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Abstract

How does the brain process and memorize information? We all know that the neuron (also
known as nerve cell) is the processing unit in the brain. But how do neurons work together in
networks? The connectivity structure of neural networks plays an important role in information
processing. Therefore, it is worthwhile to investigate modeling of neural networks.

Experiments extract different kinds of datasets (ranging from pair-wise connectivity to mem-
brane potential of individual neurons) and provide an understanding of neuronal activity. How-
ever, due to technical limitations of experiments, and complexity and variety of neural architec-
tures, the experimental datasets do not yield a model of neural networks on their own. Roughly
speaking, the experimental datasets are not enough for modeling neural networks. Therefore,
in addition to these datasets, we have to utilize assumptions, hand-tuned features, parameter
tuning and heuristic methods for modeling networks.

In this thesis, we present different models of neural networks that are able to produce several
behaviors observed in mammalian brain and cell cultures, e.g., up-state/down-state oscillations,
different stimulus-evoked responses of cortical layers, activity propagation with tunable speed
and several activity patterns of mice barrel cortex. An element which is embedded in all of
these models is a network feature called neural assembly. A neural assembly is a group (also
called population) of neurons with dense recurrent connectivity and strong internal synaptic
weights. We study the dynamics of neural assemblies using analytical approaches and computer
simulations. We show that network models containing assemblies exhibit dynamics similar to
activity observed in the brain.

Keywords: Cortical neural network, microcircuits of brain, neural assembly, neural oscillations,
spiking activity propagation, excitation chain, cell culture.
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Zusammenfassung

Wie verarbeitet und speichert das Gehirn Informationen? Wir wissen, dass Neuronen, auch
Nervenzellen genannt, ein elementarer Baustein der Informationsverarbeitung sind. Aber wie
arbeiten Neuronen in Netzwerken zusammen? Von zentraler Bedeutung fiir die Funktionalitét
eines Netzwerkes sind dessen Verbindungsstrukturen, welche wir in dieser Arbeit modellieren
und untersuchen.

In Experimenten werden Daten unterschiedlicher Natur (von Spannungspotentialen an den
Membranen einzelner Neuronen zu paarweisen Verbindungen zwischen mehreren Neuronen) er-
hoben und verbessern unser Verstandnis der neuronalen Aktivitdt. Aufgrund technischer Gren-
zen der Experimente sowie der Komplexitdat und Vielfiltigkeit neuronaler Netzwerke, liefern
die experimentell erhobenen Daten jedoch noch kein Modell fiir die neuronale Architektur.
Stattdessen treffen wir zusétzliche Annahmen {iber mégliche Netzwerkarchitekturen und be-
nutzen heuristische Methoden um biologisch plausible Modelle zu konstruieren welche dann mit
den experimentell erhobenen Netzwerkaktivitdten verglichen und validiert werden.

In der vorliegenden Arbeit stellen wir Modelle neuronaler Netzwerke vor, welche in der Lage
sind verschiedene im Sdugetiergehirn sowie in Zellkulturen beobachtete Aktivitdtsmuster zu
reproduzieren. Dazu gehdren Oszillationen zwischen Phasen hoher und niedriger Aktivitét,
Stimulus getriebene Aktivitdten kortikaler Schichten, Aktivitdtsausbreitung mit kontrollierbarer
Geschwindigkeit sowie mehrere Aktivitdtsmuster wie sie im Kortex von Mé&usen beobachtet
wurden.

In allen unseren Modellen verwenden wir neuronale Netzwerke mit einer charakteristischen
Struktur: ein kleiner Teil der Neuronen bilden (mindestens) eine Subpopulation mit einer ho-
hen Anzahl starker gegenseitiger Verbindungen. Mit Simulationen und analytischen Methoden
untersuchen wir das dynamische Verhalten solcher Neuronengruppen und zeigen, dass unsere
Netzwerkmodelle Aktivitdtsmuster produzieren welche experimentell bestimmten Gehirnaktiv-
itdten dhnlich sind.

Stichworter: kortikales neuronales Netzwerk, Mikroschaltkreise des Gehirns, Subpopulation,
neuronale Oszillation, Ausbreitung gepulster Aktivitit, Erregungsleitung, Zellkultur

ix






Contents

Acknowledgments v
Abstract (English) vii
Abstract (Deutsch) ix
1 Introduction 1
1.1 Processing information in neocortex . . . . . . . ... ... 1

1.2 Modeling neural networks . . . . .. ... oo 2
1.2.1  Structural data . . . . . . . ... 3

1.2.2 Dynamical data . . . . . . . . ... .. 4

1.2.3 Our modeling approach . . . . . . . . .. .. .. ... . 4

1.3 Neural assembly . . . . . . .. .. o 6
1.4 Related works . . . . . . ... 7
1.4.1 Large-scale models of neocortex . . . . . . ... ... ... ... ... 7

1.4.2 Neural assembly in previous studies . . . . . . . . .. ... ... ... .. 9

1.4.3 Models of excitable media and activity propagation in neural networks 9

1.5 Overview and contributions . . . . . . . .. ... oo 10

2 Cortical dynamics in presence of assemblies of densely connected weight-hub

neurons’ 13
2.1 Imtroduction . . . . . . . .. 14
2.2 Materials and Methods . . . . . . . ... oo 16
2.3 Results. . . . .. 24

2.3.1 Layer 5-model network produces irregular oscillations . . . . . . . .. .. 24

2.3.2  The role of the weight-hub neurons assembly in the slow oscillations . . . 33
2.4 Discussion . . . . ... 38

3 Excitable neuronal assemblies with adaptation as a building block of brain
circuits for velocity-controlled signal propagation? 47

!Text copied from Setareh H, Deger M, Petersen CCH and Gerstner W, Front. Comput. Neurosci. 2017 (full
citation in the Reference).
2Text copied from Setareh H, Deger M, and Gerstner W, manuscript is under review in PLOS Comput. Biol.

X1



Contents

3.1 Introduction . . . . . . . . . .. 48
3.2 Results . . . . . . e 49
3.2.1 The speed of activity propagation in a chain of excitable bistable assemblies 49
3.2.2  Analysis of excitation chain dynamics . . . . . . ... ... ... ... .. 52
3.2.3 A grid of assemblies as a skeleton for barrel cortex . . . . . . .. ... .. 58
3.3 Discussion . . . . . .. 64
3.4 Materials and Methods . . . . . . . . . . ... 68

4 In vitro cortical network firing is homeostatically regulated: A model for sleep
regulation?® 75
4.1 Introduction . . . . . . . . . . . 75
4.2 Materials and Methods . . . . . . . ... oo Lo 7
4.3 Results. . . . . . e 83
4.3.1 Spectral analysis, burst duration and interburst interval . . . . . . . . .. 83
4.3.2 Burstslopes . . . . .. 85
4.3.3 Cross correlation . . . . . . .. ... 87
4.3.4 Firing rate, burst duration histogram and neural trajectory . . . . . . . . 87
4.3.5 Simulation of neural network behavior and topology . . . . . . . . .. .. 90
4.4 Discussion . . . . . . ... e 91
5 Conclusion and future work 97
51 Conclusion . . . . . . . .. 97
5.2 Future work . . . . . ... 98
Appendix A Reproducing monkey scribbling using the chain of assemblies 99
Bibliography 100

3Text copied from Saberi-Moghadam S, Simi A*, Setareh H*, Mikhail M and Tafti M, manuscript is under
review in Int. J. Neural Sys. (* contributed equally to this work).

xil



List of Figures

1.1
1.2
1.3
14
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Al

Anatomy and functions of neocortex . . . . . .. .. ... L. 2
Fitting neuron and network models by experimental data . . . . . . .. ... .. 4
Framework of neural network modeling . . . . . . ... ... ... ... ... . 5
Weight and degree correlations . . . . . . . . . .. ... 6
Cortical model of Potjans and Diesmann . . . . . . . . .. .. ... ... ..., 8

Networks with weight-hub neurons . . . . . . .. .. .. .. ... ... ... 20
Irregular up- and down-state transitions . . . . . . . .. ... ... 26
Variants of network model . . . . . . . .. ... Lo 28
Simulated response to light-evoked stimulation . . . . . . ... ... .. ... .. 30
Cross-correlations of neuronal activity . . . . . . . . . . ... 32
Transition from oscillations to active state . . . . . . . .. ... ... ... ... 34
Mean-field analysis . . . . . . . ... 36
K-means clustering for identifying weight-hub neurons . . . . . . . . . ... . .. 42
Excitation wave in a one-dimensional chain . . . . . . .. .. .. ... 50
Excitation wave in a one-dimensional chain without inhibitory populations . . . 53
Analysis of chain’s behavior . . . . . . ... oo 54
Schematic of a multi-column model of barrel cortex . . . . . . ... .. ... .. 59
Dynamics of the multi-column model . . . . . . . ... ... ... ... ... 61
Histogram of activity survival durations . . . . . . . . . ... .. .. ... ..., 63
Termination of activity circulation in the grid . . . .. ... ... ... ... .. 65
Long duration of activity circulation in the grid . . . . . .. .. ... ... ... 65

Synchronized burst firing and burst characteristics in representative MEA recordings 84

Time course of the network firing behavior . . . . . .. .. ... ... ... ... 85
Spectral and burst properties of in vitro cortical networks . . . . . . . . . . . .. 86
Cross-correlations between paired MEA channels. . . . . . ... ... ... ... 88
Changes in firing rate during bursts . . . . . . . . .. .. ... L. 89
Computer Simulation of the network firing behavior of the first culture . . . . . 92
Computer Simulation of the network firing behavior of the second culture . . . . 93
Neuronal circuit model for reproducing monkey scribbling . . . . . . .. ... .. 101

xiii






List of Tables

2.1
2.2
2.3

3.1
3.2

4.1
4.2
4.3

Al

Neural parameters used in the model of oscillations . . . . . . .. .. ... ... 17
Network parameters used in the model of oscillations . . . . . .. ... ... .. 18
External noise parameters used in the model of oscillations . . . . . .. ... .. 18
Neural parameters used in the model of excitable chain and grid . . . . .. ... 69
Network parameters used in the model of excitable chain and grid . . . . . . .. 70
Neural parameters used in the model of cell cultures . . . . . . . ... ... ... 80
Network parameters used in the model of cell cultures . . . . . .. ... ... .. 81
External noise parameters used in the model of cell cultures . . . ... ... .. 82
Network parameters used in the model of monkey scribbling . . . . . ... . .. 102

XV






Chapter 1

Introduction

Our brain is a wonderful machine. It is able to perform different information processing tasks
ranging from recalling memories to processing visual and audio inputs on the time scale of
seconds or even milliseconds. Nerve cells or neurons are known as the main processing elements
in the brain. Neurons can connect together through junctions called synapses and form neural
networks. These networks act like processor systems, and are capable of receiving input and
generating desired outputs.

In this thesis, we try to study the effect of embedding a network feature (neural assembly)
in neural networks and formulate the behavior resulting from this feature. We will show that
neural networks containing assemblies are able to reproduce different phenomena observed in
the brain as well as in cell cultures.

1.1 Processing information in neocortex

Neocortex is a part of the brain involved in sensory perception, cognitive behaviors and gen-
erating commands for movements (Figure 1.1A). In terms of functions, the neocortex can be
divided into different regions, while each region processes a special type of sensory input or
handles motor commands (Figure 1.1B). Visual, auditory, olfactory and somatosensory cortices
are examples of sensory cortices. Thalamus (a centrally-located brain structure) relays sensory
inputs between sensory organs (e.g. eyes, ears, ...) to the cortices. Then, each sensory signal is
processed in its related region. Anatomically, the neocortex is divided to six horizontal layers,
labelled from the outermost inwards, layer 1 to 6. Layers differ from each other in terms of
number and type of neurons, connectivity pattern between neurons and dynamic of neurons
(Figure 1.1C).

In most parts of this work, we have used datasets extracted from barrel cortex. Barrel cortex
is a region of rodent somatosensory cortex which processes tactile information from whiskers
(Petersen, 2007). However, suggested structures and methods are independent of the region
and can be potentially applied to neural networks of different areas.
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Figure 1.1: Neocortex is the outer layer of cerebrum (A) which is involved in higher-order brain functions. It
contains different regions with distinct functions (B). Each region processes (or generates) signals from (for)
an organ. Anatomically, neocortex can be divided into six horizontal layer with different neural structures
(C). Images A, B and C are respectively taken from www.neurosciencelibrary.org, www.chronopause.com and
www.monardo.info.

1.2 Modeling neural networks

Finding the structure and architecture of cortical neural networks is the key to understand
how neocortex processes information. In order to model the neocortical networks, we need
experimental datasets that characterize behavior of neurons and express some aspects of network
dynamics.

Beside modeling the connectivity structure between neurons, we need to model dynamics of
single neurons. The behavior of single neurons can be described by neuron models. We con-
sider spiking neuron models in this research. Spiking neuron models range from simple leaky
integrate-and-fire which consider a neuron as a resistor-capacitance circuit to detailed Hodgkin-
Huxley model (Hodgkin and Huxley, 1952) which exhibit different ion channels of neuron. Each
model has its own advantages and limits (Naud and Gerstner, 2012b; Gerstner et al., 2014).
Despite the differences, spiking neuron models share key concepts. They keep an internal vari-
able for the membrane potential or voltage of the neuron. Whenever the membrane potential
reaches firing threshold, the neuron emits a short-lasting pulse of large amplitude called spike
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or action potential (Several neuron models do not have explicit firing threshold). Every neuron
model has a set of parameters that should be valued for each neuron. These neural parameters
can by fitting the neuron model to experimental data. In this research, we use a Generalized
integrate-and-fire (GIF) model (Mensi et al., 2012; Pozzorini et al., 2015) that is able to capture
with high accuracy both subthreshold dynamics of membrane potential and the spiking activity
recorded from neurons during current injection (Mensi et al., 2012; Pozzorini et al., 2013). We
will review the model in section 2.2.

In the following sections, we describe several types of experimental data that are used in the
modeling. Then, we explain the general approach of modeling networks and different tools that
we used in this research.

1.2.1 Structural data

There are certain data types that allow us to characterize neurons and the connections between
them. We refer to them as structural data.

We need neural parameters for each cell type. Data are extracted by fitting the neuron model
to experimental data. In other words, a current is injected to a neuron in a slice of cortex.
Using patch clamp recording, the membrane potential and spikes of the neuron are measured.
This set of input/output is used to optimize parameters for that neuron. Then, using the
parameters for broad range of different time-dependent current, the neuron model is able to
generate output, i.e., membrane potential and spikes (Lefort et al., 2009; Avermann et al., 2012;
Mensi et al., 2012; Pozzorini et al., 2015). The match between experimentally measured output
and generated output indicates wether the parameter extraction was successful. Figure 1.2A
summarizes this process.

In order to collect data on network connectivity, intracellular recordings are performed (Markram
et al., 1997; Feldmeyer et al., 1999; Lefort et al., 2009; Avermann et al., 2012; Chapeton et al.,
2012). In each experiment, one neuron is injected by a current pulse until it fires a spike. In
parallel the membrane potential of one or several other neurons are measured. If a measured
neuron shows a peak with a short temporal delay after injection of the pulse, we can conclude
that there is connection from the injected neuron to the measured neuron. Besides, the am-
plitude of the peak is considered as the weight of synapse between those neurons. Repeating
this experiment yields a bunch of synaptic weights. We can illustrate their distribution (Fig-
ure 1.2B) and use parameters of the distribution for building the network model. The fraction
of connected neurons over the whole tested neuron pairs is another important quantity which
is called connection probability.

Finally, the number of neurons based on neuron types in each cortical layer is a very useful
dataset extracted from experiments (Lefort et al., 2009; Avermann et al., 2012).

3
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Figure 1.2: A) Neuron model is able to capture the dynamic of biological neuron after we drive its parameters.
Image from Gerstner et al. (2014). B) Distribution of synaptic weights in cortical neural network. Blue bars
show the histogram of experimentally observed synaptic weights in excitatory neurons of layer 5 of mice barrel
cortex (Lefort et al., 2009). Red line indicates a lognormal distribution fitted by the experimental data. We will
use the fitted distribution in order to construct models of neural networks.

1.2.2 Dynamical data

Dynamical data types describe behaviors and activities of neurons. They may express dynamics
at the level of a single neuron or a population of neurons.

Intracellular recordings provide the membrane potential and spikes of single neurons, while
extracellular recordings only extract spikes. Recording with multielectrode arrays is a technique
that allows us to extract spikes of many neurons simultaneously.

For observing the behavior of neurons at larger scales, calcium or voltage sensitive dye imaging
is used (Grinvald et al., 1984; Smetters et al., 1999; Petersen et al., 2003b,a). Transient change
of calcium concentration in a cell indicates existence of spike. Therefore, calcium imaging
(Smetters et al., 1999) visualizes spiking activity of neural network over a big area. Voltage
sensitive dye imaging (Grinvald et al., 1984) displays the evolution of membrane potential of a
group of neurons on a large scale.

The dynamics of neurons are recorded using the above techniques during both spontaneous
regime and in response to external stimulations. Both regimes provide useful information
about the behavior of neural networks. In this thesis, we different kinds of dynamical datasets
(Sanchez-Vives and McCormick, 2000; Sanchez-Vives et al., 2000; Cossart et al., 2003; Petersen
et al., 2003b,a; Hromadka et al., 2008; Vijayan et al., 2010; Beltramo et al., 2013).

1.2.3 Our modeling approach

We start building neural networks using structural data. We create neural populations with the
same number of neurons as those found in experiments. Then, we establish random connections

4
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Figure 1.3: Framework of neural network modeling in our research. Using structural data and neuron models,
we build a network model. Each network model has a set of free parameters that should be tuned in order to
achieve biologically plausible results. After building the model, its dynamics can be obtained using computer
simulations. The match between dynamical data and model’s dynamics indicates the correctness of model.
Based on this measurements, we are able to find a correct set of free parameters. Analytical methods provide a
shortcut for finding value of free parameters.

between neurons based on experimentally observed connection probabilities. Synaptic weights
of the model are drawn from weight distributions extracted by experiments. Beside network
parameters whose values are found from experiments, there are free parameters that need to
be tuned. We will present more details of network creation and related parameters in following
chapters.

After building the model, we have to obtain its behavior. Computer simulators are powerful
tools to generate network behavior given its structure. If the model produces dynamics similar
to the dynamical data, we can claim that the model is biologically plausible. Otherwise, we
have to change the free parameters to obtain behaviors more similar to the dynamical data. In
case of a small number of free parameters, we are able to search in the parameters space and
find a parameter set which yields the best match with experiments. In some cases, we can relate
the model dynamics and its parameters using analytical approaches. Therefore, we can directly
extract suitable values of free parameters without simulation and search. Analytical methods
are also used to explain and clarify the reasons of model’s behaviors. Figure 1.3 summarizes
the process of modeling.

In this research we used two different computer simulators, Brian (Goodman and Brette, 2008)
and NEST (Gewaltig and Diesmann, 2007). Brian provides more flexibility for recording dif-
ferent variables of the models (membrane potentials, currents, adaptation variables, plasticity
variables, ...). However, NEST is able to scale up models and is more efficient for simulating
big networks. We will mention in each chapter which simulator is used.
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Figure 1.4: In a random network with a random distribution of synaptic weights (Top) each neuron receives
a combination of weak and strong weights. Furthermore, number of connections of all neurons is close to each
other. In case of adding weight correlations (Left), a few neurons receive strong weights, while the rest receive
weak weights. In case of adding degree correlations (Right), a few neurons receive large number of connections,
while the remaining neurons receive small number of connections.

1.3 Neural assembly

The simplest network architecture that can be used for modeling is a random model (Erdds
and Rényi, 1959). In this model, the probability of having connection between every arbitrary
pair of neurons is constant and equals p. The parameter p is the same as the connection
probability extracted from experiments. Despite the simplicity and ease of creation, this model
is not able to reproduce dynamical phenomena observed in the cortex (Koulakov et al., 2009;
Tomm, 2011; Tomm et al., 2014). Complex network models such as small-world (Watts and
Strogatz, 1998) and scale-free (Barabési and Albert, 1999) models are used in different studies
(Roxin et al., 2004; Koulakov et al., 2009; Roxin, 2011; Litwin-Kumar and Doiron, 2012; Doiron
and Litwin-Kumar, 2014; Tomm et al., 2014; Mazzucato et al., 2015, 2016) to achieve more
biologically plausible models and reproduce cortical dynamics with better approximations. In
these models, both degree and weight distributions are manipulated to add non-randomness
into models (Figure 1.4). These non-random features affect the dynamics and cause behaviors
similar to experimental observations.

In this thesis, we exploit a non-random network feature called neural assembly. A neural
assembly is defined as a group of neurons that are strongly connected with each other (Hebb,
1949), i.e., the connection probability inside the group is higher than the outside. Due to dense
connectivity, the stimulation of a sufficient number of assembly neurons can activate the entire
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assembly (Palm, 1982). We also hypothesize that synaptic weights between neurons inside
an assembly are larger than other synapses. We will study the effect of embedding neural
assemblies in bigger networks using both computer simulations and analytical methods. We
will show that cortical activities such as slow oscillations and different stimulus-evoked response
can be reproduced using a network containing neural assemblies (chapter 2). We then connect
neural assemblies together in order to build an excitable media for propagating neural activities
(chapter 3). We also show that assemblies can form a 2-dimensional architecture in order to
build a multicolumn model for cortex and generate different dynamical patterns observed in
large scale imaging (chapter 3). Then, we will study behaviors of cortical cultures grown on
multielectrode arrays (cell cultures). We will illustrate that different dynamics observed in
cultures can be reproduced by embedding neural assemblies with different properties in neural
networks (chapter 4).

In chapter 2 we introduce the term "weight-hub’ neuron, i.e., neurons that receive large synaptic
weights. We then study the role of assembly of weight-hub neurons in this chapter. In other
chapters, we focus on assembly of neurons (not necessarily weight-hub neurons) and use it as
the core of our network modeling.

1.4 Related works

1.4.1 Large-scale models of neocortex

In this thesis, we focus on constructing mid-size models of cortical network (all of our models
contain less than 15000 neurons). Beside other mid-size cortical models (which are briefly
described in sections 2.4 and 3.3), there exist several large-scale networks for modeling neocortex
(Izhikevich and Edelman, 2008; Garis et al., 2010; Merolla et al., 2014; Potjans and Diesmann,
2014; Markram et al., 2015).

Potjans and Diesmann, 2014 built a model of cortical column containing ~ 80000 leaky integrate-
and-fire neurons (Figure 1.5A). They reconstructed connection probabilities between different
populations of neurons by combining the structural data extracted from electrophysiological
experiments (Thomson et al., 2002) and anatomical approaches (Binzegger et al., 2004) in order
to derive a combined connectivity map. Firing rates of populations in the simulated network
(Figure 1.5B) were close to the dynamical data found in experiments (Greenberg et al., 2008;
de Kock and Sakmann, 2009). In case of transient thalamic stimulation, the response (Figure
1.5C) was also similar to experimental observations (Sakata and Harris, 2009).

Izhikevich and Edelman, 2008 constructed a very large model of the thalamocortical system
which contains one million multi-compartment neurons. The dynamics of each compartment was
modeled by the Izhikevich neuron model (Izhikevich, 2003). They used an anatomical dataset
(Binzegger et al., 2004) for the connections between neurons. Their model also features short-
term plasticity and spike-timing-dependent plasticity. Excitatory and non-fast spiking inhibitory
neurons showed Poissonian behavior in the model, while fast spiking inhibitory neurons exhibited

7
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Figure 1.5: A) The network model contains 4 layers. Each layer includes one excitatory and one inhibitory
population of neurons. The thalamus is modeled by a group of Poisson neurons. B) Boxplot of firing rates of
1000 neurons recorded for 60 seconds. Black bars indicate excitatory and gray bars indicate inhibitory neurons.
C) Response of the model to a transient thalamic stimulation (gray bar). Black (gray) lines show the spike-count
of excitatory (inhibitory) populations. Images are taken from Potjans and Diesmann, 2014.

higher firing rate and produced strong gamma rhythms (40 — 50Hz) in some layers. The model
was also able to generate oscillatory behavior in the delta (1 — 3Hz) , alpha (~ 10Hz) and beta
(~ 20Hz) ranges.

Markram et al., 2015 used morphological and electrical properties of neurons, anatomical prop-
erties of neural microcircuits and synaptic diversities for building a virtual slice of somatosensory
cortex and modeling thalamic input. Their simulations reproduced a number of in vivo and
in vitro observations. For example, in the spontaneous regime their network generated slow
oscillatory bursts (~ 1Hz) which was initiated in layer 5, then spread from there to to layer 6,
layer 4 and layer 2/3. The oscillations were replaced by asynchronous and irregular activity in
case of decreasing the concentration of Ca™2. A biologically plausible response of neurons to
thalamic input and balanced excitation-inhibition input to the neurons are other aspects of the
model.

Merolla et al., 2014 built a chip which contains 1 million spiking neurons and 256 million
configurable synapses. They programmed the chip in order to perform visual processing tasks.
It is able to recognize objects in 30 frames per seconds videos in real time with low power
consumption.
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1.4.2 Neural assembly in previous studies

As mentioned earlier, a neural assembly is defined as a group of neurons that are strongly
connected with each other (Hebb, 1949). In other words, the connection probability inside the
group is higher than the outside. Neural assembly was previously investigated in experimental
works and theoretical studies. Yoshimura et al., 2005 studied cross-correlation of layer 2/3
excitatory neurons in response to spike emission of other neurons. They found that there exist
subgroups of excitatory neuron in cortical layer 2/3 which share common input from layer 4 and
within layer 2/3. In other words, connected neurons share common input while unconnected
neurons share very low (if any) common input from layer 4 and layer 2/3. We interpret each
subgroup as a neural assembly.

In theoretical studies neural assemblies are used for reproducing cortical trial-to-trial variabil-
ity (Litwin-Kumar and Doiron, 2012; Doiron and Litwin-Kumar, 2014; Mazzucato et al., 2015,
2016). Litwin-Kumar and Doiron, 2012 simulated the spontaneous activity of a network (which
contains several assemblies) for several trials. They reported the spike count Fano factor aver-
aged over all excitatory neurons as a measure of spiking variability. The Fano factor is defined as
the ratio of trial-to-trial variance to mean of the number of spikes a neuron emits in a fixed time
window. They found that the Fano factor increases as they increase the ratio of the connection
probability inside assemblies over the connection probabilities between assemblies. Mazzucato
et al., 2016 embedded several neural assemblies in an excitatory population which shares global
inhibition among it neurons. They could generate the state sequences that observed in rats
gustatory cortex. In case of external stimuli, multistability turns to bistability and leads to the
reduction of trial-to-trial variability.

Neural assemblies are also used for implementing working memory models (Barak and Tsodyks,
2007; Mongillo et al., 2008; Zenke et al., 2015). Working memory is the computational ability
of storing and recall information on time scales of minutes. In the models of working memory,
several assemblies are embedded or formed by synaptic plasticity rules in the network (Litwin-
Kumar and Brent, 2014). Each assembly is either in a low firing rate state or in a high firing
rate state. From this perspective, the state of an assembly can be considered as one bit of
information. Therefore, a group of assemblies in the network is able to memorize several bits
and acts like a memory unit (Hopfield, 1984).

1.4.3 Models of excitable media and activity propagation in neural
networks

Using abstract rate equations, Wilson and Cowan, 1973 described a neural model of excitable
media for producing activity propagations. They studied the dynamics of excitatory and in-
hibitory activity in a synaptically coupled neuronal network using analytical approaches. Key
parameters of the model are the strength of synaptic weights between and inside excitatory and
inhibitory populations. Varying the parameters generates a diversity of dynamical behaviors
like multistability, oscillations, traveling waves, and spatial patterns. Jirsa and Haken, 1997
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extended the neural model in order to describe the interaction between functional units within
the brain.

For spiking neurons, two famous models also exist for propagating activity within neural net-
works. The first model, which is called synfire chain model, uses several groups of neuron with
feedforward structure, i.e., each neuron in a group is unidirectionally connected to the neurons
of the next group (Abeles, 1982, 1991; Diesmann et al., 1999; Gewaltig, 2000; Kistler and Ger-
stner, 2002; Kumar et al., 2008). If we stimulate the first group and force enough number of
neurons to emit spikes, the spiking activity may propagate to the last group. In some cases the
activity vanishes before reaching the end of chain. Synaptic weights between groups, number of
neurons in the groups, number of spikes and standard deviation of spike times in the first group
are important parameters for obtaining a reliable propagation. The synfire chain propagates
the activity on the time scale of synaptic delay (order of milliseconds) plus the rise time of the
postsynaptic potential (Kistler and Gerstner, 2002). Therefore, to cover a time window of one
second, about 200 — 500 groups of neurons are needed, each contains ~ 100 neurons.

Second, rate propagation models (van Rossum et al., 2002; Vogels and Abbott, 2005) use a
similar feedforward architecture, but instead of spikes they propagate fluctuations of the firing
rate. Similar to the synfire chain, the number of neurons and connections between groups should
be adjusted for avoiding vanishment of activity. The propagation speed in this model is slower
comparing to the synfire chain and is on the scale of the synaptic time constant (order of ten
milliseconds). Consequently, we need about 100 — 200 groups of neurons to cover a time window
of one second.

1.5 Overview and contributions

This thesis collects the main results I obtained during my PhD studies between 2012 and 2017
under the supervision of Prof. Wulfram Gerstner at EPFL. The main goal of my research
was suggesting models for cortical neural networks and reproducing their observed behaviors
(dynamical data). I found that by embedding neural assemblies in models, we are able to
produce biologically plausible dynamics while the parameters and elements of the model remain
in the experimentally observed range (structural data). Beside modeling cortical networks, I
used neural assemblies to model dynamics of networks in cell culture. This study is performed
in collaboration with Prof. Mehdi Tafti and Dr. Sohrab Saberi Moghadam at university of
Lausanne (UNIL). The thesis is divided into four chapters.

In chapter 2, I build a model of Layer 5 of one barrel column. The model is able to produce up-
state/down-state oscillations observed in anesthetized cortex. I show that different dynamical
phenomena of the model, e.g. firing rate distribution, irregularity of oscillations, correlation
between neurons’ dynamics, are similar to dynamical data previously observed in experiments.
I state that neural assemblies are crucial elements and the model is unable to produce biologically
plausible results without them.

I designed and implemented the model. I also performed the analysis of the model’s results.

10
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Moritz Deger (MD) helped me during design and data analysis. I wrote the text in collaboration
with MD, Wulfram Gerstner (WG) and Carl Petersen (CP). Ideas and comments of CP were very
constructive for polishing the model. This chapter is published in Frontiers in Computational
Neuroscience (doi: 10.3389/fncom.2017.00052).

In chapter 3, I developed a model (excitation chain) for propagating spiking activity on a time
scale comparable with animals behaviors. Again neural assemblies are the key elements in the
model. I show that properties of neural assemblies eliminate the need for feedforward structure
in the chain. Then, I extend the chain to a 2-dimensional grid and use it as the skeleton for a
multicolumn model of cortex. The multicolumn model reproduces different patterns of activity
propagation observed in barrel cortex.

I designed and implemented the models. I also developed the theoretical framework for analysis
and prediction of the models dynamics. MD and WG helped me in developing the framework
and presentation of results. I wrote the text in collaboration with MD and WG. I also used
useful comments of CP for constructing models.

In chapter 4, I focus on the behavior of cortical networks grown on multielectrode arrays.
The results show that in mature cultures, neural networks exhibit slow oscillations. In case of
stimulation, the oscillations cease. However, networks are able to recover from the stimulus-
evoked state in a stimulus-dependent homeostatic response. I also illustrate that different
oscillations observed in networks can be reproduced by models containing neural assemblies
(neural assembly is called neural cluster is this chapter). I also argue that the difference between
dynamics before and after stimulation can be interpreted by changing the number and size of
neural assemblies embedded in networks.

Mehdi Tafti and Sohrab Saberi Moghadam (SSM) conceived the study, analyzed the experi-
mental data and wrote the manuscript. SSM, Alessandro Simi, and Cyril Mikhail performed
the experiments and analyzed the data. I performed the simulations, analyzed the experimental
and simulated data and wrote the text related to the simulations.

In appendix A, I build a model for reproducing monkey’s scribbling using the excitation chain
introduce in chapter 3. I show that the speed of drawing can be regulated by modifying synaptic
weights in the chain. I designed and implemented the model.

11






Chapter 2

Cortical dynamics in presence of
assemblies of densely connected
weight-hub neurons!

Abstract

Experimental measurements of pairwise connection probability of pyramidal neurons together
with the distribution of synaptic weights have been used to construct randomly connected model
networks. However, several experimental studies suggest that both wiring and synaptic weight
structure between neurons show statistics that differ from random networks. Here we study
a network containing a subset of neurons which we call weight-hub neurons, that are charac-
terized by strong inward synapses. We propose a connectivity structure for excitatory neurons
that contains assemblies of densely connected weight-hub neurons, while the pairwise connection
probability and synaptic weight distribution remain consistent with experimental data. Simula-
tions of such a network with generalized integrate-and-fire neurons display regular and irregular
slow oscillations akin to experimentally observed up/down state transitions in the activity of
cortical neurons with a broad distribution of pairwise spike correlations. Moreover, stimulation
of a model network in the presence or absence of assembly structure exhibits responses similar
to light-evoked responses of cortical layers in optogenetically modified animals. We conclude
that a high connection probability into and within assemblies of excitatory weight-hub neurons,
as it likely is present in some but not all cortical layers, changes the dynamics of a layer of
cortical microcircuitry significantly.

!Text copied from Setareh H, Deger M, Petersen CCH and Gerstner W, Front. Comput. Neurosci. 2017 (full
citation in the Reference).
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2.1 Introduction

Is it possible to uniquely constrain a model network of point neurons with experimental data?
First, suppose that we have access to experimental measurements of electrophysiological prop-
erties of single neurons. Indeed a wealth of single-neuron data exists (Markram et al., 2004,
2015) and methods have been developed that enable a rapid and reliable extraction of parame-
ters of generalized integrate-and-fire neuron models from such experimental data (Jolivet et al.,
2006; Pillow et al., 2008; Mensi et al., 2012; Pozzorini et al., 2013, 2015). Thus, parameters
of neuron models, including spread of parameters caused by heterogeneity, can be completely
constrained by experiments. Second, suppose that we have access to experimental measure-
ments of the distribution of synaptic weights. Indeed, experimental data suggests a unimodal,
possibly log-normal, distribution of EPSP amplitudes (Feldmeyer et al., 1999, 2002; Song et al.,
2005; Feldmeyer et al., 2006; Frick et al., 2008; Lefort et al., 2009). Thus, we can constrain the
distribution of synaptic weights in a network model with the data collected over many pairs of
neurons. Third, suppose that we know the probability that two neurons (say, of types A and
B located in layers n and m of the same cortical column) make a short-range connection from
A to B. Again, such data exists (Lefort et al., 2009; Avermann et al., 2012) and should be used
to constrain a network model. But is data collected on single neurons and pairs of neurons
sufficient to constrain the parameters of a network model?

The answer is negative. There are at least two reasons: (i) The distribution of synaptic weights
does not indicate whether a single neuron is driven by a random combination of strong and
weak synapses, or whether one neuron receives all the strong input synapses and another one all
the weak ones. Similarly, (ii) an average connection probability of say, 20 percent, is consistent
with a network of a 1000 neurons where each neuron receives exactly 200 connections, but also
equally consistent with a network where half the neurons receive 100 inputs and the other half
300. In this paper, we systematically explore network variants that implement the variations
indicated under (i) and (ii) while keeping all single-neuron parameters, number of neurons, as
well as pair-wise connection probabilities and synaptic weight distributions fixed. To keep the
arguments as transparent, consistent, and precise as possible, we focus on a single cortical layer
of mouse barrel cortex and use data from a single lab (Lefort et al., 2009; Avermann et al.,
2012).

The hypothetical variations (i) and (ii) make our networks different from a classical Erdés—Rényi
random network. Indeed, experimental data from various labs indicate non-random features in
network connectivity (Song et al., 2005; Yoshimura et al., 2005; Kampa et al., 2006; Perin et al.,
2011). The influence of some of these features on activity patterns in neuronal networks has
already been studied in a set of modeling papers (Koulakov et al., 2009; Roxin, 2011; Litwin-
Kumar and Doiron, 2012; Pernice et al., 2013; Vasquez et al., 2013; Hu et al., 2013, 2014; Jahnke
et al., 2014; Luccioli et al., 2014; McDonnell and Ward, 2014; Mazzucato et al., 2015, 2016).
We focus on two features of network connectivity which we call degree-hub and weight-hub. For
example, if a few neurons receive more synaptic input connections than others (Roxin, 2011;
Pernice et al., 2013; Tomm et al., 2014), we will refer to these neurons as degree-hubs. On the
other hand, even in a network where there are no degree-hubs, there can still be a few neurons
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(which we will call weight-hubs) that receive all the strong connections while others receive all
the weak connections (Koulakov et al., 2009; Tomm et al., 2014), but chosen such that the total
distribution of synaptic weights across the network remains consistent with experimental data.
More generally, such non-random features can be described as “correlations” in the connectivity
matrix or synaptic weight distribution. For example, the input connectivity in a network with
weight-hubs is correlated: It is more likely to find a second strong input connection in a neuron
in which you have already found a strong synapse than in a neuron for which you have found a
weak synapse.

Several experiments studied the existence of both degree-hub and weight-hub neurons in different
regions of the brain. In the hippocampus GABAergic neurons that receive more synapses than
average were detected (Bonifazi et al., 2009). Excitatory neurons which receive many synapses
from inhibitory neurons were found in mouse frontal cortex (Fino and Yuste, 2011). Recently,
Okun et al. (2015) found that neurons that are strongly correlated to the population-averaged
firing rate receive larger numbers of synapses from their neighbors. Neurons receiving stronger
connections than others were also observed in experiments (Song et al., 2005; Perin et al.,
2011). Yassin et al. 2010 and Cossart et al. (2003) investigated neocortical excitatory neurons
that systematically fire more than other neurons. Such a high firing rate can be due to different
intrinsic neuronal properties or more frequent or stronger excitatory synapses onto the neurons.
In the latter case, the receiving neurons can be considered as candidates of degree- or weight-
hubs. Even though experimental evidence for the existence of weight-hubs within pyramidal
neurons is not yet convincing, we explore here signatures of hypothetical weight-hub neurons in
neuronal activity.

Another experiment unravels a related but different phenomenon in the cortex. Yoshimura et al.
(2005) suggest that excitatory neurons in the cortex can form assemblies and that neurons inside
each assembly share common synaptic input. Here we explore a hypothetical network where
connectivity between weight-hub neurons is higher than average. We show that such an elevated
connection probability between weight-hub neurons significantly changes the dynamics of the
network. Note that a subnetwork of densely connected weight-hub neurons can be interpreted
as a neuronal assembly (Hebb, 1949).

We build a neuronal network which models layer 5A (L5) of a mouse barrel cortex column
that generates up-state/down-state oscillations. Neuron numbers, pairwise connection proba-
bilities and distribution of synaptic weights are matched to experimental data (Lefort et al.,
2009; Avermann et al., 2012). Parameters of the neuron model such as membrane time con-
stants, firing threshold and adaptation have been extracted from experimental data (Mensi
et al., 2012). We show that in our network of adaptive integrate-and-fire neurons, the existence
of weight-hub neurons is not sufficient for producing metastable up- and down-states. For oscil-
lations to appear, weight-hub neurons need to form assemblies with dense internal connectivity.
Another phenomenon that we address here is the different light-evoked responses of cortical
supra-granular and infra-granular layers. Experiments (Beltramo et al., 2013) show that op-
togenetic stimulation in L5 leads to a large depolarization and a notable number of emitted
spikes in non-stimulated neurons. In contrast after stimulation of a group of neurons in layer
2/3 (L2/3), non-stimulated neurons do not show significant responses. We show that such a
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difference can be explained by the presence or absence of an assembly of hub neurons. We
hypothesize that in L5 weight-hub neurons are connected together densely and form assemblies
while in L.2/3 their connections are sparse. This may explain experimental observations (Sakata
and Harris, 2009; Chauvette et al., 2010; Beltramo et al., 2013) which indicate that up-states
are initiated in L5, and that L2/3 largely follows the oscillation passively.

2.2 Materials and Methods

Neuron model and population parameters

In each simulation we model one cortical layer, either layer 5A (L5) or layer 2/3 (L2/3) from
mouse somatosensory cortex. Based on experimental data (Lefort et al., 2009), our model
of a L5 barrel column contains 454 excitatory and 90 inhibitory neurons while L.2/3 contains
1691 excitatory and 230 inhibitory neurons. The two layers are studied separately and are not
connected to each other.

As a neuron model, we use a current-based Generalized Integrate-and-Fire (GIF) model (Mensi
et al., 2012) that features both an adaptation current and a dynamic threshold for spike-
frequency adaptation. The GIF model parameters that we use in our simulations have been
previously extracted from experimental data (Mensi et al., 2012). Importantly, the GIF model
has been shown to capture with high accuracy both the subthreshold dynamics of the membrane
potential and the spiking activity recorded from neurons in mouse barrel cortex slices during
current injection (Mensi et al., 2012; Pozzorini et al., 2013). In this model, the subthreshold
membrane potential V'(¢) is described by the differential equation:

v (t)

Cdt

= —gu(V(t) = Ev) = Y n(t —i;) + I(1) (2.1)

tAj <t

where the parameters C, g, and Fj, define the passive properties of the neuron (for parameter
values see Table 2.1), I(t) is the input current and {¢,} are the spike times. Each time a spike is
emitted, an intrinsic current with stereotypical shape 7(t) is triggered (see Table 2.1). Currents
triggered by different spikes accumulate and produce spike-frequency adaptation. Immediately
after firing, the membrane potential is reset to Viest, integration of Eq. 2.1 restarts and the
neuron goes through an absolute refractory period of duration 7.

Spikes are produced stochastically according to a point process with the firing intensity

A(t) = No exp(v(ﬂA_VVT(t)) (2.2)

where A is the stochastic intensity at the firing threshold Vi, AV is a constant which defines
the level of stochasticity and Vr is a time-dependent firing threshold:
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] Parameter ‘ Excitatory ‘ Inhibitory ‘
C (pF) 83.1 46.1
gr (nS) 3.7 6.6
E;, (mV) —67.0 —712
Tret (1018) 4.0 4.0
Vieset (mV) —36.7 —48.4

m(t) +n2(t)

m(t) +ma(t)

56.7672& 57.8ms

31.86715 11.5ms

—6.9€7t/218'2m3

1.667t/500.1ms

() Y1(t) +72(t) | 7(t) +72(t)
yi(t) (mV) | 11.7¢7t/538ms | 5 Ge—t/11.5ms
Yo(t) (mV) | 1.8e7t/0400ms 1 () Ge=t/473.Tms

Ao (kHz) 10 m)
AV (mV) 14 0.6
Vi (mV) —39.6 419

Table 2.1: The mean of GIF neuron model parameters extracted from Mensi et al. (2012).

Vi) = Vi + 3 A (t —4)) (2.3)
£j<t

where V' is a constant and 7(t) describes the stereotypical time course of the firing threshold

after the emission of an action potential (see Table 2.1).

For all neuronal parameters, we use the values given in Table 2.1 with £15% uniformly dis-
tributed variations in all simulations, except for Figure 2.3A. For comparison in Figure 2.3A all
neuron parameters are as in Table 2.1 without any variation. The values of Table 2.1 are ex-
tracted from experimental data from mouse barrel cortex (Mensi et al., 2012) and no parameter
tuning of neuronal parameters was done for the network simulations reported here.

In the network, the input current I;(¢) in Eq. 2.1 is generated by synaptic current pulses into a
specific neuron ¢

L) = Ywy Yalt— ) = Yw, /Ooo a(s)S;(t — s)ds (2.4)

f

where t; is the f™ spike of a presynaptic neuron j and S; = 3 FO(t — t}c ) is the spike train
of neuron j where § denotes the Dirac d-function. We choose an exponential shape for post-
synaptic currents (PSC) o with a time constant 7y, a(t) = e ¢=2)/™n for t+ > A. The
transmission delay (A) of synaptic connections in all our simulations is 1ms. The symbol w;;
denotes the synaptic weight from neuron j to neuron i. The term synaptic weight is commonly
used for either of two different quantities, either the amplitude of the PSC or the amplitude of
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Connection probability | 7oy, (ms) PSP ampﬁfggg(tg\/v;elgh;ij PA)
Mean Std Mean | Std
exc—rexc 19% 16.3 0.66 0.76 7.9 9.1
exc—inh 37% 6.9 0.55 0.51 9.9 9.2
inh—exc 50% 1.3 0.48 0.44 36.5 | 33.5
inh—inh 35% 6.9 0.48 0.49 8.7 8.9

Table 2.2: Network parameters as extracted from mouse barrel cortex (Lefort et al., 2009; Avermann et al.,
2012).

Synaptic weight
Tpoisson (HZ) | Tgyn (mS) w,; (pA)
Poisson—assembly1 100 16.3 30
Poisson—assembly?2 100 16.3 30
Poisson—assembly3 100 16.3 30
Poisson—non-hubs 100 16.3 10
Poisson—inhibitory 100 6.9 80

Table 2.3: Each neuron receives input from an independent Poisson process with a rate of rpyisson and a synaptic
Welght Wij-

the post-synaptic potential (PSP). In this study we take the first definition, i.e. w;; denotes the
PSC amplitude; see Eq. 2.4. However, the experimental datasets we used report the synaptic
weight based on the second definition (PSP amplitude). Given the neuronal parameters, one
can easily relate the two quantities. We report the synaptic weight we used in our simulations
according to both of the definitions in Table 2.2.

All network parameters (Table 2.2), e.g. connection probabilities, the distribution of synap-
tic weights and number of neurons are chosen based on previously published data extracted
from mouse barrel cortex (Lefort et al., 2009; Avermann et al., 2012). At present there is no
comparable dataset for L5 inhibitory neurons. Therefore, for inhibitory neurons, we use neu-
ronal and network parameters similar to those of L2/3 inhibitory neurons (Avermann et al.,
2012). Since these neurons do not play a crucial role in initiating the up/down oscillations
and stimulus-evoked responses, the exact choice of their parameters does not strongly affect
the results. Moreover, the study of Pfeffer et al. (2013) explored some aspects of connectivity
pattern between different subsets of inhibitory neurons and highlighted more similarities than
differences between L2/3 and L5 inhibitory network. In the model, all neurons receive external
Poisson noise whose properties are described in Table 2.3.

In order to reproduce the light-evoked stimulation (Figure 2.4), we randomly select 15% of
the neurons and inject a step current with amplitude 100 pA for 300 ms. For simulating the
light-evoked response in 1.2/3, the connection probability and the mean synaptic weights inside
excitatory population are 16.8% and 0.37 mV, respectively (Avermann et al., 2012). The other
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network parameters are the same as L5. For simulating the active cortical state (Figure 2.4),
during the active period each neuron receives synaptic input from 70 Poisson process neurons
firing with a rate of 5 Hz. The synaptic weights of synapses from Poisson neurons to assemblies,
non-hubs and inhibitory neurons are 25, 5, and -25 pA, respectively.

All simulations were run using the Brian simulator (Goodman and Brette, 2008).

Partitioning the Excitatory Population into Weight-Hubs and Non-hubs Subpopu-
lations

In order to distinguish between weight-hub and other neurons (“non-hubs”), and to capture the
properties of weight-hub neuron subpopulations (assemblies), we use two methods explained
in the following. The first method (heterogeneity approach) maintains the heterogeneity of
synaptic weights in the population. The experimentally obtained probability density function
of synaptic weights p(w) is well-approximated by a lognormal distribution (Lefort et al., 2009):

) = —L = 9
w) = T )
b woy/ 2w

where 1 and o are the two parameters of the distribution and wy, is the median of synaptic
weights (Figure 2.1).

Following Tomm et al. (2014), we first change the synaptic weight matrix in order to have
local inward weight correlations, as described in the following. We start by generating an initial
random connectivity matrix (connection probability p = 19%, see Table 2.2) with weights drawn
from Eq. 2.5. Let W = [W;;]nxn be the initial weight matrix, where N is the total number of
excitatory neurons. We continue by generating a vector A = [a;]yx1 using another lognormal
distribution. Now, we define a new weight matrix W by

Wi; = ’lf}ij(li . (26)

A high value of a; increases the weight of all synapses received by the i-th neuron. Therefore,
a high value of a; tends to convert the neuron to a weight-hub neuron, because it will have
many large inward weights. Moreover, since multiplication of two lognormal variables yields a
lognormal variable, we can be sure that new weights w;; are drawn from a lognormal distribution.
We choose the parameters of the two lognormal distributions (u = 0.141, ¢ = 0.924 and
Wy = 0.372mV for the distribution of w;;, and p = 1.4 - 107%, 0 = 0.15 and a,, = 1 (median)
for the distribution of @;) to set the mean and variance of the final weights equal to the values
found in the experimental data (Lefort et al., 2009) (u = 0.005, 0 = 0.936 and w,, = 0.419mV).
The mean weight is then 0.66mV and the standard deviation is 0.76mV with the above choice
of parameters. N, = 95 neurons out of N, = 454 excitatory neurons (20.9%) were labeled
as “weight-hubs”, by choosing those with the highest sum of inward weights (Figure 2.1A).
Note that other values may have been used for the distribution parameters of w;; and a;, as
long as the distribution of w;; matches the experimental data (Lefort et al., 2009). We chose
the mentioned parameters to achieve biologically plausible network dynamics (skewed firing rate
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Figure 2.1: Networks with weight-hub neurons. A) Histogram of the sum of inward weights for a random
(solid line, network without weight-hubs) and inward correlated (filled, network with weight-hubs) network
topology. While the random topology (without weight-hubs) shows an approximately normal distribution, the
inward-correlated topology has a broader, lognormal-like distribution. Weight-hub neurons form the tail of this
distribution. Both networks, without and with weight-hubs, have the same lognormal distribution of individual
weights shown in (B) (red line). Inset: In a heterogeneous network with inward correlations, most neurons receive
many weak (thin arrows) connections (left) whereas weight-hub neurons (right) receive many strong connections.
(B) Fitting the experimental distribution (red line) of synaptic weights (EPSP amplitudes) by a two-element
“homogeneous” distribution (dashed areas). The lognormal distribution (solid line) was fitted to experimental
data (Lefort et al., 2009) and is used to find the values of weak and strong weights, w,, and wy,, respectively.
Inset: Splitting the excitatory population into two subpopulations. Weight-hub neurons receive strong synaptic
weights (wy,) and non-hub neurons receive weak synaptic weights (wyy). All connection probabilities are low
(pnn; nh: non-hub) except for the hub-to-hub connections (py,).

distribution and low correlations between neurons). Note that if we only consider weight matrix
W (without multiplying by a;), then our network does not contain weight-hub neurons. We
used this approach in Figure 2.4C.

In a second step we rewire the network to increase the number of connections between weight-hub
neurons in the assembly (such that connection probability between weight-hub neurons increases
from p = 19% to p, = 50%), while keeping the total number of connections fixed. To do so, we
randomly select two unconnected weight-hub neurons and add a connection between them. The
weight of this new synapse is again drawn from the lognormal distribution described earlier.
Then we randomly select a connected neuron pair which contains at least one non-hub neuron
and remove the synapse connecting them. This procedure is repeated until we reach the desired
connection probability between weight-hubs. An issue here is that, since we remove a weak
weight and add a strong one, the overall average weight increases slightly. However, the number
of replaced synapses is very small compared to the overall number of synapses: The number
of synapses between weight-hub neurons before the rewiring is Sirtial = N2p = (20.9% - N.)*p
and after that it should be Sinel = N2p, = (20.9% - N,)?py,. Therefore the fraction of replaced
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synapses equals:
final initial
) )
Se

where S, = NZ2p is the total number of synapses between excitatory neurons. That means the
rewiring concerns only 7.1% of all excitatory synapses, and therefore causes only a small increase
of the average weight (average exc. weight is 0.659mV before and is 0.666mV after rewiring).
Note that choosing a higher fraction of assembly neurons in the network increases the fraction
of replaced synapses. For example, if assembly neurons form 35% of all excitatory neurons, 20%
of all excitatory synapses will be affected. Clearly, it leads to a significant change in the average
of excitatory weighs (0.659mV before and 0.701mV after rewiring).

- (20.9%)2(% —1) = 0.071 (2.7)

The rewiring procedure can be modified in order to make several connected weight-hub as-
semblies instead of just one. To this end, we randomly assign weight-hub neurons into several
groups. Then new synapses are added inside the groups and the same number of existing
synapses between the groups or between a pair of non-hub neurons are removed. Using this
procedure, each group becomes an assembly of densely connected weight-hub neurons.

As we observed in the previous method, we could choose different levels of heterogeneity in
synaptic weight structure by choosing different values for the distribution parameters of w;;
and a;. However, this heterogeneity does not affect the main outcome of the model, which is
oscillation. We support this idea by showing that a model with homogenous weight structure is
able to generate oscillations. Here we explain the second method for building weight-hub neurons
in the excitatory population. This method produces homogenous synaptic weights within each
subpopulation. Hence, we call it homogenous approach. We use it for the analytical results
and for Figure 2.3A. The method splits the excitatory population into two subpopulations. The
first one (the assembly of densely connected weight-hubs) contains N}, weight-hub neurons, the
second one contains N, non-hub neurons. Weight-hubs are those neurons that receive strong
synapses from other weight-hubs and from other excitatory neurons; all input weights onto
weight-hubs have the same value wy. Non-hubs receive weak synapses, all with identical input
weights wyy,. Let us assume that all connection probabilities between and inside subpopulations
are the same (p,,) except for the weight-hub to weight-hub connection probability (p,) which
is larger. Figure 2.1A summarizes the parameters of this network structure.

The experimental data (Lefort et al., 2009) do not distinguish between weight-hubs and non-
hubs but reports an overall synaptic weight distribution (p(w)) and an average connection
probability (p). We adjust the network parameters of the two homogeneous subpopulations
using these data. The average connection probability (p) should be maintained, despite the
split of the population into weight-hubs and non-hubs. Computing the average connection
probability in this model yields the equation:

N}?ph =+ Nghpnh + 2ANhANnhpnh
(Ny + Ny )?

We approximate the synaptic weight distribution p(w) obtained by experiments (Lefort et al.,
2009) with a two-element distribution formed by wy, and wyy, (Figure 2.1A). The strategy is

p= (2.8)
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simple: a classification boundary (w,) divides the synaptic weights into two disjoint sets, i.e.,
synaptic weights lower than w, and synaptic weights higher than w,. All weights lower than w,
are set to wy, and the others to wy,.

In order to obtain the value of w,, we introduce the fraction of weak connections f,, as a

parameter:

Nr?hpnh + NhNnhpnh
(Nn + Nun)?p

The classification boundary w, follows from the condition that the probability mass of weak
connections must account for the fraction of weak connections:

fon = (2.9)

/0 Y p(w)dw = fun (2.10)

Because p(w) is positive there is a unique solution for w, which we determine numerically. Once
the boundary w, is fixed, averaging w over the respective support yields the synaptic weights
of weight-hubs wy, and non-hubs wyy:

W = frllh /Ow* wp(w) dw (2.11)
1 o0
wy = fh/w* w p(w) dw, (2.12)

where f, = 1 — fun. A similar procedure may be applied in the case of several connected
weight-hub neurons subpopulations. Choosing p, = 50% and N, = 95, we obtain the remaining
parameter values: wy, = 1.42 mV, wy,, = 0.34 mV for PSP amplitudes, and p,, = 18%. The
PSC amplitudes can be calculated using the PSP amplitudes: wy, = 16.9 pA and w,, = 4.0 pA.

Rate-current relations

Consider a population or a subpopulation of neurons. We can obtain a relation between the
average firing rate of all neurons and the average synaptic input current using two different
approaches. The first approach employs the neurons’ gain function, a generalization of the
frequency-current (f —I') curve (the terms firing frequency and firing rate are used interchange-
ably here). Injecting a weakly fluctuating current Iy, into a neuron causes an average firing
rate of

ro= g(<ISyn>ﬂ UI)? (2'13)

where ¢ is the gain function and (I,) and oy are the average and standard deviation of synaptic
current, over time, respectively. Although there are ways to compute the firing rate of adaptive
integrate-and-fire neuron models in closed-form (Fourcaud-Trocmé et al., 2003; Hertég et al.,
2014) or by using a self-consistent numerical approach (La Camera et al., 2004; Richardson,

22



Chapter 2. Cortical dynamics in presence of assemblies of densely connected weight-hub ...

2007, 2009), we obtain it here by numerical simulations, using a certain amount of fluctuations
in the input:

o1 e
+ -

Va2 Jo
where «(t) is the shape of an elementary postsynaptic current (PSC) defined in Eq. 2.4, £(¢) is
white noise of unit standard deviation and ¢, = fooo o?(t)dt. If the current is injected for short
episodes of 10ms or less, we can estimate the firing rate in the non-adapted state by averaging
over several trials. If it is injected for a longer time, we can divide the time into intervals of

10ms and extract the frequency-current relation in the different, progressively more adapted
states.

I(t) = (Lsyn) a(s)é(t — s)ds (2.14)

The second relation between the average firing rate and the average synaptic current follows
from the network activity; see Amit and Brunel (1997) and Gerstner et al. (2014). Each neuron
1 receives the synaptic current produced by the input spike train:

L s (t) = %:wu </00<> a(s)S;(t — 3)ds> (2.15)

where S;(t) is the spike train of j-th neuron, and wj; is the synaptic weight of this input onto the
receiving neuron. By averaging both sides over time and input neurons we obtain the average
input current (also known as the mean field) (Is,) = Npgwr, where N and p are the number
of neurons in the population and the connection probability between them, respectively. Here
q= fooo a(t)dt is the total charge of one PSC pulse, w is the average synaptic weight and r
is the average firing rate of neurons in this population. Rearranging this equation yields the
network feedback relation:

p = Ao (2.16)

Npqw

which is a linear relation of (I,,) and r with slope 1/(Npqw). We refer to the denominator as
the network feedback (Cl,) of the population:

Cq, = Npqw (2.17)

Eq. 2.13 and 2.17 will be used in the “Results” section to get insight into the network dynamics.

K-Means Clustering Method

K-means is a machine learning method for assigning data samples of a dataset to K clusters.
In this method, each data sample is represented by a vector of numbers.

The algorithm works as follows. It initializes the center vectors of the K clusters randomly.
Then, K clusters are created by assigning each data sample to the nearest center vector (using
Euclidean distance). Afterward, the new center of each cluster is calculated by averaging over
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all data samples to the cluster. The algorithm repeats the assignment and averaging steps until
it converges (i.e., until no change happens to the clusters by repeating these steps).

An important issue is how to determine the number of clusters (K) to begin with. This has
generally to be done with the task in mind. Here we use the algorithm for two tasks. The
first one is distinguishing weight-hubs from non-hubs. Clearly, in this task K = 2, because we
are looking for two different classes of neurons. The second task is assigning weight-hubs to
different clusters. Here, we use the so-called elbow method for choosing the value of K: We
run the algorithm for different values of K (2, 3, ...). Generally, the error of clustering (sum
of squared distances between each data sample and the center of its cluster) decreases with
increasing K. However, we choose the K at which the error decreases abruptly and a greater K
does not decrease the error that much. This method leads us to K = 3 for the second task.

2.3 Results

2.3.1 Layer 5-model network produces irregular oscillations

Both during anesthesia and slow-wave sleep cortical neurons show slow oscillations (~ 1Hz)
between two states (Steriade et al., 1993b; Cowan and Wilson, 1994; Lampl et al., 1999; Sanchez-
Vives et al., 2000; Sanchez-Vives and McCormick, 2000; Petersen et al., 2003b), the active
up-state and the quiescent down-state. The underlying mechanism of this phenomenon is not
fully understood, but several neuronal network models have been suggested, mostly based on
short-term plasticity (Holeman and Tsodyks, 2006; Melamed et al., 2008; Ghorbani et al., 2012).

Here we model cortical L5 with neuron model parameters and network parameters extracted
from experimental data of a single column of somatosensory cortex in mice (see Materials and
Methods and Table 2.1 and 2.2). An important feature of our model is that its excitatory
population (which consists of 454 neurons) contains three assemblies of densely (p = 50%)
connected weight-hubs which consist of 45, 30 and 20 weight-hub neurons, respectively. A
weight-hub neuron, or simply weight-hub, is defined here as a neuron receiving many strong
synapses so that the sum of incoming synaptic weights across all connections from other neurons
in the network is large compared to that of other neurons (Figure 2.1A).

Figure 2.2A shows the membrane potential and spike raster of several sample neurons. Simula-
tions show that the model exhibits irregular up/down state transitions reminiscent of irregular
slow oscillations in anesthetized cortex (Stern et al., 1997; Lampl et al., 1999). In order to com-
pare the up-state durations in the model with experimental data (Stern et al., 1997; Cossart
et al., 2003), we quantify the variability of the duration T' of the up-state by the coefficient
of variation, defined as std(7")/mean(T’), where the up-state duration 7" is measured as the
duration for which the membrane potential of a neuron stays at least 10mV above the resting
potential (E7). To this end, the membrane potential is smoothed by filtering with a Gaussian
filter kernel (of width 20ms) in order to remove rapid fluctuations. The coefficient of variation
of this presumed up-state duration, averaged over all neurons that have not been classified
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as weight-hub, is 0.42, which shows that their up-state duration is rather irregular (Figure
2.2C). Similarly, if we repeatedly select 10 excitatory neurons (choosing randomly from both
weight-hubs and other neurons) and measure the average coefficient of variation of the up-state
duration, we find a coefficient of variation of 0.40 £ 0.06.

The L5-network model produces a skewed and long tailed distribution of firing rates in the
whole population (Figure 2.2B) that is approximately lognormal (Figure 2.2B, inset). Weight-
hub neurons have a high firing rate and form the tail of the distribution, whereas non-hubs have
a low firing rate. The overall shape of the firing rate distribution is consistent with observations
in in-vivo experiments (Hromédka et al., 2008; Vijayan et al., 2010).

We investigated the correlations of transition times from down- to up-state and vice versa
(Figure 2.2D-F). Transitions inside subpopulations are highly correlated. The mean correlation
coefficient for transition from down- to up-state is 0.84, 0.82, 0.69 for neurons within assemblies
1, 2 and 3, respectively, 0.77 for non-hub neurons and 0.78 for inhibitory neurons (Student’s
t test for difference in mean: all p-values are smaller than 107'°). The mean cross-correlation
for all pairs of neurons is 0.58, indicating a high correlation between randomly chosen pairs of
neurons. The corresponding values for transition from up- to down-state are 0.68, 0.64, 0.56 for
assemblies 1, 2 and 3, respectively, 0.83 for non-hub neurons, 0.84 for inhibitory neurons and
0.60 for all pairs of neurons (Student’s t test for difference in mean: all p-values are smaller than
10719). These results indicate that an overall synchrony between neurons in the up-/down state
oscillations are maintained, consistent with recordings from multiple extracellular electrodes
(Petersen et al., 2003b; Fucke et al., 2011). Note that assemblies oscillate out of phase, but not
in anti-phase, because they do not strongly compete with each other, as opposed to a network
in a winner-takes-all mode. Therefore occasionally more than one assembly is active at a time
(see raster plot in Figure 2.2A). Competitive neurons with anti-phase oscillations would instead
lead to reduced correlation of up/down state transitions, averaged across all neuron pairs in
the network. High correlations inside each subpopulation also increase the overall correlation.
The peak of the overall correlation distribution mostly belongs to correlations of pairs inside
subpopulations (Figure 2.2B). Another noteworthy point is that since the size of assembly 3
is small (20 neurons), its properties differ from other assemblies. In particular, the firing rate
of assembly 3 neurons is less than that of the two other assemblies, and even less than several
non-hub neurons (Figure 2.2B). Also, the correlation of up/down transitions is less than other
assemblies and non-hub neurons.

To investigate whether the heterogeneity of the network structure, the broad distribution of
synaptic weights, and the variation of neural parameters values are important for these dynam-
ics, we built a similar model in which all synaptic weights inside a given subpopulation (i.e.
weight-hubs, non-hubs and inhibitory) are identical (See Materials and Methods) and values of
neural parameters inside each subpopulation are identical (Table 2.1). The model still produces
the irregular up/down state oscillations (Figure 2.3A).

On the other hand, the reduction of the connection probability inside the assemblies of weight-
hub neurons from 50% to 20% (while maintaining the overall connection probability such that
it agrees with experimental data) causes the dynamics to change significantly, and the irregular
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Figure 2.2: Irregular up- and down-state transitions in a network with three assemblies of densely connected
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Figure 2.2: (Continued) weight-hubs. A-Top) Membrane potential of sample non-hub (black, labeled 1-
12) and weight-hub (labeled 13-15) and inhibitory neurons (red, without label). Inside each group neurons
have been sorted by their firing rate. Brown bars indicate time intervals which are considered as up-states for
bottommost inhibitory neuron. A-Bottom) Raster plot of several neurons of each population (same color). B)
Rate distribution of excitatory neurons. Numbered labels indicate the firing rate of neurons whose membrane
potential traces are shown in A. Inset: The distribution of firing rates is close to a normal distribution (red curve)
on a (semi-) logarithmic scale. C) Histograms of the up-state duration for each group of excitatory neurons. The
coefficients of variation for the assemblies are 0.06, 0.10 and 0.16, which signifies regular durations. The non-hub
neurons (filled histogram) exhibit a broad distribution of up-state durations with coefficient of variation of 0.42.
Inset: The Excitatory population contains three assemblies of weight-hubs and a large population of non-hubs.
D, E) Distribution of pairwise Pearson correlation coefficients of transition times from down- to up-state (D)
and from up- to down-state (E) inside each subpopulation (solid lines) and over all 145530 pairs of neurons
(dashed lines). Transitions of two neurons are counted as coincident if they happen in the same time bin of
20ms. F) Averaged Pearson correlation coefficients of transitions from down- to up-state (upper triangle) and
up- to down-state (lower triangle).

oscillations vanish (Figure 2.3B) even though network and neuronal parameters are heteroge-
neous. Thus the connection probability inside weight-hub neurons assemblies plays an important
role in the model dynamics. This is consistent with the model of Litwin-Kumar and Doiron
(2012), in which clusters of neurons were predefined. Decreasing the connection probability
inside the neuronal clusters causes the transitions of clusters between active and inactive states
to cease. In a related model (Mazzucato et al., 2015), in which inter- and intracluster connec-
tion probabilities are equal, decreasing the synaptic weights inside the clusters leads to a loss
of oscillations.

Finally, we also simulate a network with a single assembly of densely connected weight-hubs
(Figure 2.3C). While transitions between up and down states occur, the oscillations in non-hub
neurons (and therefore the majority of neurons) are much more regular than in the full model of
Figure 2.2 (the coefficient of variation of up-state duration for non-hub neurons in Figure 2.3C
is 0.08 for, while it is 0.42 for Figure 2.2).

Simulation of optogenetic stimulation. Here, we explore the light-evoked response of our
model of barrel cortex networks. Mimicking a recent experiment (Beltramo et al., 2013), a
small subset of model neurons is stimulated to fire. Then, the activity of several non-stimulated
neurons is recorded to investigate the relation and effect of the stimulated subset on the other
neurons in the network. In our framework, an increased connection probability between weight-
hub neurons can potentially explain the observation of the experiment: Optogenetic stimulation
of a group of L5 neurons causes a long-lasting depolarization in non-stimulated L5 excitatory
neurons, while the same experiment shows different results in L2/3 (Beltramo et al., 2013).
Non-stimulated neurons in L2/3 show little depolarization and a smaller number of emitted
spikes upon optogenetic stimulation of L.2/3. These results imply that the L5 excitatory popu-
lation is able to spread the optically induced activation more than the L2/3 one. In principle,
this difference could be due to neuron parameters, neuronal morphology or the structure of
neuronal networks. Here we argue that the presence or absence of densely connected weight-
hubs assemblies, which is a property of the network structure, can explain the difference in the
spread of activation within each layer. We propose that weight-hubs may be densely connected
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Figure 2.3: A) Network of 454 excitatory and 90 inhibitory neurons with identical neuron parameters, organized
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Figure 2.3: (Continued) into homogenous subpopulations with dense connectivity within each assembly and
non-hubs. Membrane potential traces of a non-hub neuron (A1), neurons from each of the three weight-hub
assemblies (A2, A3, A4) and an inhibitory neuron (Inh) (A5). A6) Raster plot of several neurons of each
population (same colors). Oscillations of the assemblies are different in terms of the up-state and down-state
durations. Non-hub and inhibitory neurons receive input from the three oscillating assemblies and exhibit
irregular oscillations. Note that there are 359 non-hub neurons in the network, which is the majority of cells.
B) Heterogeneous network as in Figure 2.2, but sparse connectivity (p = 20%) inside assemblies. Membrane
potential of non-hub (B1), three weight-hub neurons (B2, B3, B4) and inhibitory neurons (B5) and the raster
plot of several neurons of each population (B6). The Up-state/down-state oscillation vanishes. Weight-hubs
(B2-B4) occasionally emit spikes since they receive stronger synapses from Poisson neurons, while non-hub
neurons (B1) do not spike at all. C) Oscillations in a network with a single assembly of densely connected
weight-hubs are more regular than in Figure 2.2. Membrane potential of a non-hub (C1), a weight-hub (C2)
and an inhibitory neuron (C3). C4) Raster plot of randomly selected neurons of each population. While weight-
hub neurons (green ticks) exhibit a high firing rate in the up-state, non-hub neurons (black ticks) show only a
small number of spikes. Inhibitory neurons (Inh) are shown in red.

in L5, but their connectivity may be sparse in L.2/3. This difference can be considered as one
of several possible ways for interpretation of different light-evoked response in L2/3 and L5.
Another noteworthy point is that although both connection probability and average synaptic
weights in L.2/3 are lower than L5 (see Section Materials and Methods), the number of neurons
in L2/3 is much larger than L5 in our framework (1691 vs. 454). Therefore, the number and
total strength of inward synapses into 1.2/3 neurons are not lower than L5 neurons.

We examined whether the experiments in L2/3 and L5 can be explained by our cortical network
model. Figures 2.4A B respectively show the responses of 1.2/3 and L5 excitatory population
models to a transient direct current stimulus, which we used to model optogenetic stimulation
(Beltramo et al., 2013). The stimulus is received by a random subset (15%) of excitatory
neurons, to account for the fact that about 15% of experimentally observed neurons express the
light-sensitive ion channel. In the L2/3 population model, the connections within the weight-
hubs assembly are sparse, whereas in the L5 model they are dense. Non-stimulated model
neurons in L2/3 show little depolarization while L5 ones show a high depolarization and a
substantial number of spikes, in agreement with experiments in mouse visual cortex (Beltramo
et al., 2013). Therefore, we conclude that dense connectivity between weight-hub neurons in
L5 and sparse weight-hub connectivity in L.2/3 can generate biologically plausible light-evoked
responses.

In the simulations of Figures 2.2, 2.3, we observed that densely connected weight-hubs produce
up-state/down-state oscillations while sparsely connected ones do not. Taken together with
the simulation of Figure 2.4 these results suggest that L5 is the main source of the up/down
oscillations in the cortex, while L2/3 is subsidiary. Experimental studies (Sakata and Harris,
2009; Chauvette et al., 2010; Beltramo et al., 2013) provide further support of this conclusion.

To assess whether the concept of weight-hubs is necessary to explain the light-evoked responses,
we modified the structure of L5 network and repeated the simulation. In the new structure,
we did not use weight-hub neurons (neurons that receive strong synaptic weights from all other
neurons) but we instead implemented an assembly with high connection probability and strong
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Figure 2.4: Simulated response to light-evoked stimulation of non-stimulated excitatory neurons in cortical L2/3
(A) and in L5 (B). Approximately 15% of all neurons (weight-hubs, non-hubs and inhibitory) are stimulated in
each layer for a time period of 300 ms (blue bar). Membrane potentials (lines) and spikes (ticks) of weight-hubs
(green) and non-hubs (black). L2/3 neurons (A) show little depolarization due to sparse connectivity between
weight-hubs, while L5 neurons (B) display a long-lasting depolarization and a significant number of spikes. This
effect is due to the dense connectivity between weight-hubs in the L5 network model, but not in the L2/3 model.
(C) Simulation of L5 in case of a modified assembly model that only has strong internal synaptic weights but is
not innervated as strongly from other neurons as the weight-hub assembly in (B), see main text for details. In the
absence of weight-hub neurons, L5 does not generate long-lasting depolarization in response to the stimulation.
(D) Simulation of L5 in case of having sparse connectivity (p = 20%) inside assemblies. The network is unable
to produce long-lasting depolarization.
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synaptic weights internally. In other words, in the new structure the neurons of the assembly
receive strong synaptic weights from each other while they receive normal weights (broadly
distributed weak and strong weights, as shown in Figure 2.1B) from the neurons outside the
assembly. Our simulation shows that this structure is unable to produce a long-lasting depolar-
ization and a notable number of spikes (Figure 2.4C), indicating that the weight-hub property
is important to explain the light-evoked response of L5. We also simulated light-evoked re-
sponse of another variant of L5 model (Figure 2.4D). We showed that L5 in presence of sparsely
connected weight-hub neurons cannot generate long-lasting depolarization.

Correlations. A characteristic of weight-hub assemblies in the model (Figure 2.2) is that the
activity of hub neurons is strongly correlated. We quantified correlations by computing the
correlation coefficients of pairs of neurons, both of the subthreshold membrane potentials and
the spike trains, binned into a 10ms time window (Figure 2.5A). In the heterogeneous network
of Figure 2.2 the subthreshold membrane potentials of neurons inside each subpopulation are
strongly correlated (Figure 2.5B and 2.5D; mean correlation coefficient 0.80, 0.79, 0.75 for
assemblies 1, 2 and 3, respectively and 0.94 for inhibitory neurons) and significantly smaller
(Student’s t test for difference in mean: all p-values are smaller than 107'°) for non-hubs
(mean correlation coefficient 0.65). In contrast, correlations between neurons of different weight-
hub assemblies are small, because their oscillations are not synchronized (Figure 2.5D). The
correlation analysis of the spikes generated in the heterogenous network of Figure 2.2 also
shows correlated behavior inside subpopulations except for non-hubs (Figure 2.5C and 2.5D).
The mean correlation coefficients for the spike trains of the non-hubs is 0.06, smaller (Student’s t
test for difference in mean: all p-values are smaller than 1071%) than that of other subpopulations
(mean correlation coefficient 0.79, 0.65, 0.42 for assemblies and 0.52 for inhibitory neurons). If
we randomly select two neurons in the network, we find a broad distribution of pairwise spike
correlations (Figure 2.5C, dashed line) with a peak close to zero, consistent with experimental
data (Reich et al., 2001) and previous model of metastable dynamics (Mazzucato et al., 2016).
Heterogeneous (Figure 2.5D) and homogeneous (Figure 2.5E) variants of the model show very
similar correlation structure, but in the network with sparsely connected weight-hub neurons
(Figure 2.5F), the correlations disappear, because assemblies are mainly driven by external noise
and do not show any joint transitions to the up-state (Figure 2.3B).

Active cortical state. Our network model can switch from the oscillatory state (which
resembles slow-wave sleep or anesthesia) to an active state and vice versa without any change of
network properties. In particular, the assemblies of weight-hub neurons, which are responsible
for producing the up-down state oscillations, are always embedded in the network. In the active
state, cortical neurons receive sensory input predominantly from layer 4 and layer 6 neurons
which relay the sensory signals between thalamus and other cortical layers (Binzegger et al.,
2004; Poulet et al., 2012). Here we simulate the active state by injecting an external stimulus
(homogenous Poisson process to generate excitatory spike trains) to all neurons of the model.
Figure 2.6A shows that the network stops oscillating immediately after receiving the stimulus,
and switches back to the up-down state oscillations when the stimulation stops.

The effect of the external input can be explained as follows. When there is no strong external
input, the network is driven by the dynamics of the weight-hub assemblies. Since they show
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Figure 2.5: Cross-correlations of neuronal activity. A) Two pairs of subthreshold membrane potentials (spikes
have been removed) with low (A1) and high (A2) correlation and a pair of spike trains (A3). Spikes are counted
as coincident if they fall within the same bin of 10ms. B, C) Distribution of Pearson correlation coefficients of
subthreshold membrane potentials (B) and spike trains (C) of pairs of neurons inside each subpopulation (solid
lines) and over all 145530 pairs of neurons (dashed lines). D, E, F') Averaged Pearson correlation coefficients be-
tween the membrane potentials (upper triangle) and the spike trains (lower triangle). Correlations are computed
for pairs of neurons in the respective subpopulations of (A-D) the heterogeneous network of Figure 2.2, (E)
the homogeneous network of Figure 2.3A and (F) the sparsely connected weight-hubs network of Figure 2.3B.
Because inhibitory neurons do not fire any spikes in the sparsely connected weight-hubs network (F'), the spike
train correlations of them are not defined (white area).
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self-sustained oscillations, the whole network is affected by the oscillations and follows them.
In case the external input is present, however, the network is driven mainly by the input
(even if the input is stationary, as in the case driving our stimulus with a homogenous Poisson
process) and not the assembly dynamics. Therefore all neurons, including the weight-hub neuron
assemblies, are governed by the input and stop oscillating. During the input-driven active state,
the firing rate distribution is narrow (Figure 2.6B) and the correlation between neurons is very
low (Figure 2.6C). The average correlation coefficients for the active state (0.15, 0.14, 0.12 for
assemblies 1, 2 and 3, respectively and 0.25 for inhibitory neurons) are smaller than in the
oscillatory state (Figure 2.5C) (Student’s t test for difference in mean: all p-values are smaller
than 1071%). The very low average correlations between (over all neuron pairs, 0.04 4 0.05,
Figure 2.6C, dashed line) and inside excitatory neurons (Figure 2.6C, black line) are consistent
with recent experimental observations (Ecker et al., 2010). Therefore, the network preserves
important aspects of biologically plausibility (such as skewed firing rate distribution and low
value of pairwise correlations) also in the active cortical state.

2.3.2 The role of the weight-hub neurons assembly in the slow oscil-
lations

In order to understand why the assembly of densely connected weight-hub neurons generates
oscillations, we use methods from network analysis (Amit and Brunel, 1997; Laing and Chow,
2002; Giugliano et al., 2004; Moreno-Bote et al., 2007; Giugliano et al., 2008; Shpiro et al.,
2009; Gerstner et al., 2014; Mazzucato et al., 2015). We relate the mean firing rate of neurons
of the assembly to the mean synaptic current received by them. The first relation is given
by the neuronal gain function (Eq. 2.13, curve in Figure 2.7A), i.e., the firing rate that each
neuron produces when it is driven by a certain input current. The second relation is given by
the feedback of the network (Eq. 2.16, lines in Figure 2.7A), i.e., how much synaptic current
is produced by the activity of the neurons. In the absence of adaptation, intersection points
between the two curves form candidates of fixed points of network activity. We define the
“network feedback” (Ch,, Eq. 2.17) as the strength of synaptic feedback within the assembly.
This quantity is the inverse of the slope of the feedback line (lines in Figure 2.7A). A high (low)
value of Cf, leads to a strong (weak) response of the assembly to synaptic currents.

In the framework of up- and down-state oscillations, an assembly (or any subpopulation of
neurons) with low value of Cp, is not able to oscillate and remains in a low firing rate fixed
point. This can be explained as follows: A low value of Cp, implies that the feedback line has
a large slope (solid line in Figure 2.7A). Therefore, the two curves have only one intersection
point whose rate is close to zero. We refer to this fixed point as “low-point”. In the case of a high
value of C,, the slope of the feedback line is low (dashed lines in Figure 2.7A) and there are two
additional fixed points of the system. The middle fixed point is unstable and is called the “switch
point”, and the upper one is typically stable (neglecting adaptation and oscillatory instabilities
(Brunel, 2000; Gerstner, 2000)) and is called the “high point”. Let us refer to their positions
with symbols (/g,rs) and (I,ry) with indices s and h for “switch” and “high”, respectively. I acts
as a threshold for the behavior of the assembly. In case of driving neurons with a current lower
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Figure 2.6: Transition from up-down-state oscillations to “active” state. A1-A6) Network of Figure 2.2 receiving
external Poisson process stimulus from ¢ = 3s to ¢ = 5s (blue bar). Neurons show up-down state oscillation
before and after the stimulus, while they exhibit higher firing rate (20.9Hz for inhibitory neurons and 12.4Hz
for excitatory neurons, split into 37.4Hz, 33.6Hz, 33.0Hz, 6.4Hz for assemblies 1, 2, 3 and non-hubs neurons
respectively) during the stimulation period. B) Distribution of firing rates across neurons in the network during
stimulation interval (blue bar in A). C) Distribution of Pearson pairwise correlation coefficients (bin size =
10ms) of spike trains of pairs of neurons inside each subpopulation (solid lines) and over all pairs of neurons
(dashed lines) during stimulation interval.
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than I, the assembly converges to the low-point and remains quiescent. In contrast, currents
higher than I bring the assembly to the high-point and force it to exhibit a high firing rate. In
our framework external Poisson noise occasionally provides a transient synaptic current larger
than the current of the switch point. The mechanism described above is the reason that the
assembly switches from the low-point to high-point. Switching back from the high-point to the
low-point is due to spike-frequency adaptation and will be discussed further below.

As discussed, a sufficiently large value of Cy, gives rise to two stable fixed points of the network
activity, the low-point and the high-point. Since the assembly of connected weight-hub neurons
exhibits high average synaptic weights (wy) and high connection probability (py), the value of
Croxwp,py, for this subpopulation is high (see Materials and Methods, Eq. 2.17). But is such
an assembly of weight-hub neurons necessary for producing the oscillations? Or can any highly
connected group of neurons (not necessarily weight-hub neurons) generate the oscillation? Or
even a group of neurons with very strong synaptic weights but sparse connectivity (similar
to Mazzucato et al., 2015)7 The relevant parameters for the configuration of fixed points is
the value of Cf,, which can in principle be increased by an increase of either wy or py, or
both. However, we found some of these possibilities to be not consistent with the existing
experimental data. In particular, fixing p, and increasing wy by a large factor yields a set
of very strong synapses out of the range of reported experimental PSP values (Lefort et al.,
2009). On the other hand, by fixing wy, we require a very high p, (close to full connectivity,
pn = 1) which does not look biologically plausible for cortical networks (for more details of
relation between connection probability and other population parameters see Klinshov et al.
(2014)). For example, in the case of the smallest assembly (containing 20 neurons), choosing
sparse connectivity p, = 0.2 yields to very high synaptic weight value wy, = 3.55mV, similarly
choosing synaptic weight w, = 0.71mV (average synaptic weight in L5 excitatory population is
0.66mV) leads to full connectivity (p, = 1). Our solution was to increase both wy, and py by a
moderate factor, so that both remain realistic and still lead to a sufficiently high value of Cp,.

We would like to highlight another characteristic of Ch,. Increasing its value increases the
firing rate 7y, in the high fixed point, and lowers the minimal value of the switching current I
(Figure 2.7A, inset). Consequently, a high value of Cf, implies that only a small amount of
transient external current is required to bring the population above the switch point. In our
model, different assemblies have different numbers of neurons, therefore different values of Cy,,
and different switching points. The different feedback coefficients of weight-hubs assemblies and
non-hub neurons also explain the skewed distribution of firing rates (Figure 2.2B) in the model.
Larger assemblies of weight-hub neurons switch more often to the high-point and produce higher
firing rates than smaller assemblies. Hence, weight-hub neurons from different assemblies form
the tail of firing rate distribution. Non-hub neurons do not switch to the high-point and are not
able to produce high firing rate. Therefore, they form the peak of the firing rate distribution at
low rates.

Let us now focus on the return of the assembly from the high-point to the low-point. At
the high-point neurons exhibit a high firing rate but spike-frequency adaptation continuously
decreases the probability of spike emission. Therefore, the neurons’ gain function changes
gradually (dashed curves in Figure 2.7B). The system eventually makes the transition to a new
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Figure 2.7: Mean-field analysis. A) The network feedback (Cp,, Eq. 2.17) affects the quasi-stationary dynamics
of the system. The red curve is the noisy gain function g of the GIF neuron model (mean spike count in a group
of 50 independent neurons over 10ms, divided by 50x10ms, shaded area marks +3 SEM) measured during the
initial 10ms after switching on a synaptic current of mean (Isyn) (see Materials and Methods, Eq 2.14). The green
lines (solid, dashed and dash-dotted) show the relation of firing rate and synaptic current caused by network
feedback (see Materials and Methods, Eq. 2.16) for increasing Cp,. The slope of the green lines has an inverse
relation with the effective coefficient Cf, of the population. Intersections of the red curve with one of the green
lines indicate potential stationary states (fixed points) of a network of non-adapting neurons. Populations with a
high Cf, (dashed and dash-dotted green lines) have three fixed points, stable low point, high point and unstable
switch point. If the population described by a network feedback given by the dashed lines is driven by a mean
current higher than I, it rapidly converges to the high point. On the other hand, a population with a low C,
(solid green line) has only one intersection at the low point. Inset: Increasing Ch, causes an increase in the
high firing rate r, (magenta curve, left vertical scale) and a decrease of the switch current I (blue curve, right
vertical scale). B) The noisy gain function of adaptive neurons is different during the first 10ms after stimulus
onset (solid red curve) than later (dashed red curves) C) The duration of up- and down-states as a function of
the time constant of the excitatory neuron firing threshold kernel v(s). Only the time constant of y2(s) (the
exponential with the longer time constant) was manipulated, while 7 (s) remained as reported in Table 2.1.
The black stars indicate the experimentally extracted value of the time constant, which was used in the other
figures. D) Same as C, except that here we manipulated the amplitude of 1 (s) (the exponential with the larger
amplitude). The error bars show the standard deviation of up/down state durations over 10 simulation trials of
10s duration each.
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configuration where the low-point is the only fixed point. When the system is at the low-point,
both adaptation current and dynamic threshold decay, and eventually the dynamics of the
subpopulation go back to the initial configuration in which both high- and low-point exist. In
other words, the neurons recover from adaptation while they are in the low-point. Stochastic
spike arrivals from other areas, described as Poisson neurons with constant firing rate here,
provide the excitation necessary to make the assembly switch to the high-point. The resulting
process of repetitive switching between the low-point and the high-point forms the oscillation
in the system. The high point, corresponding to high firing rates of the weight-hub neurons in
our model, can be interpreted as the up-state of a cortical network, and similarly the low-point
corresponding to low firing rates of the down-state. Previous studies (Giugliano et al., 2004,
2008) addressed these dynamics for a simpler adaptive integrate-and-fire neuron model with
similar analytical approaches.

Because spike-frequency adaptation in our model is responsible for progressively changing the
gain function during the up-state, and eventually for its termination, we investigate the effects
of the adaptation parameters on the duration of the up- and down states. Each time a neuron
emits a spike, several adaptation processes are added to its firing threshold and spike-triggered
current (denoted as “kernels” v(t) and n(t) in Table 2.1). Each kernel has an exponential
form of be /7, where b and 7 are amplitude and time constant of the kernel, respectively,
and t is the time elapsed since the emission of the spike. By modifying the time constant
7 of the firing-threshold kernel ~5(¢) (which has a longer time constant than ~(¢)) for the
excitatory neurons, we are able to change the down-state duration strongly without affecting
the up-state duration (Figure 2.7C). A longer time constant implies that neurons need more
time to recover from adaptation, which leads to a longer duration of the down-state. On the
other hand, manipulation of the kernel amplitude affects both up- and down-state durations,
as shown by changing the amplitude of the exponential term of the kernel ~; (¢) (Figure 2.7D).
Longer values of the amplitude cause shorter up- and down-states. Note that because the switch
from the down-state to the up-state in our model is caused by stochastic Poisson inputs, the
down-state durations have a greater variability compared to the up-state durations (see error
bars in Figure 2.7C, D). In general one could manipulate amplitudes and time constants of
all exponential kernels in (¢) and 7(t) as well as other neuronal parameters. However, since
all neural parameters of our model (including the adaptation parameters) are extracted from
experiments (Mensi et al., 2012), we did not investigate manipulating them any further.

In order to examine whether the above network feedback mechanism is indeed causing the up-
down state transitions, we simplified the model of L5 such that it contains a single assembly of
densely connected weight-hubs (see Materials and Methods) embedded in a network of non-hubs
with weak random connections. Figure 2.3C shows the dynamics of the network. Note that
in this model the assembly acts as the driving force of the system and generates an oscillation
by switching between its two stable fixed points. The non-hub neurons are enslaved by this
oscillation and show only the passive behavior of followers. However, while embedding only one
assembly in the excitatory population makes the system oscillate, the duration of up-states is
short and has a narrow distribution (regular duration). In contrast, a combination of several
assemblies, as in Figures 2.2, 2.3A, results in several oscillations with different frequencies,
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each of which is generated by one assembly. Non-hub and inhibitory neurons receive these
excitatory input signals and superimpose them. The result of the superposition are rather
irregular up-states with a longer duration (Figure 2.2, 2.3A). The role of inhibitory neurons
in the model is to regulate the firing rate of the assemblies in the up-state. This regulation
is necessary because an excessively high firing rate in each assembly would cause rapid spike-
frequency adaptation, and would therefore substantially reduce the duration of the up-states
in that assembly. Consequently, the superimposed oscillations would also show short up-state
durations.

We can also explain the light-evoked response of L5 and L2/3 (Figure 2.4) by the dynamics of
the assemblies of weight-hub neurons. In order to understand the differences between the layers,
let us suppose that most of the neurons that express the light-sensitive ion channel generate
one or several spikes in response to the stimulus. Assuming a uniform spatial distribution of
weight-hubs in the excitatory population, we estimate that ~ 15% of both weight-hub and
non-hub neurons are stimulated. Since synaptic weights among non-hubs are weak, non-hub
neurons do not strongly excite neighboring non-hub neurons. However, since they send strong
synapses to weight-hubs (according to our definition of weight-hubs), they contribute to the
initial activation of weight-hub neurons. Recall that a densely connected assembly needs only
little initial activation (to reach the switch point) to generate a high firing rate via self-excitation.
Therefore, a densely connected assembly switches to the high point more easily so that each
weight-hub neuron fires several spikes.

In contrast, since the connections from weight-hub neurons to non-hub neurons are weak, the
stimulation does not generate a high overall firing rate in the network (non-hub neurons depo-
larize but do not show a high firing rate). After the weight-hub neurons have fired several spikes,
spike-frequency adaptation changes the neuronal gain function. This switches the mean-field
dynamics of the weight-hub assembly from a three-fixed-point to a one-fixed-point regime and
brings the assembly to the low-point (Figure 2.7B), as discussed above. Consequently, both
firing in weight-hubs and depolarization in non-hubs cease. In contrast, in the case of sparse
connectivity between weight-hub neurons, due to a low value of the Cf,, this subpopulation is
unlikely to transition to the high-point. Either such a fixed point does not exists because the
system has only one fixed point (the low-point), or the value of the switch current (I;) is very
high and stimulated neurons cannot provide sufficient input current to reach it. Therefore, the
absence of a densely connected weight-hub assembly leads to weak spreading of the induced
activation in the population (Figure 2.4B). For the case of Figure 2.4C, since synaptic weight
from non-hub neurons onto assembly neurons are weakened, assembly neurons do not receive
enough synaptic current to cross the switch current. Consequently, they cannot produce notable
number of spikes.

2.4 Discussion

In this paper, we suggest cortical microcircuits with a particular non-random network feature
called assembly of densely connected weight-hub neurons, to explain two different experimen-
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tal observations: Firstly, spontaneous slow oscillations (irregular up- and down- state) and,
secondly, stimulus-evoked responses of cortical layers.

We argue that in our framework the existence of weight-hub neurons in a cortical network
alone is not enough to cause significant changes in network dynamics. Since we want the
values of network parameters (synaptic weights and connection probabilities) to remain in the
experimentally observed range, we may not increase the synaptic weight of connections on
weight-hub neurons by a huge factor. Therefore the value of network feedback cannot become
high enough to produce oscillations by only modifying the weights. But if the connection
probability between weight-hubs is also high (at least twice the connection probability between
two arbitrary non-hub neurons), the emerging assembly of densely connected weight-hubs shapes
the dynamics and the activity of the cortical layer. We have shown both qualitatively and
quantitatively that a small but sufficient amount of initial activation brings the assembly of
model neurons to a transient high-rate state that resembles cortical up-states.

A single assembly of weight-hub neurons together with a small amount of external noise (which
here is provided by constant rate Poisson inputs) forms a slow oscillator. The reason is that
this assembly switches between a high-rate state and a low-rate state repetitively. Fluctuations
caused by external noise bring the assembly to the high-rate state, and spike-frequency adapta-
tion brings it back to the near-zero, low-rate state. Several experimental studies (Sanchez-Vives
and McCormick, 2000; Sakata and Harris, 2009; Chauvette et al., 2010; Beltramo et al., 2013)
indicate that the cortical oscillations originate in infra-granular layers (mainly L5), and that
supra-granular layers (L2/3) are subsidiary, i.e. the up-state is initiated in L5 and rises from
the depth to L2/3. We suggest that the connectivity of weight-hub neurons in L5 is dense, while
it is sparse in L2/3. Thus L2/3 follows oscillations generated in L5, but is not able to sustain
oscillations on its own.

In slice cultures slow oscillations are rather regular (Sanchez-Vives and McCormick, 2000),
whereas experiments done in the anesthetized animals (Stern et al., 1997; Lampl et al., 1999)
show irregular up-down state transitions. In order to reproduce this irregularity, we embedded
several densely connected weight-hub assemblies in the excitatory population. Non-hubs, the
majority of excitatory cells, and inhibitory neurons receive synaptic input from these oscillations
and superimpose them. Consequently a large fraction of model neurons show an irregular
oscillation with a broad distribution of up-state durations.

The presence of one or several assemblies of weight-hub neurons may also explain layer-dependent
differences of stimulus-evoked responses (Beltramo et al., 2013). While L2/3 exhibits weak de-
polarization in response to stimulation of a small fraction of it, in L5 the same stimulus induces
a strong and long-lasting depolarization and a substantial number of spikes. Since the assembly
of weight-hub neurons needs just a small amount of activation to switch to a high firing rate, and
may propagate it within the network, we suggest that the connectivity of weight-hub neurons
underlies the long-lasting response of L5. Conversely, we would hypothesize that weight-hub
neurons in L2/3 are not strongly connected to each other.

While our multi-assembly architecture produces long tailed distribution of firing rates, there is
at least one other way to produce such a skewed distribution. In a balanced network in the
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asynchronous state Roxin et al. (2011) showed that a gaussian input distribution can lead to
a lognormal firing rate distribution via an exponential nonlinearity of the current-frequency
relation. In our network model, however, neurons are not in the balanced stationary regime
but participate in synchronous transitions between up and down states. Similarly, in the study
of Mazzucato et al. (2015) the long tailed distribution of firing rates results from metastable
activity not from the balanced stationary state.

Definition of hub neuron. The term hub can have two meanings: Firstly, degree-hub, i.e. a
neuron that receives more synaptic connections than an average neuron, and secondly, weight-
hub, i.e. a neuron that receives stronger synapses than average. The second definition was used
in the current work. The common definition of a hub (degree-hub) as a neuron that receives
more synapses (Bullmore and Sporns, 2009; Feldt et al., 2011; Prettejohn et al., 2011) does
not take into account the strength of synapses, called synaptic weights here. This topological
definition of hubs is common in computer sciences, where the issue of degree and connections
between nodes is more important than the weight structure. However, in neuronal microcircuit
modeling, synaptic weights are as important as degree and connectivity. Surprisingly, the
amount of previous modeling work done on degree manipulation and connectivity structure
(Roxin, 2011; Hu et al., 2013; Pernice et al., 2013; Vasquez et al., 2013; Hu et al., 2014; Jahnke
et al., 2014; Potjans and Diesmann, 2014; Rudolph-Lilith and Muller, 2014) by far exceeds work
on non-homogeneous weight structure (Koulakov et al., 2009; Iyer et al., 2013; Tomm et al.,
2014).

Here we adopted the less-common definition of a hub in terms of synaptic weights, to shed
light on this less-well understood aspect of non-random neuronal network features. While
manipulation of the degree distribution in the network and creating degree-hubs has the same
effect as creating weight-hubs in producing a skewed firing rate distribution (Roxin, 2011), the
two are not always interchangeable. Tomm et al. (2014) showed that for reproducing light-evoked
responses in mouse barrel cortex slices, manipulation of both degree and weight distributions
are needed under the simulated network conditions of this study. In our case, it would be
possible to keep the connectivity random (without rewiring) and manipulate the weights more
strongly to produce the oscillations. However, this would entail very strong synaptic weights
outside of the experimentally observed range (Lefort et al., 2009), and thus would reduce the
biological plausibility of the model. Our combined approach of introducing weight-hubs with
dense connectivity overcomes this problem with minimal changes to both weight and degree
distribution.

Several electrophysiological experiments indicate that the distribution of synaptic weights (EPSP
amplitudes) has a lognormal shape (Lefort et al., 2009; Avermann et al., 2012; Ko et al., 2011),
see also Chapeton et al. (2012). Therefore we used a lognormal distribution for modeling synap-
tic weights in neuronal populations. Using random (Erdés—Rényi) networks to define whether
a synaptic connection is present or not, together with a lognormal distribution for the synap-
tic weight of the connection, entails that the sum of inward synaptic weights is similar for all
neurons (Figure 2.1B). However, by modifying the topology of the excitatory network to have
local inward correlation in synaptic weights (see Materials and Methods), we could produce a
more broadly distributed sum of inward synaptic weights (Figure 2.1B). Therefore, a few exci-
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tatory neurons receive larger total synaptic weights, while others receive smaller values. For the
sake of concreteness, we have defined a classification boundary such that the 20% of neurons
that receive the strongest inputs are called weight-hubs (see Figure 2.1B). The model is robust
against varying this fraction, and shows similar dynamics for 15% and 25% of neurons (data
not shown).

Throughout this article, only excitatory to excitatory connections were manipulated and all
other connections (inhibitory to inhibitory, inhibitory to excitatory and excitatory to inhibitory)
remained unchanged. However, evidence of hubs in inhibitory populations has been found in
experiments (Bonifazi et al., 2009). Therefore, the effects of hubs in inhibitory networks remain
to be investigated. Since in our model excitatory hubs suffice to explain the aforementioned
aspects of cortical dynamics, we neglected inhibitory hubs here in favor of model simplicity. An-
other reason for not exploring the structure of inhibitory connections is the lack of experimental
datasets for inhibitory connectivity in L5. In this work, we use the inhibitory connection prop-
erties of L.2/3 as a substitute for L5 (see Materials and Methods). Therefore, any investigation
on inhibitory connectivity of L5 would be based on this unconfirmed hypothesis.

Identifying weight-hub neurons from data. A network structure with densely connected
weight-hubs is hypothetical. In this section we propose a method using machine learning tools
which can help experimentalists to label neurons as weight-hub or non-hub using a set of recorded
membrane potential. In order to perform such a classification, we need to consider distinct
properties of weight-hub neurons. First, weight-hub neurons in our model receive a larger
amount of excitation than non-hubs and therefore exhibit a higher firing rate. Therefore we
might label neurons with relatively higher firing rate as weight-hubs. However, this property
alone does not yield a robust way of identification, because besides the synaptic input, the firing
rate of a neuron also depends on its electrophysiological parameters, such as its firing threshold.
A non-hub neuron may therefore occasionally exhibit a higher firing rate than a weight-hub
(Figure 2.2B). A second property of weight-hub neurons predicted in the context of our model
is the regularity of transitions between up- and down-states. According to our model, regular
up-state durations indicate that the neuron is a weight-hub.

Here we use a combined approach for identifying subpopulations of weight-hub and non-hub
neurons. In the first step, we characterize each neuron by a vector of two elements: the overall
firing rate and the CV of up-state durations of the neuron. We pass these vectors to a K-
means clustering algorithm (see Section Materials and Methods), which clusters neurons into
weight-hubs and non-hubs with 100% accuracy (Figure 2.8A). We identify the group with the
lower coefficient of variation of up-state duration as the weight-hubs and other group as the
non-hubs. In order to distinguish the assembly that each identified weight-hub neuron belongs
to, we perform a second step and run the algorithm again on the weight-hub neurons found in
the previous step. Here we define the feature vector of each neuron by the mean and the CV
of up-state durations. The algorithm assigns the correct assembly to 89 out of 95 weight-hub
neurons. Accordingly the accuracy of the second step is 93.7% (Figure 2.8B).

Although our approach works for identifying of weight-hub neurons in our simulations, finding
these neurons in the cortex using intracellular recording will be more challenging. This is mainly
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Figure 2.8: K-means clustering identifies weight-hub neuron assemblies. Each dot represents one neuron and
its color denotes the corresponding subpopulation in the simulation shown in Figure 2.2. A) Clustering of all
neurons into two clusters. The first stage of the classification algorithm successfully identifies weight-hubs and
non-hubs, but does not distinguish between different assemblies of weight-hubs. The red circles show the center
of the clusters and the dashed line displays the classification boundary. B) Clustering of weight-hub neurons
(identified in A) into different assemblies. The K-means algorithm with three clusters identifies the assembly of
each weight-hub neuron with 93.7% accuracy.

due to the fact that weight-hub neurons are likely to form only a small portion of all excitatory
neurons. In our simulations of L5 of a single column in the barrel cortex ~ 20% of all excitatory
neurons are weight-hubs. However, we can scale our model system up keeping the number
of weight-hub neurons fixed, without a change to the overall dynamics. For example a similar
model of L5 which contains both Layer 5A and Layer 5B (containing ~ 1000 excitatory neurons)
needs the same number of weight-hubs to display up-down state oscillations. Therefore, in this
example, the fraction of weight-hubs reduces to 10%. Analogously, in case of modeling an
entire barrel column (containing ~ 5700 excitatory neurons), this number falls to about 1.7%.
Therefore, we expect that weight-hub neurons are rarely recorded with present-day single-cell
electrophysiological techniques.

Different models for reproducing up/down oscillations. Several models have been sug-
gested to reproduce up-down state oscillations. The studies of Ghorbani et al. (2012) and
Holeman and Tsodyks (2006) used mean-field analysis to show that short-term depression can
give rise to the up/down state oscillation. Other works focused on numerical simulations on
the neuronal level: Applying short-term facilitation on excitatory to inhibitory connections also
produces oscillations (Melamed et al., 2008), as well as adding a non-linear term to the leaky
integrate-and-fire model such that each neuron is bistable (Parga and Abbott, 2007). Giugliano
et al. (2004) used a homogenous network of adaptive neurons to produce oscillations using a
similar mechanism as in our model. However, in their model all the neurons switch between
the high- and low-rate points. Hence they all have a high firing rate, and the distribution of
firing rates is less skewed. On the other hand, if we used the average connection probability and
synaptic weights obtained by the experiments (Lefort et al., 2009) for building a homogeneous
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network with plausible size, the value of the network feedback would not be high enough to make
the network oscillate. Therefore, we consider the proposed network with embedded weight-hub
neuron assemblies to be the most plausible model with respect to these data.

Switching between up- and down-states. In slowly oscillating cortical microcircuits, the
reason for the switch from the down-state to the up-state is a matter of debate (Chauvette et al.,
2010). One possible reason could be the coincidence of spontaneous activity of several neurons
(Timofeev et al., 2000; Bazhenov et al., 2002). Such a coincidence may provide enough input
to several other neurons to make them fire. This phenomenon then repeats and propagates the
activity to a notable number of neurons, and so the system may switch to the up-state. Another
possibility is that a few neurons are active more than others on average, and show firing even
in the down-state. One hypothesis about such neurons is that they receive a persistent sodium
current which causes bursts of firing (Hill and Tononi, 2005; Bon-Jego and Yuste, 2007). Another
hypothesis is that electrophysiological properties of these neurons make them fire more than
others, e.g. they can have lower firing threshold (Compte et al., 2003). Therefore, these neurons
play the role of pacemakers, or drivers of oscillations. Here we show that in order to make such
an oscillator it is unnecessary to change the neuron model or introduce any persistent currents.
In our model, we build the oscillation merely by increasing the connection probability between
weight-hubs (to about 50%), while keeping the overall connection probability fixed at the value
measured in experiments (Lefort et al., 2009).

The return of the cortex from the up-state to the down-state could have several reasons. In one
approach, the accumulation or increase of inhibition shuts down the up-state: When the system
goes to the up-state, the excitatory population receives excitation from itself and inhibition from
an inhibitory population. The system remains in the up-state as long as the excitation dominates
the inhibition. However, at some point the inhibition becomes dominant and brings the system
back to the down-state (Melamed et al., 2008; Parga and Abbott, 2007). Instead of inhibition,
synaptic short-term depression may weaken the excitatory to excitatory synapses during the up-
state and cause a reduction of self-excitation received by the excitatory population, by which it
can oscillate on its own (Holeman and Tsodyks, 2006). In Compte et al. (2003) and Giugliano
et al. (2004) spike-frequency adaptation is responsible for bringing the system back to the down-
state. In the up-state, Na® -activated K™ channels reduce the firing rate of excitatory neurons
gradually and the excitatory population looses the amount of self-excitation that is necessary
for remaining in the up-state. Consequently it falls back to the down-state. Our model also uses
adaptation for switching to the down-state. We have previously built a similar model which uses
short-term depression instead of adaptation (Setareh et al., 2014). As shown here in a network
of neurons that exhibit spike-frequency adaptation with parameters fitted from experiments,
synaptic depression is not necessary, but we do not exclude that synaptic depression plays a
role in cortical up-/down-states as well.

Competition based network models. An important point which distinguishes our work
from several previous models (Shpiro et al., 2009; Krishnamurthy et al., 2012) is that there is no
competition between the assemblies of weight-hub neurons in our model. In classic competition
based models there are two or more populations of excitatory neurons, each trying to become
active and suppress the other ones using either direct inhibition or indirectly by exciting an

43



Chapter 2. Cortical dynamics in presence of assemblies of densely connected weight-hub ...

inhibitory population of neurons. The dominant population keeps inhibiting others until it
looses its activation by a negative feedback mechanism like short-term depression or spike-
frequency adaptation, or until one of the suppressed populations becomes the dominant one
by receiving a high amount of noise sufficient to overcome the inhibition. In contrast, in our
model assemblies do not compete to win the activation. In contrast to inhibition-dominated
networks, in our network, the active assembly helps other assemblies (and non-hubs) to become
active by sending excitation more than indirect inhibition. As a consequence of our network
parameters, several assemblies can be active simultaneously. Depending on the adaptation state
of the assemblies at the time of receiving excitation, the number and order of transitions to the
up-state are different. Such different patterns of activations cause different up-state duration in
the non-hub and inhibitory neurons.

Models for producing multistable activity. While our model is not based on competition
of assemblies, and several assemblies can be active at the same time, it is also different from
clustered network models suggested for producing multistable activity states (Deco et al., 2011;
Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015, 2016). In such models several clusters
of neurons are embedded into the population of excitatory neurons. The connection probabilities
inside clusters are increased (in Litwin-Kumar and Doiron (2012) both connection probabilities
and synaptic weights are increased) compared to those between clusters. Therefore, each cluster
acts as an attractor similar to the assemblies of weight-hub neurons in our model. Clusters
receive noisy input and one or several of them become active at a time. The shared inhibitory
population sends inhibition to all clusters and limits the number of active clusters. Once one of
the quiescent clusters, which also receives noisy input, becomes active, due to shared inhibition,
it deactivates one or several clusters which were previously active. This procedure repeats and
consequently, each cluster switches between active and inactive states. In this architecture,
coincidence of noisy inputs causes a cluster to switch to the active state and shared inhibition
switches it back to the inactive state. Therefore, there is no need for a negative feedback
mechanism like spike-frequency adaptation. Although the activity of this model looks similar
to ours, the functionality is different. In these models, at least one cluster is active at each
time during ongoing activity. In fact, a cluster deactivates because another one becomes active—
the clusters pass on the activity amongst themselves. Therefore, after a first activation there is
at least one active cluster which produces spikes and depolarizes other neurons including non-
cluster excitatory neurons (the situation that all clusters become inactive at the same time rarely
occurs). In contrast, in the down-state all neurons are silent and have a low membrane potential.
Moreover, in the clustered network transitions into and out of the active state are anti-correlated:
If one cluster activates, another one typically deactivates, i.e. the number of active clusters is
constant most of the times, although we may rarely observe several active assemblies at the
same time. In our model, transitions times to up- and down-states are correlated across the
network. Moreover, each assembly is able to transition back to the inactive state (the low-point)
on its own without need for inhibition or activation of other assemblies. The self-termination
ability results from spike-frequency adaptation (see Materials and Methods). Therefore there are
time intervals in which all assemblies are inactive and the whole network is silent. In summary,
although the clustered architecture successfully reproduces the multistable states during ongoing
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and evoked activity, it is not suitable to produce up-state/down-state oscillations.

To conclude we would like to highlight the predictive aspects of our study. First, central
components of our model are the weight-hub neurons, i.e., those with strong synaptic inputs.
Although, there is no direct experimental evidence for the existence of weight-hub neurons, we
introduce this concept here as a prediction. Yet, our demonstrations that model networks using
weight-hubs display biologically plausible dynamics, and explain cortical phenomena, may be
considered as an indication of weight-hub existence. Second, on top of that, we predict that
weight-hub neurons in L5 form an assembly of strongly connected cells, while the weight-hubs
are sparsely connected in L2/3. Third, the up-down state transitions of neurons within a
weight-hub assembly are more regular than that in the majority of other neurons. All of these
predictions can be tested in future experiments.
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Chapter 3

Excitable neuronal assemblies with
adaptation as a building block of brain
circuits for velocity-controlled signal
propaga‘cion1

Abstract

The time scale of neuronal network dynamics is determined by synaptic interactions and neu-
ronal signal integration, both of which occur on the time scale of milliseconds. Yet many
behaviors like the generation of movements or vocalizations of sounds occur on the much slower
time scale of seconds. Here we ask the question of how neuronal networks of the brain can
support reliable behavior on this time scale. We argue that excitable neuronal assemblies with
spike-frequency adaptation may serve as a building block that can flexibly adjust the speed of
execution of neural circuit function. We show in simulations that a chain of neuronal assemblies
can propagate signals reliably, similar to the well-known synfire chain, but with the crucial dif-
ference that the propagation speed is tunable to the behaviorally relevant range. Moreover we
study a grid of excitable neuronal assemblies as a simplified model of the somatosensory barrel
cortex of the mouse and demonstrate that various patterns of experimentally observed spatial
activity propagation can be explained.

Author summary

Models of activity propagation in cortical networks have often been based on feedforward struc-
tures which have remained elusive in experiments. Here we propose a new model of activity

IText copied from Setareh H, Deger M, and Gerstner W, manuscript is under review in PLOS Comput. Biol.
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propagation, called excitation chain, which does not need such a feedforward structure. The
model is composed of excitable neural assemblies with spike-frequency adaptation, connected
bidirectionally in a row or a grid. This prototypical neural circuit can propagate activity for-
wards, backwards or in both directions. Furthermore, the propagation speed is tunable and may
be as slow as necessary to model the generation of slow behaviors. The grid model is able to
generate different activity propagation patterns, similar to spontaneous activity and stimulus-
evoked responses in anesthetized mouse barrel cortex. We propose the excitation chain model as
a basic component that can be employed in various ways to create spiking neural circuit models
that generate signals on behavioral time scales. In contrast to abstract excitable networks, the
model explicitly links to neuronal spikes.

3.1 Introduction

Reliable propagation of activity is necessary for processing and transmitting sensory signals in
the brain. During the last two decades, two prominent types of computational models have
been studied to address this issue. First, the synfire chain consists of groups of spiking neurons
connected in a feedforward architecture (Abeles, 1982, 1991; Diesmann et al., 1999; Gewaltig,
2000) potentially embedded in recurrent networks (Kumar et al., 2008, 2010). Second, rate
propagation models (van Rossum et al., 2002; Vogels and Abbott, 2005; Kumar et al., 2010)
use a similar feedforward architecture, but instead of spikes they propagate fluctuations of the
firing rate. Kistler and Gerstner (2002) investigated a synfire chain in feedforward structure
and found that the refractory behavior of neurons after firing a spike is the crucial element
of stable activity propagation. The derivative of the membrane potential shapes spike density
and sharpens the activity pulse (Kistler and Gerstner, 2002; Goedeke and Diesmann, 2008).
Statistical methods (Schrader et al., 2008; Torre et al., 2016) are proposed for detecting the firing
pattern of synfire chains in spike train recordings. Reliable neuronal firing patterns compatible
with synfire chains have been observed in area HVC of the song-bird (Hahnloser et al., 2002).
The statistical significance of synfire chains in cortical neurons is questionable (Oram et al.,
1999). Synfire chain models have been used for reproducing behavioral functions such as bird
song generation (Hanuschkin et al., 2011a) and monkey scribbling (Hanuschkin et al., 2011b).
Systems of interacting synfire chains were also used for building a large-scale model of cortex
(Trengove et al., 2013, 2016).

While both synfire chain and rate propagation succeeded to model fast behaviors (behaviors
on the order of milliseconds), they are expensive in terms of neuron numbers and therefore not
suitable for reproducing behavioral phenomena that need a slower, and sometimes tunable, speed
of activity propagation. Essentially synfire chains implement a clock, set by the propagation of
neuronal spikes and transmission delays, running on the millisecond time scale (Gerstner et al.,
1993; Izhikevich, 2006). In order to address this issue, we propose a new model, which we call
excitation chain, for the activity propagation in a bidirectional chain of neuronal assemblies.
Our model can be considered as a spiking version of excitable media (Wilson and Cowan, 1972,
1973; Jirsa and Haken, 1997; Coombes, 2006), with an explicit link to the neuronal time scale
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of spikes.

In contrast to the previous synfire chain and rate propagation models, our model does not require
an explicit feedforward architecture. Specific feedforward structures have not been observed
in experiments in the neocortex so far. Here we propose an excitation chain model that is
consistent with the following experimental connectivity data: First, inter- and intra-assemblies
connection probability and synaptic weights are in the experimentally observed ranges (Lefort
et al., 2009; Avermann et al., 2012); and second, clustered connectivity of neurons, necessary for
neural assemblies (Perin et al., 2011). Hence, although the concept of the excitation chain as
such is a rather generic and abstract model, its basic connectivity features are consistent with
experimentally observed properties.

In the next section, we describe our model and its dynamics in detail. We also illustrate how
activity propagation can be made faster or slower by changing synaptic weights. Then we
analyze the behavior of the model and explain the role of its elements in forming the dynamics.
Finally, we extend the excitation chain to a two-dimensional model, which we may call an
excitation grid. We argue that this grid of assemblies can be considered as the skeleton of barrel
cortex, which can generate different spatio-temporal modes of activity propagation observed
experimentally in barrel cortex (Petersen et al., 2003a,b).

3.2 Results

3.2.1 The speed of activity propagation in a chain of excitable bistable
assemblies

In order to propagate a signal of activation through several excitable assemblies, we first con-
nect several groups of neurons in a chain (Figure 3.1A). Each group contains an excitatory
assembly and a population of inhibitory neurons. Assemblies are defined as small populations
of neurons with high connection probability. More precisely, inside each excitatory assembly
synapses are strong and the connectivity is high (connection probability p = 50%) whereas
each inhibitory population has smaller synaptic weights and lower connectivity. Within each
group, the excitatory assembly and inhibitory population are mutually connected. Moreover,
the excitatory assembly is connected to the inhibitory population and excitatory assembly of
neighboring groups. In contrast, the inhibitory populations do not have inter-group connections
(see Materials and Methods for the details and parameters).

Basic mechanism and functionality If we stimulate the excitatory assembly of the first
group of the chain with a transient stimulus of 25ms duration (see Materials and Methods),
all of this groups’ neurons fire several spikes. The activation of this first assembly is then
propagated step by step through the chain of assemblies until the last group. Figure 3.1B shows
the raster plot of all excitatory neurons as well as the population-averaged activity of excitatory
and inhibitory populations of the chain. One can see that despite the reciprocal connections
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Figure 3.1: Excitation wave in a one-dimensional chain. A) Schematic of the excitation chain. Each excitatory
assembly is connected to the excitatory assemblies and inhibitory populations of its neighboring groups in the
chain, while the inhibitory population is only connected to the excitatory assembly of its own group. B) spike
raster of excitatory assemblies (top) and average rate of each assembly (bottom, estimated in bins of 10ms).
Based on the place of the stimulation, the chain can propagate the spiking activity forwards, backwards (top-left
inset) or in both directions (bottom-right inset). C) The difference of the activation times of two consecutive
assemblies can be adjusted by changing synaptic weights. The delay is increased by increasing the weights from
excitatory assemblies to their neighboring inhibitory assemblies (wj,n) or by decreasing the weights between
excitatory assemblies (wexc). The white area denotes the parameter region in which the chain cannot propagate

50



Chapter 3. Excitable neuronal assemblies with adaptation as a building block ...

Figure 3.1: (Continued) the activation (The intersection of the two dashed lines in C denotes the parameters
used in B). D)The total delay of the chain (and inversely the propagation speed) depends on wey. (compare
white dots on horizontal dashed line in C). E) The total delay also depends on wiy,;, (compare white dots on
vertical dashed line in C). F) Regulation of propagation speed using short-term plasticity parameter. Increasing
the parameter U decreases the difference of activation times of two consecutive assemblies for both depression
and facilitation. In the case of facilitating synapses, the activity cannot propagate for low values of U. The other
parameters of the model (including wexe and wiyy) are the same as in B. G) Decreasing the amplitude of 1 (t)
together with a readjustment of the parameter U of short-term plasticity influences the difference of activation
times (horizontal axis). For each value of amplitude, we found the value of parameter U (shown in the legend)
which yields the larger delay. Every point in C, D, E, F and G is the mean over 10 different trials. Errorbars
indicate standard deviations. The right-most circle repeats the left-most blue point in F.

between excitatory assemblies, the activity is propagated in a feedforward manner. We repeated
the simulation several times with different transient stimuli (data not shown). Whenever the
transient input stimulus is able to activate the first excitatory assembly, the activity is then
propagated through the chain to the last group reliably. For a vast range of parameters (Figure
3.1C), we have observed neither a termination of the activity wave nor an instability in the
whole network (such as convergence to synchronous firing of all excitatory neurons).

If we stimulate the excitatory assembly of the last group, we see that the activity propagates
backwards (Figure 3.1.inset). The excitation wave can also spread in both direction simulta-
neously. Stimulating an excitatory assembly in the middle of the chain produces two traveling
waves, one towards the beginning of the chain and another one towards its end (Figure 3.1.inset).
The property of activity propagation in different directions has been observed in multi-electrode
extracellular recordings of the neocortex. For example, based on the place of local application
of glutamate, neural firing is initiated in a forward, backward or bidirectional manner (Sanchez-
Vives and McCormick, 2000).

Speed depends on synaptic weights The speed of activity propagation in our excitation
chain is much lower than in previously suggested chain structures like the synfire chain (Dies-
mann et al., 1999). In synfire chains the time needed for the activation to jump to next group
is on the order of the synaptic transmission delay (1 — 5ms), while in our model this time is
roughly 13-55ms, although we have used a short synaptic transmission delay of 1ms. This slow
propagation allows us to model phenomena on the time scale of several hundreds of milliseconds
or even seconds.

The speed of propagation in the excitation chain is controlled by the inter-assembly synaptic
weights. Let us first define how to measure the delay (and consequently the speed) of activity
propagation. We define the activation time of each excitatory assembly by the average time
of the first spike of each neuron in the assembly. The difference of the activation time of two
neighboring assemblies can be considered as the time needed for transmitting the activity signal
from one group to the next group. The inverse of the activation time difference of the first and
the last assembly can be used as a measure for propagation speed.

Let us denote the synaptic weights between neighboring excitatory assemblies with wey, and
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the synaptic weight from excitatory assemblies to the neighboring inhibitory populations with
Winn. Figures 3.1C, D and E show that increasing wey. increases the speed, while increasing
Wiy reduces it. The activity wave remains stable and propagates reliably over a broad range of
parameter values.

Removing the inhibitory populations Excitatory assemblies are the essential elements of
the excitation chain, while the role of inhibitory populations in the chain lies mostly in reduc-
ing the propagation speed. Therefore, we may simplify our model by removing all inhibitory
populations. A chain of excitatory assemblies only (Figure 3.2A) is able to propagate the ac-
tivity in different directions (Figure 3.2B) similar to chain containing also inhibitory neurons.
The propagation speed is regulated by modifying wey. (Figure 3.2C). However, because of the
lack of inhibition, the speed cannot be lower than a critical value below which transmission
becomes unreliable. In our simulations, we found a maximum delay of 34ms instead of 56ms
with inhibition.

3.2.2 Analysis of excitation chain dynamics

Excitation chains rely on bistable assembly dynamics In order to understand the dy-
namics of the chain and to identify the components that determine the propagation speed,
we first focus on one assembly of excitatory neurons. The dynamics of each assembly can be
described by self-consistent equations relating the firing rate of the assembly to the average
synaptic input of the neurons (see Materials and Methods). In case the assembly has a high
network feedback coefficient Cf, (Eq. 3.9), the dynamics of the system has three fixed points
(Figure 3.3A): the low point which is a stable fixed point with zero firing rate, the switch point
which is the unstable middle fixed point and a high-rate fixed point which is called the high
point. If the assembly is driven by synaptic input greater than the switch point’s current (I),
it approaches the high point and produces a high firing rate. Since the intra-assembly synap-
tic weights (wex) and connection probability (p) are high, the network feedback coefficient
(Chy X pWexc) is also high. Therefore, the dynamics of the assembly can be explained by this
three-fixed-point configuration, which we call the excitable mode of the assembly. However,
because of spike-frequency adaptation of our excitatory neuron model, the frequency of spike
emission progressively decreases during the high-rate state. Consequently, the neurons’ gain
function changes gradually (Figure 3.3B) and the system goes to a new configuration which has
only one fixed point, the low point. (Note that, for the same reason, the assembly does not fully
converge to the high point as it is shown in Figure 3.3A. While the assembly is approaching
the high point, changes of the gain function move the position of the fixed point.) Therefore
the assembly eventually becomes quiet and stops firing. We refer to this configuration as the
dormant mode of the assembly. In this mode, receiving synaptic input does not activate the
assembly. It takes a while for the assembly to recover from the dormant mode and return to
the three-fixed-point configuration, which is the excitable mode.
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Figure 3.2: Inhibitory populations are not necessary. The chain containing only excitatory assemblies (A) prop-
agates the spiking activities in both directions (B) similar to the case with inhibitory assemblies (Figure 3.1B).
The propagation speed can be tuned (C) by modifying the synaptic weights between excitatory assemblies
(Wexc ), albeit in a smaller range, than in Figure 3.1.
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Figure 3.3: A-Top) The network feedback (Cp,, Eq. 3.9) affects the dynamics of the system. The red curve is
the noisy gain function of the GIF neuron model (mean spike count in a group of 50 independent neurons over
10ms, divided by 50 x 10ms, shaded area marks +3 SEM) measured during the initial 10ms after switching on a
synaptic current of mean (Igyn). The green lines (solid, dashed and dash-dotted) show the relation of firing rate
and synaptic current caused by network feedback (see Materials and Methods, Eq. 3.8) for increasing Cp,. The
slope of the green lines has an inverse relation with the effective coefficient Cg, of the population. Intersections
of the red curve with one of the green lines indicate potential stationary states (fixed points) of a network of
non-adapting neurons. A-Bottom) The noisy gain function of adapting neurons during the first 10ms after
stimulus onset (solid red curve) is different from that later (dashed red curves). B) Synaptic current received by
the second assembly (averaged over the assembly’s neurons) in two chains with different inter-assembly synaptic
weights. The thin lines show the averaged synaptic current each neuron receives from the previous assembly,
while the thick lines show the total synaptic current received from both the assembly itself and the previous
assembly. When the thick line separates from the thin line, the assembly starts to fire spikes on its own. This is
the moment when the assembly crosses the switch point and approaches the high activity fix point. This occurs
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Figure 3.3: (Continued) earlier if inter-assembly synaptic weights are increased (blue). Consequently the
propagation speed along the excitation chain increases. C) Total synaptic current received by the second
assembly (averaged over the assembly’s neurons). The second assembly receives excitation (blue) from the first
assembly and inhibition (red traces show the absolute value of inhibitory currents) from the second inhibitory
population. When the total input (black) crosses the threshold, the assembly switches to the high-point and
becomes activated. Increasing synaptic weights from the first assembly to the second inhibitory population
increases the inhibition and decreases the total input received by the second assembly. Hence it delays the
activation time. D) Analytical approach (green line, see Materials and Methods) approximates the difference
between the activation time of two consecutive assemblies with an error of less than 4ms. The black line shows
the value of the difference obtained by averaging over 10 simulations. Error bars indicate standard deviation.

Synaptic weights determine the propagation speed For the second step of the analysis,
we take into account the interaction of neighboring assemblies in the chain. Consider the case
of a chain of excitatory assemblies only. When assembly 1 goes to the high point and each of
its neurons fire several spikes within a short time, it sends strong synaptic input to assembly 2.
However, since the synaptic weight between assemblies are relatively low, early volleys of spikes
of assembly 1 do not yet suffice for assembly 2 to cross the switch point. Therefore it takes
some time for assembly 2 to accumulate enough input from assembly 1. This is the reason why
the propagation of activity is slow in the excitation chain and the difference of activation time
is much higher than the synaptic delay. If we increase the inter-assembly weight, then a smaller
number of spikes of assembly 1 are needed to produce the switch current in assembly 2, which
means it will be activated sooner (Figure 3.3C). This explains the increase of the propagation
speed along the chain when we strengthen the inter-assembly synapses (Figure 3.2C).

Inhibitory neurons delay the activation of each group Let us now discuss the effect of
adding the inhibitory populations to the chain. Each inhibitory population sends an inhibitory
input to the excitatory assembly in the same group and thus reduces the effect of the synaptic
input provided by the neighboring excitatory assemblies. Therefore, the inhibition delays the
time at which the switch current is reached. If we increase the inter-group synaptic weight onto
inhibitory neurons wy,y, the inhibitory neurons fire more and produce more inhibition. This,
again, increases the amount of synaptic input needed from the neighboring excitatory assembly
and therefore delays the activation time. Figure 3.3C illustrates the effect of wi,, on the synaptic
inputs.

Adaptation gives rises to directed activity propagation Suppose that assembly 1 has
become active and sends synaptic current to assembly 2. When excitatory assembly 2 receives
enough synaptic current to cross the switch point, it becomes active at a high firing rate. It then
sends synaptic current to its neighbors, excitatory assembly 1 and 3. However, by that time,
excitatory assembly 1 is about to fall into the dormant mode and cannot generate many spikes.
Therefore, only excitatory assembly 3 switches to the high point. This procedure repeats until
the end of the chain. Therefore activity propagates in one direction only although connections
between assemblies are bidirectional. An analogous situation happens for the backwards prop-
agation. In case of stimulating an assembly in the middle of a previously quiet chain, since
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both of its neighbor assemblies are in the excitable mode, they both switch to the high point.
Consequently, the activity propagates in both directions from then on.

Spike-frequency adaptation also has a second, equally important role. It is responsible for
progressively changing the gain function (Figure 3.3B) during the active phase of an assembly
(the duration that assembly stays in the high-point), and eventually for its termination. By
modification of the adaptation parameters of excitatory neurons, we are able to adjust the
duration of the activate phase of each assembly (Setareh et al., 2017).

The effect of other synaptic weights on the dynamics After having analyzed the effect
of inter-group synaptic weights (wexe and wi,,) on the propagation speed of the chain, we now
focus on the the weights of inhibitory to excitatory neurons inside the same group. Since intra-
group inhibition contributes to the total inhibition of the assembly, it can have effects similar
to wi,, on the propagation speed. In order to avoid redundant parameter search, we kept
the intra-group inhibition constant and explored w;,,. Likewise, the intra-group excitatory to
excitatory connections (connections inside each assembly) are also important. As we mentioned
earlier, assemblies should have a high network feedback coefficient (Cfg, < pw). Otherwise, they
would not be able to switch to the high point and produce high firing rates in case of receiving
relatively low synaptic input.

Both connection probability and synaptic weight of the intra-group connections affect the net-
work feedback coefficient and therefore shape the core of the excitation chain. Other intragroup
connections (excitatory to inhibitory and inhibitory to inhibitory connections) are less impor-
tant. However, one should avoid choosing values that inject huge inhibition into the assembly.
Too much inhibition may shut down the assembly by finishing its activation rapidly so that not
enough synaptic input arrives at the next assembly. Therefore, it may lead to a loss of signal
propagation.

Obtaining the propagation speed using an analytical approach The self-consistent
approach relating the firing rate to the average synaptic input which we mentioned earlier is
useful for a qualitative explanation of the dynamics of the excitation chain. However, it is not
suitable for a quantitative calculation of the propagation speed, because we cannot calculate the
exact gain function for this neuron model (see Materials and Methods) if the effects of spike-
frequency adaptation become strong. Therefore, we developed another analytical approach
(see Materials and Methods) in order to obtain the difference between activation times of two
consecutive assemblies in the chain of only excitatory assemblies (Figure 3.2). Figure 3.3D
compares the results of simulation and the analytical approach for different values of wey.. Our
theory estimates the activation time difference with an error of less than 4ms.

Embedding short-term plasticity in the model We can also add short-term facilitation
and depression (Tsodyks and Markram, 1997; Tsodyks et al., 1998) (see Materials and Methods)
to the model. In these cases, we are able to adjust the activity speed by manipulating the
parameters of the facilitation and depression, while we keep wey. and wiyy, fixed. In the first
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variation, we added facilitation to the excitatory synapses between assemblies. We observed
that increasing the value of the usage parameter U decreases the difference between activation
times of two consecutive assemblies (Figure 3.1F). In the presence of facilitation, the amplitude
of post-synaptic currents (PSC) are initially lower compared to case of not having facilitation.
When a presynaptic neuron fires several spikes within a short interval, the amplitude of each PSC
in the post-synaptic neuron increases. After a suitable number of spikes, the PSC amplitude
reaches the amplitude of the case without facilitation. Therefore, it takes time for an assembly
to provide sufficient amount of synaptic input to activate the next assembly. Modification of the
recovery time constant 7., however, does not affect the propagation speed (data not shown).

In the second variation, we neglected facilitation and added depression in inter-group excitatory
to inhibitory connections. We also increased the intragroup inhibitory to excitatory synaptic
weight by ~ 7 times (1.07mV instead of 0.16mV). The propagation delay decreased as we
increased the value of U (Figure 3.1F). The reason is that a large amount of inhibition from
the inhibitory subpopulation does not allow the excitatory assembly to become active. If we
shutdown the inhibitory subpopulation after a while, the inhibition ceases and leads to the
activation of assembly. Depressing synapses from one assembly to the neighboring inhibitory
subpopulation play this role. Depressing synapses reduce the amount of PSC onto inhibitory
subpopulation after a while. Therefore, the activity of an inhibitory subpopulation and its
projecting inhibition drop off. Similar to the previous case, the time constant (7g,e) does not
affect the propagation speed (data not shown).

Note that we still need spike-frequency adaptation in the above cases because it is the adaptation
that terminates the activation of the assemblies. Without adaptation, an assembly switches to
active and remains active for the rest of the simulation. It is important to notice that our model
is not based on a competition between assemblies (see Discussion) and every assembly switches
to the low point on its own.

In addition to connectivity, the duration of the active phase of assemblies plays important role
in the propagation speed. The duration should be long enough, such that each assembly can
provide the synaptic input needed to activate the next assembly in the chain. If an assembly
becomes inactive before having provided enough synaptic input, the next assembly cannot switch
to the high point and the propagation stops at this point. Therefore, if we want to achieve a
slower propagation speed, we need to increase the duration of the active phase.

The duration of the active phase can be adjusted by modification of adaptation parameters of
excitatory neurons (Setareh et al., 2017). Each time a neuron fires a spike, several adaptation
process on several time scales are triggered and generates both spike-triggered currents and
increase in firing threshold (Pozzorini et al., 2013). To describe these adaptation effects we use
several exponential decaying kernels, nx(t) (k = 1,2) for spike-triggered currents and v (t) (k =
1,2) for dynamic threshold. Here we decreased the amplitude of kernel ~(¢) (the kernel with
the smaller time constant). Then we used short-term facilitation for changing the propagation
speed (similar to Figure 3.1F). For each value of the kernel amplitude, we found the value of
the usage parameter U which causes slowest propagation. Figure 3.1G summarizes the values
of parameters and difference between activation times of assemblies. We achieved a maximum
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delay of 95ms between one assembly and the next using this approach. Hence, we conclude that
a linear chain of 11 assemblies are sufficient to cover a typical behavioral time scale of above 1
second.

3.2.3 A grid of assemblies as a skeleton for barrel cortex

While the previous section focused on a one-dimensional structure, in this section we consider
an excitation wave in a two-dimensional grid structure inspired by the layout of barrel cortex.
Barrel cortex processes sensory information from the whiskers and is a part of the rodent
somatosensory system. It consists of vertical modules called barrel columns, each of which
relates to one principle whisker (Petersen, 2007). Here we make a multicolumn model of barrel
cortex which contains 25 columns, organized in the shape of 5 arcs while each arc contains 5
rows). The actual mouse barrel cortex includes 33 columns in an unordered shape. It contains
an arc of 4 rows, 4 arcs of 5 rows and 3 arcs of 3 rows (Petersen, 2007). For simplicity, we
only consider one cortical layer of the barrel cortex. In our model, every column consists of
excitatory and inhibitory neurons. Excitatory neurons are divided into two groups, a minority
of assembly neurons and a majority of non-assembly neurons (see Table 3.2). Figure 3.4 shows
the schematic of the model. While assembly neurons have high internal synaptic weights and
connection probability, the connections between assembly and non-assembly neurons as well as
connections inside non-assembly neurons are sparse and weak. Inside a column, all three groups
have connections to each other, but inter-column connections are different from intra-column
connections. (see Table 3.2). Columns are identical in terms of number of neurons, neural
parameters and connections between neurons. Inhibitory neurons in our model form only intra-
column connections and are not connected to the neurons of other columns, consistent with the
common assumption that inhibitory neurons send short axons and contact only local targets
(Fino et al., 2013). In contrast, excitatory neurons of each column of our model connect to the
excitatory neurons of the four nearest-neighbor columns. However, due to the relatively long
distance between two neighboring columns, the connection probability between columns is low
(p = 10%), consistent with experimental observations (Boucsein et al., 2011).

Just as in the excitation chain of the previous section, the dynamics of each assembly can be
explained by the three-fixed-point configuration. However, the subpopulations of non-assembly
neurons have low network feedback coefficients (Eq. 3.9) so that their dynamics exhibit only the
low-activity fixed point. Hence the assemblies govern the dynamics of the whole grid model.
Neglecting non-assembly and inhibitory neurons for a moment, we can consider this barrel cortex
model merely as a grid of assembly neurons. We may think of this grid as the skeleton of our
model for barrel cortex. Just as in the chain model, the synaptic weight between assemblies
determines the propagation speed. Here, we adjusted the value of the inter-column synaptic
weight (wexe = 0.32mV) such that the the speed of activity propagation in the model is similar
to the experimental data (Petersen et al., 2003a,b; Ferezou et al., 2007). We did not need to use
short-term facilitation or depression to achieve the desired speed. The remaining parameters of
the model are reported in section Materials and Methods.
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Figure 3.4: Schematic of a multi-column model of barrel cortex. Each column contains three groups: excitatory
assembly and non-assembly groups, and an inhibitory group. Inside each column all groups are connected to
each other, while between neighboring columns only excitatory neurons are connected. Non-neighboring columns
have no connection in this model. One vertical line is called an ’arc’; e.g. A2, B2, ..., E2.
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Qualitative comparison with experiments The grid model is able to reproduce several
aspects of the dynamics of anesthetized barrel cortex in the stimulus-evoked and spontaneous
regime. In the stimulus-evoked experiments (Petersen et al., 2003a; Civillico and Contreras,
2006; Ferezou et al., 2006; Lustig et al., 2013), a sensory signal was triggered by a brief deflection
of a whisker. Voltage-sensitive dye imaging showed that the neural activity starts in the barrel
column corresponding to the stimulated whisker and propagates to the neighbor columns. After
spreading over the whole field of view of barrel cortex, the activation vanished.

Figure 3.5A shows the simulated evolution of neuronal firing rate in the grid model after stim-
ulating the neurons of the central column. The dynamics of the model are similar to the
experimental recording. For better visibility, the voltage traces of the model were temporally
filtered with a Gaussian function (¢ = 30ms). We show only 64 neurons of each column: each
panel in Figure 3.5A shows 25 squares (= columns) and each square contains 64 pixels (=
neurons). These neurons are randomly selected from all neurons of the column (excitatory as-
sembly and non-assembly neurons and inhibitory neurons). While the assembly neurons receive
a high amount of synaptic input (due to their strong synaptic weights) and show a high firing
rate, non-assembly and inhibitory neurons receive weaker weights and show lower firing rates
(0—20Hz). Since assembly neurons form only a minority of all neurons in a column (see Mate-
rials and Methods), the average firing rate is close to firing rate of non-assembly and inhibitory
neurons.

For the case of spontaneous activity, the experiment (Petersen et al., 2003b; Ferezou et al., 2007)
shows that neural activity starts on one side of the barrel cortex and only in a few columns.
Then it moves from column to column in a circular fashion. Our model is able to reproduce the
circulation of activity, on the same time scale. If we stimulate a model column on the upper-left
side, the activity starts circulating in the down- and the leftward direction (Figure 3.5C). The
activity orbits around the central column several times and then terminates.

Experimental data also report another interesting observation. Petersen et al. (2003a) found
that in some experiments, after the stimulation, the activity spreads faster along the row (hori-
zontal spread in our model) than the arc (vertical spread in our model). The authors suggested
that this could be due to the axonal length of excitatory cells, i.e. axons of excitatory neurons
extend longer along a row as along an arc. In order to interpret this phenomenon we assume
that the connection probability between columns connected in the row direction (p = 15%) is
greater than the connection probability along the arc direction (p = 10%). Simulations of this
modified model exhibit a higher propagation speed along rows comparing to arcs (Figure 3.5B).

Qualitative analysis of activity wave To understand the origin of the model’s dynamics we
consider again the regular grid of assemblies. Similar to the assemblies of the excitation chain,
each grid assembly is either in the dormant or the excitable mode depending on the adaptation
level of its neurons. The dormant mode corresponds to high values of neuronal adaptation
variables (spike-triggered current and firing threshold). This mode appears after the neurons
of the assembly have emitted a burst of spikes or if high initial values have been assigned to
these variables. After recovering from the dormant mode, neurons of the assembly have weak
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Figure 3.5: A) Dynamics of the multi-column model after stimulation of the central column. The activity
spreads over the barrel cortex. Each square in the figure shows 64 neurons randomly chosen from all three
neuronal groups of a column. B) Similar to (A) with different connection probabilities between vertical (10%)
and horizontal neighbors (15%). The difference in connectivity causes different propagation speed along the
row compared to the speed along the arc. Note that in (A) both connectivities were 10% and the propagation
speeds were identical. C) Circulation of activity in the multi-column model. After stimulation of a corner
column, the activity propagates between columns and circulates across the model for several rounds. Eventually
activity vanishes. This type of dynamic has been observed in spontaneous activity in mouse barrel cortex in vivo
(Petersen et al., 2003b). D) Initial values of the second adaptation kernel (v3), which describes spike-triggered
movement of the firing threshold (see Eq. 3.3). For the stimulus-evoked response (shown in A) all initial values
are drawn from a normal distribution with zero mean and standard deviation of 3mV. Any negative values are
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Figure 3.5: (Continued) clamped to zero. For activity circulation (shown in C) we tuned the initial values
to make a path for propagating the activity. For each column, we first choose a mean value for the normal
distribution, while standard deviation of all distributions are the same (3mV). Again we clamped the negative
values to zero. A high value of the mean adaptation variable for a column makes it dormant and does not allow
it to activate until it recovers from the dormant mode. A low value, however, makes it excitable and ready to
propagate the activity.

spike-triggered current and relatively low firing threshold. Hence the assembly has returned to
the excitable mode and can now generate a burst of spikes in case of sufficient excitation. After
activation, it switches again to the dormant mode.

In our model, we manipulate the initial value of firing threshold kernel with longer time constant
(72(t)) of neurons in the assembly in order to set the initial mode of each assembly. High initial
values cause the dormant mode, while low initial values make it excitable. Note that the kernel
with shorter time constant (y;(¢)) is not suitable for this kind of manipulation. Since the value
of the kernel converges to zero quickly, the assembly does not remain in the dormant mode for
a sufficiently long time.

For simulating the stimulus-evoked response we initialize all assemblies in the excitable mode.
The initial value of 75(¢) for neurons are selected from a random distribution with zero-mean
and o = 3mV. All negative values are clipped to zero (Figure 3.5D (left)). After stimulation of
the central assembly, it converges to the high point and produces a burst of spikes. As a result,
neighboring assemblies receive some synaptic input. Although the value of this input current is
low due to low inter-column connectivity, it suffices for the neighboring assemblies to pass the
switch point. This causes rapid increase of the firing rate during convergence to the high point.
This scenario repeats, and so the activation spreads over all assemblies. The assemblies go to
the dormant mode after a burst of activity , consistent with the experimental data.

The simulation of activity circulation is more complicated and needs careful tuning of the initial
values of the adaptation variables of the neurons. Figuratively speaking we carve a path for
the activation by choosing suitable initial values for the firing thresholds (Figure 3.5D (right)).
Again we use a random distribution with ¢ = 3mV for neurons inside each column. The
distribution’s mean is different in each column. The means are selected such that there is
path of excitable assemblies from top-left of grid to the column below the center. The activity
propagates only in the path of excitable assemblies, and dormant assemblies do not switch to
the high point in case of receiving the synaptic current. Once the activity has passed through
the initially excitable assemblies, they become dormant. At the same time, the assemblies
that were dormant initially recover and become excitable. Therefore, the activity continues its
path along those assemblies which were dormant initially. This phenomenon repeats and causes
activity circulating on the grid. After several rounds the circulation terminates because of a
shortcut problem (see below). Non-assembly and inhibitory neurons do not contribute to shape
the circular activation pattern. They merely receive the activation from the assembly of their
own column and show depolarization and a few spikes.

One may think that pre-shaping an activation pattern by initialization is artificial. However,
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Figure 3.6: Histogram of activity survival durations for 1000 trials of grid simulations with different initial values
of the second adaptation kernel (v2). For each trial we took the initial values shown in Figure 3.5D (right) and
shuffled the columns. In ~ 23% of trials the activity ceases before reaching all columns. In ~ 35% of trials
we observed that the activity spreads instead of circulating. In the remaining trials, we observed circulation
with different patterns and durations depending on the path made by initial values. The durations longer than
1000ms are clamped to 1000ms for better visibility.

any distribution of initial values which make several neighboring assemblies excitable and leave
others in the dormant mode has potentially such a “shaping” property. Different patterns of
initial values lead to different patterns of activity propagation observed in the cortex. In other
words, we suggest that the great trial to trial variability of activity previously observed via
voltage-sensitive dye imaging in the cortex (Arieli et al., 1996; Kenet et al., 2003) might be due
to different initial values of neurons in each trial. Here we tuned our pattern to make a path in
order to specifically reproduce the particular dynamics observed in the experiments,. In order
to investigate the role of initial values, we simulate 1000 trials. For the initial values of each
trial, we randomly chose a shuffled version of initial values shown in Figure 3.5D (right). We
only shuffled the mean of initial values of each column. Then, we used a random distribution
with ¢ = 3mV and the desired mean for neurons inside each column. Figure 3.6 indicates the
types of activity propagation and the durations that activity survives in the grid. In ~ 23% of
trials the activity does not spread over all columns. In ~ 35% of trials the activity spreads over
all columns without repetition. In the rest of trials, cortical columns form a path of activation
and the activity circulates for one or several rounds.

Termination of activity Even with a highly tuned path, the activity terminates after several
rounds. In order to understand the reason for this, we compare the activity path in early rounds
and late rounds (Figure 3.7). In the early rounds, activity orbits around the central assembly and
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passes through all marginal assemblies to eventually reach the starting point at the corner again.
Since, in our simulations, the central assembly has been assigned a very high initial value for
the neuronal firing thresholds, it does not synchronize with its neighbors and does not initially
follow them. However, after a while the central assembly becomes excitable and eventually
activates when its, say, right-sided neighbor becomes active. Thereby it creates a shortcut for
the activity which reaches the left-sided assemblies before the recovery from the dormant mode
is complete. Since these assemblies are not recovered yet, they cannot become active. Therefore,
the activity terminates and does not circulate any further. If we remove the central assembly
or prevent it from being excitable (e.g. by decreasing its network feedback or increasing the
value of inhibition it receives from the inhibitory neurons inside its column by strengthening
its intra-column inhibitory to excitatory synaptic weights), the activity can circulate for a very
long time (green dots in Figure 3.8). This is also the reason why we used absorbing boundaries
for the grid. In case of reflecting boundaries (i.e., the activation wave reflects when it reaches
the boundary) assemblies in the dormant mode do not have enough time for recovery and cause
termination of the wave. Applying periodic boundary (i.e., when the activation wave passes a
boundary, it jumps to the other side of grid) is not realistic, because once activity passes the
boundary of a cortical area in the cortex, it generates (weak) propagation into a neighboring
area rather than returning to the same area. Hence, we consider absorbing boundary as a good
compromise and a step toward a very large scale model of neocortex. Due to large number of
neurons, simulating a large scale model needs high performance computations and is beyond
this research.

As we described above, in our model the circulation of activity terminates spontaneously. This
is consistent with spontaneous barrel cortex dynamics observed in vivo (Petersen et al., 2003b).
More specifically, every time the activity vanishes in the model, there is need for stimulation of
a corner assembly which is in the excitable mode. If such stimulation is provided, the activity
can circulate again for several rounds. Such a stimulus could potentially be provided by other
cortical areas adjacent to the barrel cortex or reverberations of activity in thalamo-cortical
loops.

3.3 Discussion

We have shown that a network of spiking neurons consisting of 11 assemblies can generate
reliable temporally structured activity, that extends around one second, which has been de-
scribed previously for an excitable medium with discrete structures (Murray, 2001). While two
well-known models of activity propagation, the synfire chain and rate propagation, require a
feedforward network structure, our excitation chain works with a bidirectional activity pattern,
similar to excitable media (Wilson and Cowan, 1972, 1973; Jirsa and Haken, 1997; Murray,
2001). This is advantageous because there is no direct experimental confirmation for the exis-
tence of systematic feedforward connectivity pattern in the brain (Abeles, 1982, 1991; Diesmann
et al., 1999; van Rossum et al., 2002). Moreover, the biophysical prerequisites of the excitation
chain model, namely neuronal clustering, spike-frequency adaptation, recurrent connectivity
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Figure 3.7: The activity circulation in the grid terminates after several rounds because of a short circuit in
central assemblies (C4—C3—C2). In early rounds the difference of activation time between C4 and C3 are
shorter compared to the late rounds (red ellipses). In other words, C3 becomes active sooner than it is expected.
Therefore, C3 is able to activate C2 (red arrow), while C2 is supposed to be activated by B2. This short circuit
generates activity before assemblies recover from the dormant mode. Hence, other assemblies are not able to
become active and the circulation ceases. The initial values are the same as shown in Figure 3.5D (right).
Column Al is stimulated at ¢ = 100ms in order to start the circulation.
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Figure 3.8: Long duration of circulation by removing column C3. We repeat the simulation of Figure 3.7 with
same condition except that we removed column C3. Green dots show the dynamics of the new configuration
while we keep blue dots from the Figure 3.7 for better comparison. In the new configuration, the circulation
runs for much longer. In the figure, we have only shown the first two seconds, but we have not seen termination
for 10 seconds.
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and short-range inhibitory connections, are in principle consistent with experimental findings
(Sanchez-Vives and McCormick, 2000; Perin et al., 2011; Mensi et al., 2012; Fino et al., 2013).

The excitation chain carries the signal by a wave of synchronous activity. Seen from this
perspective, it is more similar to the synfire chain than to the fluctuating rate propagation which
relies on asynchronous activity and rate coding (Kumar et al., 2010). However, the excitation
chain is fundamentally different from the synfire chain and rate propagation in its ability to
adjust the propagation speed without modifying the synaptic delay or synaptic time constant.
While the propagation speed is nearly constant in a synfire chain (Wennekers and Palm, 1996),
and is very close to the synaptic time scale in fluctuating rate propagation (van Rossum et al.,
2002) and two-dimensional systems of neurons (Kistler et al., 1998), we can slow down and
adjust the speed in the excitation chain by changing the strength of inter-assembly synapses.
Hence, we suggest that the excitation chain can be used for population coding across slow time
scales (Buonomano and Maass, 2009; Runyan et al., 2017). It is also possible that changes
in synaptic weights are caused by neuro-modulators or various forms of activity-dependent
synaptic plasticity. Suppose that a part of a neuronal structure which produces a complex
cognitive behavior is an excitation chain, such that each assembly is responsible for performing
one primitive of the behavior. Repeating the behavior, the assemblies become active one after
each other in a systematic and reliable manner. In this case, a Hebbian learning rule will
strengthen the synapses between excitatory assemblies and thus will work towards an increase
of the execution speed of the behavior as we observed in Figures 3.1 and 3.2. This may explain
why practicing sequential or rhythmic movements, such as in playing a musical instrument, can
increase the speed at which the movement can be performed.

The bistability of neuronal assemblies is a key component of the excitation chain model’s func-
tionality. While the mechanism of assembly activation (jumping to the high point) is based
on network feedback and is independent from the neuron model, the return of the assembly to
the low point (in the dormant mode) needs an element of fatigue. In our model, we use spike-
frequency adaptation for this purpose. However, replacing adaption by short-term depression
(Tsodyks and Markram, 1997) of intra-assembly synapses yields similar results. In a previous
abstract (Setareh et al., 2015), we removed spike-frequency adaptation and built a chain using
leaky integrate-and-fire neurons while the synapses within each assembly expressed short-term
depression. With strong connections inside assemblies, and relatively weak connections between
them, the chain could propagate the activation forward, backward and in both directions. Simi-
lar to what is presented here, the propagation speed was tunable by changing the inter-assembly
maximum synaptic weights.

In the grid model, assemblies are responsible for transmitting the activity between barrel
columns. Removing the inhibitory and non-assembly neurons from the model, the grid of
assemblies is able to propagate and circulate the activity on its own (data not shown). There-
fore we consider the grid of assemblies the skeleton of the model, while the other neurons just
follow the activity wave. This, however, is not meant to imply that inhibitory and non-assembly
neurons do not play an important role in the cortex. Whereas in our model, we only consider
the anesthetized state, information processing in the awake cortex very likely involves more
than just the assembly neurons and requires the contribution of the other neurons.
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In the literature, there exist several competition-based models for reproducing cortical trial-to-
trial variability (Litwin-Kumar and Doiron, 2012; Doiron and Litwin-Kumar, 2014; Mazzucato
et al., 2015, 2016) and for modeling working memory using continuous attractors (Compte et al.,
2000; Wang et al., 2013). In these models, individual neurons or neural assemblies (also called
neural clusters) try to become active and to suppress others by direct inhibitory connections or
global inhibition. However, in the two models considered here (the chain and grid of assemblies)
the situation is completely different. Instead of competition, the assemblies cooperate with each
other to propagate activity signals through the tissue. Hence, in this type of model there is no
need for global inhibition.

Similar to bump attractor models proposed for implementing working memory (Compte et al.,
2000; Wang et al., 2013) and attractor maps used for encoding spatial location in hippocampus
(Samsonovich and McNaughton, 1997; Tsodyks, 1999; McNaughton et al., 2006), our model
relies on strong recurrent excitatory connections. However, while these encoding-models are
designed to stabilize neuronal activity in time in order to provide a memory of a continuous
variable, our model’s aim is to propagate the activity with a specified speed and path to relay
sensory information or to perform slow behavioral tasks.

Activity propagation was studied previously using the Wilson-Cowan model of neuronal popu-
lation dynamics (Wilson and Cowan, 1972, 1973) and the dynamics of neural fields (Jirsa and
Haken, 1997; Bressloff, 1999; Murray, 2001; Coombes, 2005, 2006). However, it is often hard to
link network parameters used in these abstract models to neuronal and synaptic parameters.
In our approach, we start directly from neural parameters extracted from experiments (Mensi
et al., 2012; Pozzorini et al., 2015) and explore the influence of synaptic weight or short-term
plasticity (Tsodyks and Markram, 1997). Despite the richness of the biological parameter space,
the essential mathematical features of excitable media (Wilson and Cowan, 1972, 1973; Jirsa
and Haken, 1997; Coombes, 2006) are still apparent in the models examined here.

The multicolumn model presented in this work is able to produce dynamics similar to the
spontaneous regime of cortical activity (Petersen et al., 2003b). However, it is different from
resting-state networks (Honey et al., 2007; Ghosh et al., 2008; Deco et al., 2009, 2011; Gilson
et al., 2016) designed for explaining the synchrony of different brain regions. In these models,
each brain region is typically considered as a nonlinear oscillator. The coupling strength between
oscillators (Honey et al., 2007) as well as synaptic transmission delay and noise (Ghosh et al.,
2008; Deco et al., 2009) are tuned such that different brain regions show synchrony similar
to observed data. While such models are very successful in representing resting-state activity,
their focus on macroscopic network structure may limit the range of dynamics produced by
the models. In contrast, in our model we focus on a particular element of neuronal circuit-
level connectivity, namely local assemblies of neurons, which may be contained in a small part
of each cortical column. Such assemblies may make only a small contribution to the average
(or resting-state) activity. Nonetheless propagation of activity across barrel columns or brain
regions may depend on such assemblies, and chains or other functional structures built of them.
In systems with excitable elements such as ours, the type of dynamics strongly depends on
initial conditions of the neurons and nonlinearly on the inputs (Helias et al., 2010). Therefore
embedded excitable assemblies provide nonlinear mesoscopic processing characteristics to the
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circuits that may easily be overlooked in resting-state or other macroscopic models relying on
averaged measures of connectivity between areas.

3.4 Materials and Methods

Neuron model and population parameters Neuronal parameters used in the simulations
are reported in Table 3.1. Table 3.2 summarizes the network parameters.

As our neuron model we use a current-based generalized integrate-and-fire (GIF) model which
implements spike-frequency adaptation using a spike-triggered current and a moving firing-
threshold mechanisms (Mensi et al., 2012). The dynamics of the neuron’s sub-threshold mem-
brane potential (V' (t)) is described by:

MW _ vt - B~ Yot -6+ 1) (3)

<t

where parameters C, g;, and E, are the passive parameters of the neuron. I(t) is the synaptic
input and 7(t) is the shape of the spike-triggered current caused by spikes of the neuron itself
at times t}. After each spike emission, the membrane potential is reset to Vieget, integration of
Eq. 3.1 restarts and the neuron goes through an absolute refractory period of duration 7.

Spikes are produced stochastically (similar to an inhomogeneous Poisson process) with the firing
intensity:

Vi) - VT(t>>
AV
where \g is the stochastic intensity at the firing threshold Vi, and AV is a constant which

defines the level of stochasticity. The threshold Vi follows the dynamic:

Vip(t) = Vi + >yt — ;) (3.3)

<t

A(t) = Aoexp( (3.2)

where V! is constant and 7(t) describes the time course of the threshold after a spike emission.
In Eq. (3.1), the synaptic input I;(¢) received by neuron i is determined by the spikes of
synaptically connected neurons:

L) =S wy S alt - ) = zwij/ a(3)S,(t — s)ds (3.4)

J f J 0

where w;; is the weight of the synapse connecting neuron j to neuron i, and a(t) = e (t=A)/Toyn
for t > A is the post-synaptic current (PSC) shape. The synaptic transmission delay (A)
in all simulation is 1ms. S;(f) = >;6(t — t¥) is the spike train of neuron j, § denotes the
Dirac §-function and tf is the k' spike of neuron j. The synaptic weight w;; indicates the

PSC amplitude. Given the neuronal parameters, one can relate the PSC to the post-synaptic
potential (PSP). We report values both of PSC and PSP amplitudes used in our simulations.

We ran simulations using the Brian simulator (Goodman and Brette, 2008) for simulating the
chain and NEST (Gewaltig and Diesmann, 2007) for simulating the grid.
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Table 3.1: Neuron model parameters used in simulations.

Parameter ‘ Excitatory ‘ Inhibitory
C (pF) 63.0 54.2
gr, (nS) 8.1 5.5
Ep (mV) —58.6 —59.8
(t) m(t) + na(t) m(t) + na(t)

36.3€7t 39.2ms

47.4€7t 19.1ms

(t > 0) ().7e—t/700.0ms — 0.8 /752 Tms
(1) 7(t) +72(t) Y1 () + 72(t)
71 (t) (mV) for (t > 0) | 3.26¢~1/4%0ms (%) 7 30—1/28.3ms
Y2(t) (mV) for (£ >0) | 2.52¢7/2043ms 3 7o L/3AT Tms
Ao (Hz) 0.1 0.1
AV (mV) 1.76 1.94
Vi (mV) —56 445
Tret (1) 4.0 4.0
Vieset (mV) —-31.9 387

(*) This is value is 13.05¢~%/49m for the simulation of multicolumn
model (Figure 3.5).

Transient stimulus In order to initiate the activity in the chain, we stimulate one assembly
of the chain (for example the first assembly, the last assembly or an assembly in the middle of
the chain.). For stimulating an assembly, we connect each of its neurons to 25 Poisson neurons
which fire with the rate of 5Hz each for 25ms. The synaptic weight between the Poisson neurons
and the assembly neurons is 0.18nA.

Rate-current relations Here we present some theory necessary to explain the dynamics of
excitable assemblies. The dynamics of a neuronal population can be described by two equations
relating the firing rate averaged over all neurons and the mean of the synaptic input received
by them. The first relation is called the neuron’s gain function. Injecting a weakly fluctuating
current I, into a neuron produces an average firing rate of

r = g({Lyn), o) (3.5)
where (Ii,) and oy are the average and the standard deviation of the synaptic current over
time, respectively, and ¢ is the gain function. Although there are ways to compute the firing
rate of adaptive integrate-and-fire neuron models in closed-form (Fourcaud-Trocmé et al., 2003;
Hertég et al., 2014) or by using a self-consistent numerical approach (La Camera et al., 2004;
Richardson, 2007, 2009), there is no straightforward analytical solution for computing the gain

function of the GIF model that we use here. We obtain the gain function (3.5) by numerical
simulation (Setareh et al., 2017). For the simulations to determine the gain function numerically
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Table 3.2: Parameters of networks used in simulations (exc: excitatory, inh: inhibitory, pop: population, amp:
amplitude, CP: connection probability, PSP: postsynaptic potential, PSC: postsynaptic current)

Simulation of excitation chain (Figure 3.1 and 3.2)

Size of exc. assembly 70

Size of inh. pop.* 70
Connections PSP amp. (mV) PSC amp. (pA) CP 7y, (ms)

Inter-column connections | exc. to exc. Variable Variable 10% 7.7
exc. to inh.* Variable Variable 30% 9.9
exc. to exc. 1.0 22.1 50% 7.7

Intra-column connections | exc. to inh.* 0.25 3.7 10% 9.9
inh. to exc.* 0.16 3.5 22% 7.7
inh. to inh.* 0.56 10.2 30% 6.7

* Not applicable for the chain of only excitatory assemblies (Figure 3.2)

Simulation of multicolumn barrel cortex model (Figure 3.5)

Size of exc. assembly 70

Size of exc. non-assembly 380

Size of inh. pop. 70
Connections PSP amp. (mV) PSC amp. (pA) CP 7y, (ms)

Inter-column connections | exc. to exc.* 0.32 7.1 10% 7.7
assembly to assembly 1.0 22.1 50% 7.7
assembly to non-assembly 0.15 3.3 15% 7.7
non-assembly to non-assembly 0.15 3.3 15% 7.7

Intra-column connections | non-assembly to assembly 0.15 3.3 15% 7.7
inh. to exc.* 0.16 3.5 22% 7.7
exc. to inh.* 0.25 3.7 10% 9.9
inh. to inh. 0.56 10.2 30% 6.7

* exc. indicates both assembly and non-assembly groups.
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the injected current is given by

oo

+ \;;72 i a(s)é(t — s)ds (3.6)

where £(t) is white noise with mean (£(¢)) = 0 and covariance (£(t) £(t)) = d(t —t'), a(t) is the
shape of the PSC defined above and ¢ = fooo a?(t)dt. Depending on the duration of injection,
the neuron goes into different adaptation states. By injecting the current (3.6) for a short
episode of 10ms, we can estimate the firing rate in the non-adapted state. In case of a longer
stimulation period, we can divide the time into intervals of 10ms and extract the rate-current
relation in the different, progressively more adapted states. This method has been used to
obtain the gain functions displayed in Figure 3.3A and B.

I(t) = <Isyn>

The network activity gives rise to the second relation between the average firing rate and the
average synaptic current. The synaptic input of an arbitrary neuron ¢ is described by:

Fi= S ( /O T a(s)S;(t - s)ds> (3.7)

where w;; is the weight of the synapse connecting neuron j to neuron i and S;(t) is the spike
train of neuron j. The sum runs over all other neurons j in the assembly. Averaging both sides
over time and input neurons gives the average input current: (Iy,) = Npqwr, where N is the
number of neurons inside the population, p is the connection probability between neurons, w
is the synaptic weight and ¢ is the total charge of one PSC pulse: ¢ = fooo a(t)dt. Rearranging
this equation yields:

{Lsyn)

- Npqw

r (3.8)
We refer to the denominator of eq. 3.8 as the network feedback (Cf,) of the population (Setareh
et al., 2017):

Cq, = Npqw (3.9)

We use these two relations for analysis of the behavior of excitatory assemblies in the “Results”
section.

Analytical approach for obtaining the propagation speed of the excitation chain
Our aim is to estimate the difference between activation times of two consecutive assemblies
(which is a measure of propagation speed) using an analytical approach. We assume that the
values of the parameters are given and the time course r(¢) of the population rate signal of an
arbitrary assembly in the chain is known. Furthermore, we assume that the populations are
silent before activation (r(t) = 0 for t < t,).

Suppose that we have two excitatory assemblies, assemblyl and assembly2. We refer to their
activation time as t; and ¢, respectively. The aim of the calculation is to find the difference
in activation times z = t5 — ;. Recall that the activation time has been defined above as the
expected time at which each assembly neuron has spiked once. Assuming independent Poisson
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firing of the assembly with rate r(¢), we can find ¢; as the moment when the expected spike
count reaches 1, n(0; t;)/N = 1, where n(a; b) is the number of spikes in time interval [a, b)
and N is the number of neuron in the assembly. Inserting the shape of assembly population
rate we obtain

/ Crdt = 1 (3.10)

which we can solve for ¢;. Note, however, that the Poisson assumption made here does not ensure
that no neuron fires more than one spike before #;. Therefore Eq. 3.10 yields an approximate
value of #;.

Finding the value of f, is more complicated. After activation of assemblyl, its neurons send
synaptic input to assembly2. The average input received by each assembly2 neuron can be
computed:

Iy fwa(t) = NpexcWexc(a(t) # 7(t — A)) (3.11)

where pexe and wey are inter-assemblies connection probability and synaptic weight respectively,
* denotes the convolution operator and A is synaptic transmission delay. However, this is not
the only synaptic input received by neurons in assembly2. Even before t,, several neurons of
assembly2 may already fire spikes (due to random fluctuations) and send some feedback current
to other neurons. This averaged current can be computed similarly:

Isyn_sclf(t) = (N — l)psclfwsclf(a(t) * T(t — A — JI)) (312)

where pgerr and wger are intra-assemblies connection probability and synaptic weight respectively,
and x is the difference of activation times. Note that the shape of r(¢) is assumed to be the same
for all assemblies of the chain. However, we must be careful about the timing of each current.
Suppose that at the time ¢ = 0 assemblyl starts to fire, therefore assembly2 receives a first
input at the time ¢t = A. After a while, assembly2 starts to fire. The difference between these
two starting times is denoted by x. Therefore the feedback current is received by assembly2
neurons at the time t = A + x.

The total synaptic input received by neurons of assembly2 is the summation of I, fwa and
Lsyn seir- Consequently, we can write the the total input received by assembly2 neurons as

ISyIl(t) - ISyn_de(t) + Isyn_sclf(t) (313)

Now we can calculate the subthreshold membrane potential of neurons in assembly2 by solving
Eq. 3.1:

1
V(t) = Fy, + a(e*t/ﬂﬂ % Iign (1)) (3.14)
Note that since we want to calculate the time of first spikes of neurons, we can neglect the
spike-triggered current and the moving firing threshold. The firing intensity is then given as a

function of V() by Eq. (3.2), except that Vi(t) = Vi because we assumed that neurons are not
adapted and all y(¢) equal zero.

72



Chapter 3. Excitable neuronal assemblies with adaptation as a building block ...

Then using the distribution of first spikes P(t), we are able to calculate the average time of first
spikes of assembly2:

P(t) = A(t)exp(— /O At (3.15)

= / TPyt (3.16)

Finally, using Eq. 3.10 and Eq. 3.16, we can calculate the time difference between activation
times:

Note, however, that ¢, in Eq. (3.17) depends on the value of  through Eq. (3.12). Therefore,
we have formed a self-consistent equation for z. We feed this value in Eq. 3.12 and get it back
in Eq. 3.17. If the output value of x equals its input value, we found the proper value. Using a
simple search, we are able to find this value numerically.

We apply this approach for our chain and calculate the value of x for different values of wey.; these
results are presented in Figure 3.3D. Note that we need to obtain the shape of the assembly
population rate r(¢) by neural simulation beforehand. However, the same shape r(t) can be
used for all values of Weye, because for PexcWexe K PeelfWserr the time course of the initial rise is
dominated by the self-feedback (see Figure 3.3B).

Short-term plasticity We use short-term plasticity (Tsodyks and Markram, 1997; Tsodyks
et al., 1998) in one series of our simulations (Figure 3.1F). This synaptic model supposes that
each synapse has a certain amount of resource denoted by x, with dynamics

dr 1—=z

E = _ — U.’L’é(t — tf) (318)
du _U=U i —ws(t—ty) (3.19)
dt Tfacil

where U (jump of release fraction), 7. (recovery time constant) and 7. (facilitation time
constant) are three parameters of the model. u (release fraction) and = are the two variables of
the system. Whenever a neuron fires a spike (¢; denotes the firing time), it produces a PSC with
amplitude of uzw (w is the synaptic weight). Then, the amount of resource is decreased by uz
and the release fraction is increased by U(1 — u). In our simulations, we either used facilitation
or depression. We chose the values 7. = 0.001lms and 7, = 500ms for the facilitation case
and Tree = 800ms and Tgaep = 0.001ms for the depression case. The value of U is different in
each simulation. Note that for the depression case, we have to fix the amplitude of the first
PSC regardless of value of U. We did that by adjusting the value of the synaptic weight.
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Chapter 4

In vitro cortical network firing is
homeostatically regulated: A model for
sleep regulation!

Abstract

Prolonged wakefulness leads to a homeostatic response manifested in increased amplitude and
number of electroencephalogram (EEG) slow waves during recovery sleep. Cortical networks
show a slow oscillation when the excitatory inputs are reduced (during slow wave sleep, anes-
thesia), or absent (in vitro preparations). It was recently shown that a homeostatic response
to electrical stimulation can be induced in cortical cultures. Here we used cortical cultures
grown on microelectrode arrays and stimulated them with a cocktail of waking neuromodu-
lators. We found that recovery from stimulation resulted in a dose-dependent homeostatic
response. Specifically, the inter-burst intervals decreased, the burst duration increased, the net-
work showed higher cross-correlation and strong phasic synchronized burst activity. Spectral
power below <1 Hz significantly increased and the increase was related to steeper slopes of
bursts. Computer simulation suggested that a small number of clustered neurons could po-
tently drive the behavior of the network both at baseline and during recovery. Thus, this in
vitro model appears valuable for dissecting network mechanisms of sleep homeostasis.

4.1 Introduction

Sleep regulation is one of the most intriguing topics in the field of neuroscience. Sleep is a com-
plex brain state and is believed to be necessary for normal functioning during waking. Two main
stages constitute sleep: rapid eye movement sleep (REM or paradoxical sleep), and non-rapid

IText copied from Saberi-Moghadam S, Simi A*, Setareh H*, Mikhail M and Tafti M, manuscript is under
review in Int. J. Neural Sys. (* contributed equally to this work).
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eye movement sleep (NREM or slow wave sleep, SWS). NREM sleep is characterized by high
amplitude and low frequency quasi-synchronous cortical network activity (Borbély et al., 1981).
The NREM slow wave network oscillations are divided in the electroencephalogram (EEG) slow
oscillation (<1 Hz) (Steriade et al., 1993b; Achermann and AABorbely, 1997) and slow wave
or delta activity (EEG power density between 0.5-4 Hz, SWA) (Borbély et al., 1981; Steriade
et al., 1993a). Sleep is homeostatically regulated. Prolonged periods of spontaneous wakeful-
ness or sleep deprivation lead to an increased sleep need that is manifested in a proportional
increase in EEG SWA and an increased incidence of high amplitude slow oscillations during
recovery sleep (Borbély et al., 1984; Esser et al., 2007; Vyazovskiy et al., 2011a). Homeostatic
regulation of sleep is not limited to an increase in EEG SWA in mammalian species but extends
to an increased sleep duration and reduced response to external stimuli in nearly all species
so far studied (Cirelli and Giulio, 2008; Vyazovskiy and D, 2013; Tononi and Chiara, 2014).
Nevertheless, the underlying cellular, network, and molecular mechanisms of sleep homeostasis
are poorly understood.

Intracellular recordings of cortical neurons during SWS or anesthesia revealed a robust slow
oscillation characterized by a period of active firing (UP state) followed by a long-lasting period
of neuronal silence (DOWN state) (Steriade et al., 1993b; Timofeev et al., 2001). This pattern
of network activity can be reliably recorded during SWS in intact animals (by local field po-
tential “LFP” and multiunit activity recordings) and in humans (by the EEG) (Achermann and
AABorbely, 1997; Sirota and Buzsaki, 2005; Ji and A, 2007; Riedner et al., 2007; Vyazovskiy
et al., 2007; Bersagliere and Achermann, 2010; Vyazovskiy et al., 2011a). Interestingly, this slow
oscillation occurs spontaneously in thalamic inactivated cortical regions or isolated cortical slabs
(Lemieux et al., 2014), cortical slices (Sanchez-Vives and McCormick, 2000), or even in mature
cortical cultures (Wagenaar et al., 2006; Corner et al., 2008; Hinard et al., 2012; Jewett et al.,
2015; Colombi et al., 2016). By using multielectrode arrays (MEA) and mouse primary cortical
cultures, we showed that not only these dish-wide slow oscillations can be recorded for long
periods of time but that cultures can be stimulated by a waking chemical cocktail (hereinafter
called “CCK?”, including monoaminergic, glutamatergic, cholinergic, and orexinergic neurotrans-
mitters or agonists) to induce tonic firing that returns to the default synchronous burst firing
24h later (Hinard et al., 2012). Notably, stimulated cultures show remarkably similar transcrip-
tional and metabolic changes as cortical tissues of animals subjected to 6h of sleep deprivation
(Hinard et al., 2012). One important finding in this study, which was confirmed and extended
by Kaufman et al. 2014, is that even continuous stimulation of such cultures cannot prevent the
invariable return of slow oscillations, strongly indicating that homeostatic processes are acti-
vated to compensate for imposed tonic firing. Here we performed continuous recording of mouse
cortical cultures before stimulation by two different concentrations of our CCK and 24 hours
later during recovery. Detailed analysis of burst firing in these preparations revealed a dose-
depended homeostatic response of the network activity, which showed remarkable similarities
to homeostatic regulation of cortical activity during physiological sleep in vivo.
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4.2 Materials and Methods

Cell cultures

Cortical cultures were prepared from C57BL/6J mouse brains at embryonic days 18-20. The
brain tissue was separated and dissected in a phosphate buffer solution containing HEPES, 33
mM glucose, and 40 mM sucrose. The isolated cortices were digested with a solution containing
50 U of papain for 30 min at 37°C. Digestion was stopped by the addition of trypsin inhibitor
for 10 min. Cells were then mechanically dissociated and plated in neurobasal medium supple-
mented with 2% B-27, 0.5 mM glutamax, and penicillin /streptomycin. Before seeding (200,000
neurons / MEA), the microelectrode array biosensors (MEAs; Multichannel Systems, Germany)
were coated with 0.1% polyethyleneimine and 5 pg/ml of laminin to promote cell adhesion. Cul-
tures were maintained in a humidified CO2 incubator (5% CO2, 37°C) and half of the medium
was changed once a week with the complete neurobasal medium. All cultures were recorded
between 12 and 14DIV when stable burst-pause activity was observed (Hinard et al., 2012) and
were either sham (H20) stimulated or stimulated with a cocktail of neuromodulators: 1 uM
NMDA, AMPA, kainate, ibotenic acid, serotonin, histamine, dopamine and noradrenaline; 10
uM carbachol; and 0.01 uM orexin (Hinard et al., 2012). This coctail (1CCK) was two-fold
diluted to prepare the 0.5CCK. All experimental procedures were conducted in accordance with
regulatory standards and approved by the Vaud Veterinary Office, Switzerland.

Micro Electrode Array (MEA) recording

Electrophysiological signals were acquired using the complete MEA60-BC system (Multi Chan-
nel Systems, Germany). The set-up consists of a MEA 1060-Inv-BC amplifier integrating 60
channels and filter amplifiers with a bandwidth of 0.1 Hz-10 KHz and a gain of 1100. The
set-up was connected to a computer equipped with a PCI data acquisition board and raw data
were acquired and analyzed using MCRack software (Multichannel Systems, Germany). Pri-
mary neuronal cultures were seeded on standard MEA biosensors containing 59 planar TiN /SiN
micro- electrodes (30 um diameter, 200 ym interelectrode distances) plus one internal reference
electrode (Figure 4.1A). Spontaneous firing activity (Figure 4.1B) was recorded after 2 weeks
in vitro when a stable network activity was established (which appears approximately after 10
days in murine cortical cultures (Hinard et al., 2012)). All recordings (300 seconds long) from
MEAs were performed in a humidified CO2 incubator 10-15 minutes after the transfer of the
MEAs into the recording stage. The raw signals were recorded at 25 kHz sampling frequency,
high pass filtered at 200 Hz and low pass filtered at 2 kHz, and amplified spikes were isolated at
1ms resolution. Several cultures were recorded at baseline and every 3 to 6h after stimulation
till dish-wide burst activity resumed at around 24h (Figure 4.2). Each recording lasted for 5
minutes. A total of 29 cultures were analyzed; 12 cultures were stimulated at high concentration
(1CCK), 8 at low concentration (0.5CCK, half of the 1CCK concentration) and 9 were sham
(H20) stimulated.
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Spikes and synchronized bursts detection

Neuronal spikes were sorted from the biological noise using the threshold tool of MCRack
software when the amplitude (peak-to-peak) of the extracellular potential exceeded a noise-based
threshold set at 7 times the standard deviation of the noise for each MEA channel (Chiappalone
et al., 2006). The spike time stamps were stored in the MCRack software. The recorded spike
train is time-varying spontaneous multi-unit activity in the vicinity of each MEA electrode.
The network activity is composed by both spikes and synchronized bursts (Figure 4.1B). To
calculate the network firing rate, we computed a spike density function (SDF) for each MEA
electrode during the five minute long recordings. Briefly, spike trains were convolved by a
Gaussian function with a total area of 1 and a width (SD) of 100ms. The population firing rate
or mean of SDF (mSDF) was then calculated by averaging the firing rate across all channels at
each time point (Figure 4.1E).

Primary cortical cultures are characterized by repetitive burst activity. Synchronized network
activity across all channels were detected by using a method described in Mukai et al. 2003
and Ito et al. 2010. Briefly, the total number of spikes contained in a 100ms time window were
counted over all electrodes. By convolving the window on the spike train, a firing rate histogram
was obtained over time. Finally, all the events exceeding a 40 spikes/window threshold were
defined as a synchronized burst (Figure 4.1F). In order to avoid any biased results due to inter-
variability across cultures, all detection procedures for single spikes and synchronized bursts
were tested in accordance to specific acceptance criteria as described in (Novellino et al., 2011).

Characteristics of synchronized burst activity

To characterize multiple features in the time domain, the detected burst-pause activity was an-
alyzed during baseline and its variation during the recovery period (24 hours after stimulation).
Different parameters were analyzed such as the number of spikes per channel, number of bursts,
burst duration (BD), Inter-Burst-Interval (IBI), and the number of spikes per burst (Figure
4.1F, J).

To detect burst’s slopes, we first normalized each burst activity distribution by dividing to the
maximum of the burst amplitude. For each detected burst, the slope was defined as the first
derivative of the normalized burst activity. The ascending and descending phases are denoted
as initial and final slope, respectively.

It is believed that spiking activity is correlated across neurons in a population of neural networks.
Cross-correlation is a method to detect the degree of interdependency (synchrony) between
firing of paired neurons or electrodes (Chiappalone et al., 2007; Rocha et al., 2007; Poli et al.,
2015). For all pairs of MEA channels, the cross-correlation was computed as follows. First,
all spikes were placed into bins of 1ms. Then, within a time window (7" = 1000ms), Cy;(7) =
ST_oxils|z;[s + 7] was calculated, where s is the starting time of the window and z;[s] is the
number of spikes filtered by a Gaussian Kernel with a width (SD) of 100ms in time interval

[s,s + 1] ms in channel 7. This value (Cj;(7)) was divided to /Cj;(0)C;;(0), and the maximum
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value was selected: Cj;(7) over 7 =1,2,3,...,T for all time windows. This calculation for each
culture was repeated and averaged across all cultures. Note that the auto-correlations were
excluded. For statistical analysis, histograms of all averaged cross-correlation coefficients were
constructed and the difference between baseline and recovery was tested by Kolmogorov-Smirnov
test.

Spectral analysis

The spectral components are lost during the extraction of temporal features of the signal. To
better understand the network oscillation, a Fast Fourier Transform (FFT) was performed on
burst-paused mSDF population firing rate with a 100ms bin width at 1kHz sampling rate (Mok
et al., 2012). Before FFT, the DC component was removed by subtracting the mean from the
data. The obtained power spectrum across all cultures showed a typical dominant frequency
with the highest peak within the slow oscillation band frequency (<1 Hz).

Neural Trajectory

To consider the network properties at the population level, there are two concerns. First,
salient features of the channel responses may be masked by averaging across channels. Second,
it is difficult to characterize multiple spatiotemporal features of a high-dimensional oscillating
network. To address these concerns, we assessed representative 2-d linear projections of the
60 channel responses. For example, principal component analysis (PCA) can be applied to the
channel responses to assess the top two principal components. While this projection captures the
greatest amount of variance, it is not guaranteed to capture the oscillatory nature of the data.
Instead, we used the DataHigh software (Cowley et al., 2013) to view many 2-d projections
of the data. DataHigh first smooths the spike counts of each channel across time with a 50
ms Gaussian kernel. Next, DataHigh applies PCA to the smoothed channel responses (60-
dimentional spike count vectors) and takes the top K dimensions that explain 90% of variance
(where K is typically greater than 2). This helps to remove dimensions with small amount
of variance. DataHigh then allows the user to view many 2-d projections of the K principal
components by plotting the data as a ‘neural trajectory’, where two consecutive time points
are connected by a line. Thus, the neural trajectory represents the temporal evolution of the
channel responses, which may oscillate from one region of firing rate space to another. These
regions correspond to states, where an "UP’ state corresponds to elevated firing rates, whereas
'DOWN’ state corresponds to low firing rates.

Simulation
For the neuron model, we used a current-based generalized integrate-and-fire (GIF) model

(Mensi et al., 2012), which implements spike-frequency adaptation. It is shown that the GIF
model is able to capture both subthreshold dynamics of membrane potentials and spikes recorded
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from neurons in the cortex with high accuracy during current injection (Mensi et al., 2012). The
model describes the dynamics of the membrane potential V' (¢) by the differential equation:

AV (t)

Cdt

= —gu(V(t) = BL) = 0t — i)+ 1(1) (4.1

tA]' <t

where I(t) is the input current. C, g, and E;, are parameters of the neuron model and {t;}
are the spike times. In case of spike emission, a current with the shape 7(t) is triggered. The
neuron goes through a refractory period with the duration of 7 and the membrane potential
is reset to Vieset- Spikes are produced stochastically with the firing intensity

_ V(t) — Vr(t)
where \g and AV are the parameters of the firing intensity. Vp(t) is firing threshold:
Ve(t) = Vi + Y 2t — 1)) (4.3)

tA]' <t

where Vi is a constant. After each spike emission, a shape ~(¢) is added to the firing threshold.
Table 4.1 summarizes the parameters and shapes of n(t) and 7(f) used for excitatory and
inhibitory neurons in the simulations.

‘ Parameter ‘ Excitatory ‘ Inhibitory ‘
C (pF) 83.1 46.1
g1 (nS) 3.7 6.6
E; (mV) —67.0 —71.2
Tref (I18) 4.0 4.0
Vieset (mV) —36.7 —48.4

m(t) + na(t)

m(t) + no(t)

56'76—t/57.8ms

31.86_t 11.5ms

na(t) (pA) | —6.9¢7/218:2ms | ] G—t/500.1ms
"(®) () +7%2() | 1)+ 72(t)

() (V) | 1L.7e /538w | 5 e t/115ms

Yo(t) (mV) | 1.8~1/640.0ms 1 () Ge=t/473.Tms

Ao (kHz) 10 10

AV (mV) 14 0.6

Vi (mV) —39.6 —41.9

Table 4.1: Parameter of GIF neuron model used in simulations of cell cultures.
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| Simulation | Connection | CP | Tyyn (ms) [ wy; (pA) |
cluster—cluster 50% 16.3 18.6
cluster—non-cluster 15% 16.3 4.4
First culture, baseline mode | non-cluster—cluster 10% 16.3 4.4
(Figure 4.1) non-cluster—non-cluster | 15% 16.3 4.4
excitatory—inhibitory 37% 6.9 14.8
inhibitory—excitatory 25% 1.3 39.6
inhibitory—inhibitory 35% 6.9 10.1
clusterl—clusterl 50% 16.3 18.6
cluster2—cluster2 50% 16.3 18.6
clusterl—cluster2 10% 16.3 2.6
cluster2—clusterl 10% 16.3 4.4
clusterl—non-cluster 15% 16.3 4.4
First culture, recovery mode | cluster2—non-cluster 15% 16.3 4.4
(Figure 4.1) non-cluster—cluster1 5% 16.3 4.4
non-cluster—cluster2 15% 16.3 4.4
non-cluster—non-cluster | 15% 16.3 4.4
excitatory—inhibitory 37% 6.9 14.8
inhibitory—excitatory 25% 1.3 39.6
inhibitory—inhibitory 35% 6.9 10.1
clusterl—clusterl 55% 16.3 18.6
cluster2—cluster2 55% 16.3 18.6
clusterl—cluster2 5% 16.3 3.5
cluster2—clusterl 5% 16.3 3.5
clusterl—non-cluster 18% 16.3 3.1
Second culture, baseline mode | cluster2—non-cluster 18% 16.3 2.6
(Figure 4.7) non-cluster—cluster1l 18% 16.3 4.4
non-cluster—cluster2 18% 16.3 4
non-cluster—non-cluster | 18% 16.3 4.4
excitatory—inhibitory 18% 6.9 14.8
inhibitory—excitatory 25% 1.3 39.6
inhibitory—inhibitory 35% 6.9 10.1
cluster—scluster 45% 16.3 18.6
cluster—non-cluster 12% 16.3 2.4
Second culture, recovery mode | non-cluster—cluster 12% 16.3 3
(Figure 4.7) non-cluster—non-cluster | 18% 16.3 4.4
excitatory—inhibitory 18% 6.9 14.8
inhibitory—excitatory 25% 1.3 39.6
inhibitory—inhibitory 35% 6.9 10.1

Table 4.2: Network parameters used for each simulation. Excitatory neurons include cluster and non-clustered
neurons. Connections between inhibitory neurons and cluster neurons are same as connections between inhibitory
neurons and non-clustered neurons. cluster: clustered neurons, non-cluster: non-cluster neurons, CP: connection
probability
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Simulation Connection r (Hz) | Toyn (ms) | w;; (pA)
First culture, baseline mode | Poisson—cluster 95 16.3 16
(Figure 4.1) Poisson—non-cluster | 95 16.3 9
Poisson—inhibitory 100 6.9 30
Poisson—clusterl 95 16.3 16
First culture, recovery mode | Poisson—cluster2 100 16.3 12
(Figure 4.1) Poisson—non-cluster | 95 16.3 9
Poisson—inhibitory 100 6.9 30
Poisson—clusterl 48 16.3 28
Second culture, baseline mode | Poisson—cluster2 95 16.3 19
(Figure 4.7) Poisson—non-cluster | 95 16.3 4
Poisson—inhibitory 100 6.9 30
Second culture, baseline mode | Poisson—cluster 66 16.3 23
(Figure 4.7) Poisson—non-cluster | 95 16.3 4
Poisson—inhibitory 100 6.9 30

Table 4.3: Parameters of external Poisson noise. Each neuron receives independent Poisson input with constant
rate r and a synaptic weight w. cluster: clustered neurons, non-cluster: non-cluster neurons

Neurons receive synaptic current as the input (I(¢)). The input received by neuron i is generated
by the spikes of synaptically connected neurons:
L(t) = Z iy Z at — tf) = Zwij/ a(s)S;(t — s)ds (4.4)
J J 0

f

where w;; is the synaptic weight of connection from neuron i to j. tf is the f*" spike of neuron j.
Postsynaptic current shape is described by: «(t) = we~ =2/ for t > A, where Teyn 18 Synaptic
time constant. The transmission delay (A) for all synapses is 2ms. S; = >, 0(t — t;) is the
spike train of neuron j where ¢ denotes the Dirac d-function. The synaptic weights, connection
probabilities and time constants between different subgroups of neurons are different. Table 4.2
shows the parameters used for building the network.

We assume that each neuron receives noise, beside the synaptic input from other neurons. This
noise is modeled with a stochastic Poisson input. Table 4.3 displays the properties of the Poisson
input each neuron receives. All simulations were performed by Brian simulator (Goodman and
Brette, 2008).

Statistical analysis
All analyzed parameters were first tested for normality by the Kolmogorov-Smirnov test. The ex-

tracted network-burst parameters were first expressed relative to the sham condition followed by
Student’s paired t-test. The power spectra were compared among conditions by 2-way ANOVA
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followed by Tukey test. The distributions of cross-correlation coefficients were compared by
Kolmogorov-Smirnov test. Statistical significance level was set at p < 0.05.

4.3 Results

Developing cortical networks in vitro show initially a random firing that gradually is transformed
into a synchronized bursting pattern within a two weeks period (14 days in vitro “DIV”) and
remains stable thereafter (Maeda et al., 1995; Kamioka et al., 1996). Synchronized bursting
in vitro tightly correlates with the membrane depolarization (UP state) of single neurons by
intracellular recordings (Kaufman et al., 2014) and show similarities to the firing activity of
cortical neurons during SWS sleep in vivo (Timofeev et al., 2001). Also, similar to the in vivo
activity, the burst-pause firing in vitro occurs at low frequency (typically between 0.1 to 0.5
Hz) (Hinard et al., 2012). Examples of 5-minute recordings of a culture at 14DIV before and
24h after stimulation with our waking neuromodulator cocktail (Hinard et al., 2012; Mikhail
et al., 2017) are shown in Figure 4.1. Note that, the waking cocktail was added to each culture
but the medium was not changed (no washing) during the recordings. Bursting activity was
characterized as described in Materials and Methods and the burst parameters analyzed here
are indicated in Figure 4.1F, J. CCK but not sham stimulation rapidly suppressed burst firing
(Figure 4.2). We hypothesized that similar to early phase of sleep, signs of recovery must be
seen at the re-emergence of burst activity (24h after stimulation).

4.3.1 Spectral analysis, burst duration and interburst interval

Slow waves during NREM sleep arise from a synchronized occurrence of UP and DOWN states
among large cortical neuronal populations (Timofeev et al., 2001). More specifically, the nega-
tive segment of the slow waves coincides with network silence (Contreras and Steriade, 1995).
This activity can be approximated by the envelope of bursts (spike density function) as shown in
Figure 4.1E,I. Time series of smoothed firing activities were subjected to a fast Fourier transform
(FFT) analysis.

Cultures recorded 24h after stimulation showed a dose-dependent increase in spectral power
below 1 Hz (Figure 4.3A). In addition, a right shift in the dominant frequency was observed
(Figure 4.3A). The increase in power density can result from an increase in the incidence of
bursts and/or an increase in their amplitude.

We therefore calculated both the duration and the inter-burst interval as outlined in Figure
4.1J. None of the burst parameters at baseline differed significantly between sham, 1 and 0.5
CCK (one-way ANOVA, p > 0.1). We therefore normalized these parameters by dividing to the
mean of the sham condition (both at baseline and recovery) followed by paired t-test to detect
the effect of stimulation Figure 4.3A-D). It was proposed that a higher homeostatic need for
recovery results in less neuronal activity (Rodriguez et al., 2016). This can be achieved by a
decrease in the incidence of UP states and/or longer neuronal silent periods (DOWN states).
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Figure 4.1: Synchronized burst firing and burst characteristics in representative MEA recordings of a 14DIV
mouse cortical culture at baseline and during recovery. A) Picture of an MEA with 60 electrodes and zoomed
figure of two electrodes with neuronal culture. B) Five seconds of raw MEA recording. The inset shows a typical
spike at higher resolution. Five minutes raster plots and mean spike density function (mSDF) recorded in one
culture at baseline (C, E) and during recovery (G, I). Zoomed figures of raster plots (D, H) and mean spike
density (F, J) provide higher resolutions. Automatic detection of bursts with their parameters are shown in F
and J. IS: initial slope, FS: final slope, BD: burst duration, and IBD: inter-burst duration.
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Figure 4.2: Time course of the network firing behavior. A representative MEA recording at baseline and following
stimulation with a cocktail of neuromodulators. Tope panels show the raster plots and lower panels the mean
spike density functions. Stimulation results in the disappearance of bursting activity which is replaced by tonic
firing. The bursting activity recovers after 24h. Lower panels are presented in log scale to visualize the low
amplitude high frequency tonic activities after stimulation.

In vivo intracellular recordings of cortical neurons during recovery sleep after sleep deprivation
are lacking, but our results clearly show that the burst duration during recovery is significantly
increased after both 1 (p < 0.04) and 0.5 (p < 0.02) CCK stimulation and inter-burst interval
is significantly decreased after 1CCK stimulation (p < 0.02) (Figure 4.3B,C). These findings
suggest that higher homeostatic pressure in vitro results in an increased incidence of bursts (UP
state) and a decreased inter-burst interval (DOWN state).

4.3.2 Burst slopes

In vivo EEG recordings in humans and LFP recordings in rats, as well as computational sim-
ulations, indicated that the right shift in the major slow frequency power density is related to
steeper slopes of slow waves (Riedner et al., 2007; Vyazovskiy et al., 2007). Changes in the slope
of slow waves are caused by the synchronization of neuronal activity in the network, so that
faster synchronization events lead to steeper slopes (Vyazovskiy et al., 2009). In our recordings
the shape of the bursts depends on the firing activity recorded across electrodes (spike density)
and therefore the height of the burst envelops is limited by the density of spikes recorded and
the number of active electrodes. We therefore calculated the slopes of the rising and decaying
segments of the burst envelops (Figure 4.1J) and compared them between baseline and recovery
(24h after stimulation) recordings. Both initial and final slopes significantly increased during
recovery and these changes were larger after ICCK (initial slope, p < 0.05, final slope, p < 0.01)
than after 0.5CCK stimulation (initial slope, p < 0.05, final slope, p < 0.05), while no changes
were observed after sham stimulation (initial slope, p = 1, final slope, p > 0.40) (Figure 4.3D,E).
Note that the final slope, which we found highly significantly steeper, is equivalent to the first
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Figure 4.3: Spectral and burst properties of in vitro cortical networks at baseline and during recovery after
neuromodulatory or sham stimulation. A) Spectral power density of bursting activity of cultures during baseline
(blue lines) and recovery (black lines) for 1ICCK (n = 12), 0.5CCK (n = 8), and sham stimulation (n = 9).
The power spectrum shows an increase with a shift toward higher prominent peak (~ 0.45Hz) during recovery
compared to baseline (~ 0.31Hz). The inset indicates the significant increase (triangles) and shift in power for
1CCK (p < 0.05; post hoc Tukey test after 2-way ANOVA with repeated measures). (B) Burst Duration (BD)
is significantly longer and (C) the inter-burst interval (IBI) is shorter during recovery for 1CCK and 0.5 CCK
while there is no change in sham stimulated cultures. (D) Initial and (E) final slopes are significantly increased
after 1ICCK and 0.5 CCK stimulation while no change is observed after sham stimulation. Each dot represents
a single culture. B: baseline, r: recovery, ns: non-significant, * p < 0.05, ** p < 0.01; paired t-test on relative
values (to the sham condition).
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segment of negative waves as recorded by the LFP and the EEG.

4.3.3 Cross correlation

The homeostatic response after prolonged wakefulness in vivo, is manifested during recovery
sleep in an increase in neuronal synchronization across large cortical regions. In our preparations,
the level of synchronization in spatiotemporal neural network can be reliably measured by
cross-correlation between electrode pairs. As shown in Figure 4.4, cultures recorded 24h after
stimulation at 1CCK show a higher cross-correlation than baseline, indicating that recovery
from stimulation leads to a stronger and larger synchronization across the network. However,
the increase in synchronization does not occur across the entire recording dish but is restricted
to clusters of electrodes (Figure 4.3B).

4.3.4 Firing rate, burst duration histogram and neural trajectory

Increase in sleep need not only increases synchronization but also increases excitability during
the UP state and in susceptible human subjects may lead to seizures (Steriade, 2006; Lawn
et al., 2014). Overall, spike rates did not significantly change between the three conditions or
between baseline and recovery. Nevertheless, frequency distribution of spike counts indicated
more channels with higher spike rates during recovery after 1 and 0.5CCK stimulation (Fig-
ure 4.5A,B, right shift in spike rate distribution), while no difference was found after sham
stimulation (Figure 4.5C).

The temporal structure of the network activity was also analyzed by two additional methods.
First, there is a positive correlation between BD and the number of spikes across all channels, so
that longer bursts recruit more channels with higher spike numbers both at baseline and during
recovery (Figure 4.5D). Nevertheless, during recovery there is a stronger correlation (between
regression lines, p < 0.005, z-score, Figure 4.5D) with a clear increase in longer bursts (p < 0.05,
cross-tabulation) with higher spike numbers (p = 0.07), resulting in the appearance of a second
peak in the distribution of BD and spike numbers (Figure 4.5D).

Second, to analyze the temporal evolution of the firing rate (network behavior) we used neural
trajectory analysis. A neural trajectory describes the time evolution of network population
activity that can be traced over time in the space (Cowley et al., 2013). By using a 2-d projection
of firing rate space, we mapped the network activity, with different phase and amplitude, that
starts at a local temporal space (dense central neural activity) and propagates globally over
the network. Figure 4.5E,F show neural trajectories of two representative cultures at baseline
and during recovery after 1ICCK stimulation. Increased number of black circle traces in both
cultures during recovery indicates a strong phasic synchronized activity compared to baseline
(blue circle traces). Differences in neural trajectories suggest that not all neurons but selected
groups of neurons (local clusters) contribute to the network population activity.
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Figure 4.4: Cross-correlations between paired MEA channels averaged across all cultures. A-F) The cross-
correlation of spike trains between paired MEA channels at baseline (A, C, E) and during recovery (B, D,
F) after 1CCK (B), 0.5CCK (D), and sham (F) stimulation. The population channel activity reveals higher
temporal cross-correlation between discharge times of spikes during recovery for 1CCK (B) where the level
of synchrony is increased. There is no change between baseline and recovery after 0.5CCK (D) and sham
stimulation (F). 1CCK (p < 0.05, Kolmogorov-Smirnov test).
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Figure 4.5: Changes in firing rate during bursts. A-C) Firing rate distributions at baseline (blue) and during
recovery (black) after stimulation with the neuromodulatory cocktail at 1 and 0.5 CCK or after sham stimulation.
More MEA channels present higher spike rate during recovery after 1 and 0.5CCK stimulations (right shift in
the distribution). (D) Correlation between the burst duration and the number of spikes (log scales) at baseline
(blue) and during recovery (black) and the corresponding frequency histograms. Triangles indicate changes in
frequency histograms during recovery. (E-F) Neural trajectories for two representative cultures captured by a
2-d projection of firing rate space. (E) The neural trajectory of spontaneous activity in one culture for baseline
(blue) and recovery (black). The X and Y axes correspond to projection vectors that are linear combinations
of firing rates. Two characteristics are detected: phase and amplitude. The strong phase between up and down
states are reflected more in recovery (circle traces) with lower amplitude. (F) Increasing number of circle traces
with higher amplitude in this culture during recovery (black) compared to lower one in baseline (blue). For
both cultures the neural trajectories start from one point locally and propagate in firing rate space with various
phases.
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4.3.5 Simulation of neural network behavior and topology

Sleep is local and use-dependent (Krueger et al., 2008). Cortical networks or even individual
cortical columns that are highly stimulated during wakefulness show higher probability to enter
sleep with larger increase in SWA (Kattler et al., 1994; Rector et al., 2005, 2009). Also, small
cortical networks can show signs of sleep in otherwise awake and sleep deprived animals (Vya-
zovskiy et al., 2011b). Therefore, the recruitment of larger cortical areas by small neural clusters
might result to the whole network sleeping behavior while individual neurons might not. To test
if the network behavior can be predicated by local (cluster) activity shaping the overall network
behavior we built several neural networks with different topologies and obtained their behavior
at baseline and during recovery using computer simulation. Recovery processes include changes
in synaptic weight and network topology (connectivity). Obviously, cortical cultures lack the
intact cortical connectivity and each culture is unique in terms of established network. We
propose that the structure and topology of neural networks in vitro plays an important role in
generating the network oscillation and establishing its properties (e.g., duration of bursts or the
regularity of oscillations). A network feature which is often used for modeling neural networks
is the neural cluster (also called neural assembly). A neural cluster is a subgroup of neurons
with dense connectivity or strong synaptic weight. Previous studies showed that embedding
neural clusters in a larger network significantly changes the dynamics and behavior of the whole
network (Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015). Here we embedded one or
two clusters of excitatory neurons to produce oscillations.

We built a network with 900 inhibitory neurons and 3000 excitatory neurons (see Materials
and Methods). To reproduce the dynamics of the recorded culture in Figure 4.1, we embedded
a cluster of 95 neurons in the excitatory population. Figure 4.6D shows the schematic of
the network at baseline. Both synaptic weight and connection probability are higher inside
clustered neurons compared to the connections between non-clustered neurons and between
non-clustered and clustered neurons (see Materials and Methods). To display the results as
multielectrode array recordings, we defined 60 channels. For each channel, we randomly picked
4 neurons from the network and aggregated their spikes. Figure 4.6A-C shows the raster plot
of channels and simulated mean firing rate (filtered with a Gaussian function, ¢ = 100ms)
at baseline. Simulated multiunit firing of a 9 second recording in Figure 4.6A is shown at
higher resolution in Figure 4.6. We assume that increasing the firing rate of neurons after
stimulation with the waking cocktail triggers long-term synaptic plasticity and modifies the
synaptic weight between neurons. Therefore, this might lead to a new connectivity structure
in the neuronal network. In this simulated culture, we suggest that the new structure has two
clusters with 95 and 90 neurons (Figure 4.6H). In other words, the stimulation adds another
cluster in excitatory neurons population. Therefore, the culture exhibits a different oscillatory
behavior (Figure 4.6E,G). As observed in the experimental data, changes in burst duration
(Figure 4.61) and inter-burst intervals (Figure 4.6J) are very similar between the experimental
and simulated data. Using a similar number of simulated inhibitory and excitatory neurons we
also reproduced the behavior of another culture with a different connectivity structure (Figure
4.7). During the baseline phase, we defined two clusters with 65 and 40 neurons. This structure
showed a similar dynamics to the baseline recording (Figure 4.7). To simulate the dynamics of
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the culture during recovery, we assumed that stimulation results in merging of the two clusters
with a new and bigger cluster with 100 neurons (5 clustered neurons lost their connections
to other neurons). This new structure reliably showed a network oscillation similar to the
experimental data (Figure 4.7). In summary, we showed that the network topology (number of
neural clusters and size of each cluster) determines the properties of oscillations and behavior
of neurons. We assumed that the different oscillatory behavior of each cluster is due to different
topologies. Also, stimulation may change the topology of the network, which leads to different
burst durations and inter-burst intervals at baseline and during recovery.

4.4 Discussion

In this work we studied the network activity of cultured cortical neurons at baseline and during
recovery after stimulation by a cocktail of waking neuromodulators. Our aim was to investi-
gate if the behavior of the network during recovery (when slow oscillations reappear) shows
homeostatic changes as seen during sleep in living animals. We found that during recovery
the inter-burst interval is decreased while the burst duration is increased. Moreover, the power
density in slow frequencies is increased together with the slope of UP and DOWN states. Our re-
sults clearly indicate that during recovery the neural network correlated activity shows a higher
temporal and spatial synchrony, reminiscent of the patterns observed during recovery sleep after
sleep deprivation in vivo. The overall changes during recovery are dose-dependent with stronger
stimulations (1CCK) leading to larger differences, similar to longer wakefulness durations lead-
ing to larger sleep changes in vivo. We also show that neural trajectory method could trace
temporal evolution of neuronal firing during recovery as a result of a higher synchrony with
stronger phasic neural oscillation (UP and DOWN). Our simulations strongly suggest that the
overall network behavior can be predicted by changes in activity of clusters within the network.
One important finding resulting from in vitro preparations or isolated cortical islands is that
neural networks default activity state is synchronized slow oscillations (sleep-like state) (Cor-
ner et al., 2008; Hinard et al., 2012; Kaufman et al., 2014; Lemieux et al., 2014; Jewett et al.,
2015). More importantly, continuous stimulation or inhibition cannot prevent the return to this
default mode (Kaufman et al., 2014; Slomowitz et al., 2015). Note that in our experiments, the
cultures were stimulated with a cocktail of neuromodulators without wash out. Although dif-
ferent neuromodulators might have different half-lives, signaling mechanisms, and time courses
of feed-back induction (Mikhail et al., 2017), our cultures are most probably nearly continu-
ously stimulated. In an elegant experiment, cortical cultures were continuously stimulated with
carbachol or noradrenaline leading to the disappearance of synchronous bursting that recovered
within 24 hours (Kaufman et al., 2014). Therefore, the default slow oscillation is regulated
by homeostatic processes that play as strong attractors bringing the network activity back to
its set-point. The underlying cellular and molecular mechanisms remain unknown. Obviously
receptor desensitization might not be involved since for instance continuous cholinergic stimu-
lation renders the cortical networks insensitive to noradrenergic stimulation (Kaufman et al.,
2014), although changes in overall receptor trafficking cannot be excluded. Recent observations
also suggest that changes in firing rate are not compatible with transcriptional modifications
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Figure 4.6: Computer simulation of the network firing behavior of the culture shown in Figure 4.1. Network
topology changes after the stimulation: while we used only one cluster at baseline (D), we assumed that another
cluster appeared in recovery (H). Simulated raster plots (baseline A, recovery E) and mean spike densities
(baseline C, recovery G) are similar to experimental data (Figure 4.1). A 9 second higher resolution of simulated
multiunit activity (baseline B, recovery F') shows typical bursts. Comparisons of burst durations (I) and inter-
burst intervals (J) between experimental and simulation data indicate a very similar pattern (inter-burst intervals
are significantly longer in both conditions during recovery; *** p < 0.001, ns: non-significant).
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Figure 4.7: Computer Simulation of the network firing behavior of the second culture. Experimentally recorded
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Figure 4.7: (Continued) mean spike density function and raster plot of the culture in culture in the baseline
mode (A, B) is different with the recovery mode (G, H). In order to reproduce similar dynamics with the
computer simulation we assumed that the network has two clusters in the baseline mode (C), while they merge
into one cluster after the injection (I). Simulated mean spike density functions (baseline D, recovery J) and
raster plots (baseline E, recovery K) are similar to the recorded data. Comparisons of burst durations (F')
and interburst intervals (L) between experimental and simulation data indicate a very similar pattern (burst
durations and interburst intervals are significantly longer in both conditions during recovery; *** p < 0.001,
t-test).

(Hengen et al., 2016). Other mechanisms such as intracellular calcium or membrane homeosta-
sis might be involved (Maret et al., 2007; Hinard et al., 2012; Ding et al., 2016). Interestingly,
by using different methods and electrical or TNF alpha stimulation of cortical cultures, a sim-
ilar pattern of homeostatic regulation was also observed (Jewett et al., 2015). The cellular
mechanisms of recovery during sleep are poorly investigated. Nevertheless, detailed analysis
of slow oscillations during human sleep at baseline and during recovery indicated very similar
changes as reported here (Bersagliere and Achermann, 2010). As opposed to the recent report
by Rodriguez et al., 2016 multiunit activity in freely behaving mice, where an increase in OFF
state was reported (longer inactivity periods), both in vivo and our results indicate that re-
covery leads to more frequent UP and DOWN states (Bersagliere and Achermann, 2010) with
longer UP and shorter DOWN state. Also, experimental and computational data indicated that
higher sleep need leads to steeper slope of the slow oscillation (Riedner et al., 2007; Vyazovskiy
et al., 2007) as reported here. In previous studies, the homeostatic recovery of firing rate was
investigated mainly by inhibition, such as visual deprivation in vivo (Hengen et al., 2016) or
GABAg-mediated silencing in vitro (Slomowitz et al., 2015), with in vivo findings favoring a
cell-autonomous while in vitro results favoring a network homeostatic process. Nevertheless,
even in the visual deprivation paradigm, the homeostatic regulation of firing rate set-point
was found dramatically affected by ongoing network activity (wakefulness promoting and sleep
inhibiting recovery) (Hengen et al., 2016). Obviously, neuronal activity depression requires
activity (wakefulness) while over-activation requires sleep.

Whether the homeostatic mechanisms are cell autonomous or properties of networks remain
controversial (Slomowitz et al., 2015; Hengen et al., 2016). In vitro observations strongly favor
the network hypothesis (Slomowitz et al., 2015). Also, the recent development of high den-
sity MEAs based on CMOS technology (with 4096 microelectroldes) revealed a high number
of random firing activity while the overall network behavior was driven by synchronized bursts
(Lonardoni et al., 2015). Excitatory cortical neurons are known to form privileged synaptic
connections to form clusters (Perin et al., 2011). We show that similar to intact cortex, the
number of clusters, number of neurons in each cluster, synaptic weights, and connection prob-
ability inside and outside the clusters, as well as the amount of noise that each neuron receives
affect the shape of the oscillations. Using our simulation model, we expected weak connections
between neurons during the early days of cell cultures to be able to establish neural clusters and
network oscillations. As the cell culture proceeds to maturation, connections are formed be-
tween neurons and stronger connections maintained by synaptic plasticity. These neurons form
the clusters through long-term synaptic plasticity rules (Zenke et al., 2015) and the network
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produces oscillations during the baseline phase. Stimulation with our waking cocktail forces
neurons to discharge at higher rates for a long period of time (nearly 24h). Based on the firing
pattern, synaptic plasticity modifies the structural connectivity between neurons leading to the
formation of new clusters or the collapse of existing ones. The number of neurons in the cluster
may also change. The new structure leads to a new oscillation (recovery mode) with different
properties compared to the baseline oscillation (before stimulation). It might happen that the
new architecture is unable to produce oscillations.

A major discrepancy between sleep homeostasis as indexed by the EEG SWA and neuronal
firing homeostasis is the large difference in their time course. While SWA shows a fast kinetics,
typically within tens of minutes in rodents and a few hours in humans, network homeostasis,
both in vitro and in vivo takes up to two days (Slomowitz et al., 2015; Hengen et al., 2016).

Although the slow oscillation (<1 Hz) is at the basis of slow waves recorded by the EEG, other
oscillations such as delta waves and spindles are critically modulated and/or generated by the
cortico-thalamic network. How such oscillations are regulated remains unknown. Nevertheless,
the spontaneous generation of such oscillations in more complex thalamo-cortical co-cultures (or
interconnected through microfluidics devices) may be obtained and being subjected to detailed
analysis as reported here.
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Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis, we developed a specific model of neural assemblies and networks containing these
assemblies in order to explain a large amount of experimental data extracted from cortical
networks and cell cultures similar to related works on Hopfield models (Hopfield, 1984, 1987)
and attractor memory models (Amit and Brunel, 1997). We have shown that a neural assembly
can have a bistable dynamics. The assembly is either quiet or generates high firing rates. Adding
background noise or a transient stimulus forces the assembly to switch to the high-rate state.
Spike-frequency adaptation enables the assembly to switch back from the high-rate state to the
quiet state. Therefore, the neural assembly together with synaptic input and spike-frequency
adaptation is able to switch between two different dynamical regimes. These dynamics provide
a unifying model feature which is the basis of all network models presented in this thesis.

We combined neural assemblies in different forms and each instance produced a biologically
plausible network dynamic. In chapter 2 we embedded several assemblies in bigger networks for
generating up-state/down-state oscillations observed in anesthetized cortex. These networks
were also able to exhibit different stimulus-evoked responses observed in cortical layers. In
chapter 4 we repeated the same approach for reproducing oscillations of cell culture networks.
We illustrated that manipulating the number and size of assemblies affect the properties of
oscillations. Hence, we were able to generate different oscillations observed in cultures using
different formations of assemblies. In chapter 3 we formed a chain of bidirectionally connected
assemblies in order to propagate neural activity with tunable speed. Then, we extended the
chain to a 2-dimensional grid and used it for simulating different activity patterns observed in
mice barrel cortex.

In the models presented in this thesis we used neuron and network parameters extracted from
experiments (Lefort et al., 2009; Avermann et al., 2012; Mensi et al., 2012; Pozzorini et al.,
2015). Using these biologically observed parameters, spike-frequency adaptation and neural
assemblies, we reproduced experimentally observed behaviors, e.g., slow oscillations of cortical
neurons (Steriade et al., 1993a; Petersen et al., 2003b), stimulus-evoked responses (Beltramo
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et al., 2013), activity circulation in barrel cortex (Petersen et al., 2003a,b) and slow oscillations
observed in cell cultures (experimental data are shown in chapter 4).

In summary, we stated that small groups of neurons (assemblies) are able to drive a big network
and shape their dynamics. Therefore, in order to build a network model for reproducing a
desired dynamic, it is better, in our view, to focus on assemblies first and find a good formation
of them. Then, we can add non-assembly neurons. This approach reduces simulation time and
makes the modeling process easier and faster.

5.2 Future work

The models introduced in this thesis can be extended in several aspects. In this section we
present some ideas that could be investigated in future.

In this work, we did not explore the role of inhibitory neurons. Their role was limited to
regulating assemblies and reducing firing rates. In chapter 3 inhibitory populations reduced the
propagation speed. While we used one type of inhibitory neurons, experiments (Rudy et al.,
2011; Gentet et al., 2012) unravel different inhibitory neuron types with different properties
and probably different roles in the cortex. One may use several inhibitory populations in the
model and define different functionality for each of them. For example, in chapter 3, while
one inhibitory neuron type reduces the propagation speed, another inhibitory neuron type can
decrease the firing rate of assemblies by providing a significant amount of inhibition.

We mentioned in chapter 3 that using a learning rule we can strengthen the synaptic weights
between assemblies and increase the propagation speed. Therefore, if we use the chain as
sequence generator for a behavioral task, repetition of the task will lead to stronger synapses
and therefore increase the speed of performing the task. However, we did not implement this
idea and left it for future work.

We may scale up the multicolumn model of barrel cortex introduced in chapter 3 in order
to simulate the dynamics of whole cortex. If we do this, we speculate that we will be able to
maintain several activity waves in the model and generate more complicated dynamical patterns.
However, such a big model contains huge numbers of neurons and populations. Hence, the
simulation becomes very slow. One solution is using parallel programming technics and running
the simulation on several machines for simulation instead of one. Another solution is using
population models which approximate the activity of a homogenous neuron population with a
set of equations (Deco et al., 2008; Naud and Gerstner, 2012a; Deger et al., 2014; Schwalger
et al., 2017). In this case, we replace each population by a population model and reduce each
column (that we used in chapter 3) to three population models: assembly, non-assembly and
inhibitory neurons. Such a population model should be able to simulate whole cortex and
preserve time efficiency.

98



Appendix A

Reproducing monkey scribbling using the
chain of assemblies

Here we propose an architecture for reproducing the drawing movement of a monkey (Polyakov
et al., 2009). The excitation chain, introduced in chapter 3, plays a key role in forming the
rhythm of generated movements as well as the speed of drawing.

Several studies (Hogan, 1984; Hogan and Sternad, 2012; Giszter, 2015) showed that complex
motions are composed of motor primitives, which can be considered as building blocks for
constructing motions. In other words what we observe as a complex movement may arise from
a sequence of simple patterns. Polyakov et al. (2009) studied two monkeys and let their right
hands operate a two-joint low-friction manipulandum. In order to motivate monkeys to generate
scribbling movements, a random target in a tiled grid of many possible targets was chosen. The
monkeys only saw a cursor indicating the position of the hand while the target was invisible.
Since the monkeys had no knowledge of target location, they produced trajectories that covered
the entire workspace and moved the hand until reaching the target. If they could reach the
target within 5 seconds, they were rewarded. Otherwise another target was chosen randomly.
This procedure repeated several times. The analysis showed that the scribbling trajectories
made by the monkeys were combinations of parabolic movement primitives. Consequently,
in the architecture of our movement generator model we have blocks that produce parabolic
trajectories in case of receiving activation signals. We refer to these blocks as translator units,
as they translate the input activation signal to movement parabolas.

Figure A.1A shows the schematic of our model. The two main neuronal elements are the
rhythm generator and the translator units. The excitation chain works as the rhythm generator
and activates the translator units one after each other. The translator units are designed to
send out four signals, one for each direction that the monkey’s hand can move (right, left,
up and down). Once a translator unit becomes activated, the model produces a parabolic
motion (a particular movement primitive) with special properties (concavity, horizontal /vertical
symmetry, as discussed below). These properties depend on the internal implementation of the
translator unit. A biomechanical block then receives the direction signals from the translator
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units and employs muscles in order to move the monkey’s hand into the respective direction.
However, we do not implement neither the biomechanical block nor the muscles into in our
architecture and consider the output of the model to be the four direction signals provided
by the translator units. These four signals suffice to sketch the trajectories. Supposing that
the firing rate (estimated with 2ms bin size) of each directional output of the translator units
denotes the velocity of movement in that direction at any moment in time, we can visualize the
scribbling made by the model (Figure A.1B).

According to the experimental study (Polyakov et al., 2009) the speed of drawing increases as
the monkeys continue to practice. Our model provides a possible interpretation of this finding.
During the scribbling, the assemblies of the excitation chain become active sequentially, i.e. the
spiking activity of each assembly drives the next one to also spike . Synaptic learning rules such
as Hebbian spike-timing dependent plasticity imply that this kind of activity will potentiate
the synapses between these assemblies. Now, as we have shown in chapter 3, increasing the
inter-assembly weights increases the speed of activity propagation in the chain. Therefore, the
chain assemblies activate the translator units more quickly than before, and thus increases the
speed of drawing (Figure A.1B).

Figure A.1C shows the internal structure of a neuronal translator unit which generates a
parabolic movement from top-left to top-right on the screen (Network parameters are reported
in Table A.1.). This parabola has horizontal symmetry and is concave. The translator unit re-
ceives an activation signal from an assembly of the excitation chain. Since, in this case, the hand
always moves to right, the left direction signal remains inactive. Conversely, the right direction
signal should be active during the presence of input activation signal. In order to implement
this, a neuronal population receives the activation signal and fires. Its firing rate denotes the
right signal strength. The down signal should be sent out immediately after starting the activa-
tion and should last during almost the first half of activation. The down signal is implemented
by a similar neuronal population as the right signal. The difference here is that the synapses
between the assembly and the down population express short-term depression (Tsodyks and
Markram, 1997). Therefore, the amount of excitation that the down population receives from
the assembly gradually decreases and the firing rate of the down population and consequently
the strength of the down signal decays. On the contrary, the up signal should remain quiet
during the first half and rise after that. The firing rate of a fourth population, which is called
up population, is used to code the strength of the up signal. By using weak synapses from the
assembly to the up population, it takes some time until enough input accumulates until the
up population starts to fire. In this manner, with carefully tuned parameters, the translator
unit can produce the parabola. Figures A.1D and E illustrate the firing rate of each population
and the parabola made by the unit during the presence of activation signal. By rearranging
the internal structure of the unit, it can be used to produce different parabolas. For instance,
if we interchange the up and down populations respectively by the right and left populations,
the unit produces a vertical symmetry parabola with concavity to the right. Neuron model and
parameters as well as parameters of the chain are the same as parameters we used in chapter 3
(Reported in Table 3.1 and 3.2).

100



Appendix A. Reproducing monkey scribbling using the chain of assemblies

A C

to muscles
—_—

Motor Pools { right \ right

o O O O ~

—
Activation signal left

Biomechanical
Block

Coming from

chain’s assembly weak { up \ up
9 synapses u
c
> & ac EE oc =% 2g
— 523 22 >3 2278
o) = ] = B = o
E short-ter |———> down
2 depression
©
= A A A
. D
2
©
b right
c
S left
U] up
E down
S
<
[a's

._.
N
w
time(ms)

Figure A.1: Neuronal circuit model for reproducing monkey scribbling. A) The circuit consists of a rhythm
generator (which is implemented by the excitation chain), a neuronal translator units and a biomechanical block
which employs muscles to produce movements by using four direction signals. B) Trajectories made by the
system are composed of several parabolas, several example trajectories are shown. The left trajectory (ends at
t = 190ms) is drawn faster than the right one (ends at ¢ = 250ms) because of the different propagation speeds of
the excitation chains (Wexe = 0.6mV, wiy, = 0.25mV for the left one and wexe = 0.4mV, wiyy, = 0.25mV for the
right one) C) Schematic of a neuronal translator unit. It receives the activation signal from an assembly of the
chain and produces a parabolic motor command signal, from top-left to top-right. D) The population-averaged
rates (with 2ms bin size) of directional neural populations of the translator unit are considered as the direction
signals sent out from the unit shown in (C). The right signal is present throughout the activation period, while
the down and up signals, respectively, show up at the beginning and end of the period. Since this particular
parabola is sketched by moving from left to right, the left signal is always off. This translator unit draws a
trajectory from left to right which approximates a parabola with horizontal symmetry and the concavity to up
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Synaptic weight

CP | Topn (ms) PSP amplitude(mV) | w;; (pA)
assembly—right’ pop. | 15% 7.7 0.45 10
assembly—up’ pop. 15% 7.7 0.23 5
assembly—’down’ pop.* | 15% 7.7 0.95 21

* Expresses short-term depression (U = 0.7, 7. = 800ms)

Table A.1: Parameters of neuronal translator unit.

Connection Probability, PSP: Postsynaptic Potential, pop.: population)
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