
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 1

Optimization of Message Encryption for
Real-Time Applications in

Embedded Systems

Amir Aminifar1, Petru Eles2, Zebo Peng2

1Embedded Systems Laboratory, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
2Embedded Systems Laboratory, Linköping University, Sweden

Abstract—Today, security can no longer be treated as a secondary issue in embedded and cyber-physical systems. Therefore,
one of the main challenges in these domains is the design of secure embedded systems under stringent resource constraints
and real-time requirements. However, there exists an inherent trade-off between the security protection provided and the amount
of resources allocated for this purpose. That is, the more the amount of resources used for security, the higher the security, but
the fewer the number of applications which can be run on the platform and meet their timing requirements. This trade-off is of
high importance since embedded systems are often highly resource constrained. In this paper, we propose an efficient solution to
maximize confidentiality, while also guaranteeing the timing requirements of real-time applications on shared platforms.

Index Terms—Secure Embedded Systems, Secure Real-Time Systems, Real-Time Schedulability, Security and Privacy, Confiden-
tiality Optimization, Message Encryption and Decryption.

F

1 INTRODUCTION AND RELATED WORK

TODAY, many embedded and cyber-physical systems
are tightly interacting with external networks and

components. Such interactions, in turn, make these
systems more vulnerable to security attacks and in-
trusions. This is in particular important since many
such systems comprise several critical components, e.g.,
adaptive cruise control or engine control in automotive
systems allow deep intervention in vehicles. Therefore,
ignoring the security aspects in cyber-physical systems
will have severe consequences. As a result, security is
now considered one of the main design challenges in
embedded and cyber-physical systems [1]–[5].

The design of secure embedded and cyber-physical
systems becomes all the more complex if we consider
shared resources, for example as a result of the recent
shift in automotive industry towards integrated archi-
tectures [6]. This resource sharing, in turn, leads to
complex timing behaviors and competition among real-
time and control applications for available resources on
shared platforms (see Figure 1) [7], [8]. Moreover, there
exists an inherent trade-off between security strength
and available resources [9]–[11]. That is, the higher the
security requirements, the more resources should be
alloted for that purpose.

Confidentiality is among the key components of em-
bedded security and has been discussed previously
in the context of embedded and real-time systems
[12]–[17]. Confidentiality refers to the ability to keep
the information secret from unauthorized entities and
is often achieved by message encryption/decryption.
However, the available resources in many embedded
systems, e.g., in the automotive domain [3], are limited,
and this resource scarcity highly limits the ability to
perform message encryption/decryption for real-time
functions. Therefore, the main idea in this paper is to
maximize confidentiality, while guaranteeing the timing
requirements of all applications on shared platforms.

To optimize confidentiality, Kang and Son [12] pro-
pose a lightweight heuristic to optimize the crypto-
graphic key length under real-time constraints. Xie and
Qin [13] propose an online algorithm to schedule peri-
odic tasks under security and timing constraints, trying
to maximize a weighted sum of the individual security

values, a metric defined by the authors. However, their
approach does not provide any guarantees with respect
to optimality of the total security value. Similarly, in
[14], the authors perform an offline optimization for the
security of real-time systems. The authors propose two
approaches based on integer linear programming and
a heuristic. The former suffers from exponential time
complexity and the latter does not provide any kind of
optimality guarantees.

More recently, Jiang et al. [15], [16] used constraint
logic programming to optimize message encryption
under real-time constraints. While constraint logic pro-
gramming provides the optimal solution, due to its
exponential time complexity, the authors propose an
efficient heuristic. In [17], the authors propose a quasi-
static heuristic to optimize quality of service under
security and schedulability constraints for dynamic task
sets. Their approach is limited to a multi-mode scenario,
where all modes are known at design time. Neverthe-
less, the proposed methodologies in [15]–[17] can only
provide suboptimal solutions and the quality of these
solutions cannot be quantified.

The existing work in the literature falls under (at
least) one of the following categories: (1) those ap-
proaches based on integer linear programming [14] and
constraint logic programming [15]–[17], which suffer
from computation complexity and cannot be used in an
online and dynamic setting, and (2) those approaches
based on heuristics [12]–[17], which do not provide any
optimality or performance guarantees and the solution
can be arbitrarily far from the actual optimal.

In this article, we approach the problem of max-
imizing confidentiality under real-time constraints in
dynamic settings, where the applications requirements
are subject to change at runtime. This change, for in-
stance, could be due to a multi-mode mechanism where
the active task set (and messages) changes at runtime
to achieve better performance [17], [18]. Alternatively,
this could be due to a change in resource requirements
of applications either because of the state-dependency
[19]–[21], or in response to an attack [22]. As a concrete
example, in the automotive domain, the activation rates
of several tasks (e.g., of the crankshaft, gears, or wheels)
are proportional to the angular velocity of a specific

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 2

component [21]. Hence, we need an efficient online
algorithm for confidentiality optimization in such dy-
namic settings, under timing constraints.

In this article, we first identify the optimal amount of
time to allocate to achieving security of each message
(encryption and decryption) under real-time constraints
analytically. Built on top of this analytical solution,
we propose a fully-polynomial time algorithm that
provides the optimal solution for the concrete case of
iterated block ciphers, RC5 [9] and, its extension, RC6
[23], which is considered to have adequate security for
the Advanced Encryption Standard (AES) [24]. In sum-
mary, here, we maximize the minimum confidentiality
strength in the system, given the available resources,
while guaranteeing real-time schedulability.

2 SYSTEM MODEL
2.1 Platform Model
We consider a uniprocessor platform (see Figure 1),
with several real-time applications running on this
platform. Each circle in Figure 1 corresponds to a task
which can send/receive messages via the communica-
tion infrastructure (handled by the communication con-
troller (CC) unit). To protect confidentiality, each task
encrypts the message before sending it over the com-
munication infrastructure and decrypts the received
messages.

2.2 Intrusion Detection and Resource Management
Task
In this paper, we assume that there exists a host-based
intrusion detection and resource management (IDRM)
task [25] on each processing node, similar to [22]. This
task monitors the workload variations and application
requirements and decides on the amount of resources
which should be allocated to achieve confidentiality for
each message. This variation could be due to a change
in the active task set in multi-mode systems [17], [18],
a change in resource requirements of applications [19]–
[21], or a change in security requirements of applica-
tions due to intrusion [22].

The optimization problem discussed in this paper
is performed as part of the duties of the host-based
intrusion detection and resource management (IDRM)
task.

2.3 Real-Time Application Model
Given is a set of m real-time tasks running on a node.
Each task τj has a worst-case computation time (exe-
cution time) of cj and a minimum inter-arrival time of
hj . We assume implicit deadline for all tasks, i.e., the
deadline dj is equal to the minimum inter-arrival time
hj of task τj , i.e., dj = hj .

We highlight that the intrusion detection and re-
source management (IDRM) task is also modeled as
a sporadic (implicit-deadline) task τ0, with worst-case
execution time overhead c0 and minimum inter-arrival
time h0.

Each task τj sends and receives nj messages γj,k,
where k = 1, . . . , nj . The total number of messages
sent and received is n =

∑m
j=0 nj . We assign to each

message γj,k a unique identifier i and denote this
message and its corresponding frequency by γi and fi,
where i =

∑j−1
x=0 nx+k and fi =

1
hj

. In other words, the
send/receive frequency for each message is the inverse
of the minimum inter-arrival time of its corresponding
real-time task.

τ
1

IDRM

CC

τ
2

τ
3

Fig. 1. A processing node hosting three real-time tasks
and the intrusion detection and resource management
(IDRM) task. These tasks may send/receive messages
via the communication network, handled by the commu-
nication controller (CC) unit.

3 PRELIMINARIES AND BACKGROUND
In this section, we shall give a brief overview to real-
time scheduling on a uniprocessor platform. We, fur-
ther, discuss the confidentiality notion in the security
area.

3.1 Real-Time Scheduling
Today, the platform in the majority of embedded sys-
tems, e.g., in the automotive domain [6], is shared
among several applications. These applications, there-
fore, compete for execution on the platform. For safety-
critical applications, it is necessary to demonstrate the
safety of the system on the shared platform. In the case
of real-time applications, this safety implies the notion
of schedulability. In short, under a certain scheduling
policy, a task set is referred to as schedulable if all tasks
of the task set are schedulable. A task is schedulable
under a scheduling policy, if the task is guaranteed to
meet its deadline.

In this paper, we discuss schedulability analysis un-
der the earliest-deadline-first (EDF) scheduling policy.
Under the earliest-deadline-first (EDF) scheduling, in
case of competing tasks, the task which has the earliest
deadline has the highest priority and executes. Given
an independent set of real-time tasks and assuming
implicit deadline for each task, it has been proven that
a task set is schedulable under the earliest-deadline-
first (EDF) scheduling policy if and only if the task set
utilization does not exceed one [26], i.e.,

m∑
j=0

cj
hj
≤ 1. (1)

Note that the above condition is a necessary and
sufficient schedulability condition under the earliest-
deadline-first (EDF) scheduling policy.1

3.2 Confidentiality
Confidentiality is considered to be one of the main
components of information security. It refers to the
ability to keep the information secret from unautho-
rized entities and is often achieved by message encryp-
tion/decryption. The basic idea is that the more the
time and resources are used, the more the efforts to
break this encryption, and the higher the confidentiality.

The strength of a cryptography algorithm is typically
quantified by the use of cryptanalysis attacks, which
measure the strength of the cryptography algorithm by
estimating the number of plaintexts needed to success-
fully mount an attack on the cryptography algorithm.
The fundamental principle of cryptography is that the

1. Generalization of our proposed approach to the rate-monotonic
(RM) scheduling policy is also straightforward, by adapting the right-
hand side to 0.69 [26].

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 3

TABLE 1
An estimate of the number of plaintexts required to

mount an attack on RC5 and RC6 with varying number
of rounds can be used to quantify security strength [27],

[28].
r=8 r=12 r=16 r=20 r=24

Linear attack RC5 [27] 252 276 2100 2124 2148

Linear attack RC6 [28] 262 2102 2142 2182 2222

time and resources required for the attacker to successfully
mount a cryptanalysis attack on the system should be consid-
erably (often, exponentially) more than the time and resources
required for encryption/decryption.

Let us consider the concrete case of the iterated
block ciphers class, and focus on RC5 [9] and, its
extension, RC6 [23]. RC6 is considered to have ade-
quate security for the Advanced Encryption Standard
(AES) and is able to provide high performance (encryp-
tion/decryption speed) on embedded processors [24].

RC6 can provide high security when suitable param-
eter values are chosen [9]. Hence the importance of
parameter optimization. The parameter we are mostly
interested in is the number of rounds these algorithms
use for encryption. The larger the number of rounds,
the more the efforts needed for the adversary, and the
higher the confidentiality. More concretely, as shown in
Table 1, the number of plaintexts needed to break the
encryption is exponential with the number of rounds
used for encryption [28]. Therefore, we use the fol-
lowing exponential function for quantifying security
strength,

eαiri+ωi , (2)

where ri denotes the number of rounds. Coefficients αi
and ωi are constants and depend on the importance of
each application (determined by the system designer)
as well as the word size [27] and the length of the
encryption key [23], [28]. Motivated by the results in
Table 1 [27]–[29], and as shown graphically in Figure 2,
the exponent (αiri+ωi) is modeled as a linear function
of ri.

Introducing message encryption/decryption also af-
fects the schedulability of the system. The safety of
the system can be jeopardized, i.e., the system can be-
come unschedulable, if the impact of message encryp-
tion/decryption is not considered properly. To address
this issue, we can simply consider that the execution
time cj of each task τj is increased by the amount of
time spent for security purposes. Note that the time
complexity of encryption/decryption in RC5 and RC6
algorithms is linear with the number of rounds [9],
[23]. Figure 3 shows the worst-case execution times
of the encryption and decryption algorithms in RC6
versus the number of rounds on ARMr Cortexr-M3
processor, based on the aiT execution-time analysis tool
[30], [31]. Figure 3 clearly demonstrates the linearity of
the worst-case execution times of the encryption and
decryption algorithms of RC6 with respect to the num-
ber of rounds. Hence, we can adapt the schedulability
test as follows,

m∑
j=0

cj +
∑nj
k=1 oj,krj,k
hj

≤ 1, (3)

where rj,k and oj,k denote the number of rounds and
the timing overhead of each round for message γj,k, re-
spectively. This inequality can be simplified as follows,

n∑
i=1

oirifi ≤ 1−
m∑
j=0

cj
hj

= U, (4)

 0

 50

 100

 150

 200

 250

 8 10 12 14 16 18 20 22 24

E
x
p
o
n
e
n
t

Number of Rounds

Linear attack RC5
Linear attack RC6

Fig. 2. The exponent of the exponential changes linearly
with the number of rounds

[27], [28].

by assigning to each message γj,k a unique identifier
i =

∑j−1
x=0 nx + k and denoting its corresponding fre-

quency by fi = 1
hj

, as discussed in Section 2.3. Note
that U is the part of the resource utilization that can be
afforded for message encryption/decryption, without
jeopardizing the schedulability of the system.

Observe that increasing ri leads to an increase in the
security strength based on Equation (2), while it reduces the
schedulability margin in Equation (4). Hence the trade-off
between the security strength and the amount of resources
used for that purpose.

In general, to quantify the security strength, relative
to a given message, an exponential function, with re-
spect to time, can be used,

eαiti+ωi , (5)

where the amount of time spent for security is denoted
by ti. Similar to the case of RC6, the schedulability
condition can also be adapted as follows,

n∑
i=1

tifi ≤ 1−
m∑
j=0

cj
hj

= U. (6)

4 MOTIVATIONAL EXAMPLE
In this section, we illustrate the problem tackled in this
paper based on an SAE benchmark [32], equipped with
security parameters from [27]. The Society of Automo-
tive Engineers (SAE) has released a set of requirements
and a control benchmark, i.e., the control system of an
electric vehicle, to be able to compare the effectiveness
of new solutions for safety critical automotive systems
[32]. This SAE benchmark, however, does not spec-
ify any security parameters. Therefore, here, this SAE
benchmark is equipped with security parameters from
[27]. According to [27], the longer the word size, the
more the number of plaintexts required to mount a suc-
cessful cryptanalysis attack on the system. Therefore,
for highly critical messages, such as torque command to
the motor control unit, a longer word size is considered
by the application designer, compared to less critical
messages, such as high/low contactor commands to
battery.

Let us focus on the vehicle controller unit of SAE
benchmark, with an intrusion detection and resource
management (IDRM) task (τ0) and three real-time tasks
(τ1, τ2, τ3). In this example, each real-time task τi sends
only one message, γ1 for high contactor control, γ2
for low contactor control, and γ3 for torque command
[32]. The task set data are shown in Table 2, where all
timing quantities are reported in units of milliseconds.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 4

 100

 150

 200

 250

 300

 350

 8 10 12 14 16 18 20 22 24

W
o
rs

t-
C

a
s
e
 E

x
e
c
u
ti
o
n
 T

im
e

Number of Rounds

RC6 Encryption
RC6 Decryption

Fig. 3. Worst-case execution times (in microseconds)
of RC6 encryption and decryption algorithms versus
number of rounds on ARMr Cortexr-M3 processor,
based on the aiT worst-case execution-time analysis tool
[30]
All tasks are scheduled based on the earliest-deadline-
first (EDF) scheduling policy. We assume that message
encryption/decryption is done based on the RC5 and
its extension RC6 algorithm [23]. To quantify confiden-
tiality strength, we consider the linear cryptanalysis
attack [27], [28] for all real-time tasks. The coefficients
αi and ωi in Table 2 are extracted from [27]. To be
consistent with [27], in this example, we consider e = 2
in Equation (2). The goal is to maximize the confiden-
tiality strength, as defined in the previous section, by
optimizing the number of encryption rounds for each
message, under real-time constraints.

The task set utilization margin without the message
encryption/decryption is U = 1−

∑3
i=0

ci
hi

= 0.10. Since
the task set utilization is lower than the utilization limit
for the earliest-deadline-first (EDF) scheduling policy,
it is possible to use message encryption for the three
messages to improve confidentiality. The problem is,
therefore, to find the number of rounds each task needs
to encrypt the messages, in order to maximize the
confidentiality of the entire system, while also satisfying
the timing requirements.

Let us first consider a straightforward approach
that improves confidentiality by maximizing resource
utilization and maximizing the minimum number of
rounds among all real-time tasks. In this case, the de-
sign solution obtained is given by r1 = 16, r2 = 16, and
r3 = 17, which has 100% resource utilization, according
to Equation (4). For this design solution, the number of
plaintexts required to mount a successful cryptanalysis
attack on the system, according to Equation (2), is,

min
i=1,...,3

{
eαiri+ωi

}
= 2100.

However, as we show in the following, maximizing
resource utilization does not necessarily lead to max-
imizing confidentiality.

Let us now use our proposed approach in Section 6.2,
to obtain the optimal number of rounds. The optimal
solution for the three real-time tasks is given by r∗1 = 20,
r∗2 = 20, and r∗3 = 15. In this case, according to Equation
(2), the attacker needs approximately 288 plaintexts to
mount a successful cryptanalysis attack,

min
i=1,...,3

{
eαir

∗
i+ωi

}
= 2124.

The solution found by our proposed approach is
224 times more robust to the cryptanalysis attacks,
when compared to other solutions. This is because
the number of plaintexts required for the cryptanalysis

TABLE 2
Example: task set data (the security and real-time

parameters are taken from [27] and [32], respectively)
i ci hi di oi αi ωi
0 5 50 50 − − −
1 3 10 10 0.01 6 4
2 3 10 10 0.01 6 4
3 1 5 5 0.02 8 3

attack to mount a successful attack on the system in
our approach is 2124

2100 = 224 times the straightforward
approach.

The straightforward approach maximizes the re-
source utilization (100%) and the minimum number
of rounds among all messages (mini=1,...,3 {ri} = 16).
Our approach, with 100% resource utilization and
mini=1,...,3 {r∗i } = 15 for minimum number of rounds,
outperforms the straightforward approach by a factor of
224, in terms of confidentiality strength. Therefore, only
maximizing the resource utilization and/or maximizing
the minimum number of rounds does not necessar-
ily lead to the optimal confidentiality strength. This
is because the straightforward approach maximizes
an intermediate objective (i.e., minimum number of
rounds or resource utilization), which entirely ignores
the confidentiality parameters αi and ωi. Parameters αi
and ωi depend on both the criticality of the information
carried in a message and the security requirements, e.g.,
the word size [27]. As opposed to the straightforward
approach, our proposed method considers confidential-
ity as its main objective and maximizes confidentiality
strength (defined based on parameters αi and ωi in
Equation (2)), under real-time constraints. This example
demonstrates the need for an approach that takes security
requirements of applications into consideration in confiden-
tiality optimization.

Now, let us consider a scenario where the system
configuration changes at runtime. Let us assume that
the minimum inter-arrival time (and also deadline) of
task τ3 is changed to h3 = 6, due to the proportionality
of task τ3 activation rate to the angular velocity of
the engine, because the torque command can be sent
less frequently for lower engine revolutions [21].2 Our
algorithm, in this case, reacts to this change and finds
the optimal design solution r∗1 = 30, r∗2 = 30, and
r∗3 = 22, for this configuration. This design solution is
2184

2124 = 260 times more robust against the cryptanalysis
attacks, compared to the previous design solution. This
example demonstrates the need for an approach for runtime
adaptation of security parameters.

Finally, let us assume a more computationally effi-
cient IDRM task τ0 with execution time c0 = 2.5, i.e.,
the new IDRM task is two times more computationally
efficient. In this case, the optimal design solution is
given by r∗1 = 40, r∗2 = 40, and r∗3 = 30. This design
solution is 2244

2184 = 260 times more robust against the
cryptanalysis attacks, compared to the previous design
solution with the more complex and time consuming
IDRM task. This is because the IDRM task itself requires
resources for execution. And, because the processor
is shared among all the tasks (including the IDRM
task), the processor bandwidth allocated to running the
IDRM task cannot be used to enhance confidentiality of
the system. Therefore, a more computationally complex
IDRM (i.e., a longer worst-case execution time c0) leaves

2. The Revolutions Per Minute (RPM) varies from 500 to 9000. This,
approximately, translates into a period of 7.5 milliseconds for 9000
RPM, while a much lower RPM (approximately 120 milliseconds) is
required for 500 RPM [33].

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 5

less processor bandwidth for security purposes. This
example motivates the need for a computationally efficient
confidentiality optimization approach at runtime.

5 PROBLEM FORMULATION

In this section, we formulate two optimization prob-
lems, which are solved optimally in the next section.

5.1 General Optimization
Let us first consider a general optimization problem.
Given is a set of m real-time tasks τj mapped on one
processing node with computation time cj and min-
imum inter-arrival time hj . Considering the earliest-
deadline-first scheduling algorithm we have U = 1 −∑m
j=0

cj
hj

(see Equation (6)). There are n messages γi
sent/received on each node with the real-time parame-
ter fi and the security parameters αi and ωi (see Section
3).

In this paper, we adopt a worst-case perspective. This
is because, a system is only as secure as its weakest
component. Therefore, our goal is to maximize the
minimum security strength among all messages, under
real-time constraints, i.e.,

max
t1,...,tn

min
i=1,...,n

{eαiti+ωi}

s.t.
n∑
i=1

tifi ≤ U,
(7)

where ti ∈ R (a real number), the time alloted for
encryption/decryption of message γi, has to be deter-
mined for each message. We find the optimal solution
to this problem analytically in Section 6.1.

5.2 Iterated Block Ciphers Optimization
We also address this problem for the specific case of
RC5 and RC6 algorithms. The difference compared to
the previous optimization is that, now the optimization
variables are the number of rounds, which should be
natural numbers, hence a non-convex problem. This
makes the problem exponentially more complex, for
which we find the optimal solution using a fully-
polynomial time algorithm (see Section 6.2). This op-
timization problem is formulated as follows,

max
r1,...,rn

min
i=1,...,n

{eαiri+ωi}

s.t.
n∑
i=1

oirifi ≤ U,

ri ∈ N, i = 1, . . . , n,

(8)

where the number of rounds ri ∈ N (a natural number)
for each message γi is the solution to this optimization
problem. And, oi is the overhead for each round of mes-
sage encryption/decryption, which is given as an input,
in addition to the previously discussed parameters.

6 OPTIMIZATION APPROACH

6.1 General Optimization
In this section, we find the optimal solution to problem
stated in Equation (7) analytically. Let us transform
the minimum function in the objective to a set of

inequalities as follows by introducing a new variable
x0,

max
x0,t1,...,tn

ex0

s.t.
n∑
i=1

tifi ≤ U,

ex0 ≤ eαiti+ωi , i = 1, . . . , n.

(9)

The above problem, however, is not convex and cannot
be solved efficiently. Therefore, we transform the above
problem to an equivalent problem, by taking the natural
logarithm of both sides of the second set of inequalities.
Then, the problem will be transformed to a convex
problem which can be solved efficiently,

max
x0,t1,...,tn

x0

s.t.
n∑
i=1

tifi ≤ U,

x0 ≤ αiti + ωi, i = 1, . . . , n.

(10)

Note that we need also to have ti ≥ 0, for all messages
γi. However, from the second set of inequalities we
have ti ≥ x0−ωi

αi
. Since we are maximizing x0, these

constraints (ti ≥ 0,∀i) will be satisfied implicitly, if at
all possible.

Let us now transform the problem (10) into the
standard form,

min
x0,t1,...,tn

−x0

s.t.
n∑
i=1

tifi − U ≤ 0,

x0 − αiti − ωi ≤ 0, i = 1, . . . , n.

(11)

To solve the above problem, we use the KKT (Karush-
Kuhn-Tucker) necessary conditions for optimality [34].
According to the KKT conditions, the optimum x∗ of
the problem

min
x

f(x)

s.t. gi(x) ≤ 0, i = 1, . . . , n,
(12)

must necessarily satisfy the following conditions

∇f(x∗) +

m∑
i=1

λ∗
i∇gi(x∗) =0,

λ∗
i gi(x

∗) =0, i = 1, . . . , n,

λ∗
i ≥0, i = 1, . . . , n.

(13)

Considering (11), the first KKT condition provides us
with n+ 1 equalities,
−1
0
0
0
...

+ λ∗
0

0
f1
f2
0
...

+ λ∗
1

1
−α1
0
0
...

+ λ∗
2

1
0
−α2
0
...

+ · · · = 0. (14)

The second KKT condition also provides us with n+ 1
equalities as follows,

λ∗
0(

n∑
i=1

tifi − U) = 0,

λ∗
i (x0 − αiti − ωi) = 0, i = 1, . . . , n.

(15)

From the i-th row (i ≥ 2) of equality (14) we obtain,

λ∗
0fi − λ∗

iαi = 0 ⇒ λ∗
i =

fi
αi
λ∗
0. (16)

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 6

And from the first row of equality (14) we obtain,

−1 +
n∑
i=1

λ∗
i = 0

Eq.(16)
====⇒ −1 +

n∑
i=1

fi
αi
λ∗
0 = 0, (17)

where the second equality is obtained using (16). The
second equality in (17) indicates that λ∗0 > 0. This, in
turn, means that λ∗i > 0 (see Equation (16)). Therefore,
from Equation (15) we have,

n∑
i=1

tifi − U = 0,

x0 − αiti − ωi = 0, i = 1, . . . , n.

(18)

From this, we obtain an analytical solution for the
amount of time that should be alloted for encryp-
tion/decryption of each message,

x0 =
U +

∑n
i=1

ωifi
αi∑n

i=1
fi
αi

,

ti =
x0 − ωi
αi

.

(19)

Note that, since the problem is convex, Equation
(19) provides the optimal solution to the problem (7),
discussed in the previous section.

6.2 Iterated Block Ciphers Optimization
In this section, we propose an algorithm built on top
of the previous optimization for the specific case of
iterated block ciphers, RC5 and RC6 algorithms. This
optimization problem, stated in Equation (8), is consid-
erably more complex due to the fact that the number of
rounds for each message needs to be a natural number.
Therefore, this optimization problem is non-convex,
which is generally complex to solve.

We use a similar transformation as in the previous
section to obtain the following simpler problem,

max
x,r1,...,rn

x

s.t.
n∑
i=1

oirifi ≤ U,

x ≤ αiri + ωi, i = 1, . . . , n,

ri ∈ N, i = 1, . . . , n,

(20)

which is a mixed-integer linear programming problem
(MILP) since ri ∈ N, as opposed to the previous section,
and in general computationally complex to solve.

Our proposed approach is shown in Algorithm 1. The
algorithm uses the solution in Equation (19) to obtain
a decent starting point (Lines 1–3), i.e., within certain
limits of the optimal solution according to Theorem 1.3
In Line 3, we find the closest natural solution (i.e., ri ∈
N) to the solution of Equation (19), such that each task
has a lower or equal utilization. This solution, however,
might be suboptimal. In Line 4, we find a lower limit
x on the optimal solution x∗ in problem (20).

In Lines 5–6, we identify the search interval [x, x0] =
[x, x]. Then, we perform a binary search [35] in the
interval of [x, x] to find the best design solution x∗. In
Line 8, we divide the interval to two subintervals of
[x, xmid] and [xmid, x]. In Line 9, we find the number
of rounds for each message that provides us with the

3. The value of αi in Equation (19) is substituted by αio
−1
i here.

This is because αi in problem (7) is given per second, while in
problem (8) is given per round.

Algorithm 1 Confidentiality Optimization

1: x0 =
U+

∑n
i=1

ωifi

αio
−1
i∑n

i=1
fi

αio
−1
i

;

2: ti =
(x0−ωi)
αio

−1
i

, i = 1, . . . , n;

3: ri =
⌊
ti
oi

⌋
, i = 1, . . . , n;

4: x = mini=1,...,n {αiri + ωi};
5: x = x0;
6: x = x;
7: while x > x do
8: xmid = x+x

2 ;
9: ri =

⌈
xmid−ωi
αi

⌉
, i = 1, . . . , n;

10: if
∑n
i=1 oirifi ≤ U then

11: x = mini=1,...,n {αiri + ωi};
12: r∗i = ri, i = 1, . . . , n;
13: else
14: x = maxi=1,...,n {αi(ri − 1) + ωi};
15: end if
16: end while

lowest task set utilization, which still has xmid as its
solution. Then, for a given xmid, if

∑n
i=1 oirifi ≤ U (Line

10), then x∗ ∈ [xmid, x] and we update r∗i and x with
the closest natural solution to xmid in the subinterval of
[xmid, x] (Lines 11–12); otherwise (Line 13), x∗ ∈ [x, xmid]
and we update x with the closest natural solution
to xmid in the subinterval of [x, xmid] (Line 14).This
procedure continues until the interval of [x, x] includes
only one solution (Line 7).

First, we demonstrate that the initial (natural) solu-
tion obtained from Equation (19) is guaranteed to be
close to the optimal solution.

Theorem 1: The distance between the optimal solu-
tion x∗ and the natural solution x obtained from Equa-
tion (19), in Lines 1–4 of Algorithm 1, is bounded from
above as follows,

x∗ − x ≤ max
i=1,...,n

{αi} . (21)

Proof: In optimization problem (20), the number of
rounds for each message should be a natural number,
while this is not the case for optimization problem
(9). Since optimization problem (9) is less constrained
compared to optimization problem (20) and we are
solving a maximization problem, we have,

x∗ ≤ x0.
Therefore, the distance between the optimal solution x∗
and x, which is obtained from Equation (19) in Lines
1–4 of Algorithm 1, is bounded from above by,

x∗ − x ≤ x0 − x.
Assuming x = αιrι+ωι (i.e., message γι is the limiting
message in Line 4) and considering Lines 1–4, we have,

x0 − x =
(
αio

−1
i ti + ωi

)
−
(

min
i=1,...,n

{αiri + ωi}
)

=

(
αi
ti
oi

+ ωi

)
−
(

min
i=1,...,n

{
αi

⌊
ti
oi

⌋
+ ωi

})
=

(
αι
tι
oι

+ ωι

)
−
(
αι

⌊
tι
oι

⌋
+ ωι

)
= αι

(
tι
oι
−
⌊
tι
oι

⌋)
≤ αι ≤ max

i=1,...,n
{αi} .

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 7

Hence x∗ − x ≤ maxi=1,...,n {αi}.
Theorem 2: Algorithm 1 has a fully-polynomial time

complexity of O(n2), where n is the number of mas-
sages.

Proof: First, we emphasize that the optimal solution
x∗ is bounded from above by x0 and from below by x
(i.e., x0 x ≤ x∗ ≤ x0). Since the number of rounds for
each message increases in steps of αi, the number of
rounds ri could take only

⌈
x0−x
αi

⌉
values. From Theo-

rem 1 we know that x∗−x ≤ x0−x ≤ maxi=1,...,n {αi}.
Therefore, for each message, the number of rounds ri
could, at most, take only

⌈
maxi=1,...,n{αi}

αi

⌉
values. Fi-

nally, since we have n messages, the number of natural
design solutions in the interval of [x, x0] is bounded
from above by n · k, where k =

⌈
maxi=1,...,n{αi}
mini=1,...,n{αi}

⌉
.

Then, in Lines 7–18, we perform a binary search
[35] in the interval of [x, x0] to find the best design
solution. Since the number of rounds for each message
increases in steps of αi, we have a uniform distribution
for each message. Therefore, the number of points will
be reduced to almost half in every iteration of binary
search. For each message, if the number of design
solutions in [x, x] is odd, then the number of points in
the two subintervals of [xmid, x] and [x, xmid] may differ
by one. Considering all messages, in the worst-case
scenario, the number of points in the two subintervals
may differ by n values. Therefore, in the worst case, the
binary search reduces the size of the set logarithmically,
O(log(n ·k)), until there are only n values left in the set.
Then, in the worst case, the binary search reduces the
size of the set linearly, O(n). Therefore, in the worst
case, the loop runs for O(log(n ·k)+n) = O(n). Consid-
ering that each iteration of the loop has a complexity of
O(n), because of the minimum/maximum operations,
Algorithm 1 has a time complexity of O(n2).

Theorem 3: Algorithm 1 provides the optimal solution
to optimization problem (20).

Proof: Algorithm 1 uses the binary search [35] to
explore all design solutions in the interval of [x, x0].
To prove the optimality of our algorithm, which is
based on the binary search, it is sufficient to prove the
monotonicity property of the objective function. That
is, given two solutions x(1) and x(2), if x(1) > x(2), then∑n
i=1 oir

(1)
i fi ≥

∑n
i=1 oir

(2)
i fi, where r

(1)
i and r

(2)
i cor-

respond to solutions x(1) and x(2), respectively. Based
on the monotonicity property, if

∑n
i=1 oir

(2)
i fi > U

for solution x(2), then the algorithms does not check
any solution x(1), where x(1) > x(2). The monotonicity
property can be proved using r

(1)
i =

⌈
x(1)−ωi
αi

⌉
and

r
(2)
i =

⌈
x(2)−ωi
αi

⌉
, as follows,

x(1) ≥ x(2) ⇔
n∑
i=1

oi

⌈
x(1) − ωi

αi

⌉
fi ≥

n∑
i=1

oi

⌈
x(2) − ωi

αi

⌉
fi

⇔
n∑
i=1

oir
(1)
i fi ≥

n∑
i=1

oir
(2)
i fi.

7 EXPERIMENTAL RESULTS
In the previous section, we demonstrated the optimality
of our approach. In this section we evaluate the ex-
ecution time of our proposed algorithm. We compare

 0

 20

 40

 60

 80

 100

 120

 140

 10 20 30 40 50 60 70 80 90 100

R
u
n
ti
m

e
 (

m
s
)

Number of Messages

CPLEX MILP
GUROBI MILP
MOSEK MILP

Algorithm 1

Fig. 4. Runtime of our optimal algorithm against MILP
solvers (CPLEX, GUROBI, and MOSEK).

the runtime of Algorithm 1 against a mixed-integer
linear programming (MILP) implementation in [14],
adapted to our system model, since it also provides the
optimal solution. We use three state-of-the-art toolboxes
(CPLEX, GUROBI, and MOSEK) to solve the problem
stated in Equation (20).4

We compare the average runtime of these approaches
versus the number of messages sent/received on the
platform. We generate 100 random benchmarks for each
number of messages, with different task set utilizations
between 40%−90%, assuming the earliest-deadline-first
(EDF) scheduling policy. The UUniFast algorithm [36]
is used to generate a set of random real-time tasks for
a given utilization. The experiments are done on a PC
with a quad-core CPU running at 3.6 GHz with 32 GB
of RAM and Linux.

The results are shown in Figure 4. For small number
of messages, e.g., the 100 random benchmarks with
10 messages, the average runtime of our proposed
algorithm is 0.04 ms, while the CPLEX, GUROBI, and
MOSEK MILP solvers could find a solution in 12.45,
3.05, and 6.61 ms, respectively, leading to two orders of
magnitude improvement by our algorithm in runtime.
For large number of messages, e.g., the 100 random
benchmarks with 100 messages, the average runtime of
our proposed algorithm is 0.06 ms, while the CPLEX,
GUROBI, and MOSEK MILP solvers could find a so-
lution only after 27.13, 31.80, 1704.02 ms, respectively.
Therefore, for large number of messages, our algorithm
outperforms the MILP approach by almost three orders
of magnitude.

In summary, our proposed Algorithm 1 is compu-
tationally efficient (fully-polynomial time complexity)
and is appropriate to be employed at runtime.

8 CONCLUSIONS

In this paper, we highlight the importance of an efficient
online algorithm for managing the trade-off between
the available amount of resources and the security
strength. We obtained the optimal amount of time that
should be allocated to message encryption/decryption
analytically. We also proposed an algorithm for the
specific case of iterated block ciphers. This algorithm
has polynomial time complexity with respect to the
number of messages. We compared our optimal algo-
rithm against a mixed-integer linear programming ap-
proach and demonstrated the efficiency of our proposed
approach.

4. The MATLAB code for this comparison is available
at: https://documents.epfl.ch/users/a/am/aminifar/www/
confidentiality optimization.zip

https://documents.epfl.ch/users/a/am/aminifar/www/confidentiality_optimization.zip
https://documents.epfl.ch/users/a/am/aminifar/www/confidentiality_optimization.zip

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. Y, MONTH YYYY 8

ACKNOWLEDGMENTS
This work has been partially supported by the Hasler
Foundation through the Project No. 15048, and by the
ONR-G through the Award Grant No. N62909-17-1-
2006.

REFERENCES
[1] M. Wolf, A. Weimerskirch, and C. Paar, Embedded Security in Cars:

Securing Current and Future Automotive IT Applications. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2006, ch. Secure In-
Vehicle Communication, pp. 95–109.

[2] T. Hoppe, S. Kiltz, and J. Dittmann, Computer Safety, Relia-
bility, and Security: 27th International Conference, SAFECOMP
2008 Newcastle upon Tyne, UK, September 22-25, 2008 Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, ch. Security
Threats to Automotive CAN Networks – Practical Examples and
Selected Short-Term Countermeasures, pp. 235–248.

[3] F. Sagstetter, M. Lukasiewycz, S. Steinhorst, M. Wolf, A. Bouard,
W. R. Harris, S. Jha, T. Peyrin, A. Poschmann, and
S. Chakraborty, “Security challenges in automotive hard-
ware/software architecture design,” in Design, Automation Test
in Europe Conference Exhibition (DATE), 2013, 2013, pp. 458–463.

[4] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, Cryp-
tographic Hardware and Embedded Systems - CHES 2013: 15th
International Workshop, Santa Barbara, CA, USA, August 20-23,
2013. Proceedings. Springer Berlin Heidelberg, 2013, ch. Non-
invasive Spoofing Attacks for Anti-lock Braking Systems, pp.
55–72.

[5] S. Mohan, M. K. Yoon, R. Pellizzoni, and R. Bobba, “Real-time
systems security through scheduler constraints,” in Proceedings
of the 26th Euromicro Conference on Real-Time Systems, 2014, pp.
129–140.

[6] M. D. Natale and A. L. Sangiovanni-Vincentelli, “Moving from
federated to integrated architectures in automotive: The role of
standards, methods and tools,” Proceedings of the IEEE, vol. 98,
no. 4, pp. 603–620, 2010.

[7] G. C. Buttazzo, Hard Real-Time Computing Systems. Kluwer
Academic, 1997.

[8] A. Aminifar, “Analysis, design, and optimization of embedded
control systems,” Ph.D. dissertation, Linköping Studies in Sci-
ence and Technology, 2016.

[9] R. L. Rivest, The RC5 encryption algorithm. Springer, 1995, pp.
86–96.

[10] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady, “Security
in embedded systems: Design challenges,” ACM Transactions
Embedded Computing Syststems, vol. 3, no. 3, pp. 461–491, 2004.

[11] P. Kocher, R. Lee, G. McGraw, and A. Raghunathan, “Security
as a new dimension in embedded system design,” in Proceedings
of the 41st Annual Design Automation Conference (DAC). ACM,
2004, pp. 753–760, moderator-Ravi, Srivaths.

[12] K.-D. Kang and S. H. Son, “Systematic security and timeliness
tradeoffs in real-time embedded systems,” in Proceedings of the
12th IEEE International Conference on Embedded and Real-Time
Computing Systems and Applications (RTCSA), 2006, pp. 183–189.

[13] T. Xie and X. Qin, “Improving security for periodic tasks in
embedded systems through scheduling,” ACM Transactions on
Embedded Computing Systems, vol. 6, no. 3, 2007.

[14] M. Lin, L. T. Yang, X. Qin, N. Zheng, Z. Wu, and M. Qiu, “Static
security optimization for real-time systems,” IEEE Transactions
on Industrial Informatics, 2009.

[15] K. Jiang, P. Eles, and Z. Peng, “Optimization of message en-
cryption for distributed embedded systems with real-time con-
straints,” in IEEE 14th International Symposium on Design and
Diagnostics of Electronic Circuits Systems (DDECS), 2011, pp. 243–
248.

[16] ——, “Co-design techniques for distributed real-time embedded
systems with communication security constraints,” in Proceed-
ings of the 15th Conference for Design, Automation and Test in Europe
(DATE), 2012, pp. 947–952.

[17] ——, “Optimization of secure embedded systems with dynamic
task sets,” in Proceedings of the 16th Conference for Design, Automa-
tion and Test in Europe (DATE), 2013, pp. 1765–1770.

[18] S. Samii, P. Eles, Z. Peng, and A. Cervin, “Quality-driven syn-
thesis of embedded multi-mode control systems,” in Proceedings
of the 46th Design Automation Conference, 2009, pp. 864–869.

[19] A. Cervin, J. Eker, B. Bernhardsson, and K. E. Årzén, “Feedback–
feedforward scheduling of control tasks,” Real-Time Systems,
vol. 23, no. 1–2, pp. 25–53, 2002.

[20] D. Henriksson and A. Cervin, “Optimal on-line sampling period
assignment for real-time control tasks based on plant state in-
formation,” in Proceedings of the 44th IEEE Conference on Decision
and Control. IEEE, 2005, pp. 4469–4474.

[21] G. C. Buttazzo, E. Bini, and D. Buttle, “Rate-adaptive tasks:
Model, analysis, and design issues,” in 2014 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2014, pp.
1–6.

[22] R. Mahfouzi, A. Aminifar, P. Eles, Z. Peng, and M. Villani,
“Intrusion-damage assessment and mitigation in cyber-physical
systems for control applications,” in Proceedings of the 24th In-
ternational Conference on Real-Time Networks and Systems. ACM,
2016, pp. 141–150.

[23] R. L. Rivest, M. J. B. Robshaw, R. Sidney, , and Y. L. Yin, “The
rc6 block cipher,” in the 1st Advanced Encryption Standard (AES)
Conference, 1998.

[24] J. Nechvatal, E. Barker, L. Bassham, W. Burr, and M. Dworkin,
“Report on the development of the advanced encryption stan-
dard (aes),” DTIC Document, Tech. Rep., 2000.

[25] D.-Y. Yeung and Y. Ding, “Host-based intrusion detection us-
ing dynamic and static behavioral models,” Pattern Recognition,
vol. 36, no. 1, pp. 229–243, 2003.

[26] C. L. Liu and J. W. Layland, “Scheduling algorithms for mul-
tiprogramming in a hard-real-time environment,” Journal of the
ACM, vol. 20, no. 1, pp. 47–61, 1973.

[27] J. Borst, B. Preneel, and J. Vandewalle, “Linear cryptanalysis of
rc5 and rc6,” in FSE, vol. 99. Springer, 1999, pp. 16–30.

[28] S. Contini, R. L. Rivest, M. J. B. Robshaw, R. Sidney, , and
Y. L. Yin, “The security of rc6 block cipher,” Tech. Rep.,
1998. [Online]. Available: https://people.csail.mit.edu/rivest/
ContiniRivestRobshawYin-TheSecurityOfTheRC6BlockCipher.
pdf

[29] B. S. Kaliski and Y. L. Yin, “On the security of the rc5 encryp-
tion algorithm,” RSA Laboratories Technical Report TR-602. To
appear, Tech. Rep., 1998.

[30] C. Ferdinand and R. Heckmann, aiT: Worst-Case Execution Time
Prediction by Static Program Analysis. Springer US, 2004, pp.
377–383.

[31] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra et al.,
“The worst-case execution-time problem–overview of methods
and survey of tools,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 7, no. 3, p. 36, 2008.

[32] H. Kopetz, “A solution to an automotive control system bench-
mark,” in 1994 Proceedings Real-Time Systems Symposium, Dec
1994, pp. 154–158.

[33] J. Kim, K. Lakshmanan, and R. Rajkumar, “Rhythmic tasks: A
new task model with continually varying periods for cyber-
physical systems,” in 2012 IEEE/ACM Third International Con-
ference on Cyber-Physical Systems, April 2012, pp. 55–64.

[34] M. Bazaraa, H. Sherali, and C. Shetty, Nonlinear Programming:
Theory and Algorithms. Wiley, 2006.

[35] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Intro-
duction to Algorithms, 2nd ed. McGraw-Hill Higher Education,
2001.

[36] E. Bini and G. C. Buttazzo, “Measuring the performance of
schedulability tests,” Real-Time Systems, vol. 30, no. 1-2, pp. 129–
154, 2005.

https://people.csail.mit.edu/rivest/ContiniRivestRobshawYin-TheSecurityOfTheRC6BlockCipher.pdf
https://people.csail.mit.edu/rivest/ContiniRivestRobshawYin-TheSecurityOfTheRC6BlockCipher.pdf
https://people.csail.mit.edu/rivest/ContiniRivestRobshawYin-TheSecurityOfTheRC6BlockCipher.pdf

	Introduction and Related Work
	System Model
	Platform Model
	Intrusion Detection and Resource Management Task
	Real-Time Application Model

	Preliminaries and Background
	Real-Time Scheduling
	Confidentiality

	Motivational Example
	Problem Formulation
	General Optimization
	Iterated Block Ciphers Optimization

	Optimization Approach
	General Optimization
	Iterated Block Ciphers Optimization

	Experimental Results
	Conclusions
	References

