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Abstract—Cloud Computing aims to efficiently tackle the
increasing demand of computing resources, and its popularity has
led to a dramatic increase in the number of computing servers
and data centers worldwide. However, as effect of post-Dennard
scaling, computing servers have become power-limited, and new
system-level approaches must be used to improve their energy
efficiency. This paper first presents an accurate power modelling
characterization for a new server architecture based on the FD-
SOI process technology for near-threshold computing (NTC).
Then, we explore the existing energy vs. performance trade-offs
when virtualized applications with different CPU utilization and
memory footprint characteristics are executed. Finally, based
on this analysis, we propose a novel dynamic virtual machine
(VM) allocation method that exploits the knowledge of VMs
characteristics together with our accurate server power model
for next-generation NTC-based data centers, while guaranteeing
quality of service (QoS) requirements. Our results demonstrate
the inefficiency of current workload consolidation techniques for
new NTC-based data center designs, and how our proposed
method provides up to 45% energy savings when compared to
state-of-the-art consolidation-based approaches.

I. INTRODUCTION

Cloud computing has recently been brought into focus in
both academia and industry due to the increase of applications
and services. Consequently, there has been a rapid growth in
the number of data centers in the world, leading to unsustained
energy consumption, estimated to be at 1.3% of the global
energy usage, and growing at a yearly rate of 20% [1].

To maximize energy efficiency (i.e., performance per watt),
customized server architectures increase throughput by iden-
tifying and eliminating the bottlenecks of conventional server
processors. However, as an effect of post-Dennard scaling [2],
energy reduction in deep sub-micron technologies has lagged
behind, resulting in power-limited servers.

A promising approach to overcome the power bottlenecks is
near-threshold computing (NTC). NTC takes advantage of the
quadratic dependency between supply voltage and dynamic
power consumption, by lowering the operating voltage to a
value slightly higher than the transistor threshold, increasing
energy efficiency at the expense of reduced performance. How-
ever, for current cloud applications, NTC allows to optimize
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the trade-off between performance and power, emerging as a
promising approach to overcome the power-wall [3].

From a technology viewpoint, the ultra-thin body and buried
oxide (UTBB) FD-SOI technology has demonstrated its suit-
ability for NTC. In contrast to traditional bulk technology, FD-
SOI features a significantly increased voltage range and even
higher performance for the same energy thanks to the better
behavior of transistors at low voltage [4]. The 28nm FD-SOI
technology process is currently employed for mass production
by Samsung and ST Microelectronics; the 20nm technology is
being produced by GlobalFoundries while the 12nm node is on
the strategic roadmap [5]. With respect to FinFET technology,
FD-SOI provides a cost-sensitive solution for low-power (both
active and leakage) systems without increasing die cost [6],
making it a suitable solution for next-generation NTC servers.

To the best of our knowledge, the new trade-offs brought by
the FD-SOI technology and NTC servers, and the analysis of
its impact on data center level energy-aware policies, remains
an open challenge. Virtual machine (VM) consolidation [7]
has represented for years the most widely used technique
to minimize energy consumption. However, the emergence
of energy-proportional NTC servers, with drastically reduced
static power, together with the advent of applications able to
work at reduced frequencies, changes the underlying assump-
tions that made consolidation best for energy efficiency.

In this paper we propose accurate power models for NTC
servers, and evaluate their impact of VM consolidation. We
demonstrate the stagnation of consolidation-based and server
turn-off techniques for NTC-based data centers, and propose
a policy that provides 45% energy savings when compared to
state-of-the-art consolidation approaches.

In particular, the contributions of our work are as follows:

o We present an accurate power model for the UTBB FD-
SOI process technology in NTC servers, together with
a power and performance validation against real servers
(Intel x86 and ARMO64), and propose a performance-
improved architecture for NTC servers.

« We show how the energy-proportionality of NTC servers,
enabled by the FD-SOI technology, results in a paradigm
shift in which traditional VM consolidation strategies no
longer yield the optimal results in energy consumption.

o We propose the Energy Proportionality-Aware dynamiC
allocaTion (EPACT) method, a novel data center work-
load allocation policy for NTC servers, which also selects
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the best dynamic voltage and frequency scaling (DVES)
setup. Our approach increases the energy proportionality
of NTC-based data centers, outperforming latest consol-
idation techniques, while guaranteeing quality of service
(QoS) requirements.

o We assess the performance and efficiency of virtualized
workloads on three architectures: (i) x86, (ii) ARM-
based Cavium ThunderX, and (iii) our proposed NTC
server, which modifies and improves the efficiency of the
ThunderX architecture.

II. RELATED WORK
A. Technology and Architecture

Recent work in the area of energy-efficient server design
focuses on presently-shipping enterprise servers, with tradi-
tional x86 architectures [8]. These servers had traditionally
been designed to meet performance goals, without energy
efficiency as a design constraint. Only recently, with the
stagnation of Dennard Scaling [2], and the resulting power-
limited servers, NTC turned into a key technology to improve
energy efficiency. Previous work on near-threshold manycores
mainly focused on single voltage domain and multiple fre-
quency domain architectures [9]. However, other recent works
on processors in FD-SOI demonstrated the near-threshold
capabilities of the technology, capable to run a dual-core
CortexA9 processor at 1 GHz at the supply voltage of 0.6V [4].
The work presented in [3] was the first one proposing the usage
of NTC servers in UTBB FD-SOI technology. Nonetheless, the
power model proposed in that work did not include a detailed
characterization of the uncore components. Moreover, the
target Cavium ThunderX servers [10] were neither based on
FD-SOI technology nor validated for virtualized applications.

B. Energy-aware VM Allocation

Research in the area of energy efficiency in cloud computing
usually focuses on consolidation-based VM allocation tech-
niques to decrease power while meeting a certain QoS [11].
When deciding the allocation of VMs to physical servers,
several works only check that the total size of VMs’ load
does not exceed the maximum server’s capacity [7], [12], or
their peak, off-peak, and average utilization of VMs [13], [14].
However, the dynamic nature of cloud workloads results in the
CPU-load correlation across VMs (i.e, the similarity of CPU
utilization traces and the coincidence of their peaks) [15].
In this context, a few studies [16], [17] consider CPU-load
correlation to achieve further energy savings. In particular,
Verma et al. [16] define VMs’ CPU utilization in a time series
as a binary sequence. However, this quantization alters the
original behavior and is only applicable when VM envelops
are stationary. Kim er al. [17] present a CPU-load correlation-
aware solution to separate CPU-load correlated VMs. They
also exploit DVFS to achieve further energy savings. Ruan
et al. [18] propose a dynamic migration-based VM alloca-
tion method to achieve the optimal balance between server
utilization and energy consumption., while Garg et al. [19]
tackle the allocation problem for different types of applications
to maximize the resource utilization and profit. Nevertheless,
having considered the traditional x86 server architectures,

these approaches assume a linear power-frequency relation for
a given workload, and large static server power. However, this
is not compatible with novel server architectures.

To the best of our knowledge, the exploration of the new
trade-offs and impact on energy-aware VM allocation, brought
by new server architectures (in particular NTC servers), re-
mains today an open issue. In this paper, we propose a novel
dynamic VM allocation method that exploits the knowledge
of VMs characteristics and uses our proposed power model to
increase the energy proportionality of next-generation NTC-
based data centers, while guaranteeing the QoS. Our results
demonstrate the inefficiency of the latest workload consolida-
tion techniques for new NTC-based data center designs.

III. OVERVIEW OF THE PROPOSED SYSTEM
A. Server and Data Center Architecture

As a starting point for our server architecture, we chose
the Cavium ThunderX platform [10]. However, for our target
applications, the Cavium performance was slower (from 1.5x
to 1.35x) than the x86 platform with similar characteristics,
and unable to meet QoS constraints, as shown in Table I
in Section VI-A. This was due to an inappropriate memory
subsystem design for the target applications considered and
the choice of in-order cores. Hence, we modified the orig-
inal architecture and used ARMv8 Cortex-A57 Out-of-Order
(O00) cores, instead of the in-order Cortex AS3 processor. We
model a 16-core CPU (instead of 48 in ThunderX) to achieve
a lower simulation turnaround time, as we experimentally
observed that our model linearly scaled up for larger servers.
The memory subsystem was also updated, by including L1
instruction cache (I-cache) and data cache (D-cache) of 64KB
and 32KB, respectively. A Last-Level-Cache (LLC) of 16MB
is modeled. A total memory size of 16GB is considered using
a DDR4 memory model with memory controller [20]. DDR4
is clocked at 2400MHz with a peak bandwidth of 19.2GB/s.
Without loss of generality, we model for this exploration a
data center with 600 NTC servers, each NTC server with its
dedicated power supply, fans and disks.

B. Application Description

Our applications consist of VMs, virtualized via Linux LXC
containers, and running synthetically generated workloads that
resemble batches of real banking applications, as reported by
our industry partners. For realistic CPU and memory usage,
we use one week of traces of Google Cluster [21], which
provides the CPU and memory utilization for over 600 VMs,
reported every 5 minutes (memory utilization is varying in
the range of 2% to 32%). Therefore, for profiling purposes,
we split the workloads in three categories, according to the
per-VM memory utilization: i) low-mem for average memory
usage of 70MB (7%), ii) mid-mem for 255MB (25%) and iii)
high-mem for 435MB (43%). Moreover, in order to run the
experiments in worst-case scenarios, we tune the workloads to
maximum CPU utilization.

C. QoS Degradation Constraint for VMs

Because banking applications are virtualized batch jobs,
their QoS constraints are defined in terms of the maximum



allowable degradation (i.e., increase in their execution time),
which in our case is defined as 2x [8], w.r.t. a baseline
execution in a 16-core Intel Xeon X5650 running at 2.6GHz,
with 12MB LLC and 128GB of RAM clocked at 1333MHz,
in which we run one LXC container (VM) per core.

IV. SERVER AND DATA CENTER POWER MODELS

The overall NTC server power model has been extracted
by combining direct measurement on a commercial ARM-v8
based server [22] with power measurements of real prototypes
implemented in 28nm FD-SOI technology and operating in
near-threshold [4], [23], allowing for a very accurate system
power estimation for all the operating conditions investigated
in this work. We consider four main contributors to the
overall power consumption of the server: 1) the core region
composed of the AS57 cores logic and the L1/L2 caches, 2)
the LLC, 3) the memory controller, peripherals, IO subsystem
and motherboard, and 4) the DRAM banks.

1) Cores: Similarly to [3] we combine the 28nm FD-SOI
power and performance model of a recent Cortex A9 imple-
mentation of STM in 28nm bulk and FD-SOI, considering the
differences in pipeline length ratio and critical path between
Cortex A57 and Cortex A9. These parameters are extracted by
comparing the different voltage to frequency ratio (extracted
via the CPUFreq Linux driver) present in the Samsung Exynos
processor family. The Cortex AS57 is 1.17x faster (higher-
frequency) than the Cortex A9. We combine this information
with the active and static energy per clock cycle at the different
DVES levels from the Samsung Exynos 5433 processors to
scale its energy figures to the STM 28nm FD-SOI technology
by using the trends reported in [4]. These numbers account
also for the L1 and L2 cache power consumption. When in
wait-for-memory (WFM) state the core region consumes 24%
less power than when active. This number has been measured
empirically on an Intel Xeon v3 processor. Then, we extended
the performance and power model to the NTC region fitting
a template extracted from measurements of a 28nm UTBB
FD-SOI near-threshold parallel processor [23].

2) Last-Level-Cache (LLC): The LLC power model was
extracted by measuring the leakage power for a 256KB SRAM
block in 28nm UTBB FD-SOI and read and write energy
[pJ/Access] for 128-bit wide accesses. All these values have
been obtained for different voltage levels.

3) Memory Controller, Peripherals, 10 and Motherboard:
We empirically measure the memory controller, peripherals
and IO subsystem power consumption overhead of an Intel
Xeon v3 CPU. This power consumption is split in two parts:
(1) a constant component which accounts for the static and
fix dynamic power cost needed to keep these subsystems on,
and (ii) a component proportional to the operating condition.
The constant part causes a 11.84W overhead in all operating
points, while the proportional one ranges from 9 to 1.6W in the
operational range. Finally, we assume the same motherboard
power consumption than in the Cavium ThunderX server,
which is of 15W for a low fan speed, and with 1 SSD disk.

4) DRAM: The DRAM power has been modeled with direct
measurement on a real server platform based on Intel Xeon
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Fig. 1: Power consumption under different data center utiliza-
tion for CPU-bounded tasks (no dynamic memory power) for
(a) NTC-based and (b) non-NTC-based data center.

v3 architecture. During a large variety of workloads we have
measured the total DRAM read and write accesses in windows
of 1 second and measured the power of the DRAM banks.
Afterwards, we interpolated the empirical measurement with
a linear power model. The final model contains the empirical
measurement of an idle power value of 15.5 [mW/GB] per
GB of DRAM, which increases to 155 [mW/GB] when the
banks are activated. On top of this static power we reported
an energy consumption of 800 [pJ/Byte] per byte read.

5) Overall Data Center power: All these power consump-
tion values have been inserted in the GEMS simulator to
estimate the power consumption of each server node under
real workload. We model total data center power consumption
(Ppc) as the sum of power consumed by servers (F).

V. PROPOSED OPTIMIZATION METHOD
A. Data Center Scenario and Motivation

Figure 1(a) shows the worst-case data center power con-
sumption in an NTC-based data center when servers run at
different frequencies for various data center CPU utilization
rates, defined as the ratio of required CPU resources in MHz to
the total CPU resources (i.e., the number of servers multiplied
by the maximum CPU resources of one server), when running
a CPU-bounded workload (i.e., dynamic memory power is
close to zero). In this setup, we consider 80 servers with a
maximum frequency (Fyqy) of 3.1GHz. As CPU utilization rate
increases, we need to either turn on more servers, or set higher
frequencies to the turned-on servers. A traditional consolida-
tion approach minimizes the amount of active servers and runs
them at the highest frequency possible. However, in NTC-
based data centers, we observe that the optimal frequency of
servers (F(f\[’,,TC) is around 1.9GHz, instead of 3.1GHz, due to
the non-linear behavior of CPU power with frequency. For a
utilization rate higher than 50%, the optimal frequency is the
minimum possible that meets the workload demand. On the
contrary, Fig. 1(b) shows the power consumption of a non-
NTC server data center (equipped with 6-core Intel E5-2620
servers), representing the efficiency of consolidation.

On the other hand, in our proposed model, memory power
consumption is a linear function of the number of memory
accesses per second. Thus, from the memory power perspec-
tive, to minimize energy consumption we should consolidate as
many VMs as memory allows, and keep the number of active
servers to a minimum. Hence, in NTC-based data centers, CPU



Algorithm 1 The Proposed 1D VM Allocation Algorithm

Algorithm 2 The Proposed 2D VM Allocation Algorithm

Input: U('pu, Umema Fopts and Fmax
Output: Allocating VMs to servers
1: ID; + 1

2: while All VMs not allocated do

3 if Server ID; is empty then

4 IDy s < First unallocated VM

5 PattIDS cpu PattIDﬁcpu + UcpuVM

6: PattIDy mem < PattIDx mem + Urln[e)r‘:lM

7 else if Server ID; is not empty then

8 Pall,CDD;tICpu <—max(Pattmx‘cpu) — PQUIDN'pu

9: for i = 1 : Number of unallocated VMs do

10: ¢i + PearsonCorrelation(Part{". U ,,)

11: end for '

12: Find VM (IDyy) with maximum ¢ & max(Pattip,cpu +
Uiph™) Fnax < Fops

13: if IDyy; == Null then

14: IDg < IDg + 1

15: else

16: Allocate VM IDyy to server 1Dy

17: end if

18: end if

19: end while

and memory bounded workloads exhibit opposite behaviour in
terms of efficiency. Therefore, neither VM consolidation nor
load balancing are the best options, as the optimal server fre-
quency and workload allocation strategy dynamically change
depending on data center workloads.

B. EPACT: Proposed VM Allocation Method

Given the previous analysis, we propose the Energy
Proportionality-Aware dynamiC allocaTion (EPACT) method
to allocate the total number of VMs available in the data
center (Nyyy) to servers every time slot 7', while trying to make
servers work at the most energy-efficient frequency (FOC,Z) in
each sampled value 1..n (one sample every 5 minutes) during
time slot T (considered as 1 hour).

Our method requires predicting, at the beginning of T,
the per-VM CPU and memory utilization patterns (U, and
Usnem). Given the daily periodicity observed in the VMs of
Google Cluster traces, we use the autoregressive integrated
moving average (ARIMA) prediction model [24]. ARIMA
considers the CPU and memory utilization from the previous
week and forecasts the next-day traces per VM.

Given these predictions, we first determine the optimal
number of turned-on servers from the CPU and memory
perspective, independently:

Nvw grkin Nyy rik.n
Qe maxn (L2 Ucpu) " Fnax  mem _ w o
F(g\[/)z"c .100 server 100

From the CPU viewpoint we choose the number of servers that
allows to set a frequency as close to Fjy ¢ = 1.9GHz as pos-
sible, and from the memory standpoint we try to consolidate
as many VMs as possible until we hit the maximum server
memory capacity (i.e., memory cap). The definition of Ny,
and A" results in two cases.

1) If Nver > Nmem | we exhaustively explore all the
number of turned-on servers between these two values, until
we find the Fofn that exhibits the lowest data center power con-
sumption. Then, as described in Alg. 1, we find the best VMs

Input: Ucpu, Unem. Capep,, and Cap,,,,
Output: Allocating VMs to servers

1: for i=1: Nyy do

2: for j=1:N; do

3: if maxn(UL"}:ltt + Silﬁ‘) < Capcpu & maxn(U);;gm + S{ﬁgm) < Capyem
then
4 \\ CPU ) )
5 P‘?’fﬁ?:’u <max(S2pu) — Spu
6: (l)g,",'u — PearsonCorrela}tion(PattjC_‘C’;;L,Uz.pu)
7 S{‘em,g‘gu — Cal’c,m _fggpu
8 DiStCJ';" — HUL"[)M - Sﬁem@puHZ
9 \\ Memory
. C j J
10: Part§e,, —max(Shem) — Siem
11: q),l,ém — PearsonCorrelaFion(Pattffi,’Z,”,U,’,,gm)
12: Siem,z;wm — Ca_ngm 7}S{nem
13: Dis_tilrf;m — HUylmzm - Sﬁemgnem HZ
14: M|+ Compute efficiency using Eq. 2
15: end if
16: end for ,
17: ID; < Find server with max .Z"*
18: Allocate VM i to server IDg and update server’s resources

19: end for

fit into servers by using the First-Fit-Decreasing algorithm,
only taking into account the CPU utilization, as they drive
QoS. Thus, we select one server (IDy, line 1). If the server
is empty, we select the first unallocated VM from the pool of
VMs, we allocate it to the corresponding server, and update
the server load pattern (Pattip, cpu and Pattip, mem, lines 4-6).
Otherwise, we first compute the complementary utilization pat-
tern of server (Pattgf]’,’;) with respect to its current maximum
load (line 8). Then, we select one VM from the pool of VMs
which has the maximum similarity (¢, defined as the Pearson
Correlation) to the pattern such that the maximum aggregated
load of server (max([PattIDhcpquUCIﬁ,‘/M 1/100).Fpqy) is less
than FDC” (simply named F,,;). Otherwise, we turn on another

server (lines 9-17).
2) If Nby., < N™em  memory dominates and the optimal
maxy (ZkNX{VI 05;}’114)'Fma,r In

server servers
frequency is defined based on F,, = T
this case, our allocation phase needs to take into account both
the CPU utilization and memory footprint patterns to find the
best VM fit into the servers based on CPU cap (i.e, Cap,,, =
(Fopr - 100) /Fpay) and memory cap (i.e., Cap,,,,, = 100%).

Having chosen the number of servers, we find the best server
for each VM, maximizing the following merit function:

. C/IM ¢j~,i

) mem

M= Ocpy - —L + Oem - -

. j,l . J,l

Distzpu iStinem @)
Cap,. Ca
pu 14
WOcpu = & Wpem = men

Capcpu +Capyem Cap cpu T Capem

where ¢/, and @n exhibit the similarity of i’ VM’s CPU
utilization and memory footprint patterns with complementary
CPU utilization and memory patterns of j'* server, respec-
tively.However, as the Pearson Correlation cannot reflect the
closeness of VM’s CPU and memory patterns to the server
CPU and memory cap, respectively, we incorporate the eu-
clidean distance (Disty, and Distien) into the metric. As a



result, Eq. 2 demonstrates that .#; is high when i VM has
both the same shape and lower distance to j”* server’s caps.
Wcpy and Oy, are weighting factors that need to be set with
respect to the determined CPU and memory cap for filling up
the server resources with the same importance.

As described in Alg. 2, we first select one VM (i VM) and
target to find the best server among all () for it. For each
candidate server ( j’h server), we check whether it has enough
resources for hosting the VM at each sample in time slot 7. If
the server has sufficient remaining CPU and memory capacity
(Sfem,cpu and Sfem mem), We compute //lj’ for the server. Finally,
we allocate the VM to the server which has the maximum .#",
and update the target server’s resources (lines 17 and 18).

After allocation, for both cases, based on the real VMs CPU
utilization, we online set the best frequency level for each
server per sample to guarantee QoS.

V1. EXPERIMENTAL RESULTS
A. Simulation Framework Validation

We use the GEMS cycle-accurate simulator [25] to simulate
the server architecture described in Section III-A. In order to
understand the effect of DVFS on performance, we compute
the QoS degradation taking as a baseline the execution time on
the x86 server discussed in Section III-C. Then, we simulate
the virtualized applications in GEMS5 for different frequency
levels ranging from 2.5GHz down to 100MHz.

To validate the correctness of the results provided by the
GEMS simulator, we run the applications on two real hardware
platforms based on x86 and ARM. We compared the execution
times of Cavium ThunderX with the ones obtained via GEM5
while matching the exact same architectural configuration. The
error obtained was below 10%, showing that GEMS is able
to accurately simulate our workloads. The execution time for
each workload, on all three platforms are shown in Table I.
The QoS limit is a 2x degradation of the execution time on
x86 based platform, as already discussed. The Cavium server
exhibits the worst execution time. After the modifications
undertaken, our proposed NTC server architecture outperforms
Cavium by a factor of 1.25x to 1.76x. These results are due
to our improved memory sub-system and the incorporation of
the OoO processor in our proposed architecture.

B. Server-level Results

1) Quality of Service: QoS requirements of virtualized ap-
plications make it unclear whether this technology is suitable
for server processors. To check for QoS requirements being
met for VM workloads on NTC server, normalized execution
time to QoS limit is shown in Fig. 2. It can be seen that
high-mem and mid-mem workloads meet QoS requirement
till a minimum frequency of 1.8GHz, whereas low-mem can
scale down to 1.2GHz. In conclusion, we are able to reduce

TABLE I: NTC server and Cavium ThunderX QoS analysis

Application Intel x86  2x Degrad.In- Cavium NTC Server
@2.66 GHz  tel (QoS limit) @2GHz @2GHz
low-mem 0.437 0.873 0.733 0.582
mid-mem 1.564 3.127 5.035 2.926
high-mem  3.455 6.909 11.943 6.765

the frequency of the cores while meeting the 2x degradation
constraint for virtualized applications.

2) Energy Efficiency: Fig. 3 shows the benefits of reducing
DVFS on server energy efficiency (i.e., the total number of
UIPS at the chip level, divided by the total power consumption
of the server). The optimal efficiency point is around 1.2GHz
for high-mem, and around 1.5GHz for low-mem and mid-
mem. The energy efficiency decreases with increasing memory
utilization, firstly, because of higher active memory power, and
secondly, because more memory accesses increase the amount
of stalls and the WFM cycles.

3) Trade-offs Discussion: As shown by [3], workloads can
tolerate low frequencies if only core power is considered, thus
enabling NTC operation to reduce core power consumption.
However, not all server components scale with the core
voltage, shifting the most energy-efficient point to a higher
frequency. Our results showed that frequency can be reduced
to 1.2GHz for high-mem and 1.5GHz for low-mem and mid-
mem. But, to guarantee the QoS requirements, the frequency
level should be scaled up to 1.8GHz for mid-mem and high-
mem; while for low-mem (CPU-bounded tasks) the optimal
frequency (i.e., 1.5GHz) still meets the QoS limit.

C. Data Center-level Results

At the data center level, we compare our EPACT policy
against two other energy-aware methods:

o« COAT: COnsolidation-Aware allocaTion [17].

o COAT-OPT: COAT with an OPTimal fixed cap (optimal
server frequency) when the worst-case data center power
consumption is minimum.

and we evaluate our approach in terms of service level
agreement (SLA) violations and overall energy consumption.

1) SLA Violation: Figure 4 shows violation, defined as the
number of overutilized servers (i.e., the aggregated CPU or
memory utilization among co-located VMs is beyond the CPU
and memory cap), during each time slot for a time horizon of
one week. Violations can only occur due to miss-prediction
on the VM usage, especially during abrupt workload changes.
EPACT provides a drastic reduction of the violations compared
to COAT and COAT-OPT. This is because, in EPACT, we do
not fill up the servers to their maximum capacity, and we
have some slack to increase frequency and compensate for
violations. On the contrary, COAT and COAT-OPT have less
control on violations during peak loads using a fixed cap.

2) Energy Consumption Analysis: Figure 5 shows the num-
ber of active servers per time slot for a time horizon of one
week. COAT, being consolidation-based, reduces the number
active servers by 37% on average compared to EPACT. Despite
this fact, EPACT achieves 45 and 10% energy savings in
the best and worst case compared to COAT and COAT-OPT,
respectively (Fig. 6). This is because the optimal frequency
is dinamycally found w.r.t the time-varying data center CPU
utilization and memory footprint, thus showing the inefficiency
of consolidation-based techniques for NTC-based data centers.

3) Different Amount of Static Power Analysis: Figure 7
represents the effectiveness of our algorithm compared to
consolidation-based technique with maximum cap (COAT)
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time horizon of one week.

when the static power (motherboard, fan, disk, etc.) increases
from an efficient to a traditional power-hungry one. For higher
static power consumption, optimal server frequency should be
increased leading to higher CPU cap and lower number of
active servers. These results prove that EPACT will be even
more effective in future technologies, where static power is
expected to decrease further.

VII. CONCLUSIONS

In this paper we presented an accurate power modelling for
the proposed NTC servers based on the FD-SOI process tech-
nology. Then, we explored the existing energy vs. performance
trade-offs when VMs with different CPU utilization and mem-
ory footprint characteristics are executed. We also evaluated
the efficiency of our target virtualized applications on three dif-
ferent platforms: (i) x86, (ii)) ARM-based Cavium ThunderX,
and (iii) proposed NTC server. Finally, we proposed EPACT,
a novel dynamic VM allocation method exploiting the given
holistic knowledge of VMs characteristics and our new power
model to increase the energy proportionality of next-generation
NTC-based data centers while guaranteeing their QoS require-
ments. The proposed method has provided up to 45% energy
savings when compared to conventional consolidation-based
approach. Thus, our results demonstrate that the new NTC
servers have created a completely new and promising (from an
energy-efficiency viewpoint) research space on novel workload
allocation techniques for next-generation data centers.
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