the first 300 queries, the queries access random attributes
from the list of all attributes in each record. For the next 300, the
queries only choose from the set of non-nested fields describing an
order record. We populate the caches beforehand in order to isolate
the performance of the cache from the cost of populating them.

As shown in Figure 1, we find that a Parquet-based layout is
indeed better suited for a workload where only the non-nested at-
tributes are accessed frequently. On the other hand, a relational
columnar format performs better when both nested and non-nested
attributes are accessed.

Querying Data with Large Nested Fields. The second benefit
that Parquet claims is that by eliminating duplicated data, it enables
a more compact data representation. Therefore, queries on data us-
ing Parquet representation should require fewer memory references
and fewer CPU cache misses, resulting in faster performance.

We test this hypothesis by executing scans on in-memory caches
of synthetic data with increasingly large nested arrays. The dataset
for this experiment has the same format as orderLineitems. In-
stead of generating it from the lineitem and orders tables, we pop-
ulate it with synthetic data from a uniform distribution. We then
populate the lineitem array associated with each order with an in-
creasing number of elements and test how cache performance using
a Parquet-based layout differs from a relational columnar layout.



0 5 10 15 20
Cardinality

0.0
0.2
0.4
0.6
0.8
1.0

Ex
ec

ut
io

n 
Ti

m
e(

s)

Rel. Columnar
Parquet

Figure 5: Execution times for full scans over nested data cached
using Parquet and relational columnar layouts. Each data record
is associated with a nested array of varying cardinality. Even with
large cardinality, Parquet performs about 3x slower than the rela-
tional columnar layout.

0 5 10 15 20
Cardinality

0
30
60
90

120
150
180

W
rit

e 
La

te
nc

y 
(s

) Rel. Columnar
Parquet

Figure 6: Time required to write nested data into an in-memory
cache using Parquet and relational columnar layouts. Each data
record is associated with a nested array of varying cardinality.

Figure 5 shows the results. Surprisingly, Parquet continues to
perform about 2.8x slower than a relational columnar layout as the
size of the nested array increases. Profiling the process shows that
while Parquet incurs far fewer memory references, it does not in-
cur significantly fewer cache misses. Prefetching allows the CPU to
effectively avoid cache misses in both layouts, so the difference in
data size due to duplication does not matter significantly. Instead,
Parquet’s extra computational cost remains the dominant factor af-
fecting query performance.

These experiments lead to the following two insights. First, the
presence of large collections or high cardinality keys in nested data
does not automatically make it better suited for a Parquet-based
layout. Second, when queries only access columns with fewer ele-
ments, both data size and instruction count is reduced, making Par-
quet a far better choice for this scenario. Our heuristic for choosing
between nested and relational columnar layouts (described next)
draws directly from these basic insights.

4.2 Choosing between nested and relational
columnar layouts

By default, ReCache caches nested data in the Parquet layout
because it generally requires substantially fewer writes to memory.
We confirm this observation in Figure 6: the smaller memory foot-
print of the Parquet layout makes it faster to write to memory.

To determine if a relational columnar layout is a better option
for a cached item, ReCache profiles the performance of each query
that touches the item. For each query Qi, it measures the data access
cost Di and the computational cost Ci for scanning each cached data
item. The data access cost is measured as the time spent loading
data from the cache. The computational cost is measured as the
time spent evaluating branch conditions and any other additional
processing. In addition, ReCache tracks the number of columns ci
and rows ri accessed by query Qi, and the total number of rows in
the cache if it were flattened into a relational columnar layout, R.

In order to decide whether to switch the cache from Parquet to

0 20 40 60 80 100 120 140 160 180
Percentage Error

0
20
40
60
80

100

CD
F

Figure 7: Percentage error in the actual cost of scanning a cache
versus the cost predicted by ReCache’s cost model on the order-
Lineitems dataset.

a relational columnar layout, ReCache computes the total cost of
answering queries using Parquet and compares it to the estimated
cost of answering queries using a relational columnar layout. In ad-
dition, it estimates the transformation cost T of switching from one
layout to another. The estimates are computed by extrapolating the
cost of accessing ri rows to the case where all R rows are scanned,
as given below:

Costparquet = ∑(Di +Ci) (1)

Costrelational = ∑Di
R
ri

(2)

T = max((Di +Ci)
R
ri
) (3)

ReCache switches to a relational columnar layout if Costparquet
is larger than (Costrelational + T ) over past queries accessing the
cache. If a switch is performed, it moves forward the window for
further query tracking to look at new incoming queries. ReCache
does not use a fixed window size for query tracking in order to
avoid frequent switching overhead on a rapidly changing workload.
Instead, it considers all queries from the start of the window to the
last observed query.

As an example, consider a scenario where ReCache is serving
queries over the orderLineitems table and sees 5 queries over a
cached item. Each query has approximately the same data and
compute cost, with ∑Di = 1000 and ∑Ci = 2000. Each order in
the cache is associated with 4 lineitems. Therefore, given the ini-
tial Parquet layout, if these queries access only the non-nested or-
der fields, ri =

R
4 = 100 and R = 400. Then Costparquet = 3000,

Costrelational = 4000 and T = 2400. In this case, ReCache keeps
the layout unchanged. On the other hand, if the queries also ac-
cess the lineitem fields, ri = R = 400. Then Costparquet = 3000,
Costrelational = 1000 and T = 600. As a result, ReCache switches
to the relational layout. After switching, ReCache starts tracking
queries after the fifth query for future decision-making.

For the opposite case of switching from a relational columnar
layout to Parquet, ReCache uses a similar algorithm. The only
complication is that the relational columnar layout has negligible
computational cost. This makes it difficult to estimate Parquet’s
computational cost by extrapolation. Instead, ReCache estimates it
as the computational cost of a query in the cache’s history that used
the Parquet layout, and is closest to the current query in terms of
rows and columns accessed. Denoting the function computing this
estimate as ComputeCost(rows,cols), the cost equations are:

Costrelational = ∑Di (4)

Costparquet = ∑(Di +ComputeCost(ri,ci))
ri

R
(5)

The transformation cost T is computed in the same way as be-
fore. In this case, ReCache switches to a Parquet-based layout if



Figure 8: Given time cost of operator execution t, caching over-
head c, looking up a matching operator l, scanning the cache s,
number of times operator re-invoked n and cache size B, the cache
benefit metric is given by (n∗ (t + c− s− l))/log(B).

Costrelational is larger than (Costparquet +T ) over the last n queries
accessing the cache.

We validate this cost model using the same set of queries as in
Figure 1. We first run each query using data cached in the Parquet
layout during which we measure the cost of scanning the cache and
estimate the cost if it were in the relational columnar layout. We
then repeat this test with the layouts interchanged. The results in
Figure 7 show that the cost model accurately estimates the actual
cost of using either Parquet or the relational columnar layout. The
error is within 10% of the actual cost for 90% of queries and within
30% for 98% of queries.

4.3 Choosing between relational row and col-
umn oriented layouts

In order to choose between column-oriented and row-oriented
relational formats, ReCache monitors the set of queries in the work-
load and the columns of R accessed together by the queries. Using
a minor variation of the algorithm described in H2O [7], ReCache
computes the number of data cache misses for a row-based layout
as well as a column-based layout. The number of data cache misses
act as an estimator for CPU performance: the more the estimated
number of misses, the worse the performance. This enables Re-
Cache to decide the best performing layout for the cache.

5. CACHE ADMISSION AND EVICTION
Section 4 addressed the question of choosing the best performing

in-memory layout for nested and tabular data. We now consider
the more long-standing fundamental problem in cache design of
choosing which data items to keep in the cache and which to evict.
Most systems simply evict the least-recently-used items (LRU) to
reclaim space in the cache. While LRU is widely deployed due to
its simplicity, it is known to underperform when the cached items
have widely varying costs [12]. Instead, ReCache uses a cost-based
eviction algorithm which overcomes LRU’s limitations. For data
whose cost is not known beforehand, ReCache uses a reactive, cost-
aware cache admission algorithm to reduce caching overhead.

5.1 Cache Eviction
In case of data for which some history of cost measurements is

available, ReCache is able to make more informed caching deci-
sions. To this end, ReCache computes a benefit metric for each
cached item and uses it to make cache admission and eviction de-
cisions. To decide on cache admission for a data item, if the benefit
metric is higher than existing items in the cache, we proceed to add
the data item to cache. Otherwise, we revert to the admission pol-
icy for unseen data. To decide on which item to evict, ReCache re-
moves the item with the minimum value of the benefit metric. Com-
puting the benefit metric requires ReCache to measure the costs of
reading and parsing heterogeneous data files, executing database
operators, caching operator results in memory, and subsequently
scanning over the in-memory cache.

ReCache uses a novel instance of a Greedy-Dual algorithm [46]
for making eviction decisions. Algorithm 1 outlines the overall

Algorithm 1 Cost-based Eviction in ReCache

Initialize L← 0
function EVICT

Items← set sorted (ascending) by key
for each cached item p do

Compute the benefit metric b(p)
H(p)← L(p)+b(p)
Add p to Items with key H(p)

end for

Di f f ← TotalCacheSize−CacheSizeLimit
C← set sorted (descending) by key
while Di f f ≥ 0 do

p←cached item with H(p) = minp∈Items(H(p))
Di f f ← Di f f −Size(p)
Pop p from Items and add to C with key Size(p)
if L≤ H(p) then L← H(p)
end if

end while

Di f f ← TotalCacheSize−CacheSizeLimit
while Di f f ≥ 0 do

p← largest item in C
Di f f ← Di f f −Size(p)
Evict p and remove from C
p← smallest item in C with size ≥ Di f f
if p exists then Evict p and return
end if

end while
end function

function ONINSERTORACCESS(Item p)
if cache size exceeded then EVICT();
end if
L(p)← L
Add p to the cache

end function

algorithm. The Greedy-Dual algorithm requires the definition of
a benefit metric b(p) which specifies the benefit of keeping item
p in cache. As illustrated in Figure 8, the benefit metric used by
ReCache is based on the following set of measurements:

1. n, how many times an operator’s cache has been reused.

2. t, the time incurred executing the operator. This includes the
time spent parsing the fields involved in executing the operator.
It also includes any additional time spent scanning the file to
determine offsets of various fields, creating indexes, etc.

3. c, the time incurred caching the results of the operator in mem-
ory. This includes the time spent parsing the cached fields of
each record.

4. s, the time spent scanning the in-memory cache when it is reused.

5. l, the time spent finding a matching operator cache

6. B, the size of an operator cache in bytes

Based on these parameters, ReCache uses a benefit metric which
considers the number of times a cached item is reused, its size,
the time saved by using it, and the time needed to reconstruct it in
case it is evicted. Note that if a cached item is evicted, it will take



time t + c to reconstruct it. This is also the time that is saved when
the item is found in the cache. On the other hand, the savings are
tempered by the costs involved in looking up and reusing a cached
item given by s+ l. So the overall benefit of reusing a cached item is
t + c− (s+ l). Multiplying this by n gives the total benefit accrued
so far. Finally, in order to give slightly higher preference to smaller
cached items, the benefit metric is divided by log(B). The resulting
benefit metric, b(p) = n ∗ (t + c− (s+ l))/log(B), is always non-
negative assuming the cost of lookup and the cost of scanning the
in-memory cache are small.

In addition to the benefit metric b(p), the basic Greedy-Dual al-
gorithm associates a value, H(p), with each cached item p, and a
global baseline value, L. When an item p is brought into or ac-
cessed from the cache, H(p) is set to (L+b(p)). If the cache does
not have enough capacity to add a new item, it evicts items in as-
cending order of H(p). L is then set to the H(p) value of the last
item evicted. The basic idea is that the H(p) values of recently ac-
cessed items retain a larger portion of the original cost than those
of items that have not been accessed for a long time.

Implementing this algorithm unchanged leads to more items be-
ing evicted than necessary. For example, if 1 GB of space needs
to be reclaimed, the unchanged algorithm might evict items of size
100 MB, 200 MB, 300 MB and 800 MB in that order. In fact,
evicting only two of the last three items is enough to reclaim the
required amount of space. Unfortunately, finding the optimal set of
elements to evict in this scenario reduces to the NP-complete Knap-
sack problem. Therefore, ReCache uses a heuristic approach to find
an efficient, approximate solution. It iterates through the items the
original algorithm would evict and considers them in descending
order of their byte size. This enables the required space to be re-
claimed after evicting many fewer items. Furthermore, since these
objects were going to be evicted by the original algorithm anyway,
it does not affect its correctness.

Furthermore, ReCache does not update H(p) only when an item
p is accessed. Instead, for each cached item p, it recomputes the
value of H(p) from its individual components whenever an evic-
tion decision needs to be made. This obviously adds overhead to
the eviction process, but this additional overhead of a few mil-
liseconds is negligible compared to the typical execution time of
a query. Continuously reconstructing the benefit metric for each
cached item in this way has a major additional benefit. If the un-
derlying query engine changes how it reads a file, the new costs are
immediately reflected in the benefit metric. For instance, the query
engine might create an index on the file to allow faster traversal.
In this case, the cost of any cached data originating from this file
changes and the benefit metric immediately reflects this change.
We find that in our workloads, using an unchanging benefit metric
for each cached item causes execution time to increase by up to 6%.

Minimizing Cost Monitoring Overhead. A naive way to mea-
sure the costs of various operations during a query is to invoke
timing system calls, such as clock gettime(), before and after ev-
ery operator is invoked during the query. However, this approach
adds a significant amount of overhead. Our measurements on a set
of select-project-join queries over TPC-H data show that this ap-
proach adds a runtime overhead of 5-10% to each query.

Instead, ReCache reduces this overhead by executing timing sys-
tem calls on less than 1% of records selected uniformly at random.
While this adds approximation error to the timing measurements,
it still yields sufficiently accurate estimates for the cache to make
informed decisions. Moreover, since the system calls are invoked
very rarely, CPU branch prediction makes the overhead negligible
over large datasets.

5.2 Cache Admission
Making intelligent caching decisions requires information on the

cost and benefit of data items cached in the past. If a query refers to
data that has not been previously accessed, this information is not
available. An eager default policy, which fully parses and stores
every tuple, can result in high caching overhead, but this overhead
may not be amortized by future queries. On the other hand, a lazy
caching policy, which only caches the file offsets of satisfying tu-
ples, has a lower overhead but also a lower benefit if the cache is
reused for a future query. Thus, an inherent tradeoff exists between
the overhead of caching and subsequent cache performance.

ReCache navigates this tradeoff by using a more reactive cache
admission policy to reduce the overhead for individual queries com-
pared to eager caching. Initially, it starts caching a small sample of
data at the beginning of the file, both eagerly and lazily. As it scans
over these records, it tracks both the time spent caching the records
and the time spent executing other instructions. Assuming that the
sample is representative, ReCache then compares the percentage
overhead added by the caching operation against a user-specified
threshold value. If the threshold is exceeded, it switches to a lazy
policy. Otherwise, it continues in eager mode. If a lazy cached
item is accessed again, it is replaced by an eager cache for faster
subsequent access. Moreover, as long as all cached items from the
same file are not evicted, ReCache assumes that it is still part of the
working set and eagerly caches further accesses to the same file.

The presence of operators that break the CPU pipeline, such as
joins, complicates the effectiveness of this approach. A join can
itself be computationally expensive, so when the time cost of a
subsequent caching operator is measured over a small sample, the
percentage overhead can seem very small. For example, suppose
(R 1 S 1 σkey>0(T )) is the query being executed over three data
sources with millions of records. Suppose the first join operation
over relations R and S takes 10 seconds. The next step would be to
scan through the relation T , and cache the result of σkey>0(T ). Sup-
pose it takes 100 ms to cache the first n= 1000 results of σkey>0(T ).
This would represent an overhead of just 1%. However, since many
tuples of T are yet to be processed, the percentage overhead of
caching all of σkey>0(T ) will eventually be much higher.

To deal with this problem, ReCache generates two timestamps
to1 and tc1 at the beginning of a sample. to1 stores the total over-
all time spent executing the query up to that point, while tc1 stores
the total time spent caching results. At the end of the sample, it
recomputes these two timestamps storing them in to2 and tc2. As-
suming the entire file is N times larger than the sample, it esti-
mates to up to the end of the file as (to1 +N(to2− to1)) and tc as
(tc1 +N(tc2− tc1)). Then tc/to yields a much more accurate esti-
mate of the caching overhead, which ReCache then uses to decide
whether to proceed with eager or lazy caching.

Experiments in Section 6.2 show that this technique allows the
cost of caching to approach that of lazy caching, while retaining
the benefit of an eager policy.

6. EVALUATION
In this section, we present a series of experiments to evaluate

ReCache and validate its ability to increase cache efficiency. All
experiments are conducted on a Intel Xeon E5-2660 processor with
a clock speed of 2.20 Ghz and 8 cores per socket. The machine has
two sockets with 16 hardware contexts per socket. Each core has
a 32 KB L1 instruction cache, 32 KB L1 data cache, 256 KB L2
cache, and 20 MB L3 cache is shared across the cores. Finally the
machine has 132 GB of RAM and a 450 GB, 15000 RPM disk with
a 6 Gb/s throughput. ReCache uses LLVM 3.4 to generate custom



code with the compilation time being at most ~50 ms per query. We
run all experiments in single-threaded mode. We focus on caching
the outputs of scan and select operators, which are generally the
main bottleneck when running queries over raw data.

We evaluate ReCache using three workloads. For the first work-
load, we use the TPC-H lineitem, customer, partsupp, order and
part tables as input CSV files, using scale factor 10 (SF10 - 60M
lineitem tuples, 15M order tuples, 8M partsupp tuples, 2M part tu-
ples and 1.5M customer tuples). To test performance over JSON
data, we convert the TPC-H SF10 lineitem and orders tables from
CSV format to a 20GB JSON file for lineitems and a 3.5GB file
for orders. All experiments operate over warm operating system
caches. The data types are numeric fields (integers and floats). The
queries in this workload are a sequence of 100 select-project-join
queries over TPC-H SF-10 data with the following format:

SELECT agg(attr_1), ..., agg(attr_n)
FROM subset of {customer,orders,lineitem,partsupp,
part} of size n
WHERE <equijoin clauses on selected tables>
AND <range predicates on each selected table with
random selectivity>

For each query in this workload, each table is included with a
probability of 50%. One attribute is randomly selected for aggre-
gation from each of the selected tables. Each table is joined with
the other table on their common key. The range predicate is applied
to random numeric columns of the selected tables.

The second workload is a real-world dataset of spam email logs
provided by Symantec. The Symantec dataset features a combina-
tion of i) numeric and variable-length fields, ii) “flat” and “nested”
entries of various depths, as well as iii) fields that only exists in a
subset of the JSON objects. Additionally, the dataset is the target of
both relational and hierarchical queries. Symantec periodically col-
lects this data as JSON files from spam traps distributed around the
world. The JSON data contains information about spam e-mails,
such as the mail body and its language, its HTTP content type and
its origin (IP address, country). The JSON dataset used in this paper
is 3.4 GB in size and contains 3 million objects. The JSON files are
the input to Symantec’s data mining engine, which produces CSV
files containing an identifier for each email, summary information
and various classes assigned to each email. For this paper, we use
CSV files containing 40 million records and a total size of 2.2 GB.

The third workload uses the business, user and review JSON
files of Yelp’s open-source dataset [2]. In total, these files are
4.8GB in size and contain 144K, 1M and 4M records respectively.
The query workload comprises select-project-aggregate queries on
the three JSON files1.

The experiments validate the following hypotheses:

• ReCache’s algorithm for choosing between a relational columnar
layout and Parquet achieves the best of both worlds (Section 6.1).

• ReCache’s cache admission policy reduces caching overhead for
individual queries compared to a policy of admitting everything
as fully parsed tuples. Moreover, it does not affect query re-
sponse time over the whole workload (Section 6.2).

• ReCache’s cost-based cache eviction policy leads to improved
workload execution time compared to LRU (Section 6.3).

• Integrating these features together, ReCache delivers improved
response times for queries over a diverse data set (Section 6.4).

1For purposes of reproducibility, a detailed description of the query
workload is available at: https://github.com/tahirazim/
recache-evaluation/raw/master/vldbQueryInfo.pdf

6.1 Automatic Cache Layout
This section presents an evaluation of ReCache’s automatic cache

layout algorithm. First, we evaluate the benefits of using ReCache
on workloads with arbitrary select-project-aggregate queries and
nested JSON datasets. Next, we carry out a sensitivity analysis of
the algorithm by varying the data attributes and data sources ac-
cessed by the query workload.

6.1.1 Performance Evaluation
We first evaluate the performance benefit of ReCache’s mecha-

nism for automatically choosing a relational or Parquet-based lay-
out for column-oriented caching of nested data.

We build on the experiment described in Section 4.1 using the
same 2.5GB orderLineitems JSON file and the same sequence of
select-project-aggregate queries. For this experiment, we populate
the caches beforehand in order to isolate the performance of the
cache from the cost of populating them. We then test whether Re-
Cache is able to adapt dynamically to this changing workload.

Figure 9a shows the results. The relational columnar layout
clearly outperforms the Parquet layout for the first 300 queries be-
cause reading it incurs very little computational cost compared to
Parquet. In contrast, Parquet outperforms the relational columnar
format for the last 300 queries because it only has to access the
non-nested columns which allows it to iterate over 4x fewer rows.
ReCache’s automatic layout selection algorithm monitors the work-
load and quickly switches to the caching layout that performs best
for the workload. Over the entire workload, ReCache’s execution
time is 53% closer to the optimal than Parquet and 43% closer than
the relational columnar layout.

We further validate these results on two additional query work-
loads over the same dataset. Figure 9b shows how ReCache re-
acts on a workload where the set of queried attributes switches
every 100 queries. As before, ReCache switches the layout of
each cached item to the most suitable one for the workload. How-
ever, since the cost model considers all queries that have utilized
the cache since the previous switch, it prevents the layouts from
switching after every 100 queries. This prevents excessive switch-
ing overhead. Overall, ReCache is 68% closer to the optimal than
Parquet and 57% closer than the relational columnar layout.

Finally, Figure 9c shows ReCache’s performance on a random
workload where a query can arbitrarily choose to access any at-
tribute. Without a clear pattern in the workload, ReCache is unable
to optimize for the case of either nested or non-nested attribute ac-
cess, and its performance resembles that of the Parquet layout.

We further confirm the effectiveness of ReCache’s automatic lay-
out strategy by executing two workloads of 2000 distinct queries
each on Symantec’s JSON-based spam data. The first workload
consists of select-project-aggregate queries with only 10% randomly
chosen queries accessing nested attributes and the remaining 90%
accessing only non-nested attributes. The second workload inverts
this ratio with 90% of queries accessing nested attributes and 10%
accessing only non-nested attributes. The workloads run with no
limit on cache size to isolate the effects of cache eviction from the
automatic layout algorithm. Each experiment starts with an empty
cache, so the initial cache creation cost is included in the results.

Figure 10 shows the results for these two workloads. The first
workload is a better fit for the Parquet format because it rarely ac-
cesses nested attributes. As a result, ReCache’s performance tracks
closely with Parquet. In contrast, the relational columnar layout
performs almost 29% slower than ReCache on this workload.

On the other hand, the second workload is better suited for the re-
lational columnar layout. In this case, ReCache reacts by switching
quickly to the relational columnar layout and closely matches its



0 100 200 300 400 500 600
Query Sequence

10-2

10-1

100
Ex

ec
ut

io
n 

Ti
m

e 
(s

)
Rel. Columnar
Parquet
ReCache

(a) First 300 queries access attributes chosen
randomly from all attributes. Last 300 only
choose from non-nested attributes.

0 100 200 300 400 500 600
Query Sequence

10-2

10-1

100

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rel. Columnar
Parquet
ReCache

(b) Queries 1-100, 201-300 and 401-500 ac-
cess attributes chosen randomly from all at-
tributes. The rest choose only from non-
nested attributes.

0 100 200 300 400 500 600
Query Sequence

10-2

10-1

100

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

Rel. Columnar
Parquet
ReCache

(c) 50% of queries choose only from non-
nested attributes, while the remaining choose
from all attributes.

Figure 9: Execution times for a sequence of queries on nested data, cached using Parquet, relational columnar and ReCache’s automatic
layout strategies. The spikes indicate the overhead of switching from Parquet to relational columnar layout.

0 20 40 60 80 100
Percentage of Queries with 

 Nested Attributes

20

0

20

40

60

%
ag

e 
Ti

m
e 

Re
du

ct
io

n

Rel. Columnar
Parquet

(a) Percentage reduction in execution time
relative to Parquet and relational columnar
layouts depends on how many queries ac-
cess nested attributes in the Symantec data.

0 20 40 60 80 100
Percentage of Queries with 

 Nested Attributes

20
0

20
40
60
80

%
ag

e 
Ti

m
e 

Re
du

ct
io

n

Rel. Columnar
Parquet

(b) Percentage reduction in execution time
relative to Parquet and relational columnar
layouts on the Yelp data.

0 20 40 60 80 100
Percentage of Queries over 

 JSON Data

5
0
5

10
15
20
25

%
ag

e 
Ti

m
e 

Re
du

ct
io

n

Rel. Columnar
Parquet

(c) Percentage reduction in execution time
increases if more queries access the nested
JSON component of the Symantec data.

Figure 11: Sensitivity Analysis - Automatic Layout Selection.

0 500 1000 1500 2000
Query Sequence

0
100
200
300
400
500
600
700
800

Cu
m

ul
at

iv
e 

Ex
ec

. T
im

e 
(s

)

Rel. Columnar
Parquet
ReCache

(a) Only 10% queries accessing
nested attributes.

0 500 1000 1500 2000
Query Sequence

0
200
400
600
800

1000
1200

Cu
m

ul
at

iv
e 

Ex
ec

. T
im

e 
(s

)

Rel. Columnar
Parquet
ReCache

(b) 90% queries accessing nested
attributes.

Figure 10: Cumulative execution time for two workloads of 2000
queries each, executed over the JSON component of the Symantec
spam dataset. Intermediate operator results are cached using Par-
quet, relational columnar and ReCache’s automatic layout strategy.

performance. The small 4% difference in performance is because
ReCache has a default Parquet layout and switches layouts after
tracking a few queries. The Parquet layout performs 44% slower
than ReCache on this workload.

6.1.2 Sensitivity Analysis
Next, we carry out a sensitivity analysis of the layout selec-

tion algorithm to determine how it is affected by changes in the
workload. To analyze this behavior, we run a workload containing
queries on both the CSV and JSON components of the Symantec
spam dataset. We use an unlimited cache size in order to isolate the
effect of cache eviction from the cache layout selection algorithm.

Each experiment starts with an empty cache, so the initial cache
creation cost is included in the results.

First, we measure how the relative performance of ReCache is af-
fected by the percentage of queries that access nested attributes. We
run a set of select-project-join and select-project-aggregate queries
and vary how many of those queries access randomly chosen nested
attributes from the JSON file. Overall, 90% of the queries access
JSON data, 90% are select-project-aggregate queries, and 10% are
select-project-join queries across CSV and JSON data.

The results are shown in Figure 11a. As more nested attributes
are accessed, ReCache performs increasingly better than a Parquet-
based layout. This is consistent with our observations in Section 4.1
that Parquet is an inefficient cache layout when queries access nested
attributes. The relative performance is inverted in the case of the re-
lational columnar layout which performs worse when queries mostly
access non-nested attributes.

We validate these results further by running the experiment on
the Yelp dataset using a sequence of select-project-aggregate queries
with unlimited cache size. The results in Figure 11b show a sim-
ilar trend. ReCache performs increasingly better than Parquet when
more queries access nested attributes. On the other hand, it achieves
higher performance improvement over the relational columnar lay-
out when fewer queries access nested attributes. In fact, with more
nested attributes, the graph shows a small 4-7% increase in execu-
tion time due to performance monitoring overhead and the initial
delay in switching to a relational columnar layout.

Second, we confirm our hypothesis that ReCache is more benefi-
cial when queries in a workload access JSON data more frequently
than CSV. This is based on the intuition that on narrow relational



data like ours, switching between row-based and column-based lay-
outs provides little gain. To test this, we use a workload consisting
of select-project-aggregate queries on Symantec data and vary the
percentage of queries querying JSON. For this experiment, only
the last 50% of queries access nested data. Figure 11c confirms our
hypothesis: ReCache outperforms Parquet and relational columnar
layouts by a wider margin when more queries access JSON data.

Discussion. The results in Figures 9 and 11 show that ReCache
automatically switches cached data to the higher performance lay-
out whenever the queries in the workload have properties favor-
ing one layout over another (e.g. if accesses to nested or non-
nested attributes dominate). Figure 10 further shows that, on such
workloads, as the size of the query workload increases, ReCache
provides increasingly greater improvement in execution time com-
pared to the unfavorable layout.

6.2 Cache Admission
We evaluate the cache admission policy for previously unseen

queries using the select-project-join workload described in Sec-
tion 6 over TPC-H SF-10 data. ReCache is configured to cache
and, where possible, re-use the outputs of the selection operators in
each query.

Figure 12a shows the caching overhead incurred by ReCache as
well as by the lazy and eager strategies. The cost of lazy caching
is substantially smaller, with a mean overhead of 2.5% compared
to 20% for eager caching. Of course, as we will see, the benefit
of lazy caching is also much smaller. On the other hand, using its
cost-adaptive caching mechanism, ReCache is able to switch au-
tomatically to lazy for queries with high cost of caching eagerly.
This enables ReCache to achieve a much lower mean overhead of
8.2% compared to eager caching for individual queries, a reduction
of 59%. This overhead comes from the extra monitoring cost, the
cost of eagerly caching the initial sample, and occasionally under-
estimating the caching cost and continuing with eager caching.

Figure 12b further quantifies the tradeoffs involved in choosing
an appropriate overhead threshold for switching from lazy to eager
caching. On this workload, a maximum overhead threshold of 10%
enables ReCache to approach the overhead of lazy caching.

Besides reducing caching overhead for individual queries, we
also show that ReCache improves query response when the queries
are run in sequence as a single workload. In this case, ReCache is
able to leverage its query subsumption capability to answer these
non-identical queries using previously cached results. Figure 13
shows the response time of ReCache compared to a system using
lazy caching, eager caching and no caching. Overall, the query re-
sponse time improves by 62% compared to a system with no cache
and 47% compared to a lazy cache.

Furthermore, the graph for ReCache flattens out near the end of
the workload, while the cumulative execution time for lazy caching
continues to increase. This indicates that the improvement in per-
formance will tend to increase even more as further queries run
over the same dataset.

Compared to an eager cache, response time for the cost-adaptive
cache over the entire workload is virtually the same, with a differ-
ence of just 3%. Eager caching performs well over a long query
sequence touching a small set of tables due its aggressive caching
strategy, which may be expensive in the short term but eventually
pays off over the long run. ReCache’s admission policy adds over-
head on such a workload because it uses lazy caching if the short-
term overhead is large. The cache then only switches to eager mode
when it is first reused. Despite this overhead, ReCache performs al-
most identically to the eager caching strategy in the long term while
reducing caching overhead for individual queries by 59%.

0 10 20 30 40 50 60
Percentage Overhead

0
20
40
60
80

100

CD
F

Lazy Caching
Eager Caching
ReCache

(a) Using a switching threshold
of 10% .

0 10 20 30 40
Percentage Overhead

0
20
40
60
80

100

CD
F Lazy Caching

ReCache (T=1%)
ReCache (T=10%)
ReCache (T=20%)
ReCache (T=50%)

(b) Effect of varying the switch-
ing threshold.

Figure 12: Percentage caching overhead (in ascending order) for
100 individual queries executed over the TPC-H SF-10 dataset.

10 20 30 40 50 60 70 80 90 100
Query Sequence

0
500

1000
1500
2000
2500
3000
3500
4000
4500

Cu
m

ul
at

iv
e 

Ex
ec

. T
im

e 
(s

)

No Caching
Lazy Caching
Eager Caching
ReCache

Figure 13: Cumulative execution time while running a workload
of 100 queries over the TPC-H SF-10 dataset.

1 2 4 8
Cache Size (GB)

0

2000

4000

6000

8000

Ex
ec

ut
io

n 
Ti

m
e 

(s
)

ReCache
Cost-based(MonetDB)
Cost-based(Vectorwise)

LRU
LRU (JSON>>CSV)

Offline(farthest-first)
Offline(log-optimal)

Figure 14: Cumulative execution time using various cache sizes
for a workload of 100 queries over the TPC-H SF-10 dataset.

6.3 Cost-based Eviction
We evaluate the costs and benefits of the cost-based eviction pol-

icy (Section 5.1) using the workload described in Section 6, com-
prising 100 select-project-join queries over a TPC-H SF-10 dataset.
In order to add more heterogeneity to the workload, we convert the
lineitem table into JSON format and use the resulting file as our
input. As before, ReCache is configured to cache and, if possible,
re-use the outputs of the selection operators in each query.

Figure 14 plots the total execution time for the workload us-
ing ReCache’s cost-aware eviction algorithm, two state-of-the-art
cost-based eviction algorithms [37, 26], LRU, and Proteus’ algo-
rithm [28] of using LRU but with higher priority given to JSON
than CSV. In addition, we compare against two offline algorithms:
(i) farthest-first, which removes the item that is accessed farthest
in the future and is provably optimal for unweighted caches, and
(ii) log-optimal [24], which guarantees that the difference from the
optimal is within a logarithmic factor of the cache size.

The results show that ReCache’s cost-aware eviction algorithm
performs better than LRU, Proteus and existing cost-based caching
algorithms for every cache size (with the exception of MonetDB’s
algorithm and a 1 GB cache size). In particular, for a cache size
of 8 GB, it reduces execution time by as much as 24% compared



to LRU. Compared to a best-case scenario where cache size is un-
limited, ReCache is 60% closer to the baseline than LRU. Overall,
compared to this best-case scenario, the reduction in execution time
ranges from 8.7% to 66%. As an additional point of comparison, if
we discount the time initially spent filling up the cache, the perfor-
mance improvement over LRU ranges from 6.4% to 43%.

Compared to existing cost-based algorithms, ReCache outper-
forms the algorithm used in Vectorwise [37] for every cache size.
However, MonetDB’s algorithm [26] for cache eviction performs
comparably with ReCache for most cache sizes. While MonetDB’s
benefit metric is based only on the frequency and weight of a cached
object, its heuristic to put an upper bound on the worst-case allows
it to perform comparably with ReCache. Nevertheless, on the larger
8GB cache, ReCache is able to improve performance by over 19%
compared to MonetDB’s algorithm.

Surprisingly, ReCache also performs better than or comparably
close to the two offline algorithms. Since farthest-first does not
account for object weights, it is not always able to make the optimal
eviction decision. The log-optimal algorithm also provides only
approximate optimality guarantees since weighted cache eviction
is an NP-complete problem.

The main reason for this improvement is that ReCache tends to
keep more costly data items in cache, whereas LRU does not take
into account the cost of bringing in expensive data items. However,
unlike Proteus, it does not assume that JSON data is always more
expensive than CSV, and improves on it by basing its decisions
on actual cost measurements. ReCache’s behavior is particularly
useful with a large cache size, since it allows more of the large,
expensive objects to be kept in cache.

0 800 1600 2400 3200 4000
Query Sequence

0

500

1000

1500

2000

2500

3000

3500

Cu
m

ul
at

iv
e 

Ex
ec

. T
im

e 
(s

) Columnar/LRU
Columnar/Greedy
Parquet/Greedy
ReCache

(a) Select-project-{aggregate,
join} queries on CSV and JSON
data from the Symantec dataset.

0 800 1600 2400 3200 4000
Query Sequence

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

Cu
m

ul
at

iv
e 

Ex
ec

. T
im

e 
(s

) Columnar/LRU
Columnar/Greedy
Parquet/Greedy
ReCache

(b) Select-project-aggregate
queries on JSON data from
Yelp’s dataset.

Figure 15: Cumulative execution times for a sequence of queries
on two datasets.

6.4 Cache Performance over Diverse Work-
loads

Finally, we evaluate ReCache’s performance on limited memory
budgets over two workloads: (a) a sequence of 4000 select-project-
aggregate and select-project-join queries on the Symantec dataset
over both CSV and JSON data using a 24 GB cache size, and
(b) a sequence of 4000 select-project-aggregate queries on the Yelp
dataset using a 32 GB cache size. We run queries with four dif-
ferent configurations to highlight the contribution of the techniques
described in this paper: (i) using a relational columnar layout and
LRU eviction (Columnar/LRU), (ii) using a relational columnar
layout and ReCache’s cost-based eviction (Columnar/Greedy), (iii)
using a Parquet-based layout and ReCache’s cost-based eviction
(Parquet/Greedy) and (iv) using ReCache’s automatic layout selec-
tion and cost-based eviction algorithms (ReCache).

Figure 15 plots the results. Automatic layout selection in Re-
Cache enables it to reduce execution time over the entire workload
by 39% compared to a solely Parquet-based layout, and by 51%
over the last 2000 queries. Furthermore, ReCache reduces exe-
cution time by 34% compared to a columnar layout with greedy
cost-based caching. The reasons for this improvement in perfor-
mance are three-fold. First, some cached items are best queried
using the Parquet layout. Second, creating cached items in the re-
lational columnar layout is slightly more expensive. Finally, the
relational columnar layout results in larger cached items, which
triggers more cache evictions and, hence, a lower cache hit rate.

On the Yelp dataset, the results for the relational columnar layout
are significantly worse. Compared to Parquet, ReCache reduces
execution time by 19%, but compared to the relational columnar
layout, it is able to reduce execution time by over 70%. This is pri-
marily because, on the average, the Yelp dataset associates larger
collections with each record. Flattening this dataset into the rela-
tional columnar layout makes cache evictions more frequent and
scans more expensive.

Lastly, we measure the benefit of cost-based eviction versus LRU
on the relational columnar layout. As shown in Figure 15, the dif-
ference in performance is negligible initially, but increases over
time. The eventual improvement over 4000 queries is approxi-
mately 8% for the Symantec workload and 20% for the Yelp work-
load. Compared to ReCache, LRU combined with the relational
columnar layout leads to a 1.5-4x increase in execution time.

Summary. On real-world datasets with limited memory bud-
gets, ReCache performs 19-39% faster than Parquet over the entire
workload, and 22-51% faster over the second half of the workload.
Compared to a relational columnar layout and an LRU-based cache
eviction policy, ReCache reduces execution time by 34-75%. Re-
Cache achieves these gains due to its cost-aware caching algorithm,
and its ability to automatically adapt its data layout according to the
current dataset and workload.

7. CONCLUSION
Reactive Cache (ReCache) is a cache-based performance accel-

erator for raw data analytics over heterogeneous file formats. Re-
Cache maintains caches storing the intermediate results of database
operators, achieving low caching overhead for individual queries
and high caching performance over the entire query workload. Re-
Cache automatically decides the fastest in-memory data layout for
nested and relational cached data. Using heuristics informed by
timing measurements and workload monitoring, ReCache maxi-
mizes cache performance by dynamically choosing between nested
column-oriented layouts (like Parquet), relational column-oriented
layouts and relational row-oriented layouts.

In addition, ReCache tracks the usage pattern of each cached
item as well as the estimated cost of reconstructing a cached item
from its origin. This enables it to make much more informed cache
eviction decisions than existing eviction algorithms like LRU.

Finally, unlike most traditional forms of caching, ReCache main-
tains caches with varying overheads and layouts. To minimize over-
head, it tracks the time consumed by caching operations and, if
the measured overhead is too high, reacts quickly by switching to
low-overhead caching techniques. Experiments on synthetic and
real-world datasets show that ReCache reduces workload execution
times by 19-75% compared to existing state-of-the-art approaches.
Acknowledgments. This work was funded in part by the European
Union’s Horizon 2020 research and innovation programme under
grant agreement No 650003 (Human Brain project) and by the Eu-
ropean Union Seventh Framework Programme (ERC-2013-CoG),
under grant agreement no 617508 (ViDa).



8. REFERENCES
[1] The LLVM compiler infrastructure. http://llvm.org.

Accessed: 2017-01-30.
[2] The Yelp Dataset Challenge.

http://yelp.com/dataset_challenge. Accessed:
2017-06-30.

[3] D. J. Abadi, P. A. Boncz, and S. Harizopoulos.
Column-oriented database systems. PVLDB,
2(2):1664–1665, 2009.

[4] D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden.
Materialization strategies in a column-oriented DBMS. In
Data Engineering, 2007. ICDE 2007. IEEE 23rd
International Conference on, pages 466–475. IEEE, 2007.

[5] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible
Loading: Access-Driven Data Transfer from Raw Files into
Database Systems. In EDBT, 2013.

[6] I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and
A. Ailamaki. NoDB: Efficient query execution on raw data
files. In Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, pages
241–252. ACM, 2012.

[7] I. Alagiannis, S. Idreos, and A. Ailamaki. H2O: A hands-free
adaptive store. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, pages
1103–1114. ACM, 2014.

[8] M. Altinel, C. Bornhövd, S. Krishnamurthy, C. Mohan,
H. Pirahesh, and B. Reinwald. Cache tables: Paving the way
for an adaptive database cache. In Proceedings of the 29th
international conference on Very large data bases-Volume
29, pages 718–729. VLDB Endowment, 2003.

[9] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K.
Bradley, X. Meng, T. Kaftan, M. J. Franklin, A. Ghodsi, and
M. Zaharia. Spark SQL: Relational Data Processing in
Spark. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2015.

[10] L. A. Belady. A study of replacement algorithms for a
virtual-storage computer. IBM Systems journal, 5(2):78–101,
1966.

[11] S. Blanas et al. Parallel data analysis directly on scientific file
formats. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, 2014.

[12] P. Cao and S. Irani. Cost-aware www proxy caching
algorithms. In Usenix symposium on internet technologies
and systems, volume 12, pages 193–206, 1997.

[13] Y. Cheng and F. Rusu. SCANRAW: A Database
Meta-Operator for Parallel In-Situ Processing and Loading.
TODS, 40(3):19:1–19:45, 2015.

[14] D. Das, J. Yan, M. Zait, S. R. Valluri, N. Vyas,
R. Krishnamachari, P. Gaharwar, J. Kamp, and
N. Mukherjee. Query optimization in oracle 12C database
in-memory. PVLDB, 8(12):1770–1781, 2015.

[15] D. J. DeWitt, A. Halverson, R. V. Nehme, S. Shankar,
J. Aguilar-Saborit, A. Avanes, M. Flasza, and J. Gramling.
Split Query Processing in Polybase. In Proceedings of the
ACM SIGMOD International Conference on Management of
Data, 2013.

[16] K. Dursun, C. Binnig, U. Cetintemel, and T. Kraska.
Revisiting reuse in main memory database systems. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, 2017.

[17] L. Fegaras and D. Maier. Optimizing object queries using an
effective calculus. TODS, 25(4):457–516, 2000.

[18] S. Finkelstein. Common expression analysis in database
applications. In Proceedings of the 1982 ACM SIGMOD
international Conference on Management of Data, pages
235–245. ACM, 1982.

[19] A. Floratou, N. Megiddo, N. Potti, F. Özcan, U. Kale, and
J. Schmitz-Hermes. Adaptive caching in Big SQL using the
hdfs cache. In Proceedings of the Seventh ACM Symposium
on Cloud Computing, SoCC ’16, pages 321–333, New York,
NY, USA, 2016. ACM.

[20] J. Gray and G. Graefe. The five-minute rule ten years later,
and other computer storage rules of thumb. ACM Sigmod
Record, 26(4):63–68, 1997.

[21] J. Gray and F. Putzolu. The 5 minute rule for trading memory
for disc accesses and the 10 byte rule for trading memory for
cpu time. ACM SIGMOD Record, 16(3):395–398, Dec. 1987.

[22] M. Grund, J. Krüger, H. Plattner, A. Zeier,
P. Cudre-Mauroux, and S. Madden. Hyrise: a main memory
hybrid storage engine. PVLDB, 4(2):105–116, 2010.

[23] S. Idreos, F. Groffen, N. Nes, S. Manegold, S. Mullender,
M. Kersten, et al. Monetdb: Two decades of research in
column-oriented database architectures. A Quarterly Bulletin
of the IEEE Computer Society Technical Committee on
Database Engineering, 35(1):40–45, 2012.

[24] S. Irani. Page replacement with multi-size pages and
applications to web caching. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of
computing, pages 701–710. ACM, 1997.

[25] M. Ivanova, M. Kersten, and S. Manegold. Data Vaults: A
Symbiosis between Database Technology and Scientific File
Repositories. In SSDBM, 2012.

[26] M. G. Ivanova, M. L. Kersten, N. J. Nes, and R. A.
Gonçalves. An architecture for recycling intermediates in a
column-store. ACM Transactions on Database Systems
(TODS), 35(4):24, 2010.

[27] Y. Kargın, M. Kersten, S. Manegold, and H. Pirk. The
dbms-your big data sommelier. In Data Engineering (ICDE),
2015 IEEE 31st International Conference on, pages
1119–1130. IEEE, 2015.

[28] M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast
queries over heterogeneous data through engine
customization. PVLDB, 9(12):972–983, 2016.

[29] M. Karpathiotakis, M. Branco, I. Alagiannis, and
A. Ailamaki. Adaptive Query Processing on RAW Data.
PVLDB, 7(12):1119–1130, 2014.

[30] J. Kestelyn. Introducing Parquet: Efficient columnar storage
for apache hadoop. Cloudera Blog, 3, 2013.

[31] Y. Kotidis and N. Roussopoulos. Dynamat: a dynamic view
management system for data warehouses. In ACM SIGMOD
Record, volume 28, pages 371–382. ACM, 1999.

[32] K. Krikellas, S. Viglas, and M. Cintra. Generating code for
holistic query evaluation. In ICDE, 2010.

[33] T. Lahiri, M.-A. Neimat, and S. Folkman. Oracle timesten:
An in-memory database for enterprise applications. IEEE
Data Eng. Bull., 36(2):6–13, 2013.

[34] C. Lattner and V. Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In
Proceedings of the international symposium on Code
generation and optimization: feedback-directed and runtime
optimization, page 75. IEEE Computer Society, 2004.

[35] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: interactive analysis of



web-scale datasets. PVLDB, 3(1-2):330–339, 2010.
[36] MySQL. Chapter 24. Writing a Custom Storage Engine.

http://dev.mysql.com/doc/internals/en/
custom-engine.html.

[37] F. Nagel, P. Boncz, and S. D. Viglas. Recycling in pipelined
query evaluation. In Data Engineering (ICDE), 2013 IEEE
29th International Conference on, pages 338–349. IEEE,
2013.

[38] T. Neumann. Efficiently compiling efficient query plans for
modern hardware. PVLDB, 4(9):539–550, 2011.

[39] T. Neumann and V. Leis. Compiling database queries into
machine code. IEEE Data Eng. Bull., 37(1):3–11, 2014.

[40] M. Olma, M. Karpathiotakis, I. Alagiannis,
M. Athanassoulis, and A. Ailamaki. Slalom: Coasting
through raw data via adaptive partitioning and indexing.
PVLDB, 10(10):1106–1117, 2017.

[41] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A Not-So-Foreign Language for Data
Processing. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2008.

[42] H. Pirk, M. Grund, J. Krueger, U. Leser, and A. Zeier. Cache
conscious data layouting for in-memory databases.
Hasso-Plattner-Institute, 2010.

[43] P. Roy, K. Ramamritham, S. Seshadri, P. Shenoy, and
S. Sudarshan. Don’t trash your intermediate results,
cache’em. arXiv preprint cs/0003005, 2000.

[44] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient
and extensible algorithms for multi query optimization. In
ACM SIGMOD Record, volume 29, pages 249–260. ACM,
2000.

[45] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive - A
warehousing solution over a map-reduce framework.
PVLDB, 2(2):1626–1629, 2009.

[46] N. Young. The k-server dual and loose competitiveness for
paging. Algorithmica, 11(6):525–541, 1994.

[47] W. Zhao, Y. Cheng, and F. Rusu. Vertical partitioning for
query processing over raw data. In Proceedings of the 27th
International Conference on Scientific and Statistical
Database Management, page 15. ACM, 2015.


