
Dictionary Compression in Point Cloud Data Management
Mirjana Pavlovic

EPFL
mirjana.pavlovic@epfl.ch

Kai-Niklas Bastian
SAP SE

kai-niklas.bastian@sap.com

Hinnerk Gildhoff
SAP SE

hinnerk.gildhoff@sap.com

Anastasia Ailamaki
EPFL & RAW Labs SA

anastasia.ailamaki@epfl.ch

ABSTRACT
Nowadays, massive amounts of point cloud data can be collected
thanks to advances in data acquisition and processing technologies
like dense image matching and airborne LiDAR (Light Detection
and Ranging) scanning. With the increase in volume and preci-
sion, point cloud data offers a useful source of information for
natural resource management, urban planning, self-driving cars
and more. At the same time, the scale at which point cloud data
is produced, introduces management challenges: it is important
to achieve efficiency both in terms of querying performance and
space requirements. Traditional file-based solutions to point cloud
management offer space efficiency, however, cannot scale to such
massive data and provide the same declarative power as a database
management system (DBMS).

In this paper, we propose a time- and space-efficient solution to
storing and managing point cloud data in main memory column-
store DBMS. Our solution, Space-Filling Curve Dictionary-Based
Compression (SFC-DBC), employs dictionary-based compression in
the spatial data management domain and enhances it with indexing
capabilities by using space-filling curves. It does so by constructing
the space-filling curve over a compressed, artificially introduced 3D
dictionary space. Consequently, SFC-DBC significantly optimizes
query execution, and yet it does not require additional storage
resources, compared to traditional dictionary-based compression.
With respect to space-filling curve-based approaches, it minimizes
storage footprint and increases resilience to skew. As a proof of
concept, we develop and evaluate our approach as a research pro-
totype in the context of SAP HANA. SFC-DBC outperforms other
dictionary-based compression schemes by up to 61% in terms of
space and up to 9.4x in terms of query performance.

CCS CONCEPTS
• Information systems→Data compression;Multidimensional
range search; Main memory engines; Data analytics;

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5490-5/17/11. . . $15.00
https://doi.org/10.1145/3139958.3139969

KEYWORDS
Point Cloud, Multidimensional Data Access Methods, Data Com-
pression, Spatial Data Management
ACM Reference format:
Mirjana Pavlovic, Kai-Niklas Bastian, Hinnerk Gildhoff, and Anastasia Aila-
maki. 2017. Dictionary Compression in Point Cloud Data Management. In
Proceedings of SIGSPATIAL’17, Los Angeles Area, CA, USA, November 7–10,
2017, 10 pages.
https://doi.org/10.1145/3139958.3139969

1 INTRODUCTION
Recent advances in laser technology [30] and image processing [8]
have evolved the importance of point cloud data and challenges
considering its management. The ease of gathering 3D point cloud
data, together with its public availability, have made it more attrac-
tive to users. During recent years, many datasets have been released
as open data. These datasets offer a useful source of information
for natural resource management, urban planning and more, by
modeling point data through up to 26 properties such as x, y, and z
coordinates, angle of scan, and color. One such prominent dataset
is the second national height map of the Netherlands (AHN2) [18],
which was acquired through airborne and terrestrial scanning and
contains 640 billion points.

Given the massive amounts of point cloud data, it is important
to achieve efficiency in terms of both querying performance and
storage footprint. Traditional solutions to point cloud data manage-
ment are file-based: points are stored in files in a predefined format
and processed by application-specific algorithms. These solutions
typically employ efficient compression schemes, but 1) face scala-
bility problems with respect to the increasing number and size of
files to process and 2) lack the declarative power of a DBMS [1, 29].
Therefore, research in this area has recently shifted towards DBMSs,
as many of the data management challenges encountered with the
increasing point cloud data size have already been addressed in
DBMS solutions [29]. Recent work [1, 6, 12, 29] illustrates the po-
tential of column-store DBMSs to meet point cloud management
requirements, but focuses mostly on processing performance and
ignores storage considerations.

This paper presents a design for storing and managing point
cloud data in the context of column-store DBMSs, that is driven
both by time and space efficiency requirements. More specifically,
we employ dictionary-based compression (DBC) – a compression
method frequently used in main-memory column stores [5, 13] – in
the spatial domain and enhance it with indexing capabilities, mini-
mizing both space and time requirements. The resulting technique,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3139958.3139969
https://doi.org/10.1145/3139958.3139969

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA M. Pavlovic et al.

Space-Filling Curve Dictionary-Based Compression (SFC-DBC),
compresses point cloud data using DBC, leveraging the frequent
repetition of the values for x, y, and z coordinates across point
cloud entries; this property is particularly evident for data obtained
through image matching processing as it inherits the grid-like struc-
ture of images. DBC significantly minimizes space requirements.
However, it is agnostic to spatial data properties. To preserve and
exploit spatial data properties and thus optimize further for query
execution, we combine DBC with Space-Filling Curve (SFC) order
to design a new compression scheme.

According to our compression scheme, a point cloud entry is
represented through its position in an artificially introduced 3D
dictionary space and indexed using a SFC order. As we illustrate
in our experimental results, SFC-DBC does not require additional
space resources, and yet significantly optimizes query execution,
compared to traditional DBC. With respect to the traditional space-
filling curve-based approaches, it minimizes storage footprint and
increases resilience to skew.

In particular, our contributions are:
• We explore different solutions to store and manage point
cloud data, having dictionary-based compression as a first-
class citizen.
• We develop SFC-DBC, a novel encoding scheme that em-
ploys dictionary-based compression in the spatial domain,
enhancing it with indexing capabilities to provide time and
space efficiency properties.
• We develop and evaluate our approach as a research proto-
type in the context of SAP HANA [5]. SFC-DBC outperforms
other dictionary-based compression schemes by up to 61% in
terms of space and up to 9.4x in terms of query performance.

The remainder of the paper is structured as follows. We provide
the background of our work, i.e., discuss DBC and SFC order in the
context of point cloud data management in Section 2. We introduce
our approach in Section 3 and discuss experimental evaluation in
Section 4. Finally, we give an overview of related work in Section 5
and draw conclusions in Section 6.

2 BACKGROUND
Our proposed solution combines dictionary-based compression
(DBC) and space-filling curve (SFC) order to efficiently store and
manage point cloud data. Therefore, in this section we discuss the
choice of DBC and SFC order, describe traditional approaches to
these techniques and outline their shortcoming and challenges
when it comes to point cloud data management.

2.1 Dictionary-based Compression
Two major technologies that are used for point cloud data acqui-
sition are LiDAR [30] and dense image matching [8]. LiDAR is
fundamentally a distance technology that uses an emitted laser
pulse to determine an object’s distance from a sensor, while image
processing technology acquires point cloud data through dense
image matching of multiple overlapping aerial images. With recent
technological advancements, dense image matching has gained
popularity as it offers the same capabilities as LiDAR, at a lower
price and finer resolution [8]. Whether the point cloud data is ob-
tained through LiDAR or image matching technology, the values

value vid

0.3 0

0.5 1

1.2 2

2.3 3

10.1 4

. . .

vid

4

1

7

3

4

2

9

…

X IVz

binary
search

scan
value vid

0.3 0

0.5 1

0.9 2

2.3 3

2.4 4

. . .

vid

5

1

4

3

4

3

1

…

Z

value vid

0.1 0

1.5 1

1.2 2

3.3 3

20.1 4

. . .

vid

9

2

6

2

4

5

0

…

YIVx IVy

7

dictionary

index vector

Figure 1: An example of range query execution over a
dictionary-based representation of point cloud data.

for x, y, and z coordinates (not the points themselves) repeat across
point cloud entries frequently. The data obtained through image
matching processing by default has these properties as it inherits
the grid-like structure of images, while LiDAR data obtains these
characteristics as the result of typically employed post-processing
steps (e.g., thinning-out of data) [25, 30]. We take advantage of
these patterns in data distribution by employing DBC, a method
frequently used in main-memory column stores [5, 13].

Dictionary-based Compression. DBC compresses a column
by mapping its domain to a list of continuous integer values, i.e.,
replacing wide values in the attribute domain with smaller codes. Its
simplest form consists of a dictionary and an index vector (IV). The
dictionary stores the sorted distinct values of the column domain,
while the IV maps each point to its position in the dictionary.

When naively applied in the context of point clouds, DBC rep-
resents point cloud data as three independent columns – one for
each dimension of the 3D space – composed of a dictionary and an
IV. The dictionary stores the sorted distinct values for the corre-
sponding dimension and the IV maps the point to its corresponding
position in the dictionary, as illustrated in Figure 1. A 3D range
query is executed by performing binary search on the dictionary
of each dimension to identify values and their corresponding posi-
tions in dictionaries that intersect with the query range. The binary
search is followed by a scan of the corresponding IV to identify the
records that match the identified dictionary position.

Challenges. Although the baseline DBC solution to store and
query point cloud data is a straightforward one, it wastes com-
putational resources as it does not leverage the spatial properties
of data. More precisely, it treats and consequently processes the
dimensions and points independently, leading to a full scan of the
IVs for each dimension. As we illustrate in our experiments (Section
4), even optimized scans of vector data require considerable time
when processing massive point cloud datasets.

Therefore, to optimize this strategy we leverage a correlation
within and across point cloud entries. A point cloud entry is rep-
resented with x, y, and z coordinates that are correlated, i.e., they
describe a point in 3D space. Moreover, there is a correlation across
the points: points close in 3D spacewill be frequently processed (e.g.,
queried) together. Therefore, we take advantage of this property
and organize data to persevere spatial proximity. Consequently, we
can restrict a search range using an index structure (that combines
all 3 dimensions) and improve the data access patterns. However, a
challenge is to achieve this in both time and space-efficient manner,
as an index-like structure normally increases the storage footprint.

Dictionary Compression in Point Cloud Data Management SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

Y

72

70.7

55

37.2

17

1.7

1.5

0.1

0.1 1 1.2 2 26 72 88 99

3

Y dictionary

X dictionary

P(0.1, 1.5)

SFCcodes (0, 0)

0 1 2 3

Y

3

2

1

0

0 1 0 1 0 1 0 1

Y
11

0

1

0

1

0

1

0

+ offsets(0, 1)

dictionary space

SFC_IV

Figure 2: Dictionary space, 2D illustration.

2.2 Space-filling Curves
A common way to preserve and exploit spatial data properties
is by using Space-filling Curves (SFC) [14–16, 21, 29]. SFC-based
organization transforms data from a multi- to a one-dimensional
domain using a SFC to impose a total, 1D order by visiting all the
points in a d-dimensional grid exactly once. The Hilbert curve [10],
the Gray-code curve [3], and the Z-order [20] are examples of
SFC curves that are effective in preserving spatial proximity [4,
10, 17]. We opt to use a SFC-based organization to preserve and
exploit spatial data properties due to its suitability for column-store
DBMS. By transforming data to a 1D domain, we do not preserve
spatial proximity to the same extent as with multi-dimensional
data structures, however, we retain the ability to employ efficient
scans of vector data. Simplicity and efficiency in the preprocessing
step are additional benefits of this approach. In the following we
describe the traditional approach to organize and query data using
SFC. We focus on range queries as they are broadly used in many
applications and are also the fundamental building block for many
other spatial queries (e.g., k-nearest neighbor queries [11]).

SFC Organization. SFC order reorganizes data in three steps:
(1) Partition the dataset’s universe with a uniform grid and assign
to each cell a value on the space-filling curve (SFCcode), (2) Assign
SFCcode to every point cloud entry according to the grid cell they
belong to, where multiple point cloud entries can map to the same
SFCcode value, and (3) Sort the points based on the assigned SFCcode.

Range query execution is composed of two steps. 1) Transform
a query to the 1D domain according to the SFC-order and perform
binary search on the SFCcodes data structure based on the trans-
formed ranges. 2) As a SFCcode is assigned per cell and not per
point basis, all the points whose SFCcode matches the result of the
binary search have to be additionally checked whether they belong
to the query range in order to remove false positives. Techniques
that partition the curve into multiple sub-intervals, each of which
is fully contained in the original range [28], are used in order to
minimize the number of checks in the second step.

Challenges. SFC-based organization offers a simple and efficient
way to preserve and exploit spatial proximity. However, it does so
by constructing a SFC order that is stored in addition to the data
model. Therefore, whether we preserve data in the initial form
(uncompressed 3D points) or use dictionary-based representation
(Section 2.1), the SFCcodes structure requires additional storage
resources. Consequently, applying the traditional scheme improves

Y

72

70.7

55

37.2

17

1.7

1.5

0.1

0.1 1 1.2 2 26 72 88 100

6

X

Y Y

0

18

36

54

72

0 25 50 75 100

SFC-DBC traditional

p1

p1

p2

p3

p4

p5

pn

p2
p3

p4

p5

pn

p1(0.1, 1.5)

p2(0.1, 1.7) p3(1, 17)

p4(1.2, 0.1) p5(1.2, 17)

pn(100, 72)

…

Figure 3: SFC-DBC (data-oriented) and SFC-based (space-
oriented) partitioning strategy.

querying performance, however, it hurts space efficiency (as we
illustrate in our experiments, Section 4).

3 SPACE-FILLING CURVE
DICTIONARY-BASED COMPRESSION

To efficiently employ DBC in the spatial domain, we develop Space-
Filling Curve Dictionary-Based Compression (SFC-DBC), a solution
for storing and managing point cloud data that is driven both by
time and space efficiency requirements. SFC-DBC combines DBC
with SFC order to ensure space efficiency and preserve spatial prox-
imity, thus optimizing for query execution. Our approach ultimately
applies DBC in the spatial domain and enhances it with indexing
capabilities without introducing additional storage requirements.

SFC-DBC represents a point cloud entry through its position in
an artificially introduced 3D dictionary space and indexes it using
a SFC order. The dictionary space is a compressed 3D space that
we reconstruct from x, y, and z dictionaries. To do so, we exploit
the fact that the dictionaries resemble the dataset space (universe)
when combined, since each of them is sorted according to the
corresponding dimension. SFC-DBC represents and indexes a point
cloud entry using a SFC order constructed over this 3D space.

Figure 2 illustrates the dictionary space where, for the sake of
simplicity, we use a 2D illustration. The SFC order (Z-order in our
example) is constructed over the dictionary space, by partitioning it
into four cells per dimension. SFC-DBC represents and indexes a
point cloud entry with its position in the SFC order, i.e., with the
assigned SFCcode which identifies the dictionary space cell that the
point belongs to. As multiple points canmap to the same SFCcode, to
uniquely represent the position of the point in the dictionary space
(and thus its value), SFC-DBC additionally captures the position
within the cell that the point belongs to. For instance, in Figure 2 a
point P (0.1, 1.5) is represented through our encoding scheme with
a SFCcode that encodes the cell ids that P maps to (0 and 0 value for
x and y coordinate, indicated with blue color) and with the offsets
that store the position of P within a cell (0 and 1 value for x and y
coordinate, indicated with red color).

Improvement overDBC.With respect to traditional DBC, SFC-
DBC significantly optimizes query execution, and yet it does not
require additional storage resources, as we illustrate in Section 3.3.
The key insight is that a SFC order is integrated into the dictionary
space model. Consequently, the SFC order plays the role of the IV
data structure (Section 2.1) while preserving spatial data proximity
and low storage footprint.

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA M. Pavlovic et al.

value

0.3

0.5

1.2

10

26

72

88.1

…

100

points (x, y, z)

1.2, 55, 0.5

0.3, 0.1, 0.1

72, 1.7, 11.2

. . .

n

X=2000, BPD=10

cell

0

1

2

3

…

offset

0

1

0

1

0

1

0

1

…

Y=3000, BPD=10 Z=1500, BPD=10

value

0.1

1.5

1.7

17

37.2

55

70.7

…

72

cell

0

1

2

…

offset

0

1

2

0

1

2

0

1

…

value

0.1

0.5

1.7

3.3

11.2

22.1

37.1

…

59

cell

0

1

2

3

…

offset

0

1

0

1

0

1

0

1

…

value

0.1

0.5

1.7

3.3

11.2

22.1

37.1

…

59

value

0.3

0.5

1.2

10

26

72

88.1

…

100

value

0.1

1.5

1.7

17

37.2

55

70.7

…

72

dictionary space

dimension X dimension Y dimension Z
X Y Z

SFC_IV

SFCcodes X offsets Y offsets Z offsets

SFC(1,1,0) 0 2 1

SFC(0,0,0) 0 0 0

SFC(2,0,2) 1 2 0

… … … …

SFC(n) Offsetx(n) Offsety(n) Offsetz(n)

Figure 4: Point cloud data organized according to SFC-DBC Encoding.

Improvement over SFC. Compared to traditional SFC-based
approaches, SFC-DBC minimizes storage footprint and increases
resilience to skew. SFC-DBC achieves this by constructing a space-
filling curve over a reduced dictionary space, instead of the original
data space (universe). This partitioning strategy has a twofold ef-
fect on SFC-DBC. First, it enables the integration of SFC into the
dictionary model. This consequently lowers the storage footprint
and assigns two roles to the SFC: the role of spatial index and IV
in DBC. Second, it enables a better adjustment of SFCcodes to the
distribution of the data.

Figure 3 illustrates an example of data partitioning using both
SFC-DBC and traditional SFC-based strategy. We use the subset of a
dataset represented with six points p1-p5 & pn and assume that each
dimension is divided into four cells. The SFC order, constructed ac-
cording to the traditional encoding scheme, follows space-oriented
partitioning, i.e., it uses uniform partitioning of the space, regard-
less of data distribution. As opposed to this, SFC order in SFC-DBC
is defined in a data-driven way. As illustrated in the example, data-
driven partitioning improves skew handling, since it is done based
on the actual points values. Data-partitioning also restricts the
number of distinct points per cell, additionally improving skew
resilience. In the example, SFC-DBC can have at most four distinct
points per cell, while space-oriented partitioning does not have
these guaranties.

In the following subsections we discuss necessary data structures
and describe how to build and use them in the preprocessing and
querying step. Finally, we conclude with the benefits and scope of
our approach.

3.1 Preprocessing & Data Structures
The SFC-DBC approach represents a point cloud entry through
its position in an artificially introduced 3D dictionary space and
indexes it using a SFC order. Consequently, the preprocessing step
results in two types of data structures: dictionary- and index-like
structures. In the following we describe these structures and the
preprocessing step that produces them.

Data Structures. SFC-DBC operates on a dictionary space and
a space-filling curve index vector (SFC_IV) data structures, as il-
lustrated in Figure 2 and Figure 4. The dictionary space is a 3-
dimensional space reconstructed from x, y, and z dictionaries that
captures the distinct values of point cloud entries in each dimension.

SFC_IV maps each point to its position in the dictionary space and
thereby its value. At the same time, it plays the role of a spatial
index by encoding the point through its position in the SFC order
constructed on top of the dictionary space.

To uniquely identify the position of a point in dictionary space,
SFC_IV further consists of the SFCcodes and offsets vectors. The
SFCcodes vector maps the point to its position in the SFC order
based on the assigned SFCcode. The corresponding SFCcode does
not uniquely identify the position of the point in the dictionary space
but rather the cell it is in, as we assume that a point cloud entry
does not have a unique representation in the SFC order. Therefore,
we additionally capture the position of the point within the cell
using the offsets vector data structure. The SFCcodes structure is ad-
ditionally compressed to minimize the storage requirements. More
precisely, considering that multiple points map to the same SFCcode,
we store just the distinct SFCcodes values and their corresponding
starting positions in the input.

Preprocessing. The preprocessing step consists of four tasks
that we describe through an example illustrated in Figure 4. First,
we begin by producing a 3D dictionary space and a grid on top of it.
More precisely, we produce a dictionary per dimension and divide
them into cells, for each dimension independently. The number of
cells is determined by the number of bits assigned per dimension
(BPD) in the SFCcode and it corresponds to 2BPD . For instance, in
the example (Figure 4), the x dictionary is divided into 1024 cells as
BPD corresponds to 10. Consequently, every cell has two dictionary
entries, given that the number of entries in the x dictionary is 2000.
Notice that the number of entries per cell (EPC) differs between x, y,
and z dimensions as the dictionaries have different sizes (depending
on the number of distinct values per dimension).

Second, once the dictionary space is partitioned, we assign a SFC-
code to every point according to the dictionary cells they belong to.
For instance, the first point P (1.2, 55, 0.5) in the example (Figure 4,
points) belongs to the cells with ids 1, 1 and 0 for the x, y, and z
dimension respectively, and thus the SFCcode encodes these ids. The
ids, however, do not uniquely identify the position of the point in
the dictionaries. To do so, in the third step we additionally store the
position of the point within the cells (Figure 4, offsets) – therefore,
for the first point we store 0, 2 and 1 values according to x, y, and z
dimensions. Lastly, once the final structures are produced, we sort
them according to the assigned SFCcode.

Dictionary Compression in Point Cloud Data Management SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

Algorithm 1: Query Execution: produce candidate results set
Input: q: range query - defined with two coordinates
Output: minDQ, maxDQ: min and max position in dictionary

that corresponds to query range
Output: candidateSet: candidate result set

//transforms query to 1D:
for d = 0 to dimensions do

minDQ[d] = binaryS (dictionary[d],q.low[d])
maxDQ[d] = binaryS (dictionary[d],q.hiдh[d])

end
qSFCcodes = calcSFCcode (q,minDQ,maxDQ)
candidateSet = binaryS (qSFCcodes, SFCcodes)
return candidateSet

3.2 Query Execution
Similar to the traditional SFC-based approach, the query execution
is composed of two steps. In the first step, the SFCcodes vector
restricts search space by producing the candidate results set, while
in the second step we additionally prune, i.e., remove false positive
results.

The first step is illustrated in Algorithm 1. The query execution
first transforms the query range to the 1D domain, by determining
its position in the dictionary space and calculating the correspond-
ing qSFCcodes. Based on the produced codes, we determine the
candidate result set by performing binary search on the SFCcodes
vector. The resulting candidate set may contain false positive re-
sults considering that the SFCcode is assigned per cell and not per
point. Therefore, in the second step we check if the identified points
indeed belong to the query range.

To do so, we reconstruct the position of the point in the dictio-
nary (and thus its value) for the points identified in the candidate
results set and check if they belong to the query range. We perform
this algorithm for all three dimensions in parallel, as illustrated
in Algorithm 2. More precisely, the position is reconstructed by
combining the decoded SFCcode and offset values, i.e., applying the
following formula for the corresponding dimension:

position = cell_id × #EPC + o f f sets (1)

where cell_id represents the dictionary cell id obtained by decod-
ing the SFCcode for the corresponding dimension and EPC stands
for the number of entries per cell in the corresponding dictionary.
Once the position is reconstructed, we check if it belongs to the
query range <minDQ,maxDQ>, which corresponds to the mini-
mum and maximum position in the dictionary that the query maps
to (obtained in Algorithm 1).

Filtering. The time consuming operations in this process are
the scan of the offsets vector and the decoding of the SFCcode. As
the decoding is done once per distinct SFCcode value (once a value
is decoded it is reused for all the points that have the same SFCcode),
the scan of the offsets vector dominates the total execution time, as
illustrated in Section 4.2. Therefore, to optimize the offsets vector
scan, SFC-DBC minimizes the number of the offset entries neces-
sary to be examined by skipping the entries that are completely
enclosed by the query range. This can be done by checking the
enclosedByQuery condition in Algorithm 2, which requires just the
decoded SFCcode and EPC values in order to calculate the minimum

Algorithm 2: Query Execution: produce final results set
Input: q: range query - defined with two coordinates
Input: candidateSet: candidate result set
Input: minDQ, maxDQ: min and max position in dictionary

that corresponds to query range
Input: EPC: number of entries per cell, d - dimension
Output: pOut: point cloud result set

for i = value in candidateSet do
cell_id = decode (SFCCodes[i],d)
base = cell_id ∗ EPC[d]
//retrieve the positions of the points for the given SFCcode
<inputMin, inputMax> = mapSFCcodeToInputPosition(i)
//enclosedByQuery condition
if minDQ[d] < base AND (base + EPC[d]) < maxDQ[d]
then
pOut .setRanдe (inputMin, inputMax)
continue

end
//not enclosedByQuery - retrieve offsets
for j = inputMin; j < inputMax do

position = base + offests[j];
if minDQ < position < maxDQ then

pOut .set (j)
end

end
end
return pOut

and maximum position in dictionary that the points with a given
SFCcode can map to. Intuitively, this optimization is more beneficial
for the non-selective queries, as illustrated in Section 4.5.

3.3 Discussion
SFC-DBC enhances dictionary-based compression with indexing
capabilities, optimizing for query execution without introducing
additional space requirements. Therefore, in the following we ana-
lyze the space requirements of the baseline DBC and SFC-DBC. We
conclude the section discussing the scope of our approach.

3 × (DS × de + n × loд2DS) (2)

Space Requirements. As illustrated in Section 2.1, the baseline
DBC operates based on dictionaries and IV. Therefore, its total
space requirements correspond to Equation 2, where for the sake of
simplicity we assume that each dictionary in 3D space has the same
length. More precisely, 3×DS×de represents the space requirements
of the dictionaries, where DS and de are the number of entries and
the size of an entry in the corresponding dictionary respectively.
IVs corresponds to 3 × n × loд2DS , where n is the number of points
and loд2DS is the number of bits per IV entry (which corresponds
to the number of bits necessary to represent the maximum position
in the corresponding dictionary).

On the other hand, the SFC-DBC approach stores dictionaries, off-
sets and SFCcodes vectors, resulting in the total space requirements
illustrated in Equation 3. More precisely, the dictionaries are repre-
sentedwith 3×DS×de , the offsets vectors with 3×n×loд2 ⌈DS/2BPD ⌉
where BPD is the number of bits assigned per dimension, while the

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA M. Pavlovic et al.

SFCcodes vector corresponds to #SFCcode × 3 × BPD where #SFC-
code represents the number of distinct SFCcode values. Compared
to the space requirements of the baseline DBC – the dictionaries are
identical, offsets vector minimizes the resources of IV since an offset
entry indexes the values within a dictionary cell as opposed to the
entire dictionary, while SFCcodes vector introduces additional space
requirements.

3 × (DS × de + n × loд2 ⌈DS/2BPD ⌉ + #SFCcode × BPD)
≡ 3 × (DS × de + n × loд2DS − n × BPD + #SFCcode × BPD)

(3)

Therefore, comparing the requirements of both approaches (ac-
cording to Equation 2 and Equation 3), the SFC-DBC approach
subtracts 3×n × BPD, while at the same time it introduces an addi-
tional overhead in the form of 3 × #SFCcode × BPD. Considering
that n ⩾ #SFCcode , the benefit is higher than the overhead and
thus, the space requirements of SFC-DBC are always smaller or
equal to the requirements of DBC.

Scope. As discussed, DBC is a good approach for point cloud
data representation, because of the repetition of values for the x, y,
and z coordinates. A limitation for such dictionary-based solutions
is that this property cannot be guaranteed for raw (unprocessed)
point cloud data obtained through LiDAR technology, as it results
in unstructured form. However, LiDAR data typically obtains these
characteristics as the result of post-processing steps (e.g., thinning-
out of data) [25, 30].

Additionally, our solution is primarily designed for a static use
case, due to the static nature of point cloud data. An insertion/update
into our encoding scheme is a possible, yet costly operation as the
whole preprocessing might need to be redone. However, this limi-
tation does not hurt this scheme in the context of SAP HANA. As
we discuss in section 4, HANA has segments of storage that do not
need to provide cheap single-insert or update operations due to the
Delta/Main concept.

4 EXPERIMENTAL EVALUATION
In this section we first describe the experimental setup and method-
ology and then evaluate the performance of the proposed approaches
over real-world datasets.
Hardware Configuration. We run experiments on a SuSE Linux
Enterprise Server 12 SP1 machine equipped with 4 Intel Xeon CPU
E7-4880v2 processors at 2.50GHz and 512GB of RAM. Each proces-
sor has 15 cores with private L1 (32KB) and L2 (256KB) caches, as
well as 37,5MB of shared L3 cache.
SAP HANA. HANA is an in-memory database that offers the pos-
sibility to store data in either a row-oriented or a column-oriented
fashion. It has a unique way of handling inserts and updates. More
precisely, each column partition has two segments, a read-optimized
Main segment and a write-optimized Delta segment. Updates and
inserts are written to the Delta segment, while Main segments are
created by an asynchronous background task. As this process has
access to all the column fragment’s data, it can make an optimal
decision on the type of the Main segment (such as our SFC-DBC
container) to be created and its properties. The column store’s de-
sign is centered around SIMD operations to speed up scans of vector
data [31]. This design choice is reflected in our proposed encoding
scheme. It is necessary to notice that SAP HANA is the system that
we used as a proof of concept to develop and evaluate our approach,

however, the proposed solution can be integrated in other main
memory column-store DBMS.
Implementation. All indexing techniques are implemented in
C++ and compiled with GCC 4.8.5. The list below summarizes the
implementations that we study experimentally.

Baseline corresponds to the baseline dictionary-based compres-
sion approach described in Section 2.1.

SFC-DBC represents our approach, introduced in Section 3. We
use the Z-order as a SFC order, due to its simplicity and the huge
body of work on its efficient range query algorithms (e.g., [2, 27,
28]). In our approach, a zcode encodes the cell ids (for x, y, and
z dimension) that a point cloud entry maps to in a uniform grid
built over the dictionary space and, therefore, we represent a zcode
as an integer. The BPD in a zcode determines the total number
of cells (per corresponding dimension) in the uniform grid and,
consequently, the maximum number of point cloud entries that can
qualify for the second step in the query execution of our approach,
i.e., removing false positives. We represent zcode with 32 bits (10
bits per dimension — BPD) as a trade-off betweenmemory resources
and precision (number of false positives to be filtered).

SFC stands for the Space-Filling Curve-based approach, which
we implemented as a middle ground solution between the Base-
line approach and SFC-DBC. The SFC approach does not require
decoding of SFCcode, however, it needs additional space for its stor-
age. Therefore, we use SFC to evaluate SFC-DBC: the overhead
introduced with its decoding step, but also the storage benefits.

More precisely, the SFC approach corresponds to the traditional
approach described in Section 2.2 with one modification. To have
a fair comparison in terms of space requirements, we build a SFC
order as an addition to the DBC model. Therefore, the SFC ap-
proach extends the Baseline approach with a SFC order, using
space-oriented partitioning of the dataset universe. Consequently,
it stores the SFCcodes vector in addition to the structures used in
the Baseline approach (Section 2.1). Like in the SFC-DBC approach,
we use the Z-order and compress the SFCcodes, each represented
with 32 bits. The query execution is adjusted to the DBC model. We
first execute a query on the SFCcodes producing a candidate results
set, while in the second step we remove false positive results by
examining the actual points. Similar to the Baseline approach, the
points are examined by combining the information from dictionar-
ies and IVs. However, the scan of IV is restricted, as we examine
just the ranges detected by the candidate results set.
Datasets. We use two types of datasets, obtained using dense
image matching and LiDAR technologies. "Senatsverwaltung für
Wirtschaft, Technologie und Forschung" and "Europäischer Fonds
für regionale Entwicklung (EFRE)" provided the datasets that are
generated using dense image matching. Berlin aerial scan has reg-
ular point distribution with 100 points per square meter, while
terrestrial castle scan represents irregular point distribution and
a varying point density. We also use AHN2 dataset [18], obtained
using LiDAR technology. To evaluate the scalability of approaches,
we sample the datasets uniformly, increasing the dataset size from
125 million points to 1 billion points.
Queries.We produce one hundred 2D and 3D range queries that
follow uniform distribution. We vary selectivity by increasing the
queries’ volume: 10−2%, 10−1%, 1%, 10%, 20%, and 40%.

Dictionary Compression in Point Cloud Data Management SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

0

2

4

6

8

10

125 250 500 1000

Re
la
tiv
e	
sp
ac
e	
re
qu

ire
m
en

ts

a)	#points	in	datasets	(millions)

SFC-DBC
Baseline
SFC
Uncompressed

0

1

2

3

4

SF
C-
D
BC

Ba
se
lin
e

SF
C

SF
C-
D
BC

Ba
se
lin
e

SF
C

125 1000

Re
la
tiv
e	
sp
ac
e	
re
qu

ire
m
en

ts

b)	#points	in	datasets	(millions)

Dictionary
SFCCode
Index

Figure 5: Berlin aerial dataset, space requirements: a) total and b) breakdown.

0

2

4

6

8

10

125 250 500 1000

Re
la
tiv
e	
sp
ac
e	
re
qu

ire
m
en

ts

a)	#points	in	datasets	(millions)

SFC-DBC
Baseline
SFC
Uncompressed

0

2

4

6

8

10

0 200 400 600 800 1000

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

b)	#points	in	datasets	(millions)

Baseline
SFC
SFC-DBC

Figure 6: AHN2 dataset: a) space requirements and b) query execution time (3D queries).

Experimental Results. In all the experiments we illustrate rela-
tive numbers. More precisely, the execution time is relative to the
Baseline approach, i.e., its execution time obtained when process-
ing the smallest dataset (125M elements). Following the same logic,
the space requirements results are relative to the Uncompressed
storage model (considering the smallest dataset).

4.1 Space Requirements
In this set of experiments we evaluate the space requirements of the
aforementioned approaches when processing the Berlin aerial and
AHN2 datasets. We measure the requirements of dictionaries and
IVs for the Baseline approach, considering additionally the size of
SFCcodes for the SFC-based approaches. Furthermore, we measure
the size of uncompressed data, i.e., when using a straightforward
approach of storing all three coordinates. Figure 5a) presents the rel-
ative space requirements, while Figure 5b) illustrates the breakdown
for the smallest and the biggest point cloud size when processing
the Berlin aerial dataset. The horizontal line corresponds to the
requirements of the Uncompressed model, for the smallest dataset.

Dictionary-based compression significantly reduces the space
requirements: the Baseline approach reduces the space necessary to
represent uncompressed data by up to 65%. SFC-DBC additionally
minimizes the requirements, reducing the Baseline approach stor-
age footprint by up to 40%. On the other hand, the SFC approach
requires up to 13% more storage compared to the Baseline approach.
The observed trends are similar for the AHN2 dataset, as illustrated
in Figure 6a).

According to Figure 5b) all dictionary-based approaches have
dictionaries of the same size, while the Index (i.e., IV /offsets) and the
SFCcodes requirements vary. SFC-DBC has the smallest Index size,
where the space reduction over the SFC and Baseline approaches
is constant - 46%. On the other hand, it produces more distinct
SFCcodes values compared to the SFC approach due to data-oriented
partitioning (as discussed in Section 3). Consequently, it increases
the space quota, but it also improves skew handling by enabling a
better adjustment of SFCcodes to the distribution of the data.

4.2 Query Performance
To experimentally evaluate the query performance of SFC-DBC we
execute 100 uniformly distributed 3D and 2D range queries with a
selectivity of 1% on the Berlin aerial and AHN2 datasets.

Figure 7 illustrates the relative execution time when executing
3D and 2D queries on the Berlin aerial dataset. As the experiment il-
lustrates, the Baseline approach requires substantially more time be-
cause it scans the complete IVs, whereas the SFC-based approaches
scan just the intervals detected by the candidate result set. There-
fore, the SFC-DBC approach outperforms the Baseline approach
with speedup of 7.5 - 8.9 and 6.8 - 9.4x, when executing 3D and 2D
queries respectively. SFC-DBC achieves performance comparable
to that of the SFC approach considering that 1) decoding is done
once per distinct SFCcode value, and 2) the decoded value was suffi-
cient to decide whether a point satisfies a range query for 86% of
the candidate result set values (i.e., the filtering step was applied,
Section 3.2). Therefore, SFC-DBC compensates for the decoding

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA M. Pavlovic et al.

0

2

4

6

8

10

0 200 400 600 800 1000

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

a)	#points	in	datasets	(millions)

Baseline
SFC
SFC-DBC

0

2

4

6

8

10

0 200 400 600 800 1000

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

b)	#points	in	datasets	(millions)

Baseline
SFC
SFC-DBC

Figure 7: Berlin aerial dataset, query execution time: a) 3D and b) 2D range queries.

0

0.2

0.4

0.6

0.8

1

1.2

125 1000

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

#points	in	datasets	(millions)

Decoding
Binary	Search&Scan

Figure 8: SFC-DBC: execution time breakdown.

step by its ability to avoid the offsets vector scan. The observed
trends are similar for the AHN2 dataset, as illustrated in Figure 6b).

Figure 8 presents the execution time breakdown for the SFC-
DBC approach when processing the smallest and the biggest point
cloud datasets. Decoding represents the time necessary to perform
decoding of SFCcode and the Binary Search&Scanmeasures the time
necessary to perform binary search (on SFCcodes and dictionaries)
and the scan of the corresponding offsets. As the small dataset
(125Mpoints) is produced by uniformly sampling the biggest dataset
(1000Mpoints), the number of distinct SFCcode values does not differ
significantly between two datasets – the 1000M dataset has x1.32
more distinct SFCcodes. Therefore, the decoding time takes 71%
and 13% of the total execution time, since the number of distinct
SFCcodes corresponds to 29% and 5% of the point cloud entries in
the smallest and biggest datasets respectively.

4.3 Impact of Skew
In the following set of experiments we analyze the impact of skew
on the space requirements and query performance of SFC-based
approaches. We execute 100 uniformly distributed 3D queries (1%
selectivity) on the Terrestrial castle scan that has irregular point
distribution and a varying point density. Figure 9a) measures space
requirements, while Figure 9b) illustrates the execution time.

Due to skew in data distribution and density, the space require-
ments of the dictionary-based approaches are minimized compared
to their requirements when processing data with uniform distribu-
tion (Section 4.1). As the number of distinct values per coordinate
decreases, the space requirements of dictionaries and IVs/offsets also

decrease and therefore, the Baseline approach reduces the space
necessary to represent uncompressed data by up to 75%. Skew addi-
tionally reduces the number of distinct SFCcodes and thus, SFC-DBC
reduces the Baseline approach storage footprint by up to 61%.

On the other hand, skew in data distribution and density reflects
to SFCcodes distribution and thus penalizes query performance.
More specifically, having fewer distinct SFCcodes increases the num-
ber of point cloud entries needed to be checked for intersection per
SFCcode. Therefore, the speedup of SFC-DBC and SFC approaches
over the Baseline approach drops up to 10% and 16% compared
to the speedup achieved when processing the data with uniform
distribution. SFC-DBC incurs smaller performance penalties as the
decrease in the number of distinct SFCcodes has a twofold effect on
performance. On one hand, it hurts performance since the number
of points necessary to be scanned increases. On the other hand, it
decreases the number of SFCcodes necessary to be decoded.

4.4 Impact of Selectivity
To evaluate the impact of selectivity on query performance we
execute one hundred 3D queries on the Berlin aerial dataset (500
million points) varying selectivity from 10−2% to 40%. Figure 10
illustrates the total execution time.

As expected, SFC-based approaches benefit from queries with
high selectivity. They minimize the number of IV/offsets entries
necessary to be scanned using a SFC order as an index, while the
Baseline approach performs a full IV scan. On the other hand, less
selective queries (e.g., 40% selectivity) favour the Baseline approach
considering that they touch significant amount of data. Thus, the
speedup of the SFC-DBC approach drops from 8.4x to 2.8x when
decreasing query selectivity.

4.5 Impact of Filtering
To evaluate the impact of filtering (introduced in Section 3.2) on
the performance of SFC-DBC, we execute one hundred 3D queries
on the Berlin aerial dataset (500 million points) varying selectivity
from 10−2% to 10%. Figure 11 illustrates the relative execution time
for the SFC-DBC approach, when we enable and disable filtering.

The filtering step minimizes the range that has to be scanned in
the offsets vector. Since the length of the range is determined by the
query selectivity, the impact of filtering depends on the selectivity.

Dictionary Compression in Point Cloud Data Management SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA

0

2

4

6

8

10

125 250 500 1000

Re
la
tiv
e	
sp
ac
e	
re
qu

ire
m
en

ts

#points	in	datasets	(millions)

SFC-DBC
Baseline
SFC
Uncompressed

0

2

4

6

8

10

0 200 400 600 800 1000

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

#points	in	datasets	(millions)

Baseline
SFC
SFC-DBC

Figure 9: The impact of skew: space requirements and query execution time.

0

0.5

1

1.5

2

0.01 0.1 1 10 20 40

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

Query	selectivity

Baseline SFC SFC-DBC

Figure 10: Execution time when varying query selectivity.

As illustrated in the Figure 11, the filtering step significantly im-
proves the execution time for low selectivity queries, considering
that it filters more data (e.g., the improvement in the execution time
is 38% for 10% selectivity). On the other hand, filtering does not
have a significant impact on performance when executing high se-
lectivity queries (e.g., for 10−2% selectivity queries the improvement
in the execution time is 0.6%).

5 RELATEDWORK
In this section we first give a general overview of existing point
cloud management systems, following up with compression and
indexing capabilities of current systems.

General. File-based solutions (e.g., LAStools [23]) represent a
traditional approach to point cloud data management: points are
stored in files in a predefined format and processed by application-
specific algorithms. The typical file format is LAS, alongside with
compressed alternatives, e.g., Rapidlasso’s LAZ [24] and ESRI’s
ZLAS. File-based solutions have been widely used, however, as
point cloud data increases in size and popularity, it becomes more
challenging for them to fulfill recent data management require-
ments. First, file-based solutions have limited functionality in terms
of declarative power and multi-user support [29]. Second, they face
scalability problems with respect to the increasing number of files
to process and their size [1, 29]. A recent benchmark [29] proposes
a hybrid solution to address the scalability problem, employing a
DBMS to manage the meta-data of a file-based solution.

0

0.5

1

1.5

2

2.5

0.01 1 10

Re
la
tiv
e	
ex
ec
ut
io
n	
tim

e

Query	selectivity

Filtering

No	Filtering

Figure 11: SFC-DBC: impact of filtering.

Research in this area has recently shifted towards DBMS as many
of the data management challenges, encountered with the increas-
ing point cloud data size, have already been addressed in DBMS
solutions. Current DBMSs support point cloud data management
in the form of extensions and specific data types, distinguishing
between blocks and the flat table model. The blocks model groups
spatially collocated points into blocks, preserving spatial proximity.
Although the blocks organization offers basic compression capa-
bilities, it also requires blocks to be unpacked when executing
queries. This introduces significant overhead when executing high
selectivity queries [29]. On the other hand, the flat model uses
the straightforward approach of storing one point per row, which
makes it efficient when executing less complex queries, however, it
requires significant storage resources [29]. A recent benchmark [29]
evaluates the performance of these models, experimenting with
various systems, including both file-based solutions and DBMSs.
More precisely, the blocks storage model was tested through Oracle
and PostgreSQL (their point cloud extensions [19, 22]), while the
flat model was used in MonetDB, but also in Oracle and PostgreSQL.

Recent work [1, 12, 29] illustrates the potential of column-store
DBMSs to meet point cloud management requirements. The Mon-
etDB demo [1] showcases the declarative power of DBMS when
managing point cloud data that is enriched with semantics from
different sources. The solution proposed in [12] focuses on imple-
mentation details of existing algorithms for spatial selections and
joins on modern hardware, and does not address space efficiency.

Compression. The blocks model offers basic compression ca-
pabilities as the points within a block have a common base. For

SIGSPATIAL’17, November 7–10, 2017, Los Angeles Area, CA, USA M. Pavlovic et al.

instance, PostgreSQL and LAS take advantage of this by represent-
ing the point cloud entries within each block as 32 bit integers with
a scale and offset value. An alternative option in PostgreSQL is
dimensional compression where each dimension is separately com-
pressed using algorithms such as run-length encoding. In [15], the
authors propose a compression scheme for the flat storage model
in MonetDB. Morton-replacedXY [15] compresses data by repre-
senting a point with a z coordinate and Morton code that replaces
the x and y coordinates.

Indexing. Both file-based solutions and DBMSs (based on the
blocks model) by default organize data to preserve spatial prox-
imity information and thus optimize query execution. This has
been mostly done by using space-filling curves, such as the Hilbert
curve [10] and the Z-order [20]. To further optimize performance,
they use various spatial index structures such as R-Tree [7], oc-
tree [9], quadtree [26] etc. The flat model does not preserve spa-
tial data properties by default, as it stores the x, y, and z coor-
dinates independently. Therefore, one option is to treat data as
non-spatial and thus use indexes not tailored to spatial data, such
as a B+-Tree [29]. The alternative is to organize data to preserve
spatial proximity information, which has been explored both in
MonetDB [15] and PostreSQL [29] by using the Morton order.

The majority of the proposed solutions are traditional spatial
index structures built in addition to the data model. Therefore,
they require additional space resources which can introduce signif-
icant overhead, particularly for solutions based on the flat storage
model [29]. An exception is the previously introduced Morton-
replacedXY approach [15]. However, although the proposed solu-
tion integrates Morton order into the flat model, it still requires
significant space resources, as Morton code and z value are stored
per point cloud entry.

6 CONCLUSIONS
With the recent increase in the volume of point cloud data produced,
existing data management solutions face two challenges: time and
space efficiency. In this work we investigate how the efficiency
requirements can be met in main memory column-store DBMSs.

We propose Space-Filling Curve Dictionary-Based Compression
(SFC-DBC), a time and space-efficient solution to storing and man-
aging point cloud data. Our solution employs dictionary-based
compression in the spatial data management domain, enhancing it
with indexing capabilities without introducing additional storage
overhead. The SFC-DBC approach represents and indexes a point
cloud entry through its position in an artificially introduced 3D
dictionary space, taking advantage of space-filling curve properties
for indexing purposes. We evaluate our approach in the context of
SAP HANA and show space efficiency gains of up to 61% and query
performance gains of up to 9.4x compared to other dictionary-based
compression schemes.

ACKNOWLEDGEMENTS
We would like to thank the reviewers, the DIAS laboratory mem-
bers, and Georgios Chatzopoulos for their valuable comments and
suggestions on how to improve the paper. We thank "Senatsverwal-
tung fürWirtschaft, Technologie und Forschung" and "Europäischer
Fonds für regionale Entwicklung (EFRE)" for the provided data. This

work is partially funded by the EU FP7 programme (ERC-2013-CoG),
Grant No 617508 (ViDa).

REFERENCES
[1] Foteini Alvanaki, Romulo Goncalves, Milena Ivanova, Martin L. Kersten, and

Kostis Kyzirakos. 2015. GIS Navigation Boosted by Column Stores. PVLDB 8, 12
(2015), 1956–1959.

[2] Rudolf Bayer. 1997. The Universal B-Tree for Multidimensional Indexing: general
Concepts. In WWCA. 198–209.

[3] Christos Faloutsos. 1988. Gray Codes for Partial Match and Range Queries. IEEE
Trans. Software Eng. 14, 10 (1988), 1381–1393.

[4] Christos Faloutsos and Shari Roseman. 1989. Fractals for Secondary Key Retrieval.
In PODS. 247–252.

[5] Franz Färber, NormanMay,Wolfgang Lehner, Philipp Große, Ingo Müller, Hannes
Rauhe, and Jonathan Dees. 2012. The SAP HANA Database – An Architecture
Overview. IEEE Data Eng. Bull. 35, 1 (2012), 28–33.

[6] Romulo Goncalves, Tom van Tilburg, Kostis Kyzirakos, Foteini Alvanaki, Panagi-
otis Koutsourakis, Ben van Werkhoven, and Willem Robert van Hage. 2016. A
spatial column-store to triangulate the Netherlands on the fly. In SIGSPATIAL.
80.

[7] Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.
In SIGMOD. 47–57.

[8] Norbert Haala. 2011. Multiray photogrammetry and dense image matching. In
Photogrammetric Week, Vol. 11.

[9] Chris L Jackins and Steven L Tanimoto. 1980. Oct-trees and their use in repre-
senting three-dimensional objects. Computer Graphics and Image Processing 14, 3
(1980), 249–270.

[10] H. V. Jagadish. 1990. Linear Clustering of Objects with Multiple Atributes. In
SIGMOD. 332–342.

[11] Christian S. Jensen, Dan Lin, and Beng Chin Ooi. 2004. Query and Update Efficient
B+-Tree Based Indexing of Moving Objects. In PVLDB. 768–779.

[12] Kostis Kyzirakos, Foteini Alvanaki, and Martin L. Kersten. 2016. In memory
processing of massive point clouds for multi-core systems. In DaMoN. 7:1–7:10.

[13] Per-Åke Larson, Cipri Clinciu, Eric N. Hanson, Artem Oks, Susan L. Price, Sriku-
mar Rangarajan, Aleksandras Surna, and Qingqing Zhou. 2011. SQL server
column store indexes. In SIGMOD. 1177–1184.

[14] Robert Laurini. 1985. Graphics databases built on Peano space-filling curves. In
EUROGRAPHICS, Vol. 85.

[15] Oscar Martinez-Rubi, Peter van Oosterom, Romulo Goncalves, Theo Tijssen,
Milena Ivanova, Martin L. Kersten, and Foteini Alvanaki. 2014. Benchmarking
and improving point cloud data management in MonetDB. SIGSPATIAL Special
6, 2 (2014), 11–18.

[16] Mohamed F. Mokbel and Walid G. Aref. 2009. Space-Filling Curves for Query
Processing. In Encyclopedia of Database Systems. 2675–2680.

[17] Bongki Moon, Hosagrahar V Jagadish, Christos Faloutsos, and Joel H Saltz. 2001.
Analysis of the clustering properties of the Hilbert space-filling curve. TKDE 13,
1 (2001), 124–141.

[18] Actueel Hoogte Bestand Nederland. 2017. AHN datasets. http://www.ahn.nl.
[19] Oracle. 2017. Spatial and Graph Developer’s Guide. https://docs.oracle.com/

database/121/SPATL/.
[20] Jack A Orenstein and Tim H Merrett. 1984. A class of data structures for associa-

tive searching. In PODS. 181–190.
[21] Giuseppe Peano. 1890. Sur une courbe, qui remplit toute une aire plane. In

Mathematische Annalen. 157–160.
[22] PostgreSQL. 2017. A PostgreSQL extension for storing point cloud (LiDAR) data.

https://github.com/pgpointcloud/pointcloud.
[23] rapidlasso GmbH. 2017. LAStools. https://rapidlasso.com/lastools/.
[24] rapidlasso GmbH. 2017. LAZ format. https://rapidlasso.com/category/laz/.
[25] Rico Richter and Jürgen Döllner. 2010. Out-of-core real-time visualization of

massive 3D point clouds. In Afrigraph. 121–128.
[26] Hanan Samet. 1984. The Quadtree and Related Hierarchical Data Structures.

CSUR 16, 2 (1984), 187–260.
[27] Tomás Skopal, Michal Krátký, Jaroslav Pokorný, and Václav Snásel. 2006. A new

range query algorithm for Universal B-trees. Information Systems 31, 6 (2006),
489–511.

[28] Herbert Tropf and H Herzog. 1981. Multidimensional Range Search in Dynami-
cally Balanced Trees. ANGEWANDTE INFO. 2 (1981), 71–77.

[29] Peter van Oosterom, Oscar Martinez-Rubi, Milena Ivanova, Mike Hörhammer,
Daniel Geringer, Siva Ravada, Theo Tijssen,Martin Kodde, and Romulo Goncalves.
2015. Massive point cloud data management: Design, implementation and execu-
tion of a point cloud benchmark. Computers & Graphics 49 (2015), 92–125.

[30] Aloysius Wehr and Uwe Lohr. 1999. Airborne laser scanning - an introduction
and overview. P&RS 54, 2 (1999), 68–82.

[31] Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander
Zeier, and Jan Schaffner. 2009. SIMD-Scan: Ultra Fast in-Memory Table Scan
using on-Chip Vector Processing Units. PVLDB 2, 1 (2009), 385–394.

http://www.ahn.nl
https://docs.oracle.com/database/121/SPATL/
https://docs.oracle.com/database/121/SPATL/
https://github.com/pgpointcloud/pointcloud
https://rapidlasso.com/lastools/
https://rapidlasso.com/category/laz/

	Abstract
	1 Introduction
	2 Background
	2.1 Dictionary-based Compression
	2.2 Space-filling Curves

	3 Space-Filling Curve Dictionary-Based Compression
	3.1 Preprocessing & Data Structures
	3.2 Query Execution
	3.3 Discussion

	4 Experimental Evaluation
	4.1 Space Requirements
	4.2 Query Performance
	4.3 Impact of Skew
	4.4 Impact of Selectivity
	4.5 Impact of Filtering

	5 Related Work
	6 Conclusions
	References

