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Abstract

Speaker verification systems traditionally extract and model cepstral features or filter
bank energies from the speech signal. In this paper, inspired by the success of neural network-
based approaches to model directly raw speech signal for applications such as speech recog-
nition, emotion recognition and anti-spoofing, we propose a speaker verification approach
where speaker discriminative information is directly learned from the speech signal by: (a)
first training a CNN-based speaker identification system that takes as input raw speech signal
and learns to classify on speakers (unknown to the speaker verification system); and then (b)
building a speaker detector for each speaker in the speaker verification system by replacing
the output layer of the speaker identification system by two outputs (genuine, impostor), and
adapting the system in a discriminative manner with enrollment speech of the speaker and
impostor speech data. Our investigations on Voxforge database shows that this approach
can yield systems competitive to state-of-the-art systems. An analysis of the filters in the
first convolution layer shows that the filters give emphasis to information in low frequency
regions (below 1000 Hz) and implicitly learn to model fundamental frequency information in
the speech signal for speaker discrimination.

1 Introduction

The goal of a speaker verification system is to verify the identity claim of a person given an au-
dio sample. Conventionally, short-term spectrum-based features such as Mel-Frequency Cesptral
Coefficients (MFCCs) are modeled on a large set of speakers to build a universal background
model (UBM) with a Gaussian mixture model (GMM). In UBM-GMM approach [1], the UBM
is adapted on the speaker’s data during the enrollment phase to obtain a speaker model. During
the verification phase, the decision is made by a likelihood ratio test. The most popular ap-
proach is to extract a supervector by stacking the mean vectors of the speaker adapted GMM [2]
and projecting the supervector onto a total variability space to extract a low dimensional rep-
resentation called i-vector (identity vector) [3]. i-vector extraction is typically followed by a
discriminative modeling technique, such as probabilistic linear discriminant analysis (PLDA) [4]
to handle channel or session variation at the model level. In the verification phase, the decision is
made through the PLDA score. The decision can also be made by simply computing a distance
between i-vectors extracted during the enrollment phase and the verification phase.

In recent years, with the advances in deep learning, novel approaches are emerging where
speaker verification systems are trained in an end-to-end manner [5, 6, 7]. These systems take
as input either output of filterbanks [5, 6] or spectrograms [7, 8]. In this paper, we aim to go
a step further where the features and the classifier(s) are learned by directly modeling the raw
speech signal. Our motivation is two fold:

1. in recent works, it has been shown that raw speech signal can be directly modeled to
yield competitive systems for speech recognition [9, 10, 11], emotion recognition [12], voice
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activity detection [13] and anti-spoofing [14, 15]. Can we achieve that for speaker recog-
nition?

2. speaker differences occur at both voice source level and vocal tract system level [16, 17].
However, speaker recognition research has focused to a large extent on modeling features
such as cepstral features and filter bank energies, which carry information mainly related
to the vocal tract system, with considerable success. Can modeling of raw speech signal
employing little or no prior knowledge provide alternate features or means for speaker
discrimination?

Toward that, by building upon the end-to-end acoustic modeling approach for speech recogni-
tion presented in [9, 18], we develop a speaker verification approach where a convolution neural
network (CNN) is first trained in an end-to-end manner to classify (unknown) speakers, and
then adapted to build a speaker-specific binary classifier for speaker verification. Our investiga-
tions on the Voxforge corpus show that the proposed approach can yield systems competitive to
state-of-the-art approaches. An analysis of the filters in the first convolution layer shows that
the CNN gives emphasis to information lying in low frequencies (below 1000 Hz) and models
fundamental frequency information.

The paper is organized as follows. Section 2 presents the proposed approach. Section 3
presents the experimental studies. Section 4 presents an analysis of what is learned by the first
convolutional layer. Section 5 finally concludes.

2 Proposed Approach

Figure 1 illustrates the proposed approach with an architecture motivated from [9, 18], i.e.,
convolution layers followed by a multilayer perceptron (MLP). In this approach, the development
of the speaker verification system consists of two steps:

1. in the first step, a CNN-based speaker identification with raw speech signal as input is
trained to classify unknown speakers in an end-to-end manner. By unknown, we mean the
speakers that are not part of the speaker verification system. This step is akin to UBM
step in standard speaker verification approaches, except that here a speaker discriminative
model as opposed to a generative model is trained.

2. in the second step, for each speaker k = 1, . . . ,K in the speaker verification system, the
CNN-based speaker identification system is converted into a speaker detection system
for speaker k by: (a) replacing the output layer by two classes (genuine, impostor) and
randomly initializing the weights between the output layer and the MLP hidden layer; and
(b) adapting the CNN in a discriminative manner with the target speaker enrollment data
and impostor speech data from unknown speakers.

Figure 1: Illustration of development of speaker verification system based on the proposed
approach.
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In the verification phase, the test speech is passed through the speaker detection system
corresponding to the claimed speaker and the decision is made by averaging the output posterior
probability for genuine class and impostor class over time frames.

The proposed system has the following hyper parameters: (i) window size of speech input
(wseq), (ii) number of convolution layers N , (iii) for each convolution layer i ∈ {1, · · ·N}, kernel
width kWi, kernel shift dWi, number of filters nfi and max-pooling size mpi and (iv) number of
hidden layers and hidden units in the MLP. All these hyper-parameters are determined through
cross validation during the first step, i.e., development of the speaker identification system. In
doing so, the system also automatically determines the short-term processing applied on the
speech signal to learn speaker information. More precisely, the first convolution layer kernel
width, i.e., kW1 and kernel shift, i.e., dW1 are the frame size and frame shift that operates on
the signal. Figure 2 illustrates the first convolution layer processing. Note that the frame rate
of the system is determined by the shift of input speech window of size wseq, which was fixed at
10 ms, as done conventionally.

wseq Convolution

nf

dW

kW

Figure 2: Illustration of first convolution layer processing.

3 Experiments

This section describes the experiments and the results obtained with our approach and with
different baseline systems.

3.1 Database and experiment protocol

Voxforge is an open source speech database,1 where different speakers have voluntarily con-
tributed speech data for development of open resource speech recognition systems. Our main
reason for choosing the Voxforge database was that most of the corpora for speaker verifica-
tion have been designed from the perspective of addressing issues like channel variation, session
variation and noise robustness. As a first step, our aim was to see whether the proposed ap-
proach could learn speaker discriminative information directly from the speech signal of short
utterances, and if yes, whether we could analyze and find what kind of information. We can
expect the Voxforge database to have low variability as the text is read and the data is likely
to be collected in a clean environment as each individual records his own speech. However, the
database consists of short utterances of about 5 seconds length recorded by speakers over the
time.

From this database, we selected 300 speakers who have recorded at least 20 utterances. We
split this data into three subsets, each containing 100 speakers: the training, the development
and the evaluation set. The 100 speakers with the largest number of recorded utterances are
in the training set, while the remaining 200 were randomly split between the development and
evaluation sets. The statistics for each set is presented in Table 1.

1http://www.voxforge.org/
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Table 1: Number of speakers and utterances for each set of the Voxforge database: training,
development, evaluation.

train dev eval
enrollment probe enrollment probe

number of utterances/speaker 60-298 10 10-50 10 10-50
number of speakers 100 100 100

The training set is used by the baseline systems to obtain a UBM. Whilst, it is used to obtain a
speaker identification system in the proposed approach. The development and evaluation sets are
split into enrollment data and probing data. The enrollment data is used to train each speaker’s
model and always contains 10 utterances per speaker. The probe part of the development data
is used to fix the score threshold so as to achieve an Equal Error Rate (EER), while the Half
Total Error Rate (HTER) is computed on the probe data of the evaluation set based on this
threshold.

3.2 Systems

3.2.1 Baseline systems

We train several state-of-the-art systems on the Voxforge database using the spear toolbox [19].
We first perform a Voice Activity Detection (VAD), where frame-level energy values are com-
puted, normalized and then classified into two classes. 60-dimensions MFCC are then extracted
from frames of 25ms shifted by 10ms (19 first coefficients with the energy + first derivative +
second derivative). These features are then used as input to several state of the art systems:
UBM-GMM [1], i-vectors [3] classified with a cosine distance or PLDA, inter-session variabil-
ity (ISV) [20] and joint factor analysis (JFA) [21]. For all the aforementioned systems, we use the
default parameters, previously tuned on a different subset of the Voxforge database, as presented
in [19].

3.2.2 Proposed system

The same voice activity detection algorithm as for the baseline systems was employed to remove
silence frames.

In the first step, the CNN-based speaker identification system was trained on the training
data by splitting it into a train part (90%) and a validation part (10%) for early stopping.
As discussed in Section 2, the proposed system has several hyper-parameters. These hyper-
parameters were determined through a coarse grid search and based on validation accuracy.
The best validation accuracy of 4.52% at frame level and 0.31% at utterance level was obtained
for an architecture with two convolution layers and one hidden layer in the MLP and following
hyper-parameters: wseq = 510ms, nf1 = nf2 = 20 filters, kW1 = 300 samples, dW1 = 10
samples, kW2 = 10 frames/filter × nf1 filters = 200, dW2 = 1 frame, mp1 = mp2 = 5 frames
and nhu = 100 hidden units. The frame rate at each convolution layer output is determined by
dW1 and dW2.

In the second step, we first developed speaker verification systems for the development set
speakers and determined the threshold that yields the EER. We obtained an EER of 1.18% for
utterance-level average genuine class probability threshold of 0.267. We then developed speaker
verification systems for the evaluation set speakers and evaluated them with the threshold found
on the development set. In both cases, the enrollment data of each speaker was split into
a train part (80%) and a validation part (20%) for adapting the CNN and MLP parameters
discriminatively. The impostor examples were the same for all speakers in the development and
evaluation sets and were obtained by randomly selecting 300 utterances from the training set,
which was used to build the speaker identification system.
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In all the cases, stochastic gradient descent based training with early stopping was performed
with a cost function based on cross entropy using Torch software [22].

3.3 Results

Table 2 presents the HTER obtained with the baseline systems and the proposed CNN-based
system on the evaluation set of the Voxforge database. We observe that the proposed system
outperforms the baseline systems. One possible reason is that the amount of enrollment data,
which is on average ≈ 50 seconds per speaker, might not be sufficient for the baseline systems.

Table 2: Performance of the baseline systems and the proposed CNN-based system on the
evaluation set.

System HTER (%)
UBM-GMM 3.05

ISV 2.40
i-vector, cosine distance 2.82

i-vector, PLDA 5.87
JFA 5.00
CNN 1.20

4 Analysis

This section presents an analysis to get insight about the speaker discriminative information
that is getting modeled at the first convolution layer of the speaker identification system.

4.1 Visualization of filters

To understand the manner in which different parts of the spectrum are modeled, we analyzed
the cumulative frequency response of the learned filters similar to [18, 23]. We computed the
512-point Discrete Fourier Transform (DFT) Fk of each filter fk, k = 1, . . . , nf1 and computed
the cumulative frequency response Fcum:

Fcum =

nf1∑
k=1

Fk

‖Fk‖2
,

The resulting plot is shown in Figure 3. We can observe that the filters are giving emphasis to
the information lying below 1000 Hz.

4.2 Response of filters to input speech

The previous analysis shows what frequency regions the filters are modeling but not how the
filters respond to input speech. In the work on speech recognition [18], which formed the basis
for the present work, it was found that the filters can be interpreted as a spectral dictionary,2 and

the magnitude frequency response St of the input signal st =
{
s1t , · · · s

kW1
t

}
can be estimated,

as

St =

∣∣∣∣∣
nf1∑
k=1

〈st, fk〉DFT{fk}

∣∣∣∣∣ , (1)

and analyzed to understand the discriminative information that is being modeled.

2It is worth mentioning that such interpretations have also been put forward in the signal processing commu-
nity [24, 25].
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Figure 3: Cumulative frequency response of filters of the first layer.

We adopted that approach to understand the speaker discriminative information that is
getting modeled. In our case kW1 = 300 speech samples and nf1 = 20. In the previous section,
we observed that the filters are giving emphasis to low frequency information. One of the speaker-
specific information that lies below 500 Hz is fundamental frequency. Considering this point we
performed analysis of voiced speech and unvoiced speech of a few male and female speakers in
the development set. In the case of voiced speech, we found a distinctive peak occurring at
the fundamental frequency (F0), while no such distinctive peak appears for unvoiced speech.
Figure 4 illustrates that for two voiced and two unvoiced frames belonging to two different
speakers. In both voiced speech cases, a distinctive peak is present in the frequency response
near the corresponding F0 values. Whilst, in the unvoiced speech cases the energy is very low in
the region corresponding to F0 range 70 Hz - 400 Hz compared to the voiced speech case. This
suggests that the first convolution layer is learning F0 modeling.

(a) F0 = 149 Hz for the voiced frame input, estimated
using wavesurfer [26].

(b) F0 = 206 Hz for the voiced frame input, estimated
using wavesurfer.

Figure 4: Filters response for voiced and unvoiced male speech and female speech frame inputs.

4.3 F0 estimation using convolution filters

In order to ascertain that the first convolution layer is indeed learning to determine F0, we
implemented a simple F0 estimator based on the observations made in the previous section and
evaluated it on the Keele Pitch database [27], which contains the speech and laryngograph signal
for 5 male and 5 female speakers reading a phonetically balanced text as well as hand corrected
F0 estimates from the laryngography signal. The steps involved in the F0 estimation are as
follows:
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1. For each frame of input signal of length kW1 = 300 samples, estimate the frequency
response St using Eqn. (1) given the convolution filters parameters.

2. Locate the DFT bin that has maximum energy in the frequency range 70 Hz - 400 Hz.
3. Threshold the peak energy to decide if the frame is voiced or unvoiced. If voiced then the

frequency corresponding to the DFT bin is the F0 estimate.
4. Apply a median filter on the estimated F0 contour.
The speech was down-sampled from 20 kHz to 16 kHz to match the sampling frequency of

the Voxforge database. The frame shift was set to 10ms, as done in the Keele database for
determining the reference F0 from the laryngograph signal. The number of points for DFT was
set as 3092 points. The energy threshold to decide voiced/unvoiced and the size of median filter
were determined on the female speaker f1n0000w speech, such that low voiced/unvoiced (V/UV)
error and gross error (i.e. deviation of estimated F0 is within 20% of reference F0 or not) is
obtained. This threshold and the median filter size (=7) was used when estimating F0 contours
of the remaining nine speakers data and for evaluating the F0 estimator. Figure 5 shows the F0

contours for the first phrase spoken by a female and a male speaker. It can be observed that
the estimated F0 contours are reasonably close to the reference F0 contours.

Figure 5: Two examples of the F0 contours estimated using the first layer filters compared to
the reference F0 from the database.

Table 3 presents the results of the evaluation. As it can be seen, the performance of this
simple F0 estimator is clearly beyond chance-level performance. The estimation for females are
better than for males. The reason for this could be that frames of kW1 = 300 samples, which
amounts to 19ms, do not contain enough pitch cycles for very low F0. We have indeed observed
that through informal analysis of the errors.

Table 3: F0 estimation evaluation on the Keele database

V/UV error (%) Gross error (%)
female (male) 16.1 (22.3) 3.6 (24.0)
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5 Discussion and Conclusion

In this paper, we proposed a speaker verification approach that learns speaker discriminative
information directly from the raw speech signal using CNNs in an end-to-end manner. On the
Voxforge corpus, the proposed approach yielded a system that outperforms systems based on
state-of-the-art approaches. An analysis of the filters in the first convolution layer revealed
that the filters give emphasis to information present in low frequency regions. Furthermore,
an investigation on the response of the filters to input speech showed that the first convolution
layer is implicitly learning to model F0 for speaker discrimination. These observations together
with the fact that the input to the system is 510 ms speech and the second convolution layer
temporally filters and combines the first convolution layer filter outputs suggest that the system
is learning to discriminate speakers based on “supra-segmental” information such as intonation
patterns. These findings open interesting research questions:

1. we found that the system focuses on low frequencies and models F0, which is a voice source
related speaker discriminative information. A natural question that arises is: what other
speaker discriminative voice source related information is it capturing? For instance, is it
capturing voice quality related information?

2. in the present study the first convolution layer kernel width kW1 determined in a cross
validation manner is about 19 ms speech (segmental), and we found that it is modeling
voice source related information. In the work on speech recognition [18], kW1 determined
in a cross validation manner was about 2 ms (sub-segmental), and was found to model
formant-like information, which is related to vocal tract system. So can short kW1, i.e.,
modeling sub-segmental speech, help in capturing vocal tract system related speaker dif-
ferences prominently and understanding them better?

Our future work will address these questions along with investigations on other corpora such as
MOBIO [28] and NIST that have high variability in terms of channel and sessions.
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