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Abstract
This thesis develops a unified framework for modeling and solving various classes of rich

routing problems with stochastic demands, including among others the Vehicle Routing

Problem (VRP) and the Inventory Routing Problem (IRP). The work is inspired by the problem

of collecting recyclables from sensorized containers in the canton of Geneva, Switzerland.

We start by modeling and solving the deterministic single-period version of the problem

which extends the class of VRPs with intermediate facilities. It is formulated as a Mixed

Integer Linear Program (MILP) which is enhanced with several valid inequalities. Due to the

rich nature of the problem, general-purpose solvers are only able to tackle instances of small

to medium size. To solve realistic instances, we propose a meta-heuristic approach which

achieves optimality on small instances, exhibits competitive performance in comparison to

state-of-the-art solution methods for special cases of the problem, and leads to important

savings in the state of practice. Moreover, it highlights and quantifies the savings from

allowing open tours, in which the vehicles’ origin and destination depots do not coincide.

To integrate demand stochasticity, we extend the problem to an IRP over a finite planning

horizon. Demand can be non-stationary and is forecast with any model that provides

the expected demands and the standard deviation of the error terms, where the latter are

assumed to be independent and identically distributed (iid) normal random variables. The

problem is modeled as a Mixed Integer Non-Linear Program (MINLP), in which the dynamic

stochastic information impacts the cost through the probability of container overflows and

route failures. The solution methodology is based on Adaptive Large Neighborhood Search

(ALNS) which integrates a specialized forecasting model, tested and validated on real data.

The computational experiments demonstrate that our ALNS exhibits excellent performance

on VRP and IRP benchmarks from the literature. The case study, which uses a set of rich IRP

instances from the canton of Geneva, finds strong evidence of the added value of including

stochastic information in the model. Our approach performs significantly better compared

to alternative deterministic policies in its ability to limit the occurrence of overflows for the

same routing cost. We also analyze the solution properties of a rolling horizon approach in

terms of empirical lower and upper bounds.

This approach is generalized in a unified framework for rich routing problems with sto-

chastic demands where we drop the assumption of iid normal error terms. We elaborate

on the effects of the stochastic dimension on modeling, with a focus on the occurrence
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of stock-outs/overflows and route failures, and the cost of the associated recourse actions.

Tractability is achieved through the ability to pre-compute or at least partially pre-process

the bulk of the stochastic information, which is possible for a general inventory policy under

mild assumptions. We propose an MINLP formulation, illustrate applications to various

problem classes from the literature and practice, and demonstrate that certain problems, for

example facility maintenance, where breakdown probabilities accumulate over the planning

horizon, can be seen through the lens of inventory routing. The case study is based on

the waste collection IRP instances cited above as well as on a new set of instances for the

facility maintenance problem. On the first set, we analyze the effects of our assumptions on

tractability and the objective function’s representation of the real cost. On the second set, we

demonstrate the framework’s ability to achieve the same level of occurrence of breakdowns

for a significantly lower routing cost compared to alternative deterministic policies.

Key words: unified framework, rich routing problems, demand stochasticity, demand fo-

recasting, stock-out, overflow, route failure, tractability, inventory policy, waste collection,

facility maintenance, intermediate facilities, open tours, real data, Adaptive Large Neig-

hborhood Search (ALNS), Mixer Integer Linear Program (MILP), Mixed Integer Non-Linear

Program (MINLP), Vehicle Routing Problem (VRP), Inventory Routing Problem (IRP)
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Résumé
Cette thèse développe un cadre unifié pour la modélisation et la résolution de diverses classes

de problèmes de tournées avec demandes stochastiques, incluant entre autres le problème

de tournées de véhicules (VRP) et le problème d’inventaire et de tournées (IRP). L’étude

s’inspire d’un problème réel de collecte de déchets recyclables dans le canton de Genève en

Suisse, dans lequel les conteneurs sont équipés de capteurs de niveau. Nous commençons

par modéliser et résoudre une version déterministe du problème sur une seule période, en

étendant la classe de problèmes de tournées de véhicules avec installations intermédiaires.

Il est formulé en un programme linéaire mixte en nombres entiers (MILP), amélioré à l’aide

d’inégalités valides. En raison de la nature riche du problème, les solveurs commerciaux ne

peuvent traiter que des cas de petite à moyenne taille. Pour résoudre des cas réalistes, nous

proposons une approche meta-heuristique, qui atteint l’optimum sur des instances de petite

taille, présente des performances concurrentielles par rapport aux méthodes de solution

de pointe sur des cas particuliers, et entraîne en pratique des économies importantes. En

outre, elle met en évidence et quantifie les économies réalisées en permettant des tournées

ouvertes, pour lesquelles l’origine et la destination finale de la tournée ne coïncident pas

nécessairement.

Afin d’inclure l’aspect stochastique de la demande, nous étendons le problème à celui de

gestion d’inventaire et de tournées (IRP) sur un horizon de planification fini. La demande

considérée peut être non stationnaire et prévue à l’aide de tout modèle fournissant son

espérance et l’écart-type de ses termes d’erreurs, ces derniers étant supposés indépendants

et identiquement distribués (iid) selon une distribution normale. Le problème est modélisé

en un programme non linéaire mixte en nombres entiers (MINLP), dans lequel l’information

stochastique dynamique impacte le coût par la probabilité de débordement des conteneurs

et par le risque de non validité des tournées. La méthodologie de résolution se base sur

la méthode dite "Adaptive Large Neighborhood Search" (ALNS), qui intègre un modèle de

prévision spécialisé, testé et validé sur des données réelles. Les tests numeriques montrent

que notre algorithme présente d’excellentes performances sur des instances de référence

du problème de tournée de vehicules et d’inventaire dans la littérature. Le cas d’étude, qui

utilise un ensemble d’instances de problèmes riches IRP du canton de Genève, valide la

valeur ajoutée de l’intégration d’information stochastique dans le modèle. Notre approche

est considérablement supérieure par rapport aux politiques alternatives déterministes dans

sa capacité à limiter l’occurrence de débordements de conteneurs pour un coût identique de
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tournées. Nous analysons également les propriétés de la solution d’une approche à horizon

roulant en termes de bornes empiriques inférieures et supérieures.

Cette approche est généralisée à un cadre unifié pour les problèmes riches de trounées avec

demandes stochastiques, où nous levons la restriction de termes d’erreurs supposés iid et

de distribution normale. Nous analysons l’influence de la dimension stochastique sur le

modèle, avec un accent mis sur le nombre d’occurrences de pénuries/débordements et de

non validité de tournées, ainsi que sur le coût de leur nécessaire réaction. Le problème reste

résoluble grâce à la possibilité de calculer en avance, ou au moins de partiellement traiter

en amont, la majeure partie de l’information stochastique pour une politique d’inventaire

générale et sous hypothèse faible. Nous propoposons une fomulation MINLP, illustrons

par des applications de classes de problèmes variés tirés de la littérature et de la pratique,

et démontrons que certains problèmes, par exemple ceux de maintenance d’installations

où les probabilités de pannes s’accroissent sur l’horizon de planification, peuvent être vus

dans l’optique de problèmes d’inventaires et de tournées. Le cas d’étude est basé sur les

instances IRP de collecte de déchets cités ci-dessus, ainsi que sur de nouvelles instances du

problème de maintenance d’installations. Sur le premier jeu de données, nous analysons les

effets de nos suppositions sur la résolution et sur la représentation des coûts réels dans la

fonction objectif. Sur le second jeu de données, nous démontrons la capacité du cadre unifié

d’atteindre un nombre de pannes similaires pour un coût de tournées significativement

moindre comparé aux politiques alternatives déterministes.

Mots-clés: cadre unifié, problèmes de tournées riches, stochasticité de la demande, prévi-

sion de la demande, pénurie, débordement, tournée non valide, résoluble, politique d’inven-

taire, collecte de déchets, maintenance d’installations, installations intermédiaires, tour-

nées ouvertes, données réelles, Adaptive Large Neighborhood Search (ALNS), programme

linéaire mixte en nombres entiers (MILP), programme non linéaire mixte en nombres entiers

(MINLP), problème de tournées de véhicules (VRP), problème d’inventaire et de tournées

(IRP).
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1 Introduction

This chapter borrows from the articles:

Markov, I., Varone, S., and Bierlaire, M. (2016). Integrating a heterogeneous fixed fleet

and a flexible assignment of destination depots in the waste collection VRP with inter-

mediate facilities, Transportation Research Part B: Methodological 84:256-273.

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2016). Inventory

routing with non-stationary stochastic demands. Technical report TRANSP-OR 160825.

Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland.

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2017). A general

framework for routing problems with stochastic demands. Proceedings of the 17th Swiss

Transport Research Conference (STRC), May, 17-19, 2017.

The work therein has been performed by the author in collaboration with Prof. Michel

Bierlaire, Prof. Jean-François Cordeau, Prof. Yousef Maknoon and Prof. Sacha Varone.

Section 1.1 of this chapter introduces the context and provides a focused analysis of the

literature pertinent to this research, motivating the work undertaken here. This is followed

by Section 1.2 which identifies the objectives we set to achieve and Section 1.3 which lists the

contributions we make to the state of the art. Finally, Section 1.4 outlines the organization

of the thesis chapter by chapter.

1.1 Context, State of the Art and Motivation

The Vehicle Routing Problem (VRP) is an integer programming and combinatorial optimi-

zation problem that seeks to find the cheapest set of tours that a fleet of vehicles should

perform to serve a set of customers. In its basic form, the VRP considers a single depot where
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each tour starts and ends, and a homogeneous fleet of capacitated vehicles. Each customer

has a fixed demand of a single commodity and the number of customers in each tour is only

limited by the vehicle capacity. The VRP was formally introduced in the seminal work of

Dantzig and Ramser (1959) in the context of fuel delivery and is one of the most practically

relevant and widely studied problems in operations research. A generalization of the VRP,

the Inventory Routing Problem (IRP) introduces a planning horizon and seeks to optimize

simultaneously the vehicle tours, delivery times and delivery quantities. The seminal work

on the IRP was motivated by the delivery and inventory management of industrial gases

(Bell et al., 1983). The literature on the VRP, the IRP and their many variants is vast, driven

both by their mathematical properties from an optimization point of view, but also due

to their numerous practical applications in the distributions and collection of goods and

the transportation of people. The need to solve larger and richer routing problems has

pushed researchers over the past decades to develop sophisticated and efficient solution

methodologies.

Rich routing problems are multi-constrained routing problems with a variety of real-world

features. In such a setting, the fleet can be heterogeneous instead of homogeneous, and each

vehicle can perform multiple tours per day, instead of one, and visit multiple customers and

replenishment facilities, subject to time windows and accessibility restrictions. Depending

on the application, there could be multiple depots with the possibility of open tours that have

different origin and destination depots, or multi-day tours that last over several days. Drivers

are subject to regulations on maximum working hours, while equity considerations might

imply that all drivers work similar hours. Customers may have preferences for a given driver

and visit periodicity. Because of their inherent difficulty, such problems have seen increased

academic interest in recent years due to methodological and technological progress (Lahyani

et al., 2015). Another defining characteristic of real-world problems is uncertainty, which can

present itself in a variety of ways, such as uncertain demand quantities, uncertain customer

presence, uncertain travel and service times, etc (Gendreau et al., 2016). The rich routing

features, combined with the necessity of tracking inventory over the planning horizon in

the case of the IRP, inevitably compound the effects of uncertainty. Failure to account for

uncertainty often leads to solutions that are highly suboptimal or even infeasible given the

realizations of the uncertain parameters (Louveaux, 1998).

This thesis develops a unified framework for modeling and solving various classes of rich

routing problems with stochastic demands, including among others the VRP and the IRP. The

work is inspired by the problem of collecting recyclables from sensorized containers in the

canton of Geneva, Switzerland. In this context, we solve a rich IRP in which a heterogeneous

vehicle fleet collects recyclable waste over a planning horizon of approximately one week.

Waste containers and collection vehicles are flow-specific, hence the problem can be solved

separately for each waste flow. As shown in Figure 1.1, each tour starts and ends at a depot,

not necessarily the same, and is a sequence of collections followed by disposals at the

available dumps, with a mandatory visit to a dump before the end of the tour. Dumps are

recycling plants, and there could be multiple dumps for the collected waste flow which can

2
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Figure 1.1: Tour Example
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be used when and as needed along the tour. We consider time windows for the depots,

containers and dumps. A tour is also limited by the legal duration of the working day. Site

dependencies, or accessibility restrictions, apply to certain points, for example to containers

located in narrow streets that cannot be accessed by big collector trucks. With container

capacities in the range of one to three thousand liters, the infrastructure is relatively sparse

with collection points typically several hundred meters apart. As a consequence, we are

faced with a node-routing problem, as opposed to the arc-routing problems applicable to

household waste collection (Golden et al., 2002) where demands along the street segments

can be clustered.

Containers are equipped with ultrasound sensors and transmit their levels to a central data-

base at the start of each day. Using the historical data, a forecasting model estimates the

expected daily demands and a measure of uncertainty associated with them. This informa-

tion is used for calculating the probabilities of container overflows and route failures during

the planning horizon, the two types of undesirable events that we consider. The concept of

overflow is self-explanatory, while a route failure refers to an event where the vehicle runs

out of capacity before the next scheduled dump visit due to higher than expected demand

realizations (Dror and Trudeau, 1986). The IRP literature typically uses simple forecasting

techniques, if at all. Our framework allows the use of any state-of-the-art approach that

provides the expected demands and a measure of uncertainty associated with them in the

form of a probability distribution.

Over a single day, the described problem is an extension of the Vehicle Routing Problem

with Intermediate Facilities (VRP-IF), in which the facilities represent the dumps where

vehicles stop to empty. Although the research on waste collection VRP variants spans several

decades, the VRP-IF itself has been relatively less studied. One of its first applications to

waste collection is that of Beltrami and Bodin (1974) who apply it to the case of New York

City. More recently, applications to waste collection have appeared in Angelelli and Speranza

(2002a,b), Kim et al. (2006), Benjamin (2011), Hemmelmayr et al. (2013) and others. The

VRP-IF has wide practical applicability outside waste collection too, as evidenced by the

variety of solution techniques developed for it, which include meta-heuristic (Tarantilis et al.,

2008), hybrid (Crevier et al., 2007) and fully exact methods (Muter et al., 2014).

3
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Yet, despite the practical relevance of these types of problems, many important realistic

features are often omitted. For example, the literature on the VRP-IF often assumes homoge-

neous fleets, whereas in industry fleets either start as heterogeneous or become such as new

vehicles are added or old ones are replaced. Many studies have treated heterogeneous fleets

in an ad-hoc manner but Taillard (1999) is the first to formulate the heterogeneous fixed

fleet VRP, a generalization of the vehicle fleet mix problem with a fixed number of vehicles of

each type. The years that followed saw a strong scientific interest in this problem and the

development of state-of-the-art heuristic (Subramanian et al., 2012; Penna et al., 2013) and

exact methodologies (Baldacci and Mingozzi, 2009). Our work considers intermediate facili-

ties and a heterogeneous fixed fleet simultaneously, resulting in a more complex problem

where the cost attractiveness of smaller vehicles is counterbalanced by the need for more

frequent dump visits.

As illustrated in Figure 1.1, our setup also considers open tours (Sariklis and Powell, 2000;

Repoussis et al., 2007, 2010; Yousefikhoshbakht et al., 2014), with origin and destination

depots not necessarily the same. The possibility of open tours relies on the presence of

multiple depots as well (Cordeau et al., 1997, 2001; Dondo and Cerdá, 2006, 2007, 2009;

Baldacci and Mingozzi, 2009; Bettinelli et al., 2011). Furthermore, the addition of constraints

on time windows and maximum tour duration (Solomon, 1987; Savelsbergh, 1992; Cordeau

et al., 2001; Cordeau and Laporte, 2001; Cordeau et al., 2004; Polacek et al., 2004), and site

dependencies (Nag et al., 1988; Chao et al., 1999; Cordeau and Laporte, 2001) results in a

rich routing problem. Being generalizations of the basic VRP, such problems are NP-hard

and are known to be notoriously difficult to solve. Not surprisingly, they have been the

subject of increased academic interest in the last decade due to the methodological and

technological progress (Lahyani et al., 2015), enabling the solution of larger and richer

problems. A case in point is the work of Pisinger and Ropke (2007), who use the Adaptive

Large Neighborhood Search (ALNS) algorithm of Ropke and Pisinger (2006a) to solve several

classes of vehicle routing problems, including the VRP with time windows, the multi-depot

VRP, the site-dependent VRP, and the open VRP. Pisinger and Ropke (2007) test the ALNS

on 486 benchmark instances from the literature and improve 183 best known solutions. In

recent years, advances have also led to the appearance of a number of unified frameworks

for different classes of routing problems (Ropke and Pisinger, 2006b; Pisinger and Ropke,

2007; Baldacci and Mingozzi, 2009; Vidal et al., 2014; Koç, 2016; Kritzinger et al., 2017). The

success of the ALNS on many classes of routing problems over the past decade motivated

the development of our own implementation, specifically designed to exploit the structure

of our framework.

A further source of complexity arises from the presence of stochastic elements (Gendreau

et al., 2016), in our particular case stochastic demands. While sensor information provides

the current container levels, future ones are only available as forecasts. Over a multi-day

planning horizon, the problem becomes an IRP, which determines simultaneously the vehicle

tours and visit days, and as a consequence the collection quantities. Coelho et al. (2014b)

carry out a detailed survey of the IRP literature during the past thirty years. Table 1.1 describes
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Table 1.1: Structural Classification for the IRP (Coelho et al., 2014b)

Criterion Classification

Time horizon Finite (rolling)
Structure Many-to-many
Routing Multiple
Inventory policy Order-Up-to (OU)
Inventory decisions Back-ordering (with a penalty and limit)
Fleet composition Heterogeneous
Fleet size Multiple (fixed)

our problem in terms of the structural classification scheme they propose. Specifically, it

is defined over a finite planning horizon and solved in a rolling horizon fashion. That is,

when the IRP is solved, only the decisions on the first day are implemented, after which

the horizon is shifted by a day and the problem is re-solved with updated container levels

and forecasts. This approach has been central to the IRP since the seminal works in this

field (e.g. Bard et al., 1998b). To the contrary, solving the problem day by day in isolation

would lead to myopic decisions, often or always postponing collections for the future so as

to minimize the routing cost today (Trudeau and Dror, 1992). Our problem also considers

multiple containers that are emptied into multiple dumps (intermediate facilities), which

identifies the structure as many-to-many. While intermediate facilities have been considered

in the IRP literature, the simultaneous presence of the variety of rich routing features present

in our problem has rarely been systematically treated. Routing involves multiple containers

at a time and when a container is visited it is fully emptied, i.e. according to an Order-Up-to

(OU) level inventory policy (Bertazzi et al., 2002). Experience suggests that overflowing

containers continue serving demand because people place the waste beside them. As a

consequence, container overflows are served at a penalty (back-order) but the number of

back-order days is limited to one. The fleet is fixed and heterogeneous, with vehicles possibly

having different cost and capacity characteristics. Information-wise, we have stochastic

demands and knowledge about their distributions. The rolling horizon approach introduces

dynamism where new container level and forecasting information is revealed each day.

There is a variety of modeling approaches for stochastic optimization problems, of which

routing problems with stochastic demands are a special case. Scenario generation and sto-

chastic modeling based on Markov decision processes both lead to problems that suffer from

the curse of dimensionality for realistic-size instances (Pillac et al., 2013). Approximate dyna-

mic programming (Powell, 2011) helps alleviate the problem in the latter case. In their recent

work, Rossi et al. (2017) also note the instance size limitations of dynamic programming

in solving the bowser routing problem, a special version of the IRP, and propose heuristic

approximations. Robust optimization maintains feasibility for a given budget of uncertainty

and is distribution-free. It relies on specific reformulations depending on whether parameter

uncertainty in the standard-form mathematical program appears column-wise (Soyster,
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1973), row-wise (Bertsimas and Sim, 2003, 2004), or only in the right-hand side (Minoux,

2009). Yet, complications arise if there is inter-row dependency in the uncertainty on the

right-hand side (see Delage and Iancu, 2015). We do not see this approach very often used for

routing problems (Gendreau et al., 2016), but we should mention the works of Sungur et al.

(2008) and Gounaris et al. (2013) who treat stochastic demands for the VRP and Aghezzaf

(2008) and Solyalı et al. (2012) for the IRP. Chance constrained approaches guarantee that

a constraint will be satisfied with a given probability. These are appropriate if uncertainty

appears row-wise and have typically been used to model route failures in vehicle routing

problems with stochastic demands (see references in Gendreau et al., 2014).

The use of a particular approach has a strong influence on how the problem at hand is being

viewed. Both robust optimization and chance constraints are risk-oriented approaches,

shifting the treatment of uncertainty to the constraints. They also leave open the question

of how to set the budget of uncertainty or the distribution percentile for the chance. Robust

optimization in particular is less relevant for our problem where container overflows and

route failures are not disastrous events. Their states are frequently revisited, unlike what

is usually the case in robust optimization. Furthermore, container overflows and route

failures have a monetary expression which should figure in the total expected cost incurred

by the collector. Thus, the integration of probability information in the objective is used

to provide a monetary dimension to these stochastic events, and their associated recourse

actions, resulting in a cost-oriented approach. Indeed, it often pays off taking a small risk if

other cost components can be significantly reduced as a consequence. Scenario generation

approaches capture the cost of recourse but would be very cumbersome computationally

for a rich routing problem like ours. Chance constraints, on the other hand, can be easily

integrated in our framework. Lastly, we highlight that the vast majority of the distribution-

based approaches in the literature on routing problems assume independent and identically

distributed (iid) demands from the normal distribution (see Gendreau et al. (2016) for the

case of the stochastic VRP).

The waste collection problem described here is a rich IRP with stochastic demands, and

while our modeling techniques are conceived within this context, they are extensible to a

number of other problems as well, ranging from deterministic VRPs over a single period all

the way to maritime IRPs with stochastic demands. For all practical purposes, distribution

and collection problems are identical, since distribution can be viewed as the collection of

empty space, and vice versa. Overflows also have their counterpart in a distribution context

in the form of stock-outs. The concept of route failure is universal as well. Moreover, there

need not be any restriction to routing problems that consider demand, as the probability

of undesirable events not related to demand can be treated in the same or similar ways.

A case in point is the facility maintenance problem, in which the probability of a facility

breakdown is a function of the number of days that have passed since its most recent visit.

In other words, the probability of breakdown accumulates in a way similar to inventory, thus

allowing us to use the same ideas and modeling techniques to solve this problem. Bringing

these elements and observations together, this thesis culminates in a unified framework for
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modeling and solving rich routing problems in the presence of non-stationary stochastic

demands, and a powerful solution methodology, based on ALNS, that is able to handle the

resulting complexity.

Starting from the waste collection problem, we gradually build our unified framework and

illustrate how it adapts to the original problem, but also to a number of vehicle, inventory

and other routing problems from the literature and practice. We discuss the generality of our

approach in terms of the richness of its routing features and the probability distributions that

it can handle with fully or partially relaxed iid normal assumption. The latter addresses the

gap between theory and practice when it comes to stochastic routing problems (Gendreau

et al., 2016), and is confirmed with a successful application to rich problem instances derived

from real data. Still, we carefully list all the assumptions and restrictions that we impose

in order to keep the approach tractable. Tractability enters the modeling framework at the

design level in the ability to pre-compute or at least partially pre-process the bulk of the

stochastic information, which is not only possible for the OU inventory policy mentioned

above, but also for a generalized one under mild assumptions. In sum, while the practical

motivation behind this work is the solution of a real-world waste collection problem with

important economic consequences for any city, there is also a more abstract theoretical

motivation. We are well aware of the pitfalls of a one-size-fits-all approach and are far from

proposing one. Nevertheless, we are convinced that the ideas we develop and present here,

and which are inspired from the work on the waste collection problem, are general enough

and extensible even further.

1.2 Objectives

In the process of developing the unified framework described in Section 1.1, this thesis sets

the following objectives:

1. Integration of rich routing features. The modeling and solution approach needs to be

applicable to real-world problems, which are characterized by complex physical and

temporal constraints.

2. Integration of demand forecasting. The future is uncertain but forecasting techniques

or expert knowledge are crucial in isolating trends. Forecasts are not only useful in

making decisions for the future but even more so in shaping the decisions we make

for today.

3. Integration of demand uncertainty through explicit modeling of undesirable events

and their associated recourse actions. Stochastic demand is a source of risks whose

nature depends on the problem at hand. We consider two principal risks common to

routing problems: 1) undesirable events at the demand points, e.g. overflows or other,

depending on application, and 2) route failures. We model explicitly the probabilities

of these events, their costs and the costs of their associated recourse actions. Thus, we

7
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model the resulting cost of demand uncertainty that one has to pay.

4. Tractability. Routing problems are typically operational short-term problems. As

such, they need to be solved quickly and efficiently. To do this, we need to consider

tractability at the design phase through the manner in which stochasticity is captured

and treated and at the solution phase in the form of efficient algorithms. Our goal is

to be able to solve realistic-size instances in the order of minutes or tens of minutes.

The difficulty of our problem limits the use of fully exact approaches in favor of meta-

heuristics.

5. Generality and genericity. The problem we start from is a rich waste collection rou-

ting problem, but the concepts, models and algorithms we develop, and ideally the

conclusions we draw, should be extensible to vehicle, inventory and other routing

problems from different application areas. Likewise, the solution methodology should

be powerful but remain generic enough and modular to allow the integration of new

routing features. The ALNS approach is well-suited for this purpose.

6. Successful application to a real case study. Real-world applications pose a great chal-

lenge but at the same time provide the most meaningful evaluation of models and

algorithms for rich routing problems. We work with a rich data set coming from the

canton of Geneva, Switzerland, which includes the city of Geneva and the surroun-

ding area, home to approximately half a million people and a dynamic financial and

diplomatic center with millions of visitors annually.

1.3 Contributions

In achieving the objectives outlined in Section 1.2, this thesis makes the fundamental and

practical contributions described below.

The vehicle routing problem with intermediate facilities (Chapter 2):

• The integration of a heterogeneous fixed fleet into the VRP-IF, with multiple depots

and the possibility of open tours with different origin and destination depots.

• The development of a Mixed Integer Linear Program (MILP), which is enhanced with

several valid inequalities with significant impact on computation time.

• The development of a meta-heuristic approach with multiple neighborhood search,

which achieves optimality on small instances and exhibits competitive performance

in comparison to state-of-the-art solution methods for special cases of our problem.

It also confirms the benefit of open tours and the potential for important financial

savings in the current state of practice in the canton of Geneva.

The waste collection inventory routing problem with stochastic demands (Chapter 3):
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• The utilization of a purpose-designed demand forecasting model, tested and validated

on real data, which assumes iid demand error terms.

• The explicit modeling of undesirable events and their associated recourse actions by

incorporating dynamic probabilistic information in the objective function.

• The integration of a variety of rich routing features traditionally absent or rarely consi-

dered in the IRP literature, such as a heterogeneous fixed fleet, intermediate facilities,

time windows, maximum tour duration, accessibility restrictions, etc.

• The extensive computational testing of our ALNS algorithm, which demonstrates its

excellent performance on IRP and VRP benchmarks from the literature. We evaluate

the benefit of integrating uncertainty in the decision process, with our approach signi-

ficantly outperforming alternative deterministic policies in limiting the occurrence of

container overflows for the same routing cost. We also analyze the solution properties

of a rolling horizon approach for a dynamic and stochastic version of the problem and

derive empirical lower and upper bounds on its solution cost.

The unified framework for rich routing problems with stochastic demands (Chapter 4):

• The generalization of the forecasting model through the complete or partial relaxation

of the assumption on iid normal error terms.

• The generalization of the undesirable events and the proof of equivalence between

distribution and collection problems.

• The preservation of computational tractability in the face of the above generalizations

through the ability to pre-compute or at least partially pre-process the bulk of the

stochastic information for a general inventory policy. This comes at the expense of

several assumptions and simplifications whose effect on the solution cost is shown to

be marginal through a simulation-validation approach.

• The generality and practical relevance of the approach. We integrate the probabilistic

information into a Mixed Integer Non-Linear Program (MINLP), illustrate applicati-

ons to various problem classes from the literature and practice, such as health care,

waste collection, and maritime inventory routing, and demonstrate that problems like

facility maintenance can be seen through the lens of inventory routing. Extending the

ALNS, the computational experiments focus on the topic of complexity vs. tractabi-

lity. In addition, for realistic instances of the facility maintenance problem, we show

the framework’s ability to achieve the same level of occurrence of breakdowns for a

significantly lower routing cost compared to alternative deterministic policies.
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1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 models the deterministic single-day

waste collection problem–an extension of the VRP with intermediate facilities. The chapter

is based on the following article:

• Markov, I., Varone, S., and Bierlaire, M. (2016). Integrating a heterogeneous fixed

fleet and a flexible assignment of destination depots in the waste collection VRP with

intermediate facilities. Transportation Research Part B: Methodological, 84: 256–273.

Preliminary ideas and results are also discussed in:

• Markov, I., Varone, S., and Bierlaire, M. (2014). Vehicle routing for a complex waste col-

lection problem. Proceedings of the 14th Swiss Transport Research Conference (STRC),

May 14-16, 2014, Ascona, Switzerland.

• Markov, I., Varone, S., and Bierlaire, M. (2015). The waste collection VRP with in-

termediate facilities, a heterogeneous fixed fleet and a flexible assignment of origin

and destination depot. Technical report TRANSP-OR 150212, Transport and Mobility

Laboratory, EPFL, Lausanne, Switzerland.

Chapter 3 integrates demand stochasticity and extends the problem to an IRP over a finite

planning horizon. The chapter is an extension of the following technical report:

• Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2016). Inventory

routing with non-stationary stochastic demands. Technical report TRANSP-OR 160825,

Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland.

Preliminary ideas and results, in particular those related to demand forecasting, are also

discussed in:

• Markov, I., Lapparent, M. (de), Bierlaire, M., and Varone, S. (2015). Modeling a waste

disposal process via a discrete mixture of count data models. Proceedings of the 15th

Swiss Transport Research Conference (STRC), April 15-17, 2015, Ascona, Switzerland.

Chapter 4 generalizes the approach in a unified framework for rich routing problems with

stochastic demands. The chapter extends the ideas presented in:

• Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2017). A general

framework for routing problems with stochastic demands. Proceedings of the 17th

Swiss Transport Research Conference (STRC), May, 17-19, 2017.

Finally, Chapter 5 closes with a summary of the main findings and conclusions. It discusses

the practical implications of this work and identifies promising and pertinent areas of future

research.
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2 The Waste Collection VRP

This chapter is based on the article:

Markov, I., Varone, S., and Bierlaire, M. (2016). Integrating a heterogeneous fixed fleet

and a flexible assignment of destination depots in the waste collection VRP with inter-

mediate facilities, Transportation Research Part B: Methodological 84:256-273.

The work therein has been performed by the author in collaboration with Prof. Michel

Bierlaire and Prof. Sacha Varone.

This chapter models and solves the single-day waste collection VRP, an extension of the class

of VRPs with intermediate facilities. Given a daily time discretization and sensor information

at the beginning of the day, the problem is deterministic. This rich VRP variant includes a

heterogeneous fixed fleet of capacitated vehicles collecting recyclable waste from a set of

containers. There is also a set of recycling facilities, or dumps, where vehicles stop to empty

the collected waste when and as needed along the tour. There is no limit on the number

of dump visits and there is a mandatory dump visit before the end of the tour, i.e. a tour

terminates with an empty vehicle.

We have multiple depots and the possibility of open tours with different origin and destina-

tion depots. The realistic setting also includes time windows and a maximum tour duration.

Additionally, there is a mandatory break after a predefined number of hours of continuous

work. Accessibility restrictions limit the types of vehicles that can visit certain containers.

For example, big collector trucks may not be able to reach containers in narrow streets. The

objective function captures the principal cost components faced by a typical firm, i.e. deploy-

ment cost, travel distance and travel time related cost. It also includes a special cost term

capturing the potential relocation cost in the future due to open tours. Given the difficulty of

this problem, we develop an exact approach based on a mathematical formulation enhanced

with valid inequalities which can solve small to medium-size instances. To solve realistic

instances, we propose a meta-heuristic approach based on multiple neighborhood search.
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Chapter 2. The Waste Collection VRP

The chapter is organized as follows. Section 2.1 is a brief analysis of the related literature.

Sections 2.2 and 2.3 present the exact approach and the meta-heuristic approach, respecti-

vely. Section 2.4 discusses the results of the numerical experiments, and Section 2.5 ends

with a summary of the main findings and contributions.

2.1 Related Literature

Bard et al. (1998a) propose the first exact approach, based on branch-and-cut, for the VRP

with Intermediate Facilities (VRP-IF) in a distribution context. With it, they are able to solve

to optimality certain instances with up to 20 customer nodes. Bard et al. (1998b) extend

this setup to an IRP framework which they solve in a rolling horizon fashion. Angelelli

and Speranza (2002b) apply a modification of Cordeau et al.’s (1997) unified Tabu Search

(TS) algorithm to a Periodic VRP-IF (PVRP-IF) with features such as service durations and

a maximum tour duration. In Angelelli and Speranza (2002a), this framework is used to

analyze the operational cost benefits of different waste collection policies in Val Trompia,

Italy and Antwerp, Belgium.

Kim et al. (2006) include time windows and a driver break in the waste collection VRP-

IF, explicitly considering also features such as tour compactness and workload balancing.

Their solution approach, an extension of Solomon’s (1987) insertion algorithm followed by

simulated annealing, leads to a significant reduction in the number of tours and substantial

financial savings at a major US waste collection company (see Sahoo et al., 2005). Kim et al.

(2006) are also the first to propose a set of 10 benchmark instances for the VRP-IF, involving up

to 2092 stops and 19 intermediate disposal facilities. The multi-objective genetic algorithm

of Ombuki-Berman et al. (2007), the variable neighborhood tabu search of Benjamin (2011)

and the ALNS of Buhrkal et al. (2012) are also applied on these instances, leading to distance

improvements of 10-15% and using fewer vehicles. Buhrkal et al.’s (2012) approach also

leads to a distance improvement of 30-45% at a Danish waste collection company.

Crevier et al. (2007) propose the Multi-Depot VRP with Inter-depot routes (MDVRPI). Alt-

hough the setup is closely related, it was originally applied in a distribution context. The

MDVRPI is non-periodic, no time windows or driver breaks are considered and, in the gene-

ral case, depots and intermediate facilities coincide. Crevier et al. (2007) use the Adaptive

Memory (AM) principle of Rochat and Taillard (1995) and decompose the problem into

multi-depot, single-depot and inter-depot subproblems which are solved using Cordeau

et al.’s (1997) TS. A solution to the MDVRPI is obtained through a set covering formulation

and improved by a modified version of the TS.

Crevier et al. (2007) create two sets of MDVRPI instances with 48 to 288 customers and a fixed

homogeneous fleet stationed at one depot, with the rest of the depots acting only as inter-

mediate facilities. These instances are used by Tarantilis et al. (2008) and Hemmelmayr et al.

(2013) who propose, respectively, a hybrid guided local search and a Variable Neighborhood
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Search (VNS) with a dynamic programming procedure for the insertion of the intermediate

facilities in the tours. Both articles report improvements over the results of Crevier et al.

(2007) with computation times close to one hour for the largest instances. Muter et al. (2014)

develop a branch-and-price algorithm for the MDVRPI and solve several sets of instances

derived from those of Crevier et al. (2007) to optimality. Only Hemmelmayr et al. (2013)

apply their methodology to a PVRP-IF faced by a waste collection company and achieve a

25% reduction in the routing cost. Hemmelmayr et al. (2014) combine this problem with the

bin allocation problem and study the cost trade-off between less frequent visits and larger

bin sizes. They develop a matheuristic approach with a VNS for the routing problem and

a mathematical model for the bin allocation problem, and compare a hierarchical and an

integrated approach.

Another related problem class is the routing of electric or alternative fuel vehicles, where we

have recharging or refueling decisions in lieu of emptying decisions. Conrad and Figliozzi

(2011) consider the Recharging VRP (RVRP), where electric vehicles can recharge at customer

locations with time windows. Erdoğan and Miller-Hooks (2012) consider the Green VRP

(G-VRP), where vehicles use a sparse alternative fuel infrastructure. Results on medium-

size random instances show that spatial characteristics have a significant impact on the

optimality gap, which appears to be related to the number of facilities. Larger instances are

used to analyze the effects of increasing the number of customers, facility availability and

driving range limits.

Schneider et al. (2014) solve the Electric VRP with Time Windows and recharging stations

(E-VRPTW). The problem features variable recharging times based on remaining battery

charge and a hierarchical objective function minimizing number of vehicles first and travel

distance second. The proposed hybrid VNS/TS improves the results of Erdoğan and Miller-

Hooks (2012) by 8-15% and obtains competitive results on the MDVRPI sets of Crevier

et al. (2007) and Tarantilis et al. (2008). Schneider et al. (2015) combine recharging and

reloading facilities in the VRP with Intermediate Stops (VRPIS). Contrary to the E-VRPTW,

here the objective function is weighted rather than hierarchical. The authors propose an

ALNS, which is able to match or improve the results of Schneider et al. (2014) on the G-VRP

instances at a fraction of the computation time. Convincing results are also obtained for the

MDVRPI instances of Crevier et al. (2007) and Tarantilis et al. (2008). Adler and Mirchandani

(2017) propose a branch-and-price algorithm and a heuristic for a multi-depot scheduling

problem for alternative fuel vehicles. Recent surveys of the relevant literature are available

in Moghaddam (2015) and Pelletier et al. (2016).

Regarding the vehicle fleets, Kim et al. (2006) and the related papers on the VRP-IF assume an

unlimited homogeneous fleet. The PVRP-IF of Angelelli and Speranza (2002b), the MDVRPI,

RVRP, G-VRP, E-VRPTW and VRPIS also assume a homogeneous fleet, albeit limited. More

recently, Sassi et al. (2014), Goeke and Schneider (2015), Mancini (2016), and Hiermann et al.

(2016) have started filling the gap by considering conventional and alternative fuel vehicles

simultaneously. Yavuz and Çapar (2017) study the adoption of alternative fuel vehicles

13



Chapter 2. The Waste Collection VRP

into gasoline and diesel fuel fleets, considering various objective functions, and discuss

performance and managerial implications. Taillard (1999) was the first to formally define

the Heterogeneous Fixed Fleet VRP (HFFVRP). Being a generalization of the Vehicle Fleet

Mix Problem (VFMP), the HFFVRP is NP-hard and more difficult than the classical VRP or

the VFMP. Taillard’s (1999) solution approach relies on heuristic column generation with AM,

and vehicle assignment costs are calculated at each iteration. He adapts the eight largest

VFMP instances of Golden et al. (1984) to the HFFVRP by specifying the number of vehicles

of each type and their variable costs. The best heuristic approaches on these benchmarks are

due to Penna et al. (2013) and Subramanian et al. (2012), the latter also being the fastest. The

only fully exact method is that of Baldacci and Mingozzi (2009). They prove the optimality of

seven of the best known solutions to the instances with variable costs only, and six in the

case where both fixed and variable costs are considered.

The originality of our problem is thus reinforced by the general lack of literature treating

the heterogeneous fixed fleet VRP-IF despite its wide practical application. The combined

presence of a heterogeneous fixed fleet and intermediate facilities results in a more complex

problem where the cost attractiveness of smaller vehicles is counterbalanced by the need

for more frequent dump visits, and vice versa. The possibility of open tours, in particular

such with different origin and destination depots in a multi-depot setting, is a characteristic

that appears less frequently in practice and as a consequence in the literature. Yet, it can

lead to important financial savings. Some of the waste collectors in our case study regions

need this flexibility but are unable to assess its benefits. This chapter will therefore highlight

and quantify the value of such strategies.

2.2 Exact Approach

The formulation we propose introduces several extensions to the model of Sahoo et al. (2005),

including multiple origins and destinations, multiple capacities, accessibility restrictions, a

maximum tour duration, a richer objective function capturing the costs faced by a real firm,

and the elimination of the constraints calculating the necessary number of disposal trips

for each vehicle. Unlike in the case of Buhrkal et al. (2012), the driver break is contingent

on the start of the tour and not restricted to a time window. In what follows, Section 2.2.1

presents the MILP formulation, while Section 2.2.2 develops several problem-specific valid

inequalities shown to have a significant impact on computation time.

2.2.1 Formulation

Formally, we define the problem on a directed graphG(N ,A), withN =O′∪O′′∪P∪D, where

O′ is the set of origin depots, O′′ is the set of destination depots, P is the set of containers, D
is the set of dumps, and A= {(i , j ) | ∀i , j ∈N } is the set of arcs. For modeling purposes, it is

assumed that the set D contains a sufficient number of replications of each dump to allow
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multiple visits by the same vehicle. In the computational experiments of Section 2.4.1, we

discuss ways of limiting the necessary number of such replications to prevent an explosion

of variables.

The set of arcs A is associated with an asymmetric distance matrix, with πi j the length of

arc (i , j ). Each vehicle may have a different average speed, which results in a vehicle-specific

travel time matrix, where τi j k is the travel time of vehicle k on arc (i , j ). Each point has a

single time window [λi ,μi ], where λi and μi stand for the earliest and latest possible start-

of-service time. Start of service after μi is not allowed and if the vehicle arrives before λi , it

has to wait. Service duration for each point is denoted by δi , and the pickup volume and

weight by ρv
i and ρw

i , respectively. The service duration for containers is mostly influenced

by the type of container, e.g. underground or overground, and at dumps by factors such as

weighing and billing, hence it is not indexed by vehicle. Service duration at the depots is

zero.

There is a heterogeneous fixed fleet K, with each vehicle defined by its capacity in terms

of maximum volume Ωv
k and weight Ωw

k , a deployment cost ϕk , a unit-distance running

cost βk , and a unit-time running cost θk . The vehicle-specific sets O′
k ⊆O′ and O′′

k ⊆O′′
designate the available origins and destinations for vehicle k . The set O′

k degenerates to

one point, the current depot, or coincides with O′ in case we need to optimize the vehicle’s

home depot. Similarly, O′′
k either contains only the depot to which the vehicle is required

to return at the end of the day, or many depots to allow for an open tour. Here, we need to

stress the difference between a vehicle’s home depot and origin depot. The home depot is

where the vehicle belongs, while the origin depot is where the vehicle starts a tour, which

may be different from the home depot. There is a maximum tour duration H, and a break of

duration υmust be taken after Υ hours of continuous work, which divides the working day

into two roughly equal halves. Accessibility restrictions are described by a binary flag αi j k

whose value is 1 if arc (i , j ) is accessible for vehicle k , and 0 otherwise.

We introduce the following binary decision variables: xi j k = 1 if vehicle k traverses arc (i , j ),
0 otherwise; ri j k = 1 if i and j are, respectively, the origin and destination depot of vehicle k ,

0 otherwise; bi j k = 1 if vehicle k takes a break on arc (i , j ), 0 otherwise; zk = 1 if vehicle k is

used, 0 otherwise. Three groups of continuous variables, Q v
i k , Q w

i k and Si k , are defined to

track the cumulative volume and weight, and the start-of-service time at point i for vehicle

k . Table 2.1 is a summary of the used notations.

The objective function (2.1) minimizes two terms. The first one is the sum of deployment,

unit-distance and unit-time running costs for all used vehicles. The second one captures

the cost of relocation for open tours. Clearly, open tours lead to reduced cost compared to

closed tours since they provide more flexibility. However, the single-day problem ignores

the fact that the vehicles will need to return to their home depots at some point in the future.

Thus, the goal of the relocation term is to integrate this cost effect, which is multiplied by

the weight factorψ reflecting our degree of conservatism. In effect, the relocation cost term
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Table 2.1: Notations

Sets

O′ set of origins O′′ set of destinations
O′

k set of origins for vehicle k O′′
k set of destinations for vehicle k

P set of containers D set of dumps
N =O′ ∪O′′ ∪P ∪D K set of vehicles

Parameters

ϕk deployment cost of vehicle k (monetary)
βk unit-distance running cost of vehicle k (monetary)
θk unit-time running cost of vehicle k (monetary)
Ωv

k ,Ωw
k volume and weight capacity of vehicle k

πi j length of arc (i , j )
τi j k travel time of vehicle k on arc (i , j )
λi ,μi lower and upper time window bound at point i
αi j k 1 if arc (i , j ) is accessible for vehicle k , 0 otherwise
δi service duration at point i
ρv

i ,ρw
i pickup volume and weight at point i

H maximum tour duration
Υ maximum continuous work limit after which a break is due
υ break duration
ψ weight of relocation cost term ∈ [0, 1]

Decision Variables

xi j k 1 if vehicle k traverses arc (i , j ), 0 otherwise (binary)
ri j k 1 if i and j are the origin and destination depot of vehicle k , 0 otherwise (binary)
bi j k 1 if vehicle k takes a break on arc (i , j ), 0 otherwise (binary)
zk 1 if vehicle k is used, 0 otherwise (binary)
Q v

i k cumulative volume on vehicle k at point i (continuous)
Q w

i k cumulative weight on vehicle k at point i (continuous)
Si k start-of-service time of vehicle k at point i (continuous)

incentivizes, rather than enforcing, vehicles to return to their home depots. The motivation

behind this comes from our case study, in which there are collectors in wide and sparsely

populated rural regions who practice open tours.

min z =
∑
k∈K

⎛
⎝ϕk zk +βk

∑
i∈N

∑
j∈N
πi j xi j k +θk

⎛
⎝∑

j∈O′′
k

Sj k −
∑

i∈O′
k

Si k

⎞
⎠
⎞
⎠

+ψ
∑
k∈K

∑
i∈O′

k

∑
j∈O′′

k

�
βkπ j i +θkτ j i k

�
ri j k

(2.1)

The constraints can be split into several categories with the first category consisting of basic

vehicle routing constraints. Constraints (2.2) impose that each container should be served by

exactly one vehicle. Constraints (2.3) and (2.4) ensure that if a vehicle is used, its tour starts

at an available origin and ends at an available destination with a visit to a dump immediately

before that. Constraints (2.5) forbid entering origins and unavailable destinations and

constraints (2.6) forbid leaving destinations and unavailable origins. Accessibility restrictions

are enforced by constraints (2.7), while flow conservation is represented by constraints (2.8).
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The link between the variables xi j k and ri j k is achieved through constraints (2.9).∑
k∈K

∑
j∈P∪D

xi j k = 1, ∀i ∈P (2.2)

∑
i∈O′

k

∑
j∈N

xi j k = zk , ∀k ∈K (2.3)

∑
i∈D

∑
j∈O′′

k

xi j k = zk , ∀k ∈K (2.4)

∑
i∈N

xi j k = 0, ∀k ∈K, j ∈O′ ∪ (O′′ \O′′
k ) (2.5)∑

j∈N
xi j k = 0, ∀k ∈K, i ∈O′′ ∪ (O′ \O′

k ) (2.6)

xi j k �αi j k , ∀k ∈K, i ∈O′
k ∪P ∪D, j ∈P ∪D∪O′′

k (2.7)∑
i∈N : i �= j

xi j k =
∑

i∈N : i �= j

x j i k , ∀k ∈K, j ∈P ∪D (2.8)

∑
m∈N

xi mk +
∑

m∈D
xm j k −1� ri j k , ∀k ∈K, i ∈O′

k , j ∈O′′
k (2.9)

In the context of vehicle capacities, constraints (2.10) and (2.11) limit, respectively, the

cumulative volume and weight on the vehicle at each point, while constraints (2.12) and (2.13)

reset them to zero at the dumps, origins and destinations. Keeping track of the cumulative

volume and weight on the vehicle is achieved by constraints (2.14) and (2.15).

ρv
i �Q v

i k �Ω
v
k , ∀k ∈K, i ∈P (2.10)

ρw
i �Q w

i k �Ω
w
k , ∀k ∈K, i ∈P (2.11)

Q v
i k = 0, ∀k ∈K, i ∈N \P (2.12)

Q w
i k = 0, ∀k ∈K, i ∈N \P (2.13)

Q v
i k +ρ

v
j �Q v

j k +Ω
v
k

�
1− xi j k

�
, ∀k ∈K, i ∈O′

k ∪P ∪D, j ∈P (2.14)

Q w
i k +ρ

w
j �Q w

j k +Ω
w
k

�
1− xi j k

�
, ∀k ∈K, i ∈O′

k ∪P ∪D, j ∈P (2.15)

The next four constraints express the temporal characteristics of the problem. Constraints

(2.16) calculate the start-of-service time at each point, including service duration and a

possible break duration. In addition, these constraints eliminate the possibility of subtours

and ensure that a point will not be visited more than once by the same vehicle. The value

of M1 can be set to μi +δi +υ+τi j k . Constraints (2.17), (2.18) and (2.19) enforce the time

windows and maximum tour duration. We assume that the lower time window bound is

restrictive at the origins and the upper one at the destinations.

Si k +δi +υbi j k +τi j k � Sj k +M1

�
1− xi j k

�
, ∀k ∈K, i ∈O′

k ∪P ∪D, j ∈P ∪D∪O′′
k (2.16)

λi

∑
j∈N

xi j k � Si k , ∀k ∈K, i ∈O′
k ∪P ∪D (2.17)

17



Chapter 2. The Waste Collection VRP

Sj k �μ j

∑
i∈N

xi j k , ∀k ∈K, j ∈P ∪D∪O′′
k (2.18)

0�
∑

j∈O′′
k

Sj k −
∑

i∈O′
k

Si k �H, ∀k ∈K (2.19)

The next block of constraints determines the arc on which a break is due. Breaks are modeled

on the arcs as in much of the vehicle routing literature and can in practice be taken on the

arcs’ tails. Constraints (2.20) and (2.21) limit the arcs on which the break can be taken so that

it is taken as late as possible. The value of M2 can be fixed as max(μi −minm∈O′
k
λm+δi −Υ , 0)

and that of M3 as Υ +maxm∈O′
k
μm . Constraints (2.22) impose that the vehicle can only take

a break on the arcs it traverses. Finally, constraints (2.23) ensure that the break is actually

taken if the vehicle tour is longer than the maximum continuous work limit Υ , after which a

break is due.⎛
⎝Si k −
∑

m∈O′
k

Smk

⎞
⎠+δi −Υ �M2

�
1− bi j k

�
,

∀k ∈K, i ∈O′
k ∪P ∪D, j ∈P ∪D∪O′′

k (2.20)

Υ −
⎛
⎝Sj k −
∑

m∈O′
k

Smk

⎞
⎠�M3

�
1− bi j k

�
, ∀k ∈K, i ∈O′

k ∪P ∪D, j ∈P ∪D∪O′′
k (2.21)

bi j k � xi j k , ∀k ∈K, i , j ∈N (2.22)⎛
⎝∑

j∈O′′
k

Sj k −
∑

i∈O′
k

Si k

⎞
⎠−Υ � (H−Υ )∑

i∈N

∑
j∈N

bi j k ,

∀k ∈K (2.23)

Finally, constraints (2.24) to (2.26) establish the variable domains.

xi j k , bi j k , zk ∈ {0, 1}, ∀k ∈K, i , j ∈N (2.24)

ri j k ∈ {0, 1}, ∀k ∈K, i ∈O′, j ∈O′′ (2.25)

Q v
i k ,Q w

i k ,Si k � 0, ∀k ∈K, i ∈N (2.26)

2.2.2 Variable Fixing and Valid Inequalities

We can exploit the special structure of our problem by fixing some of the binary variables and

defining several valid inequalities that restrict the search space of some of the binary and

continuous variables without eliminating any feasible solutions. We first set to zero binary

variables linked to impossible traversals. Constraints (2.27) eliminate the possibility of loops.

In a similar fashion, constraints (2.28), (2.29) and (2.30) forbid traveling from an origin to a

dump or destination, from a container to a destination, and from a dump to another dump,
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respectively.

xi i k = 0, ∀k ∈K, i ∈N (2.27)

xi j k = 0, ∀k ∈K, i ∈O′
k , j ∈D∪O′′

k (2.28)

xi j k = 0, ∀k ∈K, i ∈P , j ∈O′′
k (2.29)

xi j k = 0, ∀k ∈K, i ∈D, j ∈D : i �= j (2.30)

The presence of time windows allows us to fix time-window infeasible traversals. Constraints

(2.31) express the fact that if by visiting point i as early as possible vehicle k cannot visit

point j within its time window, then points i and j cannot be visited by the same vehicle

k , i.e. arc (i , j ) is not traversed by vehicle k . These first two sets of rules can also be used

to eliminate all the big M constraints (2.14, 2.15, 2.16, 2.20, 2.21) for such variables as they

become trivial.

xi j k = 0, ∀k ∈K, i ∈O′
k ∪P ∪D, j ∈P ∪D∪O′′

k : λi +δi +τi j k >μ j (2.31)

The first set of valid inequalities is used to restrict the start-of-service time search space.

Inequalities (2.32) impose a lower bound, short of waiting times, on the difference between

the start-of-service time at the origin and destination for each used vehicle. Then inequalities

(2.33) and (2.34) calculate the latest possible start and earliest possible finish of each tour. In

constraints (2.33) Pα ⊆P , s.t. αi mk = 1, and in constraints (2.33) Dα ⊆D, s.t. αm j k = 1.∑
j∈O′′

k

Sj k −
∑

i∈O′
k

Si k �
∑
i∈N

∑
j∈N

xi j k (δi +τi j k ), ∀k ∈K (2.32)

Si k � max
m∈Pα
�
μm −τi mk

�
zk , ∀k ∈K, i ∈O′

k (2.33)

Sj k � min
m∈Dα
�
λm +δm +τm j k

� ∑
m∈Dα

xm j k , ∀k ∈K, j ∈O′′
k (2.34)

If the problem involves subsets of identical vehicles, the presence of symmetry can sub-

stantially reduce the effectiveness of the model. Let K′ ⊆K represent a subset of identical

vehicles and let k ′g ∈K′, where g ∈ 1, . . . , |K′| introduces a simple ordering of the elements of

K′. Then for each subset K′ we apply constraints (2.35) or (2.36). These symmetry-breaking

constraints specify that the first vehicle inK′ executes the tour with the highest waste volume

(weight), the second vehicle executes the tour with the second highest waste volume (weight),

etc. ∑
i∈P

∑
j∈P∪D

ρv
i xi j k ′g �
∑
i∈P

∑
j∈P∪D

ρv
i xi j k ′g+1

, ∀g ∈ 1, . . . ,
�|K′| −1
�

(2.35)

∑
i∈P

∑
j∈P∪D

ρw
i xi j k ′g �
∑
i∈P

∑
j∈P∪D

ρw
i xi j k ′g+1

, ∀g ∈ 1, . . . ,
�|K′| −1
�

(2.36)

Symmetries will also result from the fact that dumps are replicated to allow multiple visits of

the same dump by a particular vehicle. Here, we define D′ ⊆D as a subset of replications of
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the same physical dump and let j ′g ∈D′, where g ∈ 1, . . . , |D′| introduces a simple ordering

of the elements of D′. Then, for each subset D′ we apply the lexicographical ordering

constraints (2.37), which stipulate that a dump with a higher index should be preceded by a

container with a higher index.∑
i∈P

i xi j ′g k �
∑
i∈P

i xi j ′g+1k , ∀k ∈K, g ∈ 1, . . . ,
�|D′| −1
�

(2.37)

The last set of valid inequalities concerns the dump visits. With (2.38) we impose that a

dump replication may be visited at most once by a vehicle. With (2.39), on the other hand,

we set for every vehicle the maximum number of trips from dumps to containers. It takes

into account the fact that the first trip to a container is from the origin depot and the last

trip from a dump is to the destination depot.∑
i∈P

xi j k � 1, ∀k ∈K, j ∈D (2.38)∑
i∈D

∑
j∈P

xi j k �min (|D| −1, |P | −1) , ∀k ∈K (2.39)

With the addition of the valid inequalities, a state-of-the-art MIP solver like Gurobi can

handle instances with 10-15 containers, a depot, two to eight dumps before replication, and

six vehicles, with the only critical resource being computation time. Computation times are

influenced both by the instance sizes and by their spatial and temporal characteristics. We

return to this question in Section 2.4.1.

2.3 Meta-heuristic Approach

The vehicle routing problem is well known to be NP-hard (see e.g. Garey and Johnson,

1979). Being a generalization thereof, our waste collection problem is even harder to solve.

Moreover, realistic instances involving 50 or more containers and several depots, dumps and

vehicles will translate into thousands of binary variables and tens of thousands of constraints.

Therefore, we develop a meta-heuristic approach based on Multiple Neighborhood Search

(MNS), which is capable of systematically treating all problem features. Section 2.3.1 below

defines solution feasibility. This is followed by the description of the initial construction

procedure in Section 2.3.2 and the iterative MNS algorithm in Section 2.3.3.

2.3.1 Feasibility

A solution to our problem is a set of tours in which breaks have been inserted. It is considered

feasible if all tours that comprise it satisfy four criteria. First, start-of-service times should

respect time windows. Secondly, tour duration should be shorter than or equal to the

maximum tour duration. These two criteria may be thought of as expressing temporal

feasibility. Thirdly, the volume and weight capacities of the vehicles may not be violated at
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any point. This can be ensured by inserting appropriate visits to the available dumps. We

attach to this last criterion the condition that a tour should start and finish at an available

depot and visit a dump before the end. Finally, accessibility restrictions should be respected.

Every insertion or removal of a point from a tour, and every application of a neighborhood

operator requires the recalculation of start-of-service and waiting times for all or part of the

points in the tour. As shown in Algorithm 2.1, we consider a tour served by vehicle k ∈K,

for brevity tour k , represented as an ordered sequence of points 1,2, . . . , n − 1, n indexed

by i . The calculation begins by setting the start-of-service time at the origin, S1k , as early

Algorithm 2.1: Temporal Feasibility Algorithm

Input tour k as a sequence of points 1, 2, . . . , n −1, n
Output start-of-service times, waiting times and temporal feasibility of tour k

1: S1k ←λ1

2: for i = 2, 3, . . . , n −1, n in tour k do
3: Si k ← S(i−1)k +δi−1+τ(i−1)i k

4: if S(i−1)k < S1k +Υ and Si k +δi > S1k +Υ then
5: Si k ← Si k +υ
6: end if
7: if Si k <λi then
8: wi k ←λi −Si k

9: Si k ←λi

10: else
11: wi k ← 0
12: end if
13: end for
14: if Si k �μi ,∀i then
15: for i = n , n −1, . . . , 3, 2 in tour k do
16: if wi k > 0 then
17: S ′(i−1)k ← S(i−1)k
18: S(i−1)k ←min (S(i−1)k +wi k ,μi−1)
19: w(i−1)k ←w(i−1)k + (S(i−1)k −S ′(i−1)k )
20: wi k ←wi k − (S(i−1)k −S ′(i−1)k )
21: end if
22: end for
23: w1k ← 0
24: if Snk −S1k �H then
25: tour k is temporally feasible
26: else
27: tour k is duration infeasible
28: end if
29: else
30: tour k is time-window infeasible
31: end if
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as possible. For each subsequent point i , Si k is tentatively calculated as the sum of the

start-of-service time at point i − 1, the service duration at point i − 1, and the travel time

from i −1 to i , i.e. Si k = S(i−1)k +δi−1+τ(i−1)i k . If the maximum continuous working time

limit Υ expires between the start-of-service time at i − 1 and the end-of-service time at i ,

in other words if S(i−1)k < S1k + Υ and Si k + δi > S1k + Υ , we need to insert the required

break before serving point i , which is achieved by incrementing Si k by the break duration υ.

Finally, if Si k violates the lower time window bound λi , i.e. if Si k <λi , we introduce waiting

time wi k at point i , equal to the difference λi −Si k , and update Si k to λi . Once all Si k have

been determined, we check if upper time window bounds μi are respected for all i . If this is

the case, we apply forward time slack reduction on the tour, otherwise we declare the tour

time-window infeasible.

Forward time slack, as described by Savelsbergh (1992), keeps track of the maximum amount

each start-of-service time can be delayed without violating time windows on the tour. We

examine points sequentially in reverse order. If there is waiting at point i , there could be a

non-zero slack at point i−1, because pushing S(i−1)k forward may eliminate or reduce waiting

at i . We can push S(i−1)k forward by the amount of waiting at i , or until we reach the upper

time window bound at i−1. The last operation is expressed as S(i−1)k =min (S(i−1)k+wi k ,μi−1),
and it entails an update of w(i−1)k and wi k to factor in the potential increase of waiting at

i −1 and decrease of waiting at i . Let S ′(i−1)k denote the original start-of-service time at point

i −1 before slack reduction. Then, waiting at i −1 will be increased by the difference between

S(i−1)k and S ′(i−1)k , and waiting at i will be reduced by the same difference. Finally, we need

to artificially put w1k = 0. Forward time slack reduction preserves time-window feasibility.

Therefore, after the procedure it only remains to check if the tour’s duration is feasible. If

it is the case, we accept the tour as temporally feasible, otherwise we declare it duration

infeasible.

Verifying capacity feasibility is much more straightforward. At each point of the tour, we

calculate the cumulative volume and weight loads, Q v
i k and Q w

i k , on the vehicle, resetting

both to zero if the point is a dump. If, for any point i , Q v
i k >Ω

v
k or Q w

i k >Ω
w
k or a dump is not

visited immediately before the destination, we declare the tour capacity infeasible. The logic

behind accessibility feasibility is trivial. Implementation-wise, we construct vehicle tours

only using accessible points. Inaccessibilities may occur with the application of inter-tour

operators and a simple count of the number of inaccessible points is updated with the

application of an operator. The latter is much more efficient than inspecting the points when

accessibility feasibility needs to be verified.

2.3.2 Initial Solution Construction

Tour construction is performed sequentially. Initially, all containers belong to the pool of

unassigned containers P , and all vehicles to the pool of unassigned vehicles K. A seed

tour is created by assigning the cheapest feasible sequence of origin, container, dump and
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destination to the cheapest available vehicle. This assumes that accessible containers remain

for the current vehicle; otherwise unassigned containers are swapped with containers already

in other tours until an accessible container is found that can be feasibly inserted in the current

tour. All assigned vehicles and containers are removed from their respective unassigned

pools. Once a seed tour k has been created, it is expanded using a feasibility preserving best

insertion heuristic. At each iteration, we insert container i ∈P at the position j in the tour

that would yield the smallest cost increase. The point at position j , as well as all subsequent

points, are shifted to the right.

If no more feasible container insertions are possible and if infeasibility would result from

capacity violation, we insert a dump using the same feasibility preserving best insertion

logic, otherwise we terminate the tour. In the former case, we insert dump i ∈ D at the

position j in the tour that leads to the smallest cost increase. In addition, we require that

the dump not be inserted as an immediate predecessor or successor of another dump on

the tour or just after the origin depot. If there are no feasible dump insertions, the tour is

terminated. Finally, to avoid a meaningless increase in the objective function, we require

that after a dump insertion there should be at least one feasible container insertion. If this

condition does not hold, the last inserted dump is removed and the tour is terminated.

Tour construction stops when the pool of unassigned containers is empty, or the pool of

unassigned vehicles is empty, or infeasibilities prohibit further insertions. When each tour

is constructed, it is individually improved using the single-tour operators described in

Section 2.3.3 below. There is no guarantee that the construction procedure will be able

to insert all containers. Therefore, additional insertions are periodically attempted in the

MNS, as described in Section 2.3.3. Thus, if the underlying problem is feasible, as are all the

benchmarks we use, and the construction procedure has not inserted all containers, they

should be able to be inserted by the MNS. If, however, the underlying problem is infeasible,

as in a realistic application where an insufficient fleet is provided for a large number of

containers, the MNS will still produce a solution respecting all constraints for the inserted

points, even if some containers remain unserved.

2.3.3 Multiple Neighborhood Search

In order to keep the improvement phase as general as possible, we consider three neighbor-

hoods–swap, reinsert, and 2-opt, with each neighborhood using classical single- and inter-

tour operators of the respective type. Figure 2.1 depicts the six operators with possible

improvements from the application of each of them. The interrupted gray arcs form parts of

the tours before the application of the operators. The resulting improved tours are given in

solid black arcs. The application of an operator, whether single- or inter-tour, may lead to a

feasible or an infeasible neighbor. If the neighbor solution is infeasible, its objective function

(2.1) is multiplied by a factor infFactor larger than one. If the next neighbor is feasible, this

factor is reduced by infStepDown, and if infeasible, it is increased by infStepUp. The factor
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Figure 2.1: Multiple Neighborhood Search Operators

(a) Single-tour swap (b) Single-tour reinsert (c) Single-tour 2-opt
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Note. This figure depicts improvements that can result from the application of each operator, with the interrupted
gray arcs replaced by the solid black arcs.

infFactor will never drop below one.

To define the operators more precisely, the single-tour swap disconnects i −1 from i , i from

i +1, j −1 from j , and j from j +1, and reconnects i −1 to j , j to i +1, j −1 to i , and i to j +1.

Its inter-tour version works in exactly the same way with the only difference being that i and

j belong to different tours. The single-tour reinsert disconnects i −1 from i , and i from i +1,

reconnecting i −1 directly to i +1. Then it disconnects j −1 from j and reconnects j −1 to i ,

and i to j . The logic of the inter-tour reinsert is the same, with i and j belonging to different

tours. In essence, the last two operators remove a point i from its original position and insert

it in the position of another point j , from the same or a different tour, pushing j to the right.

Finally, the single-tour 2-opt disconnects i −1 from i , and j from j +1, and reconnects i −1

to j , and i to j +1, thus reversing the orientation of the section i , i +1, . . . , j −1, j , inclusive of

i and j . The inter-tour 2-opt disconnects i −1 from i , and j −1 from j , where i and j belong

to different tours, and reconnects i −1 to j , and j −1 to i , which results in the exchange of

the end portions of the two affected tours, inclusive of i and j .

As described in Algorithm 2.2, the succession of neighborhoods (swap, reinsert, 2-opt in that

order) is applied until either maxIter iterations or maxNonImpIter non-improving iterations

has been reached. Each individual neighborhood is applied for maxNbIter iterations or

maxNbNonImpIter non-improving iterations from the last visited local minimum, and at

each neighborhood change we start again from the best feasible solution found so far and

reset infFactor. For each neighbor, a random sample of single- and inter-tour moves of

the current neighborhood is evaluated and the cheapest one, feasible or infeasible, in the

24



2.3. Meta-heuristic Approach

last case evaluated after multiplication by infFactor, is accepted as the new incumbent. To

prevent cycling and encourage diversification towards less explored areas of the search space,

a solution with the same objective value is not admitted more than once for a given number

of iterations, denoted by cycleFreq. These non-admissible solutions are held in a ban list.

When a new incumbent is generated, the ban list is updated to include its cost and exclude

the cost older than cycleFreq.

In each neighborhood, at each recoverFreq iterations, and if the available fleet is heteroge-

neous (i.e. at least one vehicle is different from the rest), we evaluate and perform vehicle

Algorithm 2.2: Multiple Neighborhood Search

Define: K is the set of all available vehicles
Input set of constructed tours K′ ⊆K
Output set of improved tours K′′ ⊆K

1: initialize infFactor
2: initialize ban list
3: initialize start neighborhood
4: currentIncumbent ← solution from tour construction
5: for maxIter do
6: for each neighborhood do
7: for maxNbIter do
8: N ← random neighbor sample of currentIncumbent
9: currentIncumbent ←min(n ){cost(n ) | ∀n ∈N : cost(n ) /∈ ban list}

10: update infFactor
11: update ban list
12: if reached recoverFreq then
13: vehicle reasg eval procedure with cap recovery and depot reasg.
14: improve tours individually
15: update ban list
16: end if
17: if reached maxNbNonImpIter then
18: change neighborhood
19: reset currentIncumbent to best feasible solution found so far
20: reset infFactor
21: break
22: end if
23: end for
24: change neighborhood
25: reset currentIncumbent to best feasible solution found so far
26: reset infFactor
27: end for
28: if reached maxNonImpIter then
29: break
30: end if
31: end for
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reassignments to tours. The vehicle reassignment evaluation procedure unassigns all assig-

ned vehicles and starts inspecting the tours in a descending order of total load. For each

consecutively examined tour, the best vehicle is assigned so that the assignment is feasible.

The assignment feasibility is verified after applying the capacity recovery procedure descri-

bed next. If no feasible assignment is possible, the available vehicle with the largest capacity

is assigned to the tour. After the assignment, the capacity recovery procedure is rerun and

the tour is individually improved. Alternatively, if the available fleet is homogeneous, we

proceed directly to the capacity recovery procedure, followed by individual improvement of

all tours.

The logic of the vehicle reassignment evaluation procedure is somewhat different compared

to what would befit Taillard’s (1999) HFFVRP formulation. Here the procedure tries to

balance between two conflicting goals. Assuming a fleet with correlated characteristics,

assigning cheaper vehicles to tours is counterbalanced by the necessity for more frequent

visits to the dumps, because cheaper vehicles have smaller capacities. This is compounded

by the fact that, in a realistic scenario, dumps (intermediate facilities) are located outside

the collection area (for example in suburbs or industrial zones) instead of centrally as in the

benchmark instances we see. Therefore, the logic of this procedure is different, as is its direct

applicability to a pure HFFVRP formulation where reassignments have to be examined with

every move. In our case, capacity infeasibility resulting after a move may be recovered by

adding more dump visits or simply reordering them. Moreover, if a tour is attracting points

from other tours, reassigning vehicles too often may have an adverse effect.

The purpose of the capacity recovery procedure is the restoration of capacity feasibility

through the reordering of dump visits. Such an action would be necessary, for example,

when a new vehicle with a smaller capacity is assigned to a tour. In a broader sense, it also

serves to test dump visits that are not present in the current solution or exclude dump visits

that have become redundant. The procedure starts by removing all dump visits from the tour.

Then it determines the minimum number of necessary visits by inspecting consecutively the

points in the tour and inserting a dump visit at the best position before capacity is exceeded.

Thus, it removes unnecessary dump visits from short tours and inserts additional dump

visits or reorders the dump visits in tours that may have been rendered capacity infeasible

by the neighborhood operators or the assignment of a new vehicle.

This is followed by the reassignment evaluation of destination depots. Given the generally

small number of available destination depots, all possibilities are evaluated. The subsequent

individual improvement may be able to recover infeasibilities related to maximum tour

duration or time window violations. Moreover, if unassigned containers remain and can be

feasibly inserted, new insertions are attempted during individual tour improvement before

switching back from 2-opt to swap. There is a penalty associated with unassigned containers,

which encourages assignment with a near-guarantee of cost improvement. In the end, the

logic of this meta-heuristic approach is such that it remains fairly general rather than being

tailored to narrowly specified problem instances.
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2.4 Numerical Experiments

The MNS algorithm is coded as a single-thread application in Java and the mathematical

model is solved using the Gurobi 6.0.0 MIP solver via its Java API. The MNS uses the parameter

values presented in Table 2.2, which are selected after extensive trial and adjustment on

the instance sets. In the experiments below, each instance is solved 10 times and Gurobi is

warm-started with the best solution out of the 10 runs. All tests are performed on a 3.20 GHz

Intel Core i5 desktop computer with 8 GB of memory running a 64-bit Windows 7.

Table 2.2: Algorithmic Parameters

Parameter Value Parameter Value

maxNbIter 30 infStepUp 0.05
maxNbNonImpIter 7 infStepDown 0.02
maxIter 100 (10a) cycleFreq ∞
maxNonImpIter 15 (3a) recoverFreq 5
infFactor 1.10 sample size 10b

a Note. Value for individual tour improvement.
b Note. At a given iteration, the chosen operator is evaluated on each point i for a random sample of 10 j points,
see Figure 2.1.

In the following, Section 2.4.1 compares the MNS to Gurobi on modifications of the small

Schneider et al. (2014) E-VRPTW instances, while Section 2.4.2 tests the MNS on the Best

Known Solutions (BKS) to Crevier et al.’s (2007) MDVRPI instance sets. On the same sets, we

also evaluate the benefit of open tours with different origin and destination depots. The BKS

to Crevier et al.’s (2007) MDVRPI instances are due to Hemmelmayr et al. (2013) who use a

2.4 GHz machine with 4 GB of memory, but the processor type is not specified. Moreover, the

two algorithms run on different platforms and thus scaling of computation times will almost

certainly be biased. Therefore, we report the original computation times with the remark

that all results are produced on contemporary processor architectures. Finally, Section 2.4.3

presents a case study of a recyclable waste collector in the canton of Geneva, Switzerland,

for which we report significant improvements to the state of practice

2.4.1 Evaluation on Small Instances

For the experiments here, we modified the small Schneider et al. (2014) E-VRPTW instances

by adding features that appear in our problem, while ignoring those that are irrelevant. These

are 36 instances split into three sets of 12 instances, with five, 10 and 15 customers, respecti-

vely. They are derived from the Solomon (1987) instances for the VRP with time windows

and thus each set contains instances derived from the R (random customer distribution), C

(clustered customer distribution) and RC (mixture of both) classes. Furthermore, subsets

R1, C1 and RC1 have a short scheduling horizon, while subsets R2, C2 and RC2 have a long
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scheduling horizon, which has an impact on the number of vehicles required to serve all

customers. Schneider et al. (2014) add one recharging station at the depot of each instance,

as well as additional recharging stations at random locations. The total number of recharging

stations is two to eight.

Schneider et al. (2014) also set other parameters related to the vehicle’s battery capacity, fuel

consumption and inverse refueling rate. However, since these are irrelevant for our problem,

they are not discussed further. We assume the same setup of Euclidean distances with speed

equal to one. For our purposes, we regard the recharging facilities as dumps and modify the

instances by including two vehicle classes. Class A has a capacity of 100, a deployment cost

of 50 and a unit distance running cost of one. No time related cost is considered. Class B

has a capacity of 120 and its costs are 120% of those of class A. Moreover, in each instance

there are two points that are inaccessible for class B vehicles. For each instance, there are

three vehicles of each class available, thus imitating a situation of a fixed fleet that handles

instances representing different days. Since class B vehicles cannot serve all points, for

smaller instances and instances with longer scheduling horizons, class A vehicles will tend

to be favored. We also impose a maximum tour duration of 500 and a maximum continuous

work limit of 250, after which a break of duration 50 is due.

As briefly discussed in Section 2.2, to solve these instances with the MILP formulation, we

need to replicate the dumps a sufficient number of times. There are various approaches to

tackling this issue. In general, tighter time windows should be beneficial for computation

time. Therefore, one approach is to generate replications with successive time windows of

a length that makes it impossible to visit a replication twice. The latter can be calculated,

for example, as the minimum travel time from a dump to a container and back to the same

dump, including service durations. However, if the scheduling horizon is long compared

to the individual travel times among the points, as it is for the R2, C2 and RC2 subsets, the

number of such replications becomes excessive. In our experiments, for some instances,

these replications can be in the hundreds, which leads to an explosion of variables.

Disregarding successive time windows, the number of necessary dump replications is boun-

ded by the number of containers to serve, which may again be large. Therefore, we use a

rule of thumb, where the number of replications for each dump Rd is set as:

Rd =

	∑
i∈P ρi

0.75Ωk 


�
. (2.40)

In the above expression, Ωk 
 designates the capacity of the smallest vehicle. We omit the

superscript v or w because only a single dimension is assumed for the commodity being

collected in these instances. This rule states that each dump is replicated a sufficient number

of times so that if there is only one tour that is executed by the smallest vehicle, the latter is

emptied on average when it is 75% full if it always visits the same dump.

Table 2.3 presents a comparison of the results of the MNS and the results obtained by Gurobi
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Chapter 2. The Waste Collection VRP

using the MILP formulation with and without variable fixing and valid inequalities, i.e.

constraints (2.27)-(2.39). For each instance, the MNS is run 10 times, and the solver is warm-

started with the best solution from the 10 runs. A limit of 7200 s. is imposed on the solver. We

observe that the MNS approach is stable across the instances and has a very small variance

as expressed by the difference between the best and average result. The number of used

vehicles ranges from one to six, with relatively more vehicles used for the clustered instances

and those having shorter scheduling horizons, as expected.

Applied on the formulation with valid inequalities, Gurobi is able to solve with a proof of

optimality all five-customer instances, all but one of the 10-customer instances and one

15-customer instance. For two other 15-customer instances, the MIP gap is brought to under

10%. For six instances, the solver is able to slightly improve the objective value given by the

MNS. If we assume that optimality was reached within 7200 s., the MNS results are improved

on average by 0.36%. Looking at the improvements, we can also observe that it is not

necessarily its size alone that makes an instance challenging. Using the formulation without

valid inequalities, Gurobi is only able to solve with a proof of optimality nine 5-customer

instances within the solution time limit. The MIP gaps for the rest of the instances are

significantly worse. Moreover, none of the MNS results of the 10-customer and 15-customer

instances have been improved. This demonstrates that adding these problem-specific valid

inequalities directly at the root node of the branching tree has a significant impact on the

performance of the solver and thus serves as a better assessment of the corresponding

performance of the MNS.

Table 2.3 also shows that the runtime of the solver, even when valid inequalities are used,

grows exponentially with problem size. On the other hand, the runtime of the MNS is both

shorter, even for the smallest instances, and grows in a much more stable manner. Since

solution time is directly related to the neighborhood structure, in Table 2.4 we examine the

added value of each neighborhood to the quality of the solution in terms of the mean best

and mean average of the 36 instances over 10 runs. The first column reports the values

obtained after the Initial Solution Construction (ISC) phase, while the rest of the columns

show the improvement of these obtained by combining various neighborhoods.

Columns Nb-1, Nb-2 and Nb-3 demonstrate that the single most effective neighborhood for

the modified Schneider et al. (2014) instances is reinsert, followed by 2-opt and swap. In all of

Table 2.4: Evaluation of MNS Neighborhoods and Their Combinations

ISC Phase Nb-1 Nb-2 Nb-3 Nb-12 Nb-13 Nb-23 Nb-123

Mean Best 529.12 -7.83% -13.61% -10.10% -13.48% -11.45% -14.08% -14.23%
Mean Avg. 529.12 -7.59% -13.45% -9.89% -13.44% -11.35% -14.02% -14.18%

Note. Nb-1: single- and inter-tour swap
Note. Nb-2: single- and inter-tour reinsert
Note. Nb-3: single- and inter-tour 2-opt

30



2.4. Numerical Experiments

these neighborhood, as in the full MNS implementation, both single- and inter-tour moves

are used. The next three columns demonstrate the gains of combining the neighborhoods.

Not surprisingly, the two single best neighborhoods also produce the best combination.

The last column represents the full implementation with all three neighborhoods and leads

to a further visible improvement of the result compared to the best combination of two

neighborhoods. Furthermore, during the experiments, we observed that the impact of

including or not a neighborhood is not evenly spread across the instances, but affects certain

ones more than others. Thus we are convinced that all three neighborhoods are beneficial

for the performance of the MNS.

2.4.2 Tests on Benchmark Instances from the Literature

Table 2.5 presents our results on the MDVRPI (Crevier et al., 2007) instances. In all of them,

the vehicles are stationed at a single depot, with the rest of the depots serving as intermediate

facilities (IFs). There is a maximum tour duration, but no time windows or driver breaks. The

instances are split into two sets. The first set (a1 to l1) contains 12 newly generated instances

Table 2.5: Comparison Against the BKS to the MDVRPI (Crevier et al., 2007) Instances

Hemmelmayr et al. (2013) MNS

Inst- (Cust., Runtime Runtime Gap Gap
ance IFs) Best Avg Avg (s.) Best Avg Avg (s.) Best (%) Avg (%)

a1 (48,2) 1179.79 1180.57 85.20 1189.18 1202.89 21.12 0.80 1.89
b1 (96,2) 1217.07 1217.07 383.40 1217.07 1231.33 190.62 0.00 1.17
c1 (192,2) 1866.76 1867.96 1224.00 1885.57 1910.21 712.35 1.01 2.26
d1 (48,3) 1059.43 1059.43 94.20 1059.43 1071.19 19.33 0.00 1.11
e1 (96,3) 1309.12 1309.12 373.20 1309.12 1333.99 157.02 0.00 1.90
f1 (192,3) 1570.41 1573.05 1536.00 1576.81 1597.78 1148.62 0.41 1.57
g1 (72,4) 1181.13 1183.32 202.80 1186.59 1202.28 72.50 0.46 1.60
h1 (144,4) 1545.50 1548.61 876.60 1559.21 1571.26 531.82 0.89 1.46
i1 (216,4) 1922.18 1923.52 2014.80 1933.30 1956.97 1224.14 0.58 1.74
j1 (72,5) 1115.78 1115.78 166.80 1119.39 1139.20 66.34 0.32 2.10
k1 (144,5) 1576.36 1577.96 873.60 1581.23 1598.25 555.05 0.31 1.29
l1 (216,5) 1863.28 1869.70 2128.80 1880.93 1903.15 1435.59 0.95 1.79

a2 (48,4) 997.94 997.94 73.80 997.94 998.90 37.81 0.00 0.10
b2 (96,4) 1291.19 1291.19 384.60 1294.77 1343.87 217.86 0.28 4.08
c2 (144,4) 1715.60 1715.84 900.60 1731.60 1756.83 432.03 0.93 2.39
d2 (192,4) 1856.84 1860.92 1808.40 1863.97 1884.91 1031.17 0.38 1.29
e2 (240,4) 1919.38 1922.81 2958.60 1939.02 1979.30 1621.11 1.02 2.94
f2 (288,4) 2230.32 2233.43 4274.40 2273.17 2291.38 2451.33 1.92 2.59
g2 (72,6) 1152.92 1153.17 222.60 1153.21 1167.65 77.96 0.02 1.26
h2 (144,6) 1575.28 1575.28 939.60 1583.12 1601.21 506.46 0.50 1.65
i2 (216,6) 1919.74 1922.24 2515.20 1927.44 1958.01 1402.32 0.40 1.86
j2 (288,6) 2247.70 2250.21 4402.80 2259.99 2291.22 3056.50 0.55 1.82

Avg 1292.73 771.32 0.53 1.81
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Chapter 2. The Waste Collection VRP

with two to five IFs and 48 to 216 customers. The second set (a2 to j2) contains 10 instances

derived from those of Cordeau et al. (1997) by adding a central depot where the vehicles are

stationed. The latter have four or six IFs and 48 to 288 customers. For both sets, the BKS

are obtained by Hemmelmayr et al. (2013), who use a VNS with a dynamic programming

procedure for the insertion of the intermediate facilities. Overall, in several cases we reach

the BKS and our best solutions have an average gap of 0.53% with respect to the BKS. The

gap with respect to the average solutions over 10 runs stands at 1.81%.

In order to assess the savings from allowing open tours with different origin and destination

depots, we relax the MDVRPI instances by considering all intermediate facilities as possible

destination depots of any vehicle. It should be noted that in the original MDVRPI formulation,

intermediate facilities are actually depots with no vehicles stationed there. We consider

the case of a relocation cost term weight ψ of zero in the objective function. Table 2.6

demonstrates that important savings can be obtained. Clearly, using a relocation cost term

with a weight between zero and one would lead to results that fall between the restricted

Table 2.6: Savings from Allowing Open Tours in the MDVRPI (Crevier et al., 2007) Instances

Hemmelmayr et al. (2013) MNS

Inst- (Cust., Runtime Runtime Gap Gap
ance IFs) Best Avg Avg (s.) Best Avg Avg (s.) Best (%) Avg (%)

a1 (48,2) 1179.79 1180.57 85.20 1119.46 1136.06 18.70 -5.11 -3.77
b1 (96,2) 1217.07 1217.07 383.40 1200.10 1206.99 176.90 -1.39 -0.83
c1 (192,2) 1866.76 1867.96 1224.00 1847.70 1884.80 857.52 -1.02 0.90
d1 (48,3) 1059.43 1059.43 94.20 1023.52 1040.32 22.95 -3.39 -1.80
e1 (96,3) 1309.12 1309.12 373.20 1293.14 1313.47 203.81 -1.22 0.33
f1 (192,3) 1570.41 1573.05 1536.00 1550.17 1589.25 1095.14 -1.29 1.03
g1 (72,4) 1181.13 1183.32 202.80 1142.31 1156.42 77.24 -3.29 -2.27
h1 (144,4) 1545.50 1548.61 876.60 1541.14 1559.50 518.71 -0.28 0.70
i1 (216,4) 1922.18 1923.52 2014.80 1895.89 1933.05 1420.72 -1.37 0.50
j1 (72,5) 1115.78 1115.78 166.80 1074.02 1082.40 70.05 -3.74 -2.99
k1 (144,5) 1576.36 1577.96 873.60 1553.86 1579.16 481.88 -1.43 0.08
l1 (216,5) 1863.28 1869.70 2128.80 1869.70 1894.59 1723.63 0.34 1.33

a2 (48,4) 997.94 997.94 73.80 911.82 923.37 38.01 -8.63 -7.47
b2 (96,4) 1291.19 1291.19 384.60 1263.30 1293.07 170.17 -2.16 0.15
c2 (144,4) 1715.60 1715.84 900.60 1694.27 1729.97 521.12 -1.24 0.82
d2 (192,4) 1856.84 1860.92 1808.40 1851.88 1870.52 984.40 -0.27 0.52
e2 (240,4) 1919.38 1922.81 2958.60 1927.62 1959.82 1794.59 0.43 1.92
f2 (288,4) 2230.32 2233.43 4274.40 2239.57 2282.11 2813.43 0.41 2.18
g2 (72,6) 1152.92 1153.17 222.60 1109.74 1132.96 76.15 -3.75 -1.75
h2 (144,6) 1575.28 1575.28 939.60 1573.16 1587.72 465.26 -0.13 0.79
i2 (216,6) 1919.74 1922.24 2515.20 1905.87 1924.26 1851.23 -0.72 0.11
j2 (288,6) 2247.70 2250.21 4402.80 2254.77 2284.15 3015.92 0.31 1.51

Avg 1292.73 836.25 -1.77 -0.37

Note. The gap from the BKS reflects the savings from allowing open tours when the home depots are as in the
original instances.

32



2.4. Numerical Experiments

case and the one presented in Table 2.6. In the results we obtain, the savings over the

restricted case are due to the fact that vehicles can now choose better destination depots,

thus exploiting the geographical characteristics of the instances. It should be noted that all

depots in these instances are centrally located. In a realistic situation where depots are not

located in the center of the service area, but rather in a city’s peripheral zones, the benefits

are expected to be more pronounced.

Allowing the possibility of open tours is very important, but so is the choice of the actual home

depot of each vehicle. According to the mathematical formulation presented in Section 2.2,

starting from its home depot, a vehicle may be allowed to freely choose a destination depot.

On the other hand, starting from any origin depot on a given day, the vehicle may be required

to return to its home depot. Table 2.7 presents the case where we look for an optimal choice

of the vehicles’ home depots and also allow for open tours choosing the destination depots.

We observe that savings grow significantly, in several cases reaching values in the order of

Table 2.7: Savings from Home Depot Optimization and Allowing Open Tours in the MDVRPI
(Crevier et al., 2007) Instances

Hemmelmayr et al. (2013) MNS

Inst- (Cust., Runtime Runtime Gap Gap
ance IFs) Best Avg Avg (s.) Best Avg Avg (s.) Best (%) Avg (%)

a1 (48,2) 1179.79 1180.57 85.20 1094.85 1106.46 20.52 -7.20 -6.28
b1 (96,2) 1217.07 1217.07 383.40 1208.23 1218.30 132.22 -0.73 0.10
c1 (192,2) 1866.76 1867.96 1224.00 1851.59 1885.82 764.14 -0.81 0.96
d1 (48,3) 1059.43 1059.43 94.20 1009.14 1023.26 27.05 -4.75 -3.41
e1 (96,3) 1309.12 1309.12 373.20 1280.14 1294.99 147.48 -2.21 -1.08
f1 (192,3) 1570.41 1573.05 1536.00 1544.27 1568.29 945.87 -1.66 -0.30
g1 (72,4) 1181.13 1183.32 202.80 1131.75 1138.56 65.15 -4.18 -3.78
h1 (144,4) 1545.50 1548.61 876.60 1523.97 1542.88 448.36 -1.39 -0.37
i1 (216,4) 1922.18 1923.52 2014.80 1900.70 1936.75 1443.26 -1.12 0.69
j1 (72,5) 1115.78 1115.78 166.80 1076.55 1080.02 68.83 -3.52 -3.21
k1 (144,5) 1576.36 1577.96 873.60 1525.45 1542.00 519.69 -3.23 -2.28
l1 (216,5) 1863.28 1869.70 2128.80 1846.76 1874.47 1249.17 -0.89 0.26

a2 (48,4) 997.94 997.94 73.80 887.58 911.09 45.10 -11.06 -8.70
b2 (96,4) 1291.19 1291.19 384.60 1256.27 1273.99 184.68 -2.70 -1.33
c2 (144,4) 1715.60 1715.84 900.60 1691.70 1715.05 421.25 -1.39 -0.05
d2 (192,4) 1856.84 1860.92 1808.40 1860.77 1870.70 833.90 0.21 0.53
e2 (240,4) 1919.38 1922.81 2958.60 1913.66 1951.95 2016.85 -0.30 1.52
f2 (288,4) 2230.32 2233.43 4274.40 2249.43 2274.70 2472.20 0.86 1.85
g2 (72,6) 1152.92 1153.17 222.60 1070.38 1085.91 119.28 -7.16 -5.83
h2 (144,6) 1575.28 1575.28 939.60 1550.94 1566.95 369.27 -1.54 -0.53
i2 (216,6) 1919.74 1922.24 2515.20 1903.29 1925.68 946.27 -0.86 0.18
j2 (288,6) 2247.70 2250.21 4402.80 2239.79 2271.01 2913.17 -0.35 0.92

Avg 1292.73 734.26 -2.54 -1.37

Note. The gap from the BKS reflects the savings from allowing open tours when the vehicles’ home depots are
also optimized.
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10%. As expected, the savings for smaller instances with fewer depots and intermediate

facilities are more pronounced, due to the fact that there are fewer intra-tour intermediate

facility visits and thus the choice of destination depots is relatively more critical. Since

real-world instances of our problem are of sizes comparable to the smaller Crevier et al.

(2007) instances, these results are deemed an indication of the practical savings that can be

obtained from this policy. The case study area to which this type of tours are applicable is in

a French sparsely populated rural area. However, no historical tour data is available from

the collector for comparison. The purpose of this test is therefore to justify the approach

and quantify the benefits using synthetic instances.

2.4.3 Case Study

As mentioned in Section 2.4.2, there is no historical tour data available for the French region

to which open tours are most applicable, which prompted us to evaluate their benefit on

synthetic instances. In this section, we consider a case study of a collector of recyclable

waste in the canton of Geneva, Switzerland. This collector uses specialized software for

planning its collection tours and logging historical tour data. The software is currently

used for planning the collection of white glass and PET1. The available fleet consists of six

vehicles with varying characteristics, whose weight capacities range from nine to 14 tons.

The software can only plan one tour at a time and does not support all features required by

the collector and present in our problem definition. Due to data confidentiality issues, we

cannot disclose the complete information about the collection points and the collection

process. Nevertheless, Figure 2.2 presents a map2 of the collection points for recyclable

Figure 2.2: Geneva Service Area

1Polyethylene terephthalate: a commonly used polymer for producing food and beverage containers.
2The map layer is from OpenStreetMap.

34



2.4. Numerical Experiments

materials extracted from the cantonal open data portal (SITG, 2017). The area in question

is 282.48 km2 and has a population of approximately half a million. We remark that not all

collection points are serviced by the collector that is used for this case study.

We obtained a sample of 35 planned tours for white glass and PET, their sizes ranging from

seven to 38 containers, and with up to four dump visits per tour. Tour durations are rather

short and the average vehicle speed is assumed to be 30 kmph. The distances between

all depots, containers and dumps are shortest paths on a road network obtained from

OpenStreetMap3. To perform a fair comparison between the software currently used for

planning the tours and our MNS, we re-solve the problem for each tour separately, only

enforcing the supported features, which are limited to the vehicles’ volume and weight

capacities. We keep the same origin and destination depot and provide all available dumps

for the MNS to choose from. In the sample we obtained, all tours are planned for a different

day, and could therefore use the same vehicle or visit the same container. As a consequence,

we cannot combine multiple tours to be solved as a single instance. To compensate for the

lack of richer features in the available real-world data, such features have been tested in the

experiments in Sections 2.4.1 and 2.4.2.

Figure 2.3 compares the distances of the tours as planned by the software currently used

by the collector and as provided by our MNS. The results of the MNS are averaged over

10 runs and computation times range from 0.05 to 7.58 s., with an average of 1.21 s. As

the figure shows, all tours are improved and the average improvement per instance ranges

from 1.73% to 34.91%, with a mean of 14.64%. It is interesting to observe that the distance

improvements are due both to better container sequencing and better planned visits to the

available recycling facilities.

After consultations with the concerned collector, we can estimate direct financial savings

from fuel and labor in the order of 300,000 USD annually. These estimations assume that the

number of tours is kept unchanged. However, given that the proposed solution approach

Figure 2.3: Distance Improvements Compared to the Currently Used Software
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can optimize multiple tours at the same time, rather than one at a time as in the current

state of practice, further savings from a reduced number of tours, better planning of dump

visits and more efficient labor utilization can also be expected. To give a better idea of the

scale of the savings, we remark that the collection firm in question is one of several in an

area of approximately half a million inhabitants.

It should be mentioned here that the software currently used by the collector requires a

validation step once a planned tour has been executed. During validation, the collector

deletes those containers from the originally proposed sequence that for some reason have

not been collected when executing the tour. However, the ordering of the sequence cannot

be changed. We use our MNS to build tours for the containers in the validated sequences

and compare to their travel distances. The originally proposed sequences before validation

are not available, but fortunately, not all validated tours have had containers removed, and

those that have usually have one or two containers removed. Thus the results from Figure 2.3

provide strong evidence in favor of our MNS as compared to the current state of practice.

Moreover, it solves a much richer problem and for a fraction of the computation time.

2.5 Summary

This chapter proposes a mathematical model with a number of valid inequalities for the

waste collection VRP, an extension of the VRP-IF with a heterogeneous fixed fleet and the

possibility of open tours with different origin and destination depots. The model includes

several additional side constraints, such as time windows, a maximum tour duration, a man-

dated break period contingent on tour start time, multiple vehicle capacities, accessibility

restrictions, and considers a general cost function corresponding to the cost structure of a

typical firm. To solve realistic instances, we develop a meta-heuristic approach based on

multiple neighborhood search.

The extensive computational testing confirms the advantage of including the valid inequali-

ties in the optimization model. The MNS achieves optimality on small instances, exhibits

competitive performance in comparison to state-of-the-art solution methods for special

cases of our problem, and leads to important savings in the state of practice. We demonstrate

that allowing open tours with different origin and destination depots can lead to noticeable

savings especially in rural and sparsely populated areas where such benefits will be most

pronounced. In addition, it presents fast computation times and outperforms significantly

the solution currently in place in terms of quality and functionality.

The problem discussed here is already a very difficult to solve NP-hard problem. Chapter 3

integrates demand uncertainty into this problem, extending it to an inventory routing pro-

blem over a finite planning horizon. To solve it, we develop a more powerful and flexible

algorithm–Adaptive Large Neighborhood Search (ALNS)–a state-of-the-art meta-heuristic

approach with sophisticated search operators capable of tackling the added complexity.
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3 The Waste Collection IRP with Sto-
chastic Demands

This chapter is an extension of the technical report:

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2016). Inventory

routing with non-stationary stochastic demands. Technical report TRANSP-OR 160825.

Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland.

The work therein has been performed by the author in collaboration with Prof. Michel

Bierlaire, Prof. Jean-François Cordeau, Prof. Yousef Maknoon and Prof. Sacha Varone.

This chapter extends the waste collection VRP defined in Chapter 2 to an inventory routing

problem over a planning horizon. In their survey of the IRP literature over the past thirty

years, Coelho et al. (2014b) differentiate between finite and infinite planning horizons, with

most problems modeled over finite horizons. Our waste collection IRP is also modeled as a

finite-horizon problem. This is a natural choice given time discretization, which enters both

at the demand forecasting and routing phases. Moreover, we solve a short-term operational

problem which does not impose demand stationarity. Thus, a coarse approximation of the

infinite future with the purpose of building a repetitive schedule would not be suitable for

our problem.

Demand is the amount deposited in a container on a given day. It is stochastic, can be

non-stationary, and is forecast using any model that provides the expected demands over the

planning horizon and a measure of uncertainty represented by the standard deviation of the

error terms, the latter assumed to be iid normal. Our waste collection IRP integrates demand

uncertainty through the probabilities of container overflows and route failures. An overflow

occurs when a container cannot accommodate further waste. In this case, the collector

performs a recourse action by dispatching a vehicle on the same day to perform an emergency

collection. This describes a back-ordering decision as demand is still served despite the

overflow for the reason that people continue placing the waste beside the containers. An

overflow also entails a fine by the municipality. All container collections follow the Order-
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Up-to (OU) level inventory policy as containers are always fully emptied (Bertazzi et al.,

2002). A route failure refers to an event where the vehicle runs out of capacity before the

next scheduled dump visit due to higher than expected demand realizations of the collected

containers (Dror and Trudeau, 1986). The recourse action is a visit to the nearest dump.

Generally speaking, our approach falls under the a priori optimization paradigm (Bertsimas

et al., 1990; Gendreau et al., 2016), which takes a preventative attitude towards undesi-

rable events and has the benefit of better tractability and solution consistency (Salavati-

Khoshghalb et al., 2017). The system expects the undesirable events rather than being

re-optimized after every occurrence. More precisely, the undesirable events are important

in terms of their probabilities and approximate cost contributions. Given a rolling horizon

approach, the expected cost of undesirable events and their recourse actions in the future

periods of the planning horizon influences the here-and-now decisions, which are the ones

we implement on a day-to-day basis. Finally, the problem discussed in this chapter has

a single depot, with multiple depots reintroduced in Chapter 4 next. Given the multi-day

planning horizon combined with uncertainty, we forgo the scheduling of driver breaks.

The difficulty of this problem limits the use of fully exact approaches and has motivated

the development of a state-of-the-art meta-heuristic algorithm based on Adaptive Large

Neighborhood Search (ALNS).

The chapter is organized as follows. Section 3.1 positions our work with respect to the relevant

literature. Section 3.2 outlines the forecasting model and formulates the stochastic IRP.

Section 3.3 describes the ALNS algorithm. Section 3.4 presents the numerical experiments,

and finally Section 3.5 ends with a summary of the main findings and contributions.

3.1 Related Literature

The vehicle routing subproblem embedded in our IRP already includes many rich routing

features, notably a heterogeneous fixed fleet, time windows, a maximum tour duration,

multiple dumps playing the role of intermediate facilities, accessibility restrictions, and a

general cost function corresponding to the cost structure of a typical firm. The simultaneous

presence of all these features is seldom considered in the VRP literature, and Chapter 2

already positions our contribution in this context. The problem we consider here has the

complication of including these features in an IRP context. Thus, while they are essential

to describing a realistic problem inspired from practice, they also pose a great challenge in

terms of modeling and solution methodology. The IRP is an NP-hard optimization problem

which decides simultaneously the vehicle tours, the visit days, and as a consequence the

collection quantities. Comprehensive surveys on the IRP can be found in Abdelmaguid

(2004), Moin and Salhi (2007), Andersson et al. (2010), Yu et al. (2012), Bertazzi and Speranza

(2013), Coelho et al. (2014b), Ivarsøy and Solhaug (2014) and Park et al. (2016), and a particular

focus on stochastic problems and aspects can be found in Moin and Salhi (2007), Yu et al.

(2012), Bertazzi and Speranza (2013) and Coelho et al. (2014b). In the following, we limit
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our attention to finite-horizon stochastic problems, i.e. the class to which our problem

belongs. We also put particular focus on the importance of the rolling horizon approach

(see Section 1.1 in Chapter 1).

Trudeau and Dror (1992) extend the work of Dror and Ball (1987) on the optimal service

frequency under a stochastic setting. They consider both stock-outs and route failures.

Unlike previous research (see e.g. Stewart and Golden, 1983; Dror et al., 1985; Dror and

Levy, 1986; Dror and Ball, 1987; Larson, 1988) which uses a vehicle with an artificially small

capacity to avoid route failures, Trudeau and Dror (1992) develop an analytical probability

expression, and corroborate their modeling approach with a simulation experiment. Our

work differs from that of Trudeau and Dror (1992) in several major aspects. In particular,

we have a heterogeneous fixed fleet. Route failures in our case apply to depot-to-dump or

dump-to-dump trips, of which there could be several in a given tour. Finally, we do not

impose a maximum of one visit and one overflow per container during the planning horizon,

which precludes the derivation of exact closed-form probability measures. On the contrary,

it requires the complicated management of binary trees, tracking each container’s visit-

dependent and conditional probabilities of overflow on each day of the planning horizon.

In addition, we consider multiple rich routing features.

The work of Bard et al. (1998b) includes intermediate facilities in a distribution context. They

apply problem decomposition with a two-week rolling horizon. Customers to be visited

during the planning horizon are identified and those scheduled for the first week are routed,

after which the horizon is rolled over by a week. The customer selection procedure is based

on Jaillet et al. (2002) who derive the optimal restocking frequency and the incremental cost

of deviating from it. In the first step of the decomposition scheme, customers whose optimal

visit day falls within the two-week horizon are assigned to specific days by solving a balanced

generalized assignment problem that minimizes the total incremental cost, accounting for

uncertainty through a lower and upper bound on the total daily demand to be served. The

solution of the routing problem relies on construction and improvement heuristics including

inter-day customer exchanges. Similar ideas, based on the identification of customers who

must be served versus those who may be served are used in Bitsch (2012) and Mes et al.

(2014), both with applications to waste collection where the objective is the minimization

of overflows. The former relies on the calculation of incremental costs, while the latter on

expectation-based service frequency. Due to the implied repetitive pattern, this type of

approaches is only appropriate in situations where demand stationarity can be assumed.

Our problem does not impose this restriction.

Campbell and Savelsbergh (2004) also deal with uncertainty through a decomposition ap-

proach that solves the problem of assigning customers to days first, using the cost of a giant

TSP tour as a crude measure of the daily routing cost, and with coarser period aggrega-

tions toward the end of the planning horizon. Afterwards, the IRP is solved for the first

few days of the planning horizon for the customers that were assigned there and assuming

deterministic information. This approach is used in a rolling horizon framework with the
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benefit of reflecting longer-term costs in the shorter-term problem, i.e. on the days for which

the actual IRP is solved. Such a balance, usually expressed through a so-called reduction

procedure, was the focus of much of the above-mentioned IRP research (see Dror and Ball,

1987; Trudeau and Dror, 1992; Dror and Trudeau, 1996; Jaillet et al., 2002). Stochasticity is

also discussed in Coelho et al. (2014a), who present a modeling and solution framework for

dynamic and stochastic IRP, incorporating the use of forecasting. However, their approach

relies on constructing point forecasts to be used in a rolling horizon fashion without the ex-

plicit treatment of uncertainty. Independent of the modeling approach or the methodology

used, the rolling horizon technique is useful in dealing with uncertainty by helping make

forward-looking decisions in the operational short-term.

More recently, research on the IRP has dealt with uncertainty in various ways. Solyalı et al.

(2012), for example, use the robust optimization approach introduced by Bertsimas and

Sim (2003, 2004) to solve a problem with dynamic uncertain demands, ensuring that vehicle

capacity is not violated for any realization of the customer demands. They develop a strong

formulation and use a branch-and-cut solution approach. Bertazzi et al. (2013) propose a

heuristic rollout algorithm that uses a sampling approach to generate demand scenarios

for the current period and considers the average demand for future ones. Decisions are

made by solving a mixed integer program by branch-and-cut in each period. A similar

approach is used by Bertazzi et al. (2015) who apply it to an IRP with transportation pro-

curement. Adulyasak et al. (2015) propose a two-stage and a multi-stage approach for a

production-routing problem under demand uncertainty, in which the first stage determines

production setup and visit frequencies, while subsequent stages determine production and

delivery quantities. They develop exact formulations and a branch-and-cut algorithm, and a

Benders decomposition approach able to solve instances of realistic size for a high number

of scenarios. Stochastic optimization with recourse is used by Hemmelmayr et al. (2010)

and Nolz et al. (2014b), who present applications related to blood product distribution and

medical waste collection, respectively. Chance-constrained approaches, often oriented

towards maintaining a service level, can be found in Yu et al. (2012), Abdollahi et al. (2014),

Soysal et al. (2015) and Soysal et al. (2016), while static risk expressions in the objective

function that use the demand distribution parameters are applied by Nekooghadirli et al.

(2014a) and Nekooghadirli et al. (2014b). Ribeiro and Lourenço (2003) apply recursive logic

to integrate inventory cost in the objective function for exponentially distributed demands

and propose a simple heuristic approach to tackle their problem.

Chapter 1 discussed the above approaches along with their advantages and limitations, and

identified our goal of pricing demand uncertainty as would a typical cost minimizing firm.

Our modeling approach uses stochastic information in the objective function, integrating

the probabilities of container overflows and route failures. We consider both the cost of

these undesirable events and their associated recourse actions. We can pre-compute the

probabilities of container overflows, while those of route failure can be approximated pre-

cisely at runtime. This leads to a tractable approach capable of treating a variety of rich

routing features seldom considered in the IRP literature.
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3.2 Formulation

In what follows, Section 3.2.1 presents a brief sketch of the forecasting model, Section 3.2.2

develops a mathematical formulation for our stochastic IRP (SIRP), and Section 3.2.3 discus-

ses the necessary changes to the latter for solving benchmark instances from the literature.

Table 3.1 summarizes the used notations. Some of the notations, in particular the inventory

holding cost, are only used in the model reformulations presented in Section 3.2.3 but are

still included in the table for completeness and ease of reference. We note that container

demand refers to the volume amount placed in a container on a given day. Container inven-

tory and capacity are also measured in terms of volume. Vehicles, on the other hand, have

both volume and weight capacities. Depending on the density of the collected waste flow,

Table 3.1: Notations

Sets

V set of distinct container deposit volumes H historical estimation period
T planning horizon = {0, . . . , u} T + shifted planning horizon = {1, . . . , u , u +1}
o origin d destination
P set of containers D set of dumps
N set of all points = {o}∪ {d }∪P ∪D K set of vehicles
Sk t set of depot-to-dump or dump-to-dump trips for

vehicle k ∈K on day t ∈ T
S set of containers in a particular trip in Sk t

Parameters

ιi t g Poisson rate for deposit volume v of container i on day t
κi t vector of covariates for container i on day t
�v vector of estimable parameters for deposit volume v
ϕk daily deployment cost of vehicle k (monetary)
βk unit-distance running cost of vehicle k (monetary)
θk unit-time running cost of vehicle k (monetary)
Ωk capacity of vehicle k
πi j travel distance of arc (i , j )
τi j k travel time of vehicle k on arc (i , j )
λi ,μi lower and upper time window bound at point i
δi service duration at point i
ωi capacity of container i
ηi inventory holding cost at point i (monetary)
αk t 1 if vehicle k is available on day t , 0 otherwise
αi k 1 if container i is accessible by vehicle k , 0 otherwise
ρi t demand of container i on day t
εi t error term of container i on day t
ς forecasting error (standard deviation of the error terms)
σi t 1 indicates that container i is in a state of full and overflowing on day t , 0 otherwise
χ container overflow cost (monetary)
ζ container emergency collection cost (monetary)
H maximum tour duration
ψ Route Failure Cost Multiplier (RFCM) ∈ [0, 1]
CS the average routing cost of going from S ∈Sk t to the nearest dump and back to S (monetary)

Decision Variables

xi j k t 1 if vehicle k traverses arc (i , j ) on day t , 0 otherwise (binary)
yi k t 1 if vehicle k visits point i on day t , 0 otherwise (binary)
zk t 1 if vehicle k is used on day t , 0 otherwise (binary)
qi k t expected pickup quantity by vehicle k from container i on day t (continuous)
Qi k t expected cumulative quantity on vehicle k at point i on day t (continuous)
Ii t expected inventory of container i at the start of day t (continuous)
Si k t start-of-service time of vehicle k at point i on day t (continuous)
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one of them becomes limiting while the other may not be. However, we observe that if the

weight capacity becomes limiting before the volume capacity, the volume capacity can be

adjusted to become limiting at the same time. Through this simple preprocessing step, we

avoid tracking both volume and weight, thus simplifying the notation of Chapter 2.

3.2.1 Forecasting Model

To forecast the expected container demands over the planning horizon and to derive the

forecasting error, we use the forecasting model proposed by Markov et al. (2015), which

exhibits superior in- and out-of-sample performance compared to alternatives. It is based on

a discrete mixture of count-data models describing populations depositing different waste

volumes in the containers. Thus, it supposedly captures a realistic underlying behavior

though simplified. We assume a set V of distinct deposit volumes, where deposit volume

v ∈ V is generated with a Poisson rate ιi t v for container i on day t . The rate ιi t v takes the

functional form ιi t v = exp(κ
i t�v ), where κi t is a vector of covariates, such as the day of the

week, weather variables, holiday periods, etc., and�v is a vector of estimable parameters

for deposit volume v . We formulate an expression for the expected value of the demand of

container i on day t as follows:

�
�
ρi t

�
=
∑
v∈V

v ιi t v . (3.1)

To fit the model, we minimize the sum of squared errors between the observed ρo
i t and

the expected demand �
�
ρi t

�
over the set of containers P and a historical period H of data

availability:

min
∑
i∈P

∑
t ∈H

�
ρo

i t −
∑
v∈V

v ιi t v


2
, (3.2)

assuming strict exogeneity and with error terms represented by white noise as:

ρi t =�(ρi t ) + εi t , where εi t are iid normal, (3.3)

and where a consistent estimate of the variance is given by:

ς2 =

∑
i∈P
∑

t ∈H
�
ρo

i t −�
�
ρi t

��2
|P ||H| −#params

· (3.4)

We refer to ς as the forecasting error. The denominator in formula (3.4) is the total number

of data observations |P ||H|minus the number of estimated parameters in the model. For

a more detailed description of the model, the reader is referred to Markov et al. (2015).

Chapter 4 discusses the relaxation of the iid normality assumption of the error terms in

equation (3.3).
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3.2.2 Stochastic IRP Model

Our SIRP is defined for a planning horizon T = {0, . . . , u} and we are given a complete

directed graph G(N ,A), with N = {o}∪ {d }∪P ∪D, where o and d represent the depot as

an origin and a destination, respectively, P is the set of containers, D is the set of dumps,

and A= {(i , j ) :∀i , j ∈N , i �= j } is the set of arcs. For modeling purposes, it is assumed that

the set D contains a sufficient number of replications of each dump to allow multiple visits

by the same vehicle on the same day. Multiple depots are reintroduced in Chapter 4.

There is an asymmetric distance matrix, withπi j the travel distance of arc (i , j ). Each vehicle

may have a different average speed, which results in a vehicle-specific travel time matrix,

where τi j k is the travel time of vehicle k on arc (i , j ). Each point has a single time window

[λi ,μi ], where λi and μi stand for the earliest and latest possible start-of-service time. Start

of service after μi is not allowed, and if the vehicle arrives before λi , it has to wait. Service

duration at each point is denoted by δi . For containers it is mostly influenced by the type

of container, e.g. underground or overground, and for dumps by factors such as weighing

and billing. Hence service duration is not indexed by vehicle. Service duration at the depots

is zero. There is an expected demand �(ρi t ) for container i on day t . Container capacity

is denoted by ωi , and a cost χ is charged for a full and overflowing container. There is a

heterogeneous fixed fleet K, with each vehicle defined by its capacityΩk , a daily deployment

cost ϕk , a unit-distance running cost βk , and a unit-time running cost θk . The binary flags

αk t denote whether vehicle k is available on day t , and the binary flags αi k denote whether

container i is accessible by vehicle k . The maximum tour duration is denoted by H.

We introduce the following binary decision variables: xi j k t = 1 if vehicle k traverses arc

(i , j ) on day t , 0 otherwise; yi k t = 1 if vehicle k visits point i on day t , 0 otherwise; zk t = 1

if vehicle k is used on day t , 0 otherwise. In addition, the following continuous variables

are used: qi k t for the expected pickup quantity by vehicle k from container i on day t ; Qi k t

for the expected cumulative quantity on vehicle k arriving at point i on day t ; Ii t for the

expected inventory of container i at the start of day t ; and Si k t for the start-of-service time

of vehicle k at point i on day t . The inventory levels at the start of the planning horizon Ii 0

are known with certainty. For modeling purposes, we assume that container inventory is

updated at the start of each day before vehicle visits. This simplification is necessary due to

the daily time discretization. As a consequence, the pickup quantity is independent of the

time of day that the vehicle collects a container.

Derivation of the Overflow Probabilities.

Unlike in most traditional IRPs, we have no inventory holding costs at the containers or

dumps. To formulate the objective function, we introduce the notions of a regular and an

emergency collection. Letσi t denote the state of container i on day t , whereσi t = 0 denotes

that container i is not full on day t , while σi t = 1 denotes that it is full and overflowing.

A regular collection of container i on day t by vehicle k is one for which yi k t = 1. On
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the other hand, an emergency collection occurs when the container is in a state σi t = 1

and yi k t = 0,∀k ∈K. An emergency collection incurs a high cost ζ, which is an approach

often employed in the IRP literature (e.g. Dror and Ball, 1987; Trudeau and Dror, 1992;

Hemmelmayr et al., 2010; Coelho et al., 2014a), and empties the container in question. Our

routing cost is thus counterbalanced by the container overflow cost χ and the emergency

collection cost ζ.

Let us start with an initial inventory Ii 0 such that container i is initially in stateσi 0 = 0. If

the container never undergoes a regular collection during the planning horizon, its state

probability tree develops as illustrated in Figure 3.1. We observe that all branches starting

from a stateσi t = 0 involve the calculation of conditional probabilities, while those starting

from a stateσi t = 1 involve unconditional probabilities because the inventory is set to zero

by the emergency collection. For our problem, we are only interested in the probability of

overflow, i.e. of being in a stateσi t = 1. For day t = 0, this is either 0 or 1, depending on the

initial state, while for all other days it is obtained by successively multiplying the branch

probabilities. If we impose a regular collection on day t = 2, the probability of overflow on

day t = 2 is the probability of being in stateσi 2 = 1. To calculate the probability of overflow

for subsequent days, we start a new tree with a root on day t = 2. Without loss of generality,

we can set the root of the new tree to state σi 2 = 1 since the inventory is set to zero by

Figure 3.1: Container State Probability Tree
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|Ii 0+ρi 0+ρi 1+ρi 2<ωi )

�(Ii 0+ρi 0+ρi 1+ρi 2+ρi 3�ωi|Ii 0+ρi 0+ρi 1+ρi 2<ωi )

�(0+ρi 3<ωi )

�(0+ρi 3�ωi )

�(0+ρi 2+ρi 3<ωi |0+ρi 2<ωi )

�(0+ρi 2+ρi 3�ωi |0+ρi 2<ωi )

�(0+ρi 3<ωi )

�(0+ρi 3�ωi )

�(0+ρi 1+ρi 2+ρi 3<ωi

|0+ρi 1+ρi 2<ωi )

�(0+ρi 1+ρi 2+ρi 3�ωi|0+ρi 1+ρi 2<ωi )

�(0+ρi 3<ωi )

�(0+ρi 3�ωi )

�(0+ρi 2+ρi 3<ωi |0+ρi 2<ωi )

�(0+ρi 2+ρi 3�ωi |0+ρi 2<ωi )

�(0+ρi 3<ωi )

�(0+ρi 3�ωi )

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
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the regular collection and the two initial branches of the new tree will have unconditional

probabilities. Regardless of the initial state, all branch probabilities can be precomputed,

including those that occur when a new tree is started by a regular collection. For container i ,

the exhaustive list is given by:

• The unconditional probability of overflow with non-zero initial inventory. This only

applies at the root node of the state probability tree on day t = 0 and is given by

�(Ii 0+ρi 0 �ωi ).

• The unconditional probabilities of overflow with zero initial inventory. These apply

either at the root node or at a state of overflow and are expressed by �(0 + ρi h �
ωi ),∀h ∈ T .

• The conditional probabilities of overflow with non-zero initial inventory. These apply

along the tree’s uppermost branch and write as �(Ii 0+
∑h

t=0ρi t �ωi | Ii 0+
∑h−1

t=0 ρi t <

ωi ),∀h ∈ T : h > 0.

• The conditional probabilities of overflow with zero initial inventory apply in all other

cases and are obtained as �(0+
∑h

t=g ρi t �ωi |0+∑h−1
t=g ρi t <ωi ),∀g , h ∈ T : h > g .

The calculation of the conditional probabilities involves the evaluation of:

�
�

Ii g +
h∑

t=g

ρi t �ωi

����� Ii g +
h−1∑
t=g

ρi t <ωi



. (3.5)

Given the definition of the error terms as iid normal in equation (3.3), expression (3.5) takes

the form:

�
�

h∑
t=g

εi t �ωi − Ii g −
h∑

t=g

�(ρi t )

�����
h−1∑
t=g

εi t <ωi − Ii g −
h−1∑
t=g

�(ρi t )



. (3.6)

Substitute a =ωi − Ii g −∑h−1
t=g �(ρi t ), and X =

∑h−1
t=g εi t , where X ∼N (0, (h − g )ς2) and X is

independent of εi h . Formula (3.6) then rewrites as:

�
�
X + εi h � a −�(ρi h )

��X < a
�
=
�(εi h � a −�(ρi h )−X , X < a )

�(X < a )
=

=
1

ΦX (a )
× 1

2πς2
�

h − g

∫ a

−∞

∫ ∞
a−�(ρi h )−x

e
− x 2

2(h−g )ς2 e
− y 2

2ς2 d x d y ,
(3.7)

where ΦX (·) is the CDF of X . We standardize the joint probability in expression (3.7) by

setting x = x/(ς
�

h − g ) and y = y /ς, and thus arrive at expression (3.8) for the conditional
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probability we are looking for:

�
�
X + εi h � a −�(ρi h )

��X < a
�
=

1

2πΦ( a
ς
�

h−g
)

∫ a
ς
�

h−g

−∞

∫ ∞
a−�(ρi h )−xς

�
h−g

ς

e − x 2
2 e −

y 2

2 d x d y =

=
1

2
�

2πΦ
�

a
ς
�

h−g

� ∫ a
ς
�

h−g

−∞
e − x 2

2 erfc

�
a −�(ρi h )− xς

�
h − g

ς
�

2

�
d x ,

(3.8)

whereΦ(·) is the CDF of a standard normal random variable. The single integral in expression

(3.8) can be evaluated using a standard statistical package like R in the order of milliseconds.

For a problem of realistic size, all the necessary unconditional and conditional probabilities

can be automatically precomputed in a negligible amount of time using the latest container

information. The derivations above, presented here in the context of the waste collection

IRP, are extended to a general finite horizon routing context under mild assumptions in

Chapter 4.

Objective Function.

We are now in a position to formulate the objective function z which comprises the Routing

Cost (RC), the Expected Overflow and Emergency Collection Cost (EOECC), and the Expected

Route Failure Cost (ERFC):

min z =RC + EOECC + ERFC. (3.9)

The routing cost reflects the daily deployment cost, the distance-related cost and the time-

related cost for each used vehicle over the planning horizon. It is formulated as:

RC=
∑
t ∈T

∑
k∈K

�
ϕk zk t +βk

∑
i∈N

∑
j∈N
πi j xi j k t +θk (Sd k t −So k t )

�
. (3.10)

The expected overflow and emergency collection cost is expressed as:

EOECC=
∑

t ∈T ∪T +

∑
i∈P

�
�
�
σi t = 1 |m =max

�
0, g ∈ T : g < t : ∃k ∈K : yi k g = 1

��

×
�
χ +ζ−ζ∑

k∈K
yi k t




,

(3.11)

where the probability of being in a state of overflow is conditional on the most recent regular

collection, identified for each container i by the index m . For a given container i , the max

operator returns the day g of the most recent regular collection, or 0 if the container has not

undergone any regular collections before day t . The state probability is calculated by multi-

plication of the involved branch probabilities on the tree, where conditional probabilities
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3.2. Formulation

are computed using formula (3.5) and the discussed methodology (3.6)–(3.8). For a day t ,

the applied cost includes the container overflow cost χ and the emergency collection cost

ζ in case there is no regular collection on that day, and only the container overflow cost χ

in case there is a regular collection. Although there is no uncertainty on day t = 0, we still

need to pay the overflow cost if the container is in a state of overflow. On the other hand, the

inventories at the start of the first day after the end of the planning horizon are completely

determined by the decisions taken during the planning horizon. For this reason, the EOECC

is computed for t ∈ T ∪T +, where T + = {1, . . . , u , u +1} is the planning horizon shifted right

by one day.

The expected route failure cost reflects the vehicles’ inability due to insufficient capacity

to serve the containers on the scheduled depot-to-dump or dump-to-dump trips. It is

expressed as:

ERFC=
∑

t ∈T \0

∑
k∈K

∑
S∈Sk t

�
ψCS �
�∑

s∈S

�
Λs m +

t−1∑
h=m

ρs h



>Ωk

�����
m =max
�
0, g ∈ T : g < t : ∃k ′ ∈K : ys k ′g = 1

�


,

(3.12)

where Sk t is the set of depot-to-dump or dump-to-dump trips for vehicle k on day t , S is the

set of containers in a particular trip, CS is the average routing cost of going from this set to the

nearest dump and back, and Λs m is the inventory of container s after regular collection on

day m . The set Sk t is generated by inspecting the routing variables xi j k t . At every feasible

solution, for each vehicle k on each day t we can inspect the point visit sequence encoded

in the variables xi j k t to generate the set of depot-to-dump and dump-to-dump trips. The

parameterψ ∈ [0, 1], which we refer to as the Route Failure Cost Multiplier (RFCM), is used to

scale up or down the degree of conservatism regarding this cost component. The probability

is conditional on the most recent regular collection identified for each container s by the

index m . For a given container s , the max operator returns the day g of the most recent

regular collection, or 0 if the container has not undergone any regular collections before day

t . The inventory of container s after regular collection on day m is defined as:

Λs m = Is m −∑
k∈K

qs k m . (3.13)

Given an order-up-to policy, this value is 0 if there is a regular collection on day m , and is

equal to the initial inventory Is 0 if there is no regular collection on day 0. In essence, the

probability of a route failure in a set S is the probability that the sum of the random daily

demands, plus potentially the initial inventories on day 0, collected from this set exceeds

the vehicle capacity. By definition, there are no route failures on day t = 0 as the container

information is fully known.

The nearest dump to each container can be precomputed. Probability-wise, once the days
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m of the previous collection of each container are found, the remaining probability is uncon-

ditional. It is impractical to precompute for all possible combinations on the left-hand side

of the probability formula in the ERFC expression (3.12). Thus, we implement a solution in

which the probability is evaluated during runtime using an approximation of the standard

normal distribution based on the approximation of the error function:

erf(x )≈ 1− �a1t +a2t 2+ · · ·+a5t 5
�

e −x 2
, t =

1

1+d x
, (3.14)

whose parameter values are d = 0.3275911, a1 = 0.254829592, a2 = −0.284496736, a3 =
1.421413741, a4 =−1.453152027, and a5 = 1.061405429, and whose maximum approximation

error is 1.5× 10−7 (Abramowitz and Stegun, 1972). These repetitive calculations have no

discernible influence on the algorithm’s runtime. Chapter 4 discusses the complications in

calculating the route failure probabilities that arise from relaxing the iid normal assumption

(3.3).

The objective function is non-linear due to the non-linear nature of the EOECC and the ERFC

components defined above. On the other hand, the formulations of the RC and the ERFC

ignore the probability of containers overflowing before the day t on which they are collected.

Skipping such containers in the tours performed on day t would reduce the RC. It would also

reduce the ERFC due to the lower probability of the collected volume on day t exceeding

the vehicle capacity. Modeling these two effects without imposing additional assumptions

would make the probability expressions intractable. On the other hand, given the operational

nature of the problem, developing a full-blown simulator of the objective function to capture

them would be very impractical. As a result, our objective function is an overestimation of

the real cost. We revisit this question in Chapter 4, where we perform simulation-validation

experiments that demonstrate that the level of overestimation is insignificant, and thus our

objective function is an excellent representation of the real cost.

Constraints.

The constraints are extended and adapted from those presented Section 2.2.1 in Chapter 2

and can be split into several categories, with the first category consisting of basic vehicle

routing constraints. Constraints (3.15) and (3.16) ensure that only available vehicles are used,

and that if a vehicle is used, its tour starts at the origin and ends at the destination, with

a visit to a dump immediately before that. Constraints (3.17) link the visit and the routing

variables, while constraints (3.18) stipulate that a container is visited by at most one vehicle

on a given day. Constraints (3.19) guarantee that vehicles do not visit inaccessible points.

Flow conservation is represented by constraints (3.20).∑
j∈N

xo j k t =αk t zk t , ∀t ∈ T , k ∈K (3.15)

∑
i∈D

xi d k t =αk t zk t , ∀t ∈ T , k ∈K (3.16)
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yi k t =
∑
j∈N

xi j k t , ∀t ∈ T , k ∈K, i ∈P (3.17)

∑
k∈K

yi k t � 1, ∀t ∈ T , i ∈P (3.18)

yi k t �αi k , ∀t ∈ T , k ∈K, i ∈P (3.19)∑
i∈N

xi j k t =
∑
i∈N

x j i k t , ∀t ∈ T , k ∈K, j ∈P ∪D (3.20)

The inventory constraints are necessary for tracking the container inventories and linking

them to the vehicle visits and the pickup quantities. Constraints (3.21) track the inventories

as a function of the previous day’s inventories, pickup quantities and expected demands.

Constraints (3.22) impose the fact that, in expected terms, we do not accept container

overflows. As already mentioned in Section 3.2.2, the inventories need to be computed over

T +, starting from the fully known inventories on day t = 0. Constraints (3.23) ensure that

if the starting inventory exceeds capacity, the container must be collected on day t = 0.

The big-M reflects the assumption that the expected daily demand can never exceed the

container capacity. In addition, a daily rolling horizon enforces the one-day back-order limit.

Constraints (3.24) force the pickup quantity to zero if the container is not visited. Constraints

(3.25) and (3.26) represent the order-up-to policy. The big-M values in constraints (3.24) and

(3.26) can be set to 2ωi for t = 0 and toωi otherwise, reflecting the fact that the expected

pick-up quantity cannot exceed container capacity, except on day t = 0.

Ii t = Ii (t−1)−
∑
k∈K

qi k (t−1) +�(ρi (t−1)), ∀t ∈ T +, i ∈P (3.21)

Ii t �ωi , ∀t ∈ T +, i ∈P (3.22)

Ii 0−ωi �ωi

∑
k∈K

yi k 0, ∀i ∈P (3.23)

qi k t �M yi k t , ∀t ∈ T , k ∈K, i ∈P (3.24)

qi k t � Ii t , ∀t ∈ T , k ∈K, i ∈P (3.25)

qi k t � Ii t −M (1− yi k t ), ∀t ∈ T , k ∈K, i ∈P (3.26)

In the context of vehicle capacities, constraints (3.27) bound from below the cumulative

quantity on the vehicle at each container and enforce the vehicle capacity. Constraints (3.28)

reset the cumulative quantity on the vehicle to zero at the origin, destination, and dumps.

Keeping track of the cumulative quantity on the vehicle is achieved by constraints (3.29).

qi k t �Qi k t �Ωk , ∀t ∈ T , k ∈K, i ∈P (3.27)

Qi k t = 0, ∀t ∈ T , k ∈K, i ∈N \P (3.28)

Qi k t +qj k t �Q j k t +Ωk

�
1− xi j k t

�
, ∀t ∈ T , k ∈K, i ∈N \ {d }, j ∈P (3.29)

The next four constraints express the intra-day temporal characteristics of the problem. Con-

straints (3.30) calculate the start-of-service time at each point. In addition, these constraints
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eliminate the possibility of subtours and ensure that a point is not visited more than once by

the same vehicle. Constraints (3.31) and (3.32) enforce the time windows. Constraints (3.33)

provide a lower bound on the tour duration and apply the maximum tour duration.

Si k t +δi +τi j k � Sj k t +
�
μi +δi +τi j k

� �
1− xi j k t

�
,

∀t ∈ T , k ∈K, i ∈N \ {d }, j ∈N \ {o} (3.30)

λi

∑
j∈N

xi j k t � Si k t , ∀t ∈ T , k ∈K, i ∈N \ {d } (3.31)

Sj k t �μ j

∑
i∈N

xi j k t , ∀t ∈ T , k ∈K, j ∈N \ {o} (3.32)

0� Sd k t −So k t �H, ∀t ∈ T , k ∈K (3.33)

Finally, constraints (3.34) and (3.35) establish the variable domains.

xi j k t , yi k t , zk t ∈ {0, 1}, ∀t ∈ T , k ∈K, i , j ∈N (3.34)

qi k t ,Qi k t , Ii t ,Si k t � 0, ∀t ∈ T , k ∈K, i ∈N (3.35)

3.2.3 Model Reformulations for Solving Benchmark Instances

The model presented above describes a problem that is not encountered in the literature. In

order to evaluate the performance of the solution methodology presented in Section 3.3, we

test it on IRP and VRP instances for problems with similar features. Below, we present the

necessary reformulations of the original model, while the corresponding modifications to

the general solution methodology are described in Section 3.3.3.

Reformulation for the Benchmark IRP.

For the benchmark IRP instances from the literature, we assume a distribution context

and the presence of inventory holding costs at the depot and the customers. There are no

intermediate facilities. We are in a deterministic setting and ρi t = �
�
ρi t

�
,∀t ∈ T , i ∈ P .

The commodity becomes available at the depot at a rate ρo t on day t and is consumed

by customer i at a rate ρi t on day t . Let ηo and ηi denote the inventory holding cost per

day at the depot and customer i , respectively. In addition, we redefine qi k t as the quantity

delivered by vehicle k to customer i on day t , and Qi k t as the cumulative quantity delivered

by vehicle k arriving at point i on day t . The objective function of the benchmark IRP is

composed of the inventory holding costs at the depot and the customers, and the routing

cost, and writes as:

min z IRPB =
∑

t ∈T ∪T +
ηo Io t +
∑

t ∈T ∪T +

∑
i∈P
ηi Ii t

+
∑
t ∈T

∑
k∈K

�
ϕk zk t +βk

∑
i∈N

∑
j∈N
πi j xi j k t +θk (Sd k t −So k t )

�
.

(3.36)
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A special set of constraints is needed for the inventory definition at the depot. Constraints

(3.37) define the inventory level at the depot as the sum of the previous day’s inventory and

quantity made available minus the previous day’s amount delivered to customers. Con-

straints (3.38) forbid a stock-out at the depot given the total quantity delivered to customers.

Io t = Io (t−1) +ρo (t−1)−
∑
k∈K

∑
i∈P

qi k (t−1), ∀t ∈ T + (3.37)

Io t �
∑
k∈K

∑
i∈P

qi k t , ∀t ∈ T (3.38)

We redefine the evolution of the inventory level at the customers for a distribution context.

Constraints (3.39) define the inventory level at the customers as the sum of the previous

day’s inventory and quantity delivered minus the previous day’s demand. Constraints (3.40)

forbid the occurrence of stock-outs.

Ii t = Ii (t−1) +
∑
k∈K

qi k (t−1)−ρi (t−1), ∀i ∈P , t ∈ T + (3.39)

Ii t � 0, ∀i ∈P , t ∈ T + (3.40)

The order-up-to policy also needs to be redefined for a distribution context. Constraints

(3.41), (3.42), and (3.43) express the fact that if a customer is visited, its inventory is brought

up to its capacity.

qi k t �ωi yi k t − Ii t , ∀t ∈ T , k ∈K, i ∈P (3.41)

qi k t �ωi − Ii t , ∀t ∈ T , k ∈K, i ∈P (3.42)

qi k t �ωi yi k t , ∀t ∈ T , k ∈K, i ∈P (3.43)

To avoid unnecessary complications in the reformulation, we can safely assume that there

is a single dummy dump with zero service time and distance to the depot. The basic rou-

ting constraints (3.15)–(3.20), the vehicle capacity constraints (3.27)–(3.29), the intra-day

temporal constraints (3.30)–(3.33), and the domain constraints (3.34)–(3.35) can thus be

reused.

Reformulation for the Benchmark VRP.

For the VRP, it suffices to collapse the planning horizon to T = {0} and redefine the objective

function z in terms of the Routing Cost (RC) only:

min z VRPB =
∑
k∈K

�
ϕk zk 0+βk

∑
i∈N

∑
j∈N
πi j xi j k 0+θk (Sd k 0−So k 0)

�
. (3.44)

For day t = 0, demands are deterministic. As far as the constraints are concerned, the

inequality sign in constraints (3.18) of the original model becomes an equality sign, providing
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that each container should be visited by exactly one vehicle. Constraints (3.21) and (3.22) are

dropped since the VRP is solved for a single period and we disregard its effect on the future.

Constraints (3.23) are dropped as they become redundant given the modified constraints

(3.18). Since there is no inventory tracking over the planning horizon, it is irrelevant whether

we are in a collection or in a distribution context.

3.3 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search (ALNS) was introduced by Ropke and Pisinger (2006a)

in the context of the pickup and delivery problem with time windows. It is a type of large

neighborhood search in which a number of operators compete in modifying the current

solution. At each iteration of the search process, a number of customers is removed from the

current solution by a destroy operator, after which they are reinserted elsewhere by a repair

operator. In the context of our IRP, not all customers need to be visited every day, or even at

all. Hence, we do not require that all removed customers be reinserted by the repair operator.

The search guiding principle can be based on any meta-heuristic framework. Simulated

annealing appears to be the preferred approach in the ALNS literature, and is also the one

we implement. Given an incumbent solution s , a randomly drawn neighbor solution s ′ is

always accepted if f (s ′)< f (s ), and with probability exp(−( f (s ′)− f (s ))/T ) otherwise, with

f (s ) representing the solution cost and T > 0 the current temperature. The temperature is

initialized as T start and is reduced at each iteration by a cooling rate r ∈ (0,1). The search

stops when T reaches a predetermined T end.

Operator choice is governed by a roulette-wheel mechanism. Each operator i has a weight

Wi , which depends on its past performance and a score. Given the set of destroy (repair)

operators O, the destroy (repair) operator i is selected with probability Wi /
∑

j∈O Wj . The

ALNS starts with all weights set to one and all scores set to zero. The scores of the selected

destroy-repair couple are increased by e1 if they find a new best feasible solution, by e2 < e1

if they improve the incumbent, and by e3 < e2 if they do not improve the incumbent but the

new solution is accepted. This strategy rewards successful operator couples, while at the

same time maintaining diversification during the search. It is important to note that if a

destroy-repair couple leads to a visited solution, no reward is applied. The search is divided

into segments of F iterations each, at the end of which the operator weights are updated.

Let C F
i denote the score of operator i and N F

i the number of times it was applied in the last

segment of length F . The new weights are computed as follows:

Wi =

�
Wi if N F

i = 0,

(1− b )Wi + b C F
i /
�
mi N F

i

�
otherwise.

(3.45)

In expression (3.45), mi is a normalization factor damping the weights of more computatio-

nally expensive operators by multiplying the number of times they were applied (Ropke and

Pisinger, 2006b; Coelho et al., 2012a). The value b ∈ [0, 1] is a reaction factor, controlling the

52



3.3. Adaptive Large Neighborhood Search

Algorithm 3.1: Adaptive Large Neighborhood Search

Input initial solution s init

Output best found solution s best

1: all weights equal to 1, all scores equal to 0
2: s best ← s ← s init

3: T ← T start

4: while T � T end do
5: s ′ ← s
6: select a destroy-repair couple using roulette wheel and apply to s ′
7: if f (s ′)< f (s ) then
8: s ← s ′
9: if f (s ′)< f (s best) and s ′ is feasible then

10: s best ← s ′
11: update scores of destroy-repair couple by e1

12: else
13: update scores of destroy-repair couple by e2

14: end if
15: else if s ′ is accepted
16: s ← s ′
17: update scores of destroy-repair couple by e3

18: end if
19: if iteration count is multiple of F then
20: update weights and reset scores to 0
21: end if
22: T ← r T
23: end while

relative effect of past performance and the scores on the new weights. Once the weights are

updated, C F
i and N F

i are reset to zero. Algorithm 3.1 is a pseudocode of the ALNS implemen-

tation with simulated annealing. The function f (·) represents the full solution cost including

penalties for feasibility violations, as explained in Section 3.3.1 next. Regarding the initial

solution s init, we build empty tours consisting of the depot as an origin and destination

and one dump in between, without inserting any containers. An empty tour is built for

each available vehicle on each day of the planning horizon. Since the destroy operators will

have no effect in the beginning, the repair operators will insert containers and construct a

non-empty solution.

3.3.1 Solution Representation

To facilitate the search and avoid becoming trapped in local optima, we admit infeasible

intermediate solutions at a penalty. This relaxation technique is especially useful for tightly

constrained problems. Let s be a solution and let N ′
k t (s ) denote all point visits by vehicle k

on day t in s , where each visit is a replication of the visited point. In addition, let P ′
k t (s )⊂
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N ′
k t (s ) denote all point visits where the next visit is a dump. We also define the function

(x )+ =max{0, x }. Our ALNS admits the following types of intermediate feasibility violations:

1. Vehicle capacity violation is the sum of excess cumulative demand in P ′
k t (s ),∀t ∈

T , k ∈K. Formally, it is defined as:

V Ω(s ) =
∑
t ∈T

∑
k∈K

∑
i∈P ′

k t

(Qi k t −Ωk )
+. (3.46)

2. Time window violation is the total violation of the upper time window bounds μi in

N ′
k t (s ),∀t ∈ T , k ∈K. Lower time window bounds cannot be violated because if the

vehicle arrives at point i before λi , it waits. Hence, formally, we have:

V μ(s ) =
∑
t ∈T

∑
k∈K

∑
i∈N ′

k t

�
Si k t −μi

�+
. (3.47)

3. Duration violation is expressed as the sum of excess durations. It is verified after time

window violation. For each tour that has no time window violation, we apply forward

time slack reduction (Savelsbergh, 1992), which may minimize tour duration while

preserving time window feasibility (see Algorithm 2.1 in Chapter 2). In mathematical

terms, duration violation writes as:

V H(s ) =
∑
t ∈T

∑
k∈K
(Sd k t −So k t −H)+. (3.48)

4. Container capacity violation is the sum of excess container inventories ∀t ∈ T +, i ∈P ,

or:

V ω(s ) =
∑

t ∈T +

∑
i∈P
(Ii t −ωi )

+. (3.49)

5. Backorder limit violation is the sum of excess container inventories on day t = 0,∀i ∈P
that are not visited on day t = 0. In mathematical terms, this is expressed as:

V 0(s ) =
∑
i∈P

��
1−∑

k∈K
yi k 0



(Ii 0−ωi )

+



. (3.50)

6. Accessibility violation is the sum of inaccessible visits in N ′
k t (s ),∀t ∈ T , k ∈K. They

are accounted for as:

V α(s ) =
∑
t ∈T

∑
k∈K

∑
i∈N ′

k t

�
yi k t −αi k

�+
. (3.51)

Including the possibility of all violations, the complete solution cost during the search is
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represented by:

f (s ) = z (s ) + LΩV Ω(s ) + LμV μ+ L HV H(s ) + LωV ω(s ) + L 0V 0(s ) + LαV α(s ). (3.52)

The parameters LΩ through Lα are the penalties for each type of feasibility violation. They

are dynamically adjusted during the search so as to encourage the exploration of infeasi-

ble solutions but to avoid staying infeasible for too long. At each accepted solution, the

incumbent s is checked for each type of violation. If it is non-zero, its respective penalty

is multiplied by a rate � > 1, otherwise it is divided by the same rate. If s has no feasibility

violation, the values of f (s ) and z (s ) coincide. As indicated in Algorithm 3.1, the update of

the best solution requires feasibility with respect to conditions (3.46) through (3.51).

3.3.2 Operators

The main ingredient of the ALNS are the destroy and repair operators. Some of the operators

are inspired or adapted from the literature (Ropke and Pisinger, 2006a,b; Coelho et al., 2012a;

Buhrkal et al., 2012; Hemmelmayr et al., 2013), while others are developed to capture the

specifics of our problem, in particular the stochastic objective function and the presence of

a heterogeneous fixed fleet. The choice of operators balances between diversification and

intensification. We use the following destroy operators:

1. Remove ν containers randomly. This operator selects a random tour and removes a

random container from it. It is applied ν times, where ν is an integer drawn from a

discrete semi-triangular distribution bounded below by 1 and above by the number

of containers in P . Small ν’s result in cosmetic changes to the solution, while big ν’s,

which are drawn with a lower probability, lead to larger perturbations.

2. Remove νworst containers. This operator removes the container that would lead to

the largest savingsΔ f max in the solution cost. It is applied ν times.

3. Shaw removals with relatedness. Based on the ideas of Shaw (1997) and Ropke and

Pisinger (2006a), this operator removes containers based on a relatedness measure

among them. It starts by selecting a random tour and a random container i in this

tour, and computing the relatedness Ri j of i to all containers j in the tours scheduled

on the same day t as the randomly selected tour. We define the relatedness measure

Ri j of container i to container j as:

Ri j = d1π
[0,1]
i j +d2(|λi −λ j |+ |μi −μ j |)[0,1] +d3|oi t −oj t |[0,1], (3.53)

where the first term captures the distance, the second terms captures the time window

difference and the third term captures the overflow probability difference on day t . As

in expression (3.11) for the EOECC, the latter is given by:

oi t = �
�
σi t = 1 |m =max

�
0, g ∈ T : g < t : ∃k ∈K : yi k g = 1

��
. (3.54)
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These terms are scaled between zero and one, as indicated in superscript, and weighted

by the parameters d1, d2 and d3. The relatedness measures are again scaled between

zero and one. Container i and all containers j for which Ri j is less than a threshold d4

are removed.

4. Remove container cluster. Inspired by the work of Ropke and Pisinger (2006b), this

operator removes large clusters of containers. It selects a random day t in the planning

horizon and divides the containers visited on this day into k clusters, where k is chosen

to be the number of tours executed on this day. If there is only one tour, its containers

are divided into 2 clusters. Clustering is performed using Kruskal’s algorithm, which

progressively merges the containers into clusters based on distance, until the required

number of clusters k is reached. Finally, a cluster is chosen randomly and removed as

long as it contains less than half of the containers visited on day t .

5. Empty a random day. This operator selects a random day and empties all tours perfor-

med on it.

6. Empty a random vehicle. This operator selects a random vehicle and empties the tours

performed by it on all days.

7. Remove a random dump. This operator selects a random tour and a random dump in

it, excluding the last dump, and removes it.

8. Remove the worst dump. This operator removes the dump that would lead to the largest

savingsΔ f max in the solution cost. The last dump in each tour is never removed.

9. Remove consecutive visits. This operator inspects each container over the planning

horizon and, if it is visited on two consecutive days, removes the second visit. This

is based on the idea that optimal or good-quality solutions will rarely visit the same

container on consecutive days.

In addition, we use the following repair operators:

1. Insert ν containers randomly. This operator selects a random tour and a random

container from P not visited on the day the tour is performed, and inserts it in the

tour using best insertion, i.e. in the position in the selected tour that would lead to the

minimum increaseΔ f min in the solution cost. It is applied ν times.

2. Insert ν containers in the best way. This operator identifies for each container i ∈P
the tour and the position in that tour that would lead to the minimum increaseΔ f min

i

in the solution cost if the container is inserted there, checking that the container is not

visited on the day the tour is performed. The containers in P are sorted in ascending

order ofΔ f min
i and the first ν of them are inserted in the previously identified tours

and positions.
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3. Insert ν containers with regret-k . As noted in Ropke and Pisinger (2006a), the motiva-

tion for using regret is to introduce a look-ahead information in the insertion process.

Let Yi k indicate the tour in which inserting container i using best insertion leads to the

k th lowest increase in the solution costΔ fi ,Yi k
. For a container i , we define the regret-k

value as c k
i = Δ fi ,Yi k

−Δ fi ,Yi 1
, i.e. the difference between inserting the container in

its best tour and its k th best tour. It may be impossible to insert some containers

in k different tours, thus the regret is computed for the largest possible k ′ � k . The

containers in P are sorted in ascending order of k ′ and descending order of c k ′
i . The

first ν containers in the ordered list are inserted in the tours and positions that would

lead to the minimum increaseΔ f min in the solution cost. In other words, we insert

the containers that we will regret the most if they are not inserted now.

4. Shaw insertions with relatedness. This operator selects a random day t and a random

container i ∈P not visited on day t . It then proceeds to find the relatedness measure

Ri j , as defined by formula (3.53), to all containers j ∈P also not visited on day t . It

inserts the container i as well as all containers j not visited on day t , for which Ri j

is lower than a threshold d4, in the tours executed on day t and in the positions that

would lead to the minimum increaseΔ f min in the solution cost.

5. Swap ν random containers. This operator selects two random tours and a random

container in each one, and swaps the container-to-tour assignment by using best

insertion in each tour. It is applied ν times.

6. Insert a dump randomly. This operator selects a random tour and a random dump

from D and inserts it at a random position in the tour.

7. Insert a dump in the best way. This operator selects a random dump from D and inserts

it in the tour and in the position that would lead to the minimum increaseΔ f min in

the solution cost.

8. Swap random dumps. This operator selects two random tours and a random dump in

each one, and swaps the dumps.

9. Replace a random dump. This operator selects a random tour and a random dump in

it, and replaces it with another random dump from D.

10. Reorder dumps. Based on the idea of Hemmelmayr et al. (2013), this operator selects

a random tour, removes all dump visits from it, and finds the locally optimal dump

visit configuration that preserves vehicle capacity feasibility. Figure 3.2 provides an

illustrative example of a tour starting at the depot, visiting containers i1 through i5, and

terminating at the depot. The values of ρ1 through ρ5 denote the container demands,

and we assume a vehicle with a capacity of 10 units. Because a dump will never be

visited between the depot and the first container, they can be merged into a single

node. Each arc starts at a container and ends at a container or the depot, visiting on

its way the indicated containers and the best dump, either j1 or j2, before the end
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Figure 3.2: Feasibility Graph of the Reorder Dumps Operator
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node. The resulting directed graph is not necessarily complete, as it only contains the

vehicle capacity preserving arcs. The solution to the problem amounts to finding the

shortest path from the origin to the destination node representing the depot. We use

the Bellman-Ford algorithm and post-optimize the result using 2-opt local search.

The destroy operators that empty a random day and a random vehicle leave the affected

tour with the depot as an origin and destination, and a dump, and the cost of such a tour

is considered zero. Thus, all original tours always remain available during the search for

removal of points from or insertion of points into. This is a straightforward way to manage the

presence of a heterogeneous fixed fleet without having to re-evaluate periodically vehicle-to-

tour assignments. This strategy will likely not be applicable to more classical meta-heuristics

that exploit much smaller neighborhoods.

3.3.3 Algorithmic Modifications for Solving Benchmark Instances

Several modifications to the original ALNS algorithm are needed in order to integrate the

model reformulations described in Section 3.2.3 and necessary for solving the benchmark

IRP and VRP instances.

Modifications for the Benchmark IRP.

The benchmark IRP considers no intermediate facilities and so we disregard all dump-related

operators. To avoid further changes to the algorithm, the always-present dump visit before

the destination depot is created as a dummy node with zero service time and distance to the

depot, and as such does not affect the solution. For a given solution s , we define the depot

inventory violation as expressed by constraints (3.38) in the benchmark IRP reformulation:

V I (s ) =
∑
t ∈T

�∑
k∈K

∑
i∈P

qi k t − Io t


+
. (3.55)

The violation V I (s ) is multiplied by parameter L I and added to the objective function

representation f (s ) as in expression (3.52). Additionally, we redefine the container capacity
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violation (3.49) in terms of stock-out as it applies to a distribution context:

V ω(s ) =
∑

t ∈T +

∑
i∈P
(−Ii t )

+. (3.56)

The back-order violation (3.50) is dropped since back-orders do not apply to the benchmark

IRP.

Modifications for the Benchmark VRP.

In the original ALNS algorithm, the number of containers inserted into the solution by a

repair operator is randomly drawn and not necessarily the same as the number of containers

removed by the destroy operator applied before it. This design allows to vary the number

of containers visited each day, as this is a decision variable in the IRP. Contrarily, the VRP

assumes that all containers are visited in the solution. To achieve the latter, we implement

an initial solution construction procedure and a simple rearrangement of the destroy and

repair operators.

To construct an initial solution, we use repair operator number 1, insert ν containers rand-

omly, to insert all containers into the solution. The resulting initial solution is not necessarily

feasible. Then we redefine the operators so that all destroy operators and repair operators 5

through 10 are now drawn first, while repair operators 1 through 4 are drawn second. This

separation is based on the operators’ ability to reinsert containers into the solution. In

other words, the repair operators are now only those that have this ability, namely insert ν

containers randomly, insert ν containers in the best way, insert ν containers with regret-k ,

and Shaw insertions with relatedness. Moreover, the number of containers to be reinserted is

not random. The repair operators now reinsert all containers that were previously removed

by the destroy operator. If the destroy operator did not remove any containers, the repair

operator is not applied. Given that all containers are now visited in the solution, we drop

violations (3.49) and (3.50) from the solution representation, i.e. container capacity violation

and backorder violation. If the problem at hand considers no intermediate facilities, we

disregard all dump-related operators. The always-present dump visit before the destination

depot in this latter case is created as a dummy node with zero service time and distance to

the depot, and as such does not affect the solution.

3.4 Numerical Experiments

The ALNS is implemented as a single-thread application in Java, and the forecasting model

and the probability calculator for the state probability tree (Figure 3.1) are scripted in R. All

tests have been carried out on a 3.33 GHz Intel Xeon X5680 server running a 64-bit Ubuntu

16.04.2. Each instance is solved 10 times, out of which we report the best, average, and worst

result, or averaged values of the best, average and worst result over a set of instances, unless
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indicated otherwise. Section 3.4.1 describes how the algorithmic parameters were tuned.

This is followed by results of the ALNS performance on benchmark IRP and VRP instances in

Section 3.4.2. Finally, Section 3.4.3 presents an extensive analysis of the model and solution

methodology applied on a case study with instances derived from real data.

3.4.1 Parameter Tuning

The algorithmic parameters were tuned on the Archetti et al. (2007) instances and the case

study instances described below. We first tuned the SA-related parameters followed by the

ALNS-related and the operator-related parameters. Initial values were either borrowed from

ALNS implementations in the literature or based on preliminary trial-and-error combina-

tions. The parameters were tuned one by one, unless indicated otherwise, in the order in

which they appear in Table 3.2. The initial temperature was set sufficiently high for an initial

feasible solution to be found without difficulty. Once this is the case, the temperature is

calibrated so that the probability of accepting a solution which is worse than it by a factor of

w is 50%. The purpose of this strategy is to limit the search at very high temperatures (Ropke

and Pisinger, 2006a). The cooling rate typically results in several hundred thousand iterati-

ons on the Archetti et al. (2007) instances, and the final temperature allows sufficient time

for the algorithm to converge. The penalty change rate multiplies or divides the penalties

associated with conditions (3.46) through (3.51) as explained in Section 3.3.1. After fixing

the SA-related parameters, we tuned the ALNS-related parameters. The rewards were tuned

together, and after testing several configurations we chose one that attributes a relatively

lower reward e3 for a non-improving but accepted solution. The two destroy operators Shaw

removals with relatedness and remove container cluster were given normalization factors mi

of 8, and the two repair operators insert ν containers in the best way and insert ν containers

with regret-k were given normalization factors mi of 4.5. The normalization factors for the

rest are all equal to one. For the operator-related parameters, the best results were obtained

for regret-2. The relatedness weights d1, d2 and d3 were calibrated at 0.54, 0.23 and 0.23,

respectively. The relatedness thresholds of 0.2 for removals and 0.3 for insertions were found

to perform the best.

Table 3.2: Algorithmic Parameters

SA-Related ALNS-Related Operator-Related

Parameter Value Parameter Value Parameter Value

Initial temperature (T start) 10,000 F segment length 2000 Rel. weight d1 0.54
Start temp. control param. (w ) 0.6 Reaction factor (b ) 0.5 Rel. weight d2 0.23
Cooling rate (r ) 0.99998 Reward e1 30 Rel. weight d3 0.23
Final temperature (T end) 0.01 Reward e2 20 Rel. threshold d4 0.2/0.3
Penalty change rate (�) 1.06 Reward e3 5 Regret k 2
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3.4.2 Benchmark Results

The model reformulations and algorithmic modifications presented in Section 3.2.3 and

Section 3.3.3, respectively, were necessary in order to assess the performance of the solution

methodology on benchmark instances from the literature. Below we present the results

obtained by the ALNS on classical IRP and VRP instance testbeds. Archetti et al.’s (2007)

instances test the ALNS in a classical IRP context with order-up-to level policy. Crevier et al.’s

(2007) instances test the ALNS in a VRP setting with intermediate facilities, the latter being

an important feature that is present in our problem in the form of dumps. Crevier et al.’s

(2007) instances are also representative of a standard waste collection problem and used by

Hemmelmayr et al. (2013) in this context. Finally, Taillard’s (1999) instances test the ALNS

in a VRP context with a rich heterogeneous fixed fleet, which is the most general type of

fleet. These benchmark instances capture many of the features of our problem, albeit not

simultaneously.

Results on IRP Benchmarks.

We ran the ALNS algorithm on the IRP benchmark set proposed by Archetti et al. (2007),

which is the first classical IRP testbed in the literature. It represents a deterministic IRP in a

distribution context where an inventory holding cost ηo applies at the depot, and inventory

holding costs ηi apply at the customers. There is a single vehicle available each day, with

its daily deployment cost ϕk and unit-time running cost θk both equal to zero, and its unit-

distance running cost βk = 1. Stock-outs are forbidden at the customers and the depot.

Vehicle tours are only limited by the vehicle capacity, and no rich VRP features such as

intermediate facilities, time windows, or a maximum tour duration are considered.

The set includes two equal subsets with high, respectively low, inventory holding costs ηi .

The length of the planning horizon |T | is either 3 or 6 periods, and the number of customers

n varies from 5 to 50 for |T |= 3, and from 5 to 30 for |T |= 6. Five instances are generated

for each combination of ηi , |T | and n , thus resulting in a total of 160 instances. Using a

branch-and-cut algorithm, Archetti et al. (2007) solve with a proof of optimality all instances

except one (low ηi , |T |= 3, n = 50), where the gap is brought to 0.99% within the time limit

of two hours. A number of heuristic algorithms are tested on these instances or derivations

thereof (Archetti et al., 2012; Coelho et al., 2012a,b). The most successful one is the hybrid

heuristic of Archetti et al. (2012) which is able to achieve an optimality gap of 0.1% for the

order-up-to policy based on a single experiment per instance, and with computation times

up to several thousand seconds for the largest instances on an Intel Dual Core 1.86 GHz

processor.

Table 3.3 presents our results on the Archetti et al. (2007) instances. The first two columns

report the number of periods |T | in the planning horizon and the number of customers n .

The remainder of the table is divided into two parts, with results for the instances with high,

respectively low, inventory holding cost, each providing the average runtime in seconds, and
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Table 3.3: Results on Archetti et al. (2007) Instances

High Inventory Holding Cost Low Inventory Holding Cost

|T | n Runtime(s.) Best Gap(%) Avg Gap(%) Worst Gap(%) Runtime(s.) Best Gap(%) Avg Gap(%) Worst Gap(%)

3 5 69.08 0.00 0.00 0.00 85.69 0.00 0.00 0.00
3 10 183.94 0.00 0.00 0.00 156.36 0.00 0.00 0.00
3 15 317.93 0.00 0.00 0.00 274.05 0.00 0.00 0.00
3 20 440.02 0.00 0.00 0.01 444.68 0.00 0.00 0.02
3 25 523.42 0.00 0.08 0.25 501.78 0.01 0.20 0.66
3 30 835.21 0.01 0.15 0.32 649.09 0.00 0.41 0.98
3 35 866.06 0.00 0.15 0.36 731.21 0.00 0.46 1.68
3 40 896.91 0.02 0.18 0.44 976.83 0.16 0.47 0.97
3 45 1124.57 0.05 0.42 0.91 1074.19 0.00 1.05 2.53
3 50 1424.27 0.06 0.35 0.79 1223.56 0.13 1.19 2.15

6 5 105.86 0.00 0.00 0.00 73.28 0.00 0.00 0.00
6 10 184.48 0.00 0.01 0.08 181.93 0.00 0.00 0.00
6 15 333.82 0.01 0.09 0.15 272.03 0.00 0.03 0.16
6 20 394.39 0.00 0.17 0.41 420.28 0.05 0.34 0.82
6 25 636.27 0.12 0.34 0.82 546.85 0.09 0.67 1.60
6 30 725.63 0.10 0.47 0.93 733.12 0.44 1.43 2.63

Average 566.37 0.02 0.15 0.34 521.56 0.05 0.39 0.89

the best, average and worst gap to the optimal solution obtained over 10 runs. Each row

averages the latter over the five instances for each combination of ηi , |T | and n . Our results

are comparable to the best from the literature. The ALNS attains a best gap of 0.02% and

0.05%, an average gap of 0.15% and 0.39%, and a worst gap of 0.34% and 0.89% on the high

and low inventory holding cost instances, respectively. In comparison, Archetti et al.’s (2012)

algorithm obtains a gap of 0.06% and 0.10%, respectively, for a single run per instance. We

are able to solve to optimality almost all instances with up to 35 customers for |T |= 3, and

with up to 15 customers for |T |= 6. Similar quality results can also be found in Coelho et al.

(2012a) and Coelho et al. (2012b), also when it comes to the higher gaps on the low inventory

holding cost instances. A possible explanation could be that for low inventory holding costs

the importance of the container selection decision in each period becomes relatively more

pronounced. Our computation times are also very competitive compared to those in the

literature, although a more rigorous scaling approach could be difficult due to the lack of

precise processor architecture specifications in some of the works.

Results on VRP Benchmarks.

The SIRP that we study includes a rich routing component. Since the routing component

in the IRP benchmarks under consideration is very simple, we test our ALNS on two VRP

benchmark instance sets, namely those of Crevier et al. (2007) and Taillard (1999).

Crevier et al. (2007) solve the Multi-Depot VRP with Inter-depot routes (MDVRPI). Their

instances consist of two sets of randomly generated instances with intermediate facilities, a

homogeneous fixed fleet, and a maximum tour duration. Each vehicle’s daily deployment

cost ϕk and unit-time running cost θk are both equal to zero, and its unit-distance running

cost βk = 1. The set (a1–l1) includes 12 newly generated instances with two to five interme-
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diate facilities and 48 to 216 customers. The set (a2–j2) includes 10 instances derived from

those of Cordeau et al. (1997) by adding a central depot where the vehicles are stationed. It

contains four to six intermediate facilities and 48 to 288 customers. The Best Known Soluti-

ons (BKS) to both sets are obtained by Hemmelmayr et al. (2013) who use a VNS with the

dynamic programming procedure for the insertion of the intermediate facilities presented

in Section 3.3.2. In Table 3.4, the instance name is followed by the number of customers n ,

the computation time in seconds, the best and average cost obtained by Hemmelmayr et al.

(2013) over 10 runs. The next three columns report the values produced by our ALNS. The

last two columns represent the percent gap of our best and our average cost with respect

to those of Hemmelmayr et al. (2013). Our best results are on average 0.40% from those of

Hemmelmayr et al. (2013) and we are able to reach five of the BKS. Our gap with respect to

the average value over 10 runs is under 1%. We note that the obtained values are better than

those of the MNS in Chapter 2. We also observe that our ALNS is about six times slower than

Hemmelmayr et al.’s (2013) VNS on these instances.

Taillard (1999) formalizes the Heterogeneous Fixed Fleet VRP (HFFVRP). The version we solve,

known as the HFFVRP with fixed and variable costs, considers a non-zero daily deployment

cost ϕk and unit-distance running cost βk , and a zero unit-time running cost θk . The

instance set is derived from the eight largest Golden et al. (1984) instances by specifying

ϕk and βk for each vehicle k so that no single vehicle is better than any other in terms

of its capacity to cost ratio. The instances include 50, 75, and 100 customers, three to six

vehicle types and up to six vehicles per type. Taillard (1999) spurred a strong scientific

Table 3.4: Results on Crevier et al. (2007) Instances

Hemmelmayr et al. (2013) ALNS

Instance n Runtime(s.) Best Cost Avg Cost Runtime(s.) Best Cost Avg Cost Gap Best(%) Gap Avg(%)

a2 48 73.80 997.94 997.94 140.41 997.94 998.17 0.00 0.02
b2 96 384.60 1291.19 1291.19 681.63 1291.19 1293.11 0.00 0.15
c2 144 900.60 1715.60 1715.84 2314.81 1733.95 1740.11 1.07 1.41
d2 192 1808.40 1856.84 1860.92 9264.81 1870.99 1879.90 0.76 1.02
e2 240 2958.60 1919.38 1922.81 17,694.38 1929.05 1943.05 0.50 1.05
f2 288 4274.40 2230.32 2233.43 32,170.43 2247.60 2273.39 0.77 1.79
g2 72 222.60 1152.92 1153.17 475.02 1152.92 1153.15 0.00 0.00
h2 144 939.60 1575.28 1575.28 2496.57 1582.78 1587.06 0.48 0.75
i2 216 2515.20 1919.74 1922.24 13,896.84 1947.78 1964.21 1.46 2.18
j2 288 4402.80 2247.70 2250.21 40,936.64 2259.25 2283.23 0.51 1.47

a1 48 85.20 1179.79 1180.57 200.24 1190.12 1197.22 0.88 1.41
b1 96 383.40 1217.07 1217.07 925.46 1218.09 1218.97 0.08 0.16
c1 192 1224.00 1866.76 1867.96 6435.66 1874.47 1884.54 0.41 0.89
d1 48 94.20 1059.43 1059.43 139.35 1059.43 1061.86 0.00 0.23
e1 96 373.20 1309.12 1309.12 743.72 1309.12 1319.97 0.00 0.83
f1 192 1536.00 1570.41 1573.05 7303.54 1571.62 1587.91 0.08 0.94
g1 72 202.80 1181.13 1183.32 308.81 1185.99 1189.76 0.41 0.54
h1 144 876.60 1545.50 1548.61 2622.40 1553.12 1565.19 0.49 1.07
i1 216 2014.80 1922.18 1923.52 10,383.43 1925.19 1935.39 0.16 0.62
j1 72 166.80 1115.78 1115.78 489.83 1116.67 1123.14 0.08 0.66
k1 144 873.60 1576.36 1577.96 2937.01 1580.84 1591.56 0.28 0.86
l1 216 2128.80 1863.28 1869.70 9343.72 1870.87 1884.84 0.41 0.81

Average 1292.73 1559.71 1561.32 7359.30 1566.77 1576.17 0.40 0.86
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Table 3.5: Results on Taillard (1999) Instances

ALNS

Instance n BKS Runtime(s.) Best Cost Avg Cost Worst Cost Best Gap(%) Avg Gap(%) Worst Gap(%)

13 50 3185.09 317.91 3228.97 3250.87 3279.00 1.38 2.07 2.95
14 50 10,107.53 335.92 10,123.50 10,143.21 10,158.54 0.16 0.35 0.50
15 50 3065.29 318.48 3072.59 3082.41 3090.24 0.24 0.56 0.81
16 50 3265.41 326.63 3292.22 3312.42 3322.43 0.82 1.44 1.75
17 75 2076.96 762.52 2097.29 2132.52 2148.15 0.98 2.68 3.43
18 75 3743.58 847.68 3801.22 3832.18 3860.08 1.54 2.37 3.11
19 100 10,420.34 1950.83 10,478.69 10,500.96 10,515.97 0.56 0.77 0.92
20 100 4761.26 1598.25 4901.45 4927.19 4946.61 2.94 3.49 3.89

Average 5078.18 807.27 5124.49 5147.72 5165.13 1.08 1.71 2.17

interest in this problem resulting in at least a dozen algorithms in the literature. The proof of

optimality of the solutions to the 50- and 75-customer instances of the problem is due to

Baldacci and Mingozzi (2009). In Table 3.5, the instance name is followed by the number of

customers n and the BKS, which are due to multiple authors. Next are the computation time

in seconds, the best, average and worst cost obtained by our ALNS. The last three columns

report the percent gap of our best, average and worst cost with respect to the BKS. Our results

are on average in the order of 2% from the BKS, most of which are proved to be optimal.

Computation times are in the order of five to 30 minutes.

3.4.3 Case Study

In this section, we analyze the performance of our ALNS on sets of stochastic IRP instances

derived from real data. In the text below, we first introduce the experimental setup and

describes the instances. Then, we evaluate the effect of including the probability information

in the objective function in terms of its impact on the expected cost and the frequency of

occurrence of container overflows and route failures. Next, we compare the probabilistic

approach to alternative practical deterministic policies such as artificial buffer capacities

at the containers and trucks. In the two latter cases, we use simulation of the stochastic

demands to test the quality of the solution produced by the ALNS. Finally, we employ a daily

rolling horizon approach and derive empirical lower and upper bounds on the resulting cost

over a given planning horizon.

Instances.

The case study data, except for the rolling horizon approach, includes 63 instances of white

glass collections performed by a specific collection firm in the canton of Geneva, Switzerland.

A map of the collection area was presented in Chapter 2. The instances are created using

the historical records for weekly visits to white glass containers for the years 2014, 2015

and 2016. The planning horizon is seven days long, starting on Monday and finishing on

Sunday. As established by constraints (3.22) in the mathematical model, there should be
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no expected overflows on the first day after the end of the planning horizon, in our case the

following Monday. On average, there are 41 containers per instance, and the maximum is

53, and their volumes range from 1000 to 3000 liters. Collection takes three or five minutes

depending on container type. There are two dumps located far apart in the periphery of the

city of Geneva. The fleet consists, depending on the instance, of one or two heterogeneous

vehicles of volume capacity in the order of 30,000 liters and weight capacity of 10,000 to

15,000 kg, which are not available on the weekend. We also have access to historical waste

levels for each container. Thus, the demands for each instance are forecast by the model

from Section 3.2.1 using the previous 90 days of observations for each container. Two deposit

sizes–two and ten liters–are used. For each instance, there is a distinct forecasting error ς

estimated by formula (3.4). We do not have information about tour duration, time windows

and the cost parameters, for which we set realistic or reasonable values. Thus, tours should

respect a maximum duration of four hours each, and the time windows correspond to 8:00

a.m. until noon. For the trucks, we use a daily deployment cost of 100 CHF, a cost of 2.95

CHF per kilometer and a cost of 40 CHF per hour. The overflow cost, which is normally

determined by the municipality, is set to 100 CHF.

Probabilistic policies.

To study the impact of the probability information included in the objective function, here

we perform two types of experiments on the instances described above. The first type

considers the complete objective function with all relevant costs, as defined by expression

(3.9). We label the problem with this objective "Complete". The second type minimizes the

routing cost defined by expression (3.10), ignoring all costs related to container overflows,

emergency collections and route failures, and we label the problem with the latter objective

"Routing-only". Since the routing-only problem ignores all stochastic information and only

the stochastic information, it becomes the deterministic version of the stochastic problem.

Tables 3.6, 3.7 and 3.8 summarize the numerical results for various choices of the Emergency

Collection Cost (ECC) and the Route Failure Cost Multiplier (RFCM), and each row represents

averaged values over the 63 instances. In these three tables, the first three columns identify

the type of objective considered (complete vs. routing-only), the applied ECC, and the

applied RFCM. In Table 3.6, the next four columns report the computation time, the average

number of tours, container collections and dump visits. As each instance is solved 10 times,

the next three columns report the average over the 63 instances of the best, average and worst

cost, respectively, over the 10 runs for each instance. The last two columns show the percent

gap between the average and the best cost, and the worst and the best cost, respectively. We

observe that computation times are in the order of 10 to 15 minutes, which is acceptable

for an operational problem that is solved on a daily basis. The results indicate clearly that

the complete objective solution collects on average more than twice as many containers

and, as a consequence, performs more tours and dump visits. In terms of expected cost, it is

50 to 60% more expensive. Since the optimal solution is not available, we can only judge

the quality of the result based on the gaps presented in the last two columns. Over the 63
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instances, the average gap between the average cost and the best cost is in the order of 0.5%,

and between the worst cost and the best cost it is in the order of 1.5%, which is an indicator

of the quality of our ALNS. The values are lowest for the routing-only objective and grow

with higher ECC for the complete objective, reflecting the more challenging search space

produced by the non-linearities present there. On the other hand, it appears that the gaps

are almost unaffected by the RFCM.

Table 3.7 is a more detailed breakdown of the cost and efficiency structure of the set of

objective functions presented in Table 3.6. The fourth, fifth and sixth column decompose

the average solution cost from Table 3.6 into routing, overflow and route failure cost. The

last three columns report the total collected volume in liters, and the volume per unit of total

cost and per unit of routing cost, which can be regarded as performance indicators. The

results reveal that the routing cost of the complete objective solution is on average only 30

to 40% higher than that of the routing-only objective solution. The rest of the difference in

the total solution cost is explained by the contribution of the expected overflow cost. The

routing cost is lower for a lower emergency collection cost, while the expected overflow cost

remains almost unchanged. A higher emergency collection cost necessitates more frequent

Table 3.6: Probabilistic Policies: Basic Results for Cost Analysis on Real Data Instances

Avg Num Avg Num Avg Num Best Cost Avg Cost Worst Cost Gap Avg- Gap Worst-
Objective ECC RFCM Runtime(s.) Tours Collections Dump Visits (CHF) (CHF) (CHF) Best(%) Best(%)

Complete 100.00 1.00 870.65 1.95 44.41 2.24 662.65 666.64 672.87 0.60 1.54
Complete 100.00 0.50 871.84 1.95 44.45 2.25 662.38 666.57 673.30 0.63 1.65
Complete 100.00 0.25 885.52 1.95 44.46 2.24 662.38 666.92 673.15 0.69 1.63
Complete 100.00 0.00 871.81 1.95 44.46 2.23 662.26 666.78 674.01 0.68 1.78
Complete 50.00 1.00 864.57 1.92 42.39 2.18 648.14 651.36 656.77 0.50 1.33
Complete 50.00 0.50 855.51 1.92 42.40 2.17 647.99 651.50 656.90 0.54 1.37
Complete 50.00 0.25 873.28 1.92 42.36 2.16 648.05 651.15 656.66 0.48 1.33
Complete 50.00 0.00 856.39 1.92 42.35 2.18 648.14 651.40 656.47 0.50 1.29
Complete 25.00 1.00 841.94 1.90 41.03 2.16 638.61 641.41 646.06 0.44 1.17
Complete 25.00 0.50 844.22 1.90 41.05 2.16 638.38 641.22 645.89 0.44 1.18
Complete 25.00 0.25 846.67 1.90 41.01 2.15 638.57 641.50 646.19 0.46 1.19
Complete 25.00 0.00 855.83 1.90 41.01 2.15 638.42 641.49 646.36 0.48 1.24
Routing-only 0.00 0.00 681.27 1.83 16.64 1.87 421.99 422.48 423.12 0.12 0.27

Table 3.7: Probabilistic Policies: Key Performance Indicators for Cost Analysis on Real Data
Instances

Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters Per Liters Per Unit
Objective ECC RFCM Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Complete 100.00 1.00 579.75 86.86 0.03 47,821.12 71.73 82.49
Complete 100.00 0.50 579.84 86.65 0.07 47,920.02 71.89 82.64
Complete 100.00 0.25 580.16 86.71 0.04 47,925.52 71.86 82.61
Complete 100.00 0.00 579.93 86.85 0.00 47,872.93 71.80 82.55
Complete 50.00 1.00 563.52 87.83 0.01 46,247.51 71.00 82.07
Complete 50.00 0.50 563.03 88.40 0.08 46,327.89 71.11 82.28
Complete 50.00 0.25 562.19 88.91 0.05 46,380.87 71.23 82.50
Complete 50.00 0.00 563.34 88.06 0.00 46,404.74 71.24 82.37
Complete 25.00 1.00 553.80 87.59 0.02 45,215.18 70.49 81.64
Complete 25.00 0.50 553.74 87.42 0.07 45,279.65 70.62 81.77
Complete 25.00 0.25 553.77 87.68 0.06 45,281.71 70.59 81.77
Complete 25.00 0.00 553.53 87.96 0.00 45,347.30 70.69 81.92
Routing-only 0.00 0.00 422.48 0.00 0.00 24,955.14 59.07 59.07
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visits as an attempt to further limit overflows. The route failure cost in both solutions is

practically null. Not surprisingly, the solutions with the complete objective collect more

volume as well. However, a better indication of their efficiency is provided by the collected

volume per unit cost, which is 20% higher with respect to the total cost, and almost 40%

higher with respect to the routing cost.

The relevance of the probability information captured by the objective function can be

evaluated through the analysis of the occurrence of extreme events. After solving each

instance, we simulate 10,000 scenarios, sampling the forecasting error independently for

each container and each day using the estimate ς. We then evaluate the effect on the

occurrence of container overflows and route failures in the solution of the ALNS algorithm.

An overflow is counted on each day, i.e. if a container is overflowing on two consecutive

days because it is not collected, we count two overflows. Table 3.8 summarizes the number

of overflows and route failures at the 75th, 90th, 95th and 99th percentiles of the 10,000

simulated scenarios, where each row is an averaged result for the 63 instances. We observe a

strong negative correlation of the average number of overflows with the emergency collection

cost and of the average number of route failures with the RFCM. What is more striking,

however, is the difference between the series of complete objectives on the one hand and

the routing-only objective on the other. While the complete objectives limit the number of

overflows to about four, even at the extreme of the simulated scenarios, the average number

of overflows for the routing-only objective is higher by a degree of magnitude.

Figure 3.3 is a visual representation of the average cost of overflows that the collector would

pay at the 75th, 90th, 95th and 99th percentile of the simulated scenarios over all 63 instances,

for the routing only solution and for the complete solution with an ECC of 100 CHF and an

RFCM equal to one. The differences are consequential. The cost due to the routing-only

objective is from 20 times higher at the 75th percentile to 8 times higher at the 99th percentile,

which is a clear indication of the underestimation of risk in the face of stochastic demand.

Even at the 99th percentile, the complete objective would result, on average, in a total cost

Table 3.8: Probabilistic Policies: Container Overflows and Route Failures for Real Data
Instances

Avg Num Overflows Avg Num Route Failures

Objective ECC RFCM 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Complete 100.00 1.00 0.83 1.60 2.15 3.26 0.05 0.05 0.05 0.07
Complete 100.00 0.50 0.81 1.58 2.14 3.27 0.05 0.06 0.07 0.10
Complete 100.00 0.25 0.81 1.59 2.15 3.26 0.05 0.07 0.07 0.11
Complete 100.00 0.00 0.83 1.57 2.16 3.28 0.10 0.11 0.12 0.16
Complete 50.00 1.00 1.04 1.87 2.48 3.72 0.05 0.05 0.05 0.05
Complete 50.00 0.50 1.04 1.86 2.48 3.73 0.05 0.07 0.07 0.07
Complete 50.00 0.25 1.06 1.88 2.50 3.72 0.06 0.09 0.09 0.10
Complete 50.00 0.00 1.06 1.87 2.48 3.72 0.09 0.11 0.11 0.13
Complete 25.00 1.00 1.26 2.12 2.73 4.08 0.06 0.06 0.06 0.06
Complete 25.00 0.50 1.25 2.10 2.73 4.07 0.05 0.07 0.07 0.07
Complete 25.00 0.25 1.25 2.11 2.74 4.09 0.05 0.08 0.08 0.09
Complete 25.00 0.00 1.25 2.11 2.77 4.09 0.09 0.10 0.11 0.11
Routing-only 0.00 0.00 16.93 20.45 22.55 26.71 0.04 0.05 0.05 0.05
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of less than 1000 CHF, compared to more than 3000 CHF for the routing-only objective.

Figure 3.4 is a box-plot of the average number of simulated container overflows for the 63

instances at the 75th, 90th, 95th and 99th percentile. For the complete objective with an

ECC of 100 CHF and an RFCM equal to one, the ratio of container overflows to the number

of containers in the instance goes from 2% at the 75th to 9% at the 99th percentile. For the

routing-only objective, these values are 41% and 66%, respectively.

To study the main drivers of the number of container overflows, we perform a series of

linear regressions. Table 3.9 consists of two parts. In part (a) the explanatory factor is the

forecasting error ς, while in part (b) it is the number of containers in the instance. In both

parts, the first column identifies the type of objective considered, and the rest of the columns

correspond to the dependent variable, i.e. the average number of container overflows over

the 63 instances at the 75th, 90th, 95th and 99th percentile. For each of them, we report the

coefficient of the explanatory factor followed by a significance code, and the coefficient of

determination R 2. We observe that all coefficients are positive as expected. The regressions

on the forecasting error suggest that it explains approximately half of the variability in the

container overflows for the routing-only objective and about 40% in the case of the complete

objective with an ECC of 100 CHF and an RFCM equal to one. This result is intuitive as higher

forecasting errors lead to larger demand perturbations in the simulation experiments and, as

Figure 3.3: Average Cost of Overflows at Different Percentiles of the Simulated Scenarios
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Table 3.9: Driving Factors for the Occurrence of Container Overflows

(a) Regressions on Forecasting Error ς
75th Percentile 90th Percentile 95th Percentile 99th Percentile

Objective Coefficient R 2 Coefficient R 2 Coefficient R 2 Coefficient R 2

Complete with ECC=100, RFCM=1 0.02*** 0.41 0.02*** 0.35 0.03*** 0.45 0.03*** 0.46
Routing-only 0.16*** 0.52 0.18*** 0.53 0.19*** 0.52 0.21*** 0.51

(b) Regressions on Number of Containers in the Instance
75th Percentile 90th Percentile 95th Percentile 99th Percentile

Objective Coefficient R 2 Coefficient R 2 Coefficient R 2 Coefficient R 2

Complete with ECC=100, RFCM=1 0.02 0.03 0.01 0.01 0.02 0.02 0.02 0.01
Routing-only 0.34*** 0.24 0.37*** 0.24 0.40*** 0.25 0.46*** 0.26

Note. Significance codes: ∗∗∗ 99%.

a consequence, to a higher rate of overflows. Nevertheless, the coefficient values in the case

of the complete objective with an ECC of 100 CHF and an RFCM equal to one are very low,

suggesting that the forecasting error has only a very slight effect on the number of overflows.

The results of the regressions on the number of containers in the instance exhibit an even

more pronounced difference. While it can explain approximately 25% of the variability in the

container overflows for the routing-only objective, the number of containers in the instance

seems not to have an effect on the overflows in the case of the complete objective with an

ECC of 100 CHF and an RFCM equal to one. We observe no significant coefficients in the

latter case. This is a desirable result as it would suggest that the number of overflows does

not scale up with the instance size. It also has a managerial implication, giving a reliable

estimate of extreme events over a wide range of situations.

Appendix A provides additional analysis of complementary results. In particular, Appen-

dix A.1 explores the differences in collection strategies between the complete objective

solutions and the routing-only solutions, showing that the complete objective anticipates

overflows during the weekend when vehicles are not available and collects containers pre-

ventively although they are relatively empty. Appendix A.2 studies the effect of using smaller

capacity vehicles on the route failure cost, showing that the ERFC component remains a

relatively small fraction of the total cost.

Alternative Policies.

To further study the theoretical justification and practical relevance of the probabilistic

approach, we compare it to an intuitive routing-only approach, in which during the solution

of the problem we use artificially low capacities for the containers and the trucks. This policy

is an attempt to control the number of container overflows and route failures and it also

leads, undoubtedly, to higher routing costs due to the necessity of more frequent visits. After

each instance is solved, we perform the same simulation-based validation of the solution as

before. However, during the simulation we count the number of container overflows and
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route failures with respect to the original container and truck capacities. Thus, we have a fair

comparison between the probabilistic approach and the alternative policies of artificially

low capacities.

Tables 3.10, 3.11 and 3.12 are structured in the same way as Tables 3.6, 3.7 and 3.8. Here, the

objective is always routing-only and what varies are the Container Effective Capacity (CEC)

and the Truck Effective Capacity (TEC) as fractions of their original capacities. In Table 3.10,

we note the strong negative correlation between the container effective capacity and the

average number of tours, container collections and dump visits in the solutions. We also

notice that the relative increase in the number of container collections is much higher than

the reduction of the container effective capacity. This is an artifact of the finite planning

horizon as many containers may be collected two or three times rather than once or twice

due to their smaller effective capacities. This effect will most likely diminish over the long

run. We notice that the solution time grows with the number of container collections, and so

do the solution gaps. Yet, the increase of the solution time is smaller than the increase of the

number of container collections. Moreover, even the highest gaps for a container effective

capacity of 60% remain in the order of 1.5% and below. One explanation for the increase

of solution time and the gaps could be that the problem becomes tighter and hence the

solution space more challenging. In fact, two of the instances for a CEC of 60% are infeasible.

Table 3.11 shows the gradual growth of the routing cost as we reduce the effective capacities.

Since the objective is always routing-only, the overflow and route failure components do

not apply. The last three columns reveal an interesting result. Lowering the CEC from 100%,

to 90%, to 75% results in solutions collecting more volume, but also more volume per unit

routing cost. However, further lowering the container effective capacity to 60% results in

a disproportionately higher routing cost. As a result, despite collecting more volume, the

solutions with a CEC of 60% are less efficient in terms of collected volume per unit routing

cost compared to the solutions with a CEC of 75%. Table 3.12 describes the average results

of the 10,000 simulation scenarios that were performed on each instance with the original

Table 3.10: Alternative Policies: Basic Results for Cost Analysis on Real Data Instances

Avg Num Avg Num Avg Num Best Cost Avg Cost Worst Cost Gap Avg- Gap Worst-
Objective CEC TEC Runtime(s.) Tours Collections Dump Visits (CHF) (CHF) (CHF) Best(%) Best(%)

Routing-only 1.00 1.00 682.31 1.83 16.64 1.87 421.95 422.51 423.16 0.13 0.29
Routing-only 1.00 0.90 685.38 1.83 16.65 1.87 422.22 422.80 423.47 0.14 0.30
Routing-only 1.00 0.75 672.96 1.83 16.65 1.95 423.38 424.02 424.92 0.15 0.36
Routing-only 1.00 0.60 757.33 1.83 16.66 2.04 425.31 426.06 426.93 0.18 0.38
Routing-only 0.90 1.00 742.70 2.00 22.63 2.02 486.29 486.83 487.59 0.11 0.27
Routing-only 0.90 0.90 746.77 2.00 22.62 2.06 486.82 487.39 488.09 0.12 0.26
Routing-only 0.90 0.75 738.18 2.00 22.62 2.15 488.46 489.16 489.95 0.14 0.31
Routing-only 0.90 0.60 725.43 2.00 22.63 2.37 492.74 493.71 494.69 0.20 0.39
Routing-only 0.75 1.00 873.54 2.00 33.52 2.43 541.87 542.92 544.53 0.19 0.49
Routing-only 0.75 0.90 863.36 2.00 33.52 2.60 544.60 545.78 547.25 0.22 0.49
Routing-only 0.75 0.75 869.94 2.00 33.50 2.86 549.13 550.15 551.46 0.19 0.42
Routing-only 0.75 0.60 862.67 2.00 33.54 3.12 555.35 557.37 559.75 0.36 0.79
Routing-only 0.60 1.00 1037.72 2.97 44.59 3.78 780.40 783.05 788.46 0.34 1.03
Routing-only 0.60 0.90 1241.91 2.97 44.65 3.88 782.50 785.42 792.24 0.37 1.25
Routing-only 0.60 0.75 1060.95 2.97 44.67 4.10 788.74 792.06 798.07 0.42 1.18
Routing-only 0.60 0.60 1023.95 2.97 44.79 4.58 799.71 804.37 811.70 0.58 1.50
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container and truck effective capacities. It is immediately clear that considering artificially

low capacities during the solution has a marked effect in reducing overflows and route

failures. To be precise, the average number of overflows drops by roughly a third when the

container effective capacity is reduced to 90% and by roughly two thirds when it is reduced

to 75%. On the other hand, reducing the truck effective capacity to 90% can effectively

eliminate the occurrence of route failures.

Figures 3.5 and 3.6 present a side-by-side comparison of the probabilistic and the alternative

policies of using artificially low container and truck capacities. In both figures, the first

12 bars represent the probabilistic model with complete objective function for various

Emergency Collection Costs (ECC) and Route Failure Cost Multipliers (RFCM). The last 16

Table 3.11: Alternative Policies: Key Performance Indicators for Cost Analysis on Real Data
Instances

Avg Routing Avg Overflow Avg Rte Failure Avg Collected Liters Per Liters Per Unit
Objective CEC TEC Cost (CHF) Cost (CHF) Cost (CHF) Volume (L) Unit Cost Routing Cost

Routing-only 1.00 1.00 422.51 0.00 0.00 24,992.02 59.15 59.15
Routing-only 1.00 0.90 422.80 0.00 0.00 24,963.64 59.04 59.04
Routing-only 1.00 0.75 424.02 0.00 0.00 24,986.17 58.93 58.93
Routing-only 1.00 0.60 426.06 0.00 0.00 24,909.59 58.46 58.46
Routing-only 0.90 1.00 486.83 0.00 0.00 31,553.37 64.81 64.81
Routing-only 0.90 0.90 487.39 0.00 0.00 31,577.74 64.79 64.79
Routing-only 0.90 0.75 489.16 0.00 0.00 31,747.19 64.90 64.90
Routing-only 0.90 0.60 493.71 0.00 0.00 31,846.97 64.51 64.51
Routing-only 0.75 1.00 542.92 0.00 0.00 44,149.46 81.32 81.32
Routing-only 0.75 0.90 545.78 0.00 0.00 44,108.02 80.82 80.82
Routing-only 0.75 0.75 550.15 0.00 0.00 43,985.69 79.95 79.95
Routing-only 0.75 0.60 557.37 0.00 0.00 44,219.61 79.34 79.34
Routing-only 0.60 1.00 783.05 0.00 0.00 54,332.98 69.39 69.39
Routing-only 0.60 0.90 785.42 0.00 0.00 54,360.53 69.21 69.21
Routing-only 0.60 0.75 792.06 0.00 0.00 54,479.13 68.78 68.78
Routing-only 0.60 0.60 804.37 0.00 0.00 54,564.10 67.83 67.83

Table 3.12: Alternative Policies: Container Overflows and Route Failures for Real Data In-
stances

Avg Num Overflows Avg Num Route Failures

Objective CEC TEC 75th Perc. 90th Perc. 95th Perc. 99th Perc. 75th Perc. 90th Perc. 95th Perc. 99th Perc.

Routing-only 1.00 1.00 16.96 20.47 22.58 26.71 0.03 0.05 0.05 0.05
Routing-only 1.00 0.90 16.93 20.42 22.54 26.68 0.00 0.00 0.00 0.00
Routing-only 1.00 0.75 16.90 20.42 22.55 26.70 0.00 0.00 0.00 0.00
Routing-only 1.00 0.60 16.85 20.37 22.50 26.63 0.00 0.00 0.00 0.00
Routing-only 0.90 1.00 10.29 13.07 14.78 18.23 0.02 0.02 0.02 0.02
Routing-only 0.90 0.90 10.25 13.04 14.74 18.15 0.00 0.00 0.00 0.00
Routing-only 0.90 0.75 10.27 13.03 14.77 18.15 0.00 0.00 0.00 0.00
Routing-only 0.90 0.60 10.28 13.02 14.77 18.21 0.00 0.00 0.00 0.00
Routing-only 0.75 1.00 4.23 6.07 7.25 9.65 0.06 0.06 0.06 0.06
Routing-only 0.75 0.90 4.25 6.06 7.27 9.66 0.00 0.00 0.00 0.00
Routing-only 0.75 0.75 4.25 6.07 7.29 9.68 0.00 0.00 0.00 0.00
Routing-only 0.75 0.60 4.24 6.03 7.25 9.67 0.00 0.00 0.00 0.00
Routing-only 0.60 1.00 2.17 3.52 4.45 6.34 0.01 0.01 0.01 0.01
Routing-only 0.60 0.90 2.18 3.52 4.48 6.32 0.00 0.00 0.00 0.00
Routing-only 0.60 0.75 2.15 3.54 4.46 6.29 0.00 0.00 0.00 0.00
Routing-only 0.60 0.60 2.17 3.53 4.47 6.31 0.00 0.00 0.00 0.00
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Figure 3.5: Comparison of Routing Cost for Probabilistic and Alternative Policies
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bars represent the alternative policies of using artificially low capacity for various Container

Effective Capacities (CEC) and Truck Effective Capacities (TEC). We should point out that

the baseline routing-only policy with container and truck effective capacity of 100% has

the lowest routing cost. Figure 3.5 reveals that the routing cost of the probabilistic policies

considered ranges from approximately 550 to 580 CHF depending mostly on the value

of the emergency collection cost. This latter range is relatively limited compared to the

range of routing costs for the alternative policies, which goes from 420 to 800 CHF, with

pronounced jumps linked to the variation of the container effective capacity. We observe a

disproportionate cost increase linked to lowering the container effective capacity from 75%

to 60%. This effect is due to the fact that many more containers need to be collected now.

There are on average three vs. two tours per solution, compared to the case of a CEC of 75%

or 90%. Moreover, tours are on average also longer and as a result less compact.

We contrast the above observation with the average number of overflows and route failures

after the simulation-based validation of both types of policies. These are presented in

Figure 3.6, in parts (a) and (b), respectively. What part (a) of the figure reveals is that all

considered probabilistic policies are able to contain the number of overflows to very low

values. There is still a slight increase in the number of overflows (with an associated slight

decrease in the routing cost) when the emergency collection cost is reduced from 100 to

50 and then to 25 CHF. Nevertheless, the average number of overflows across all instances

is approximately four, even at the 99th percentile. In comparison, the average number

of overflows for the alternative policies is markedly higher. While reducing the container

effective capacity leads to a considerable drop in the number of overflows, the alternative

policies cannot beat the probabilistic ones. A case in point are the complete objective

solutions for an ECC of 25 CHF and the routing-only solutions for a CEC of 75%. While they

incur a similar routing cost as shown in Figure 3.5, Figure 3.6 reveals that the occurrence of

overflows for the routing-only solutions is more than twice as high. Reducing further the

CEC leads to a mild decrease in the occurrence of overflows accompanied by a significant

increase in the routing cost. We must stress here that since we compare the performance of
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Figure 3.6: Comparison of Container Overflows and Route Failures for Probabilistic and
Alternative Policies

0

10

20

ECC=1
00

,R
FCM=1

ECC=1
00

,R
FCM=0

.5

ECC=1
00

,R
FCM=0

.25

ECC=1
00

,R
FCM=0

ECC=5
0,R

FCM=1

ECC=5
0,R

FCM=0
.5

ECC=5
0,R

FCM=0
.25

ECC=5
0,R

FCM=0

ECC=2
5,R

FCM=1

ECC=2
5,R

FCM=0
.5

ECC=2
5,R

FCM=0
.25

ECC=2
5,R

FCM=0

CEC=1
,TEC=1

CEC=1
,TEC=0

.9

CEC=1
,TEC=0

.75

CEC=1
,TEC=0

.6

CEC=0
.9,

TEC=1

CEC=0
.9,

TEC=0
.9

CEC=0
.9,

TEC=0
.75

CEC=0
.9,

TEC=0
.6

CEC=0
.75

,TEC=1

CEC=0
.75

,TEC=0
.9

CEC=0
.75

,TEC=0
.75

CEC=0
.75

,TEC=0
.6

CEC=0
.6,

TEC=1

CEC=0
.6,

TEC=0
.9

CEC=0
.6,

TEC=0
.75

CEC=0
.6,

TEC=0
.6

Policies

Av
g 

O
cc

ur
re

nc
e

(a) Overflows
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(b) Route Failures

Percentiles 75th 90th 95th 99th

two policy types in terms of number of overflows and route failures at different percentiles,

we must isolate these components from the solution cost of the probabilistic model. The

above findings clearly indicate the superior performance of the probabilistic policies in the

face of stochastic demand. Whereas the alternative policies can only control overflows in the

expected sense, the probabilistic model attributes a cost to this uncertainty over the whole

planning horizon. Thus, it uses foresight in a much more intelligent way.

Lastly, part (b) of Figure 3.6 shows how both types of policies perform in terms of the average

number of route failures over all instances. Here, the alternative policies appear to be

more successful. As already noted before, reducing the truck effective capacity to 90% is

sufficient to eliminate the occurrence of route failures. As far as the probabilistic policies

are concerned, we identify an interesting pattern. The number of route failures is positively

correlated with the emergency collection cost and negatively correlated with the route failure

cost multiplier. The latter is an intuitive result. The former relationship, however, is slightly

more intricate. What is at play here is a trade-off between container overflows and route

failures. A higher emergency collection cost incentivizes more frequent visits. Trucks thus
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collect more containers in each tour and, by consequence, in each depot-to-dump or dump-

to-dump visit. Since trucks are fuller on average, the solution is subject to a higher risk

of route failures. The probabilistic policies collect on average more containers than the

alternative policies and this could be a valid explanation of the latter’s better performance

when it comes to limiting the number of route failures. However, as reported in Table 3.7,

the contribution of the expected route failure cost to the total solution cost for our particular

instances is in any case immaterial.

Rolling Horizon Approach.

In practice, the SIRP that we consider will be solved on a daily rolling horizon basis using

the latest available container level information. In this approach, the problem is solved for a

planning horizon T , the tours that are scheduled on day t = 0 are executed, the horizon is

rolled over by a day, the problem is re-solved for the new initial container levels and updated

forecasts, and so on. Thus, true demands are gradually revealed each day, but the demands

over the planning horizon are still stochastic. This type of problem is known as the Dynamic

and Stochastic Inventory Routing Problem (DSIRP). The solution of the DSIRP requires the

solution of an SIRP at each rollover. The cost of the DSIRP is composed of the total routing

and overflow cost on day t = 0 resulting from the solution of the SIRP at each rollover. We

note that the route failure cost does not apply on day t = 0. We also note that overflows on

day t = 0 are deterministic, since the container levels are fully known, and thus for each

overflow on day t = 0 the full overflow cost χ is paid.

In the solution of the DSIRP, true demands are gradually revealed in the solution process,

which reduces uncertainty. Thus, we hypothesize that its solution cost should be bounded

above by the solution cost of a static SIRP for the same planning horizon. Assume that we

solve the SIRP for a planning horizon T = {0, . . . , u}. In order to compare its cost to that of the

DSIRP, we should roll over for a number of times equal to the length of the planning horizon

T , i.e. the last rollover should be on day u . Moreover, for rollover t the initial container levels

are updated by true demands and also dependent on the solution of rollover t −1. Updated

forecasts should ideally be used if available. We also hypothesize that the solution of the

DSIRP should be bounded below by the solution of a static IRP using true demands for the

same planning horizon T . Using true demands rids the problem of any uncertainty. The

solution of the IRP results in an intelligent assignment of tours to days. Thus, the number of

executed tours over the planning horizon will be minimized and tours may not be executed

on each day. This is not necessarily the case for the solution of the DSIRP, which has no

memory of the past rollovers and may assign tours on day t = 0 for each rollover.

To test our hypotheses, we generate a second set of real data instances. It comprises 41

instances, each covering two weeks of white glass collections in the canton of Geneva,

Switzerland in 2014, 2015, or 2016. On average, there are 69 containers per instance, and the

maximum is 86. Otherwise, the instances fit the same description as the set of 63 instances
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Table 3.13: Analysis of Rolling Horizon DSIRP Bounds

Static IRP with Rolling DSIRP with Static SIRP with Static IRP with Rolling DSIRP with Static SIRP with
Instance True Demand Forecast Demand Forecast Demand Instance True Demand Forecast Demand Forecast Demand

Inst_1 276.44 585.69 658.39 Inst_22 429.20 526.06 607.22
Inst_2 448.67 937.47 849.43 Inst_23 241.44 568.15 681.54
Inst_3 307.88 626.01 816.05 Inst_24 547.92 769.08 747.64
Inst_4 266.15 577.82 701.61 Inst_25 446.31 583.87 689.37
Inst_5 450.14 663.50 790.44 Inst_26 442.02 575.57 656.27
Inst_6 300.73 624.62 708.79 Inst_27 441.36 595.47 705.01
Inst_7 268.65 580.83 649.67 Inst_28 465.74 628.59 733.80
Inst_8 427.17 608.31 680.36 Inst_29 436.25 579.74 701.33
Inst_9 442.34 609.44 656.44 Inst_30 414.41 701.87 692.33
Inst_10 448.70 578.34 647.05 Inst_31 442.87 530.14 668.17
Inst_11 467.35 614.28 669.33 Inst_32 255.32 617.04 695.62
Inst_12 449.20 681.10 625.59 Inst_33 460.04 641.00 773.33
Inst_13 254.66 558.57 629.36 Inst_34 505.55 674.98 710.84
Inst_14 276.60 613.72 685.64 Inst_35 481.85 746.10 786.94
Inst_15 429.26 562.12 788.75 Inst_36 454.60 658.51 741.02
Inst_16 529.60 626.97 702.61 Inst_37 465.33 651.41 749.50
Inst_17 423.07 589.66 663.90 Inst_38 519.56 709.76 809.91
Inst_18 457.65 596.14 681.29 Inst_39 243.94 623.29 697.93
Inst_19 448.66 524.41 596.81 Inst_40 450.94 620.09 756.48
Inst_20 418.12 569.73 653.22 Inst_41 403.01 576.45 688.68
Inst_21 276.32 570.41 622.47

Note. The four instances for which the hypothesized bounds do not hold are shown in bold.

described in the beginning of the section. We solve the static IRP with true demands and

static SIRP with forecast demands for the first week, and the DSIRP with a one week planning

horizon and rollovers for the first week. Table 3.13 presents the results we obtain. Since we

are interested in verifying the empirical existence of the hypothesized bounds, we report

the best cost out of 10 runs for each instance. We observe that the hypothesized bounds

are obtained in all but four cases, which are shown in bold. The relative differences are also

very interesting to look at. The solutions of the DSIRP are on average 61% more expensive

than those of the static IRP with true demands. This result is inevitably related to the level

of uncertainty as represented by the forecasting error ς. In other words, if more accurate

forecasting methodologies are available, this gap may be brought down. On the other hand,

the static SIRP approach is on average 14% more expensive than the rollover approach for

the DSIRP. This clearly shows the benefit of applying the latter in practical situations.

3.5 Summary

In this chapter, we motivate and formulate the waste collection IRP, an extension of the

waste collection VRP from Chapter 2. Demand is stochastic and non-stationary, and can

be forecast by any model that provides the expected demands over the planning horizon

and a measure of uncertainty represented by the standard deviation of the error terms, the

latter assumed to be iid normal. This results in a rich stochastic inventory routing problem,

whose objective captures demand uncertainty with the goal of minimizing the expected

cost, including the expected cost of recourse actions, subject to a range of practical and

policy-related constraints. To solve the problem, we develop an ALNS algorithm which

produces excellent results on IRP benchmarks sets from the literature, as well as very good
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results on rich vehicle routing instances. The application of the methodology to instances

derived from real data confirms the relevance of the probability information in the objective

function.

The computational experiments demonstrate that including probabilistic information in the

objective function leads to a relatively modest increase in the routing cost, while avoiding

major expenditures that otherwise occur even at moderate percentiles of the simulated

demand scenarios. Based on our policy, we can control the rate of occurrence of undesirable

events, like overflows and route failures, by scaling the probability-related costs considered

in the objective function. The probabilistic approach significantly outperforms alternative

policies of using artificially low capacities for the containers and the trucks in its ability to

control the occurrence of container overflows for the same routing cost. We also analyze

the solution properties of a rolling horizon approach and verify the hypothesized lower and

upper bounds on the solution cost.

Chapter 4 extends the ideas presented here to a unified framework for rich routing problems

with stochastic demands. It relaxes fully or partially the assumption of iid normal error

terms, considers a more general inventory policy, discusses tractability related topics, and

illustrates applications to a variety of rich routing problems borrowed from the literature

and inspired from practice.

76



4 A Unified Framework for Rich Routing
Problems with Stochastic Demands

This chapter is an extension of the article:

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2017). A general

framework for routing problems with stochastic demands. Proceedings of the 17th Swiss

Transport Research Conference (STRC), May, 17-19, 2017.

The work therein has been performed by the author in collaboration with Prof. Michel

Bierlaire, Prof. Jean-François Cordeau, Prof. Yousef Maknoon and Prof. Sacha Varone.

This chapter generalizes the waste collection IRP of Chapter 3 in a unified framework for

modeling and solving rich routing problems with stochastic demands, including among

others the VRP and the IRP. We relax fully or partially the assumption of iid normal error

terms and discuss the ensuing tractability issues and how we tackle them.

The two classical IRP inventory policies are the Order-Up-to (OU) level policy and the

Maximum Level (ML) policy (Bertazzi et al., 2002; Archetti et al., 2011). Under the former

delivery is up to the capacityωi , while under the latter the delivery quantity is part of the

decisions. We consider a discretized ML policy, which is more general than the OU policy

used in the waste collection IRP. The reason for this discretization is again tractability, as

the presence of discrete levels allows us to pre-process much of the probability infromation

before starting the solution process.

We extend and refine the notation of Chapter 3, and propose a general optimization model

which can be adapted to various distribution and collection VRP and IRP problems from the

literature and practice, from waste collection to maritime inventory routing. To assess the

suitability of the framework, we perform numerical experiments on the waste collection IRP

instances of Chapter 3 and on a new set of instances for the facility maintenance problem,

in which the probability of facility breakdowns accumulates with time in a way similar to

inventory.
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The chapter is organized as follows. Section 4.1 offers a brief review of the relevant literature

on rich routing problems from several application areas, including health care, waste col-

lection, and maritime, with a focus on demand stochasticity. Section 4.2 introduces the main

concepts and modeling elements used by the unified framework. These are further discussed

and elaborated in Section 4.3, which details the treatment of demand stochasticity, and

Section 4.4, which develops the optimization model. In turn, Section 4.5 provides examples

of adapting the framework to various specific problem classes. Section 4.6 presents the

numerical experiments and, finally, Section 4.7 ends with a summary of the main findings

and contributions.

4.1 Related Literature

This section offers a literature review of routing problems with stochastic demands, starting

from rich vehicle and inventory routing problems in general and then exploring several

specific and pertinent application areas. The analysis comments on the variety of appro-

aches used in integrating stochastic demand in the modeling and solution process, thus

highlighting the need for a unified approach.

4.1.1 Rich Vehicle and Inventory Routing Problems

Rich vehicle routing problems are multi-constrained routing problems that extend the classi-

cal capacitated VRP (Dantzig and Ramser, 1959) by including a variety of features relevant to

real-world problems, such as heterogeneous fleets, time windows, driver constraints, open

tours, multiple depots or intermediate replenishment facilities, dynamism, stochastic infor-

mation, etc. The recent work of Lahyani et al. (2015) develops a taxonomy and a definition

of rich VRPs. Surveys on various aspects concerning heterogeneous fleets, intermediate

replenishment facilities, time windows, open tours and multiple depots are available in

Markov et al. (2014) and Chapter 2. Rich routing problems often include an uncertainty

component. In dynamic problems, parameters are partly unknown and gradually revealed

with time. In dynamic and stochastic problems, we have access to probability information of

the unknown parameters. Ritzinger et al. (2016) summarize the recent literature on dynamic

and stochastic VRPs and offer a classification scheme based on the available stochastic

information. Gendreau et al. (2016) center their survey on the state of the art of the a priori

and the re-optimization paradigms for stochastic VRPs, the two being the predominantly

used paradigms by researchers.

Although multi-constrained IRPs with real-world features have recently begun to appear in

the literature, the term rich IRP has not established itself as in the case of the VRP. Zhalechian

et al. (2016) and Soysal (2016), for example, discuss closed-loop IRP systems with stochastic

demands. Both include environmental considerations in the objective function. Zhalechian

et al. (2016) also include social considerations, present a fuzzy approach, and develop a
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hybrid meta-heuristic and a lower bounding procedure, which are applied on a small case

study. Soysal (2016) use CPLEX to solve a small case study and, based on a simulation ex-

periment, confirm the benefit of including uncertainty in the model. Rahimi et al. (2017)

describe a rich IRP with environmental considerations and stochastic parameters, including

stochastic demand, and propose a fuzzy approach. Their solution methodology relies on

a meta-heuristic from the literature. However, the focus of their numerical experiments

is not on the effect of uncertainty. Furthermore, none of these studies models explicitly

recourse actions in the events of stock-outs and route failures, which occur as a consequence

of demand uncertainty. Chapter 1 discussed the advantages and disadvantages of various

modeling approaches, while Chapter 3 provided a review of the literature on road-based

stochastic IRPs with a finite horizon dimension. Sections 4.1.2, 4.1.3 and 4.1.4 below extend

the survey to several additional application areas of routing problems with stochastic de-

mands that can be modeled using the unified framework. Then, Section 4.1.5 positions our

approach.

4.1.2 Health Care Routing Problems

Stochastic demand appears in health care routing problems involving the pick-up and

delivery of drugs, biological samples, and medical equipment. Hemmelmayr et al. (2010)

solve a stochastic blood distribution problem, which considers shortfalls and spoilage. To

balance delivery and spoilage costs, they limit the probability of spoilage to 5% by sampling

product usage during the spoilage period and taking the 5% quantile as the maximum

inventory level at the hospital. Hemmelmayr et al. (2010) develop a two-stage stochastic

program with recourse, assuming knowledge of the inventory in the beginning of each day

of the planning horizon. The authors extend an exact approach and a VNS meta-heuristic

from the literature, in both cases using external sampling to convert the two-stage stochastic

optimization problem into a deterministic one. Through a simulation experiment, they show

that a simple recourse policy is sufficient to provide a reliable and cost-efficient blood supply.

Niakan and Rahimi (2015) and Shi et al. (2017) study the problem of delivering drugs with

uncertain demands to patient homes. Both authors apply fuzzy programming approaches

to the problem and report the added value of incorporating uncertainty into the model.

The broader literature on health care routing problems identifies workload balancing and

the continuity of service, or continuity of care in this specific context, as two of the most

important concerns in this field (see e.g. Lanzarone and Matta, 2009, 2012; Lanzarone et al.,

2012; Errarhout et al., 2014, 2016).

4.1.3 Waste Collection Routing Problems

Chapter 3 describes a stochastic IRP for the collection of recyclable waste with the integration

of demand forecasting. Demand stochasticity leads to the occurrence of container overflows

and route failures. The proposed stochastic model significantly outperforms alternative
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deterministic policies in its ability to limit the occurrence of container overflows for the

same routing cost. Still in the area of waste collection, Johansson (2006) and Mes (2012) use

simulation to confirm the benefits of migrating from static to dynamic collection policies

in Malmö, Sweden and a study area in the Netherlands, respectively, where containers are

equipped with level and motion sensors, respectively. Mes (2012) finds a positive added

value of investing in level sensors compared to simple motion sensors that detect when

a container is emptied. Mes et al. (2014) apply optimal learning techniques to tune the

parameters related to inventory control (deciding which containers to select) assuming

accurate container level information. Nolz et al. (2011) develop a tabu search algorithm for

a stochastic IRP for the collection of infectious waste from pharmacies. Nolz et al. (2014b)

propose a scenario sampling method and an ALNS algorithm for the same problem. Nolz

et al. (2014a) extend this to a bi-objective problem, trading off satisfaction of pharmacies,

local authorities and the minimization of public health risks against routing costs. They

propose three meta-heuristic approaches for this problem. Bitsch (2012) develops a VNS

for an IRP applied to the collection of recyclable waste in a Danish region. Waste level

is stochastic and containers should be emptied so that the probability of overflow is six

standard deviations away.

4.1.4 Maritime Routing Problems

Papageorgiou et al. (2014) identify three features that distinguish maritime from road-based

IRPs, specifically: 1) the absence of a central depot, which entails multi-period open tours,

2) the long travel times and port operations, which prolong the planning horizon, and 3) the

shorter succession of port visits, in comparison to the typically dozens of customer visits in

road-based IRPs. Cheng and Duran (2004) solve a crude oil transportation problem with

inventory management, integrating discrete event simulation and stochastic optimal control.

The optimal control problem is formulated as a Markov decision process that incorporates

travel time and demand uncertainty. Yu (2009) discusses a problem with multiple supply

and demand ports, where the only stochastic element is the demand. It is formulated as a

stochastic program and branch-and-price is used to solve medium-sized instances. Arslan

and Papageorgiou (2015) study a maritime fleet renewal and deployment problem under

demand and charter cost uncertainty, which determines the fleet size, mix, and deployment

strategy to satisfy stochastic demands over the planning horizon. They solve the problem in

a rolling horizon fashion using a stochastic programming look-ahead model, and explore the

impact of different scenario trees with different recourse functions. Zheng and Chen (2016)

propose a real option model to solve a fleet replacement model under demand and fuel price

uncertainty. Monte Carlo simulation is used to find replacement probabilities in future years

and the net present value of cost savings. The distribution of Liquefied Natural Gas (LNG) is

a particularly important application area. Moraes and Faria (2016) study an LNG planning

problem for an oil and gas company. They develop a two-stage stochastic linear model to

address uncertainties related to the LNG demand and spot prices. Halvorsen-Weare et al.

(2013) consider an LNG routing and scheduling problem with time windows, berth capacity
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and inventory level constraints. They propose and test various robustness strategies with

respect to travel times and daily LNG production rates.

4.1.5 Discussion

The reviewed literature employs a variety of approaches for capturing demand uncertainty,

with different simplifying assumptions and modeling techniques, and with or without explicit

recourse policies and penalties for the occurrence of undesirable events. As discussed in

Chapter 1, all these approaches come with their advantages and limitations. We identified

our goal of modeling the cost of demand uncertainty and bridging the gap between theory

and practice, preserving at the same time solution tractability for realistic-size problems.

In this chapter, we develop a unified modeling and solution framework for rich routing

problems with stochastic demands. Using a set of key concepts and modeling elements,

it provides a common language for describing and modeling such problems and imposes

very few distributional assumptions on the demand. The approach distinguishes itself

through several unifying features, namely 1) the applicability to various types of rich routing

problems, including among others rich VRPs and IRPs, 2) the integration of real demand

forecasting without a stationarity assumption, 3) the inclusion of the cost of undesirable

events, such as stock-outs/overflows and route failures, in the objective function, 4) the

explicit modeling of the cost of recourse actions in response to the above events, 5) the

tractability of the resulting framework due to the ability to pre-compute or at least partially

pre-process most of the stochastic information for a general inventory policy, 6) and the

intuitive evaluation of the produced solution through simulation. Simulation is used both

to measure the frequency of occurrence of undesirable events in the final solution and to

evaluate how closely it models the real cost given the imposed assumptions. Integrating all

cost information in the objective function, the resulting solution reflects the actual cost of

demand uncertainty.

4.2 Key Concepts and Modeling Elements

This section introduces the key concepts, the modeling elements, such as sets and parame-

ters, and the relationships among them, which are used in the development and formulation

of the unified framework in Sections 4.3 and 4.4 below. For the sake of generality of presen-

tation, consider a problem in a distribution context. We comment on the changes that apply

to a collection context when needed. Building on the notation established in Chapter 3, we

consider a planning horizon T = {0, . . . , u} of discrete time periods, such as days or another

appropriate level of discretization. Deliveries are performed by a heterogeneous fixed fleetK,

with each vehicle k ∈K defined by a per-period deployment costϕk , a unit-distance running

cost βk , a unit-time running cost θk , and a capacity Ωk . The fleet reduces to a homogeneous

one if the values of these parameter are identical for all vehicles.
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For each vehicle k ∈ K and period t ∈ T , we are given a directed graph Gk t (Nk t ,Ak t ).
The set O includes all origin and destination depots, where O′

k t ⊆ O is the set of origin

depots for vehicle k in period t and O′′
k t ⊆ O is the set of destination depots for vehicle

k in period t . In addition, P is the set of demand points, D is the set of supply points,

Nk t =O′
k t ∪O′′

k t ∪P ∪D is the set of all points potentially reachable by vehicle k in period t ,

and Ak t = {(i , j ): ∀i , j ∈Nk t , i �= j } is the set of arcs connecting the latter. The set D contains

a sufficient number of replications of each supply point to allow multiple visits by the same

vehicle in the same period. The distance matrix is asymmetric, with πi j the length of arc

(i , j ) ∈Ak t , for any vehicle k and period t . Vehicle k can have a specific travel time matrix

for each period t , where τi j k t is the travel time of vehicle k on arc (i , j ) ∈Ak t in period t .

Point i ∈O∪P ∪D presents a time window [λi ,μi ], where λi and μi stand for the earliest

and latest possible start-of-service time at that point. Start of service after μi is not allowed

and if the vehicle arrives before λi , it has to wait. Service duration at point i is denoted by

δi , with service durations in the set O being zero.

With each demand point i ∈P is associated an inventory capacity ofωi , a visit cost of ξi ,

and an inventory holding cost of ηi . The parameter νi specifies the minimum number of

times that demand point i must be visited over the planning horizon. There is the option of

imposing periodicity on the visits as well. The set Ci contains the visit period combinations

for demand point i , and the binary constant αr t denotes whether period t belongs to visit

period combination r ∈ Ci for demand point i . The binary flags αi k t denote whether point

i ∈P ∪D is accessible by vehicle k in period t . They can also be used to express continuity

of service, restricting the vehicle(s) that can visit demand point i .

In period t , demand point i exhibits non-stationary stochastic demandρi t . It is important to

highlight that stochasticity refers to normal operations, and not to hazard or deep uncertainty

(Gendreau et al., 2016). Demand stochasticity implies a probability of stock-out, one of

two possible states for each demand point, which happens when its inventory becomes

negative. Letσi t = 1 denote that demand point i is in a state of stock-out in period t and

letσi t = 0 denote the opposite. Point i incurs a stock-cost of χi for all t ∈ T whereσi t = 1.

For t ∈ T whereσi t = 1 and no vehicle k ∈K visits demand point i , an emergency delivery

recourse action is applied with a cost of ζi . We apply a limited back-order policy where

a delivery must be performed in the same period t in which a stock-out occurs. We can

limit the probability of stock-out at the demand points to a maximum allowable level γDP.

Demand stochasticity and the probability of stock-out are further discussed in Sections 4.3.1

and 4.3.2.

There is a maximum of one delivery to each demand point per period and this delivery

follows a discretized ML policy, which is more general than the OU policy, but less general

than the classical ML policy. In the discretized ML policy, the delivery quantity is still part

of the decisions, but is chosen from a discrete set as shown in Figure 4.1. Let the set Li

define for each demand point i its allowable discrete inventory levels. For the case where

Li = {ωi },∀i ∈P , the discretized ML policy reduces to the OU policy. The use of a discretized
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Figure 4.1: Discrete Maximum Level Policy Example

Discrete level 1

Discrete level 2

Discrete level 3

ML policy is for the sake of tractability and is further discussed in Section 4.3.2.

Unlike for demand points, our framework ignores inventory tracking at the supply points.

In most cases supply point inventories are easier to monitor and manage. And in many

situations, for example waste collection (see Chapter 3), tracking supply point inventories is

irrelevant. However, in our case this modeling choice is due to the complex propagations of

uncertainty that tracking supply point inventory entails. These include but are not limited

to 1) the effect of emergency deliveries on the supply point inventories, where it is unclear

which supply points will be affected and by how much, and 2) the effect of undelivered

quantity on the vehicle when reaching a supply point due to lower than expected demands

of the previously visited demand points. Evaluating the above effects is beyond the scope of

this research.

A tour executed by vehicle k in period t starts from an origin o ′ ∈O′
k t and ends at a desti-

nation o ′′ ∈O′′
k t and is a sequence of demand and supply point visits. The maximum tour

duration of vehicle k in period t is denoted by Hk t . If Hk t = 0, vehicle k is not available

in period t . A tour’s origin and destination need not coincide, and the correct definition

of the sets O′
k t and O′′

k t implies that O′′
k t ∩O′

k (t+1) �= �, i.e there is at least one depot where

vehicle k can end its tour in period t and start its tour in period t +1. The correct definition

of the above sets also implies that when Hk t = 0, ∃o ′ ∈O′
k t and o ′′ ∈O′′

k t s.t. πo ′o ′′ = 0, i.e

there is at least one physical depot at which vehicle k can idle in period t . A penalty Θ is

applied on the difference between the minimum and maximum vehicle workload, the latter

represented by the total duration of all tours a vehicle executes over the planning horizon.

Thus, the penalty serves as an incentive to balance workload among the vehicles.

We distinguish a tour from a trip, the latter being a sequence of demand points S visited by

vehicle k between two supply point visits. The supply point visits delimiting the trips may

be in the same or in different periods. In a given solution, the set of supply point delimited

trips performed by vehicle k is denoted by Sk . Demand stochasticity affects trips through

the probability of route failure, which is the probability of the total demand in trip S ∈Sk

exceeding the vehicle capacity Ωk . The recourse action is a visit to a supply point. The cost

of this recourse action is CS , which is the average routing cost of going from the demand

points in S to their nearest supply point and back. To control its degree of conservatism,
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this cost can be pre-multiplied by a Route Failure Cost Multiplier (RFCM) ofψ. We can also

limit the probability of route failure to a maximum allowable level γRF. The probability of

route failure is further discussed in Section 4.3.3. All sets and parameters discussed above

are summarized in Table 4.1.

Table 4.1: Notations

Sets

T planning horizon = {0, . . . , u} T + shifted planning horizon = {1, . . . , u , u +1}
O′

k t set of origins for vehicle k in period t O′′
k t set of destinations for vehicle k in period t

P set of demand points D set of supply points
Nk t =O′

k t ∪O′′
k t ∪P ∪D K set of vehicles

Ci set of visit period comb. for demand point i Li set of discrete levels for demand point i
Sk set of trips executed by vehicle k S a particular trip in Sk

St set of demand points in trip S visited in period t

Parameters

ϕk per-period deployment cost of vehicle k (monetary)
βk unit-distance running cost of vehicle k (monetary)
θk unit-time running cost of vehicle k (monetary)
Ωk capacity of vehicle k
πi j length of arc (i , j )
τi j k t travel time of vehicle k on arc (i , j ) in period t
λi ,μi lower and upper time window bound at point i
δi service duration at point i
ωi inventory capacity of demand point i
ξi visit cost to demand point i (monetary)
ηi inventory holding cost at demand point i (monetary)
νi minimum number of times that demand point i must be visited over the planning horizon
αr t 1 if period t belongs to visit period combination r , 0 otherwise
αi k t 1 if point i is accessible by vehicle k in period t , 0 otherwise
ρi t stochastic demand of point i in period t
εi t stochastic error term of demand point i in period t
σi t 1 if demand point i is in a state of stock-out in period t , 0 otherwise
χi stock-out cost at demand point i (monetary)
ζi emergency delivery cost to demand point i (monetary)
Hk t maximum tour duration for vehicle k in period t
Θ penalty on the difference between the min and max vehicle workload over the planning horizon (monetary)
ψ Route Failure Cost Multiplier (RFCM) ∈ [0, 1]
CS the average routing cost of going from S ∈Sk to the nearest supply point and back to S (monetary)
γDP maximum allowable probability of stock-out at the demand point in the range of (0,1]
γRF maximum allowable probability of route failure in the range of (0,1]

Decision Variables

xi j k t 1 if vehicle k traverses arc (i , j ) in period t , 0 otherwise (binary)
yi k t 1 if point i is visited by vehicle k in period t , 0 otherwise (binary)
zk t 1 if vehicle k is used in period t , 0 otherwise (binary)
ci r 1 if visit period combination r is assigned to demand point i , 0 otherwise (binary)
�i r t 1 if discrete level r is chosen for demand point i in period t , 0 otherwise (binary)
qi k t expected delivery quantity to demand point i by vehicle k in period t (continuous)
Qi k t expected cumulative quantity delivered by vehicle k arriving at point i in period t (continuous)
Ii t expected inventory at demand point i at the start of period t (continuous)
Si k t start-of-service time of vehicle k at point i in period t (continuous)

¯
bk t , b̄k t lower and upper bound on the tour duration of vehicle k in period t (continuous)

¯
B , B̄ lower and upper bound on the workload for each vehicle (continuous)
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4.3 Capturing Demand Stochasticity

Our framework considers stochastic demands with all other parameters being fully determi-

nistic. Below, we describe in detail how the unified framework captures stochastic demands.

In particular, Section 4.3.1 outlines the forecasting of future demands and the minimum

amount of forecasting information that the framework needs. Then, Sections 4.3.2 and 4.3.3

derive the probabilities of stock-out and route failure, respectively. We focus specifically on

the issue of tractability and the fact that all probability information can be pre-computed or

at least partially pre-processed.

4.3.1 Demand Decomposition and Forecasting

We generalize the representation of the stochastic demand introduced in Section 3.2.1 of

Chapter 3. Given a demand point i ∈ P and a period t ∈ T , the stochastic demand ρi t

decomposes as:

ρi t =�
�
ρi t

�
+ εi t , (4.1)

where �
�
ρi t

�
is the expected demand and εi t is the error component. Let us represent

εi t ,∀t ∈ T , i ∈P in the form of a vector as follows:

ε = (ε11, . . . ,ε1|T |,ε21, . . . ,ε|P ||T |) . (4.2)

The associated joint distribution is Φ, and ε∼Φ satisfies var (ε) =K, with K representing any

covariance structure.

Definition 4.1. A forecasting model provides the expected demands�
�
ρi t

�
,∀t ∈ T , i ∈P and

the distribution Φ of ε.

Any forecasting model that complies with Definition 4.1 can be used. Moreover, the distribu-

tion Φ need not be theoretical. The only requirement is that we should be able to simulate it.

Therefore, an empirical distribution is also admissible as we can sample from it. The forecas-

ting model thus remains as general as possible, giving freedom for the use of methodologies

suitable to the specific application area.

4.3.2 Demand Point Probabilities

Extending the terminology introduced in Section 4.2, and as counterpart to that of Chapter 3,

we distinguish between a regular and an emergency delivery to demand point i ∈ P . Let

the binary decision variable yi k t = 1 denote a visit to demand point i by vehicle k ∈K in

period t ∈ T , and let yi k t = 0 denote otherwise. In other words, a regular delivery to demand

point i in period t is one for which yi k t = 1 for some vehicle k ∈K. Contrarily, an emergency

delivery is a recourse action performed in a state of stock-out in the absence of a regular
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delivery, i.e. for t ∈ T whereσi t = 1 and yi k t = 0,∀k ∈K. Moreover, an emergency delivery

always brings the inventory level at demand point i to its capacityωi . That is, for emergency

deliveries we restrict the inventory policy to OU. This is in view of preserving tractability and

is discussed in further detail below.

To formalize the discussion below, we also introduce the decision variable Ii t , which repre-

sents the expected inventory level of demand point i at the start of period t , and the decision

variable qi k t , which represents the expected delivery quantity to demand point i by vehicle

k in period t . Using these, we can establish the inventory of point i after delivery in period

t as:

Λi t = Ii t +
∑
k∈K

qi k t . (4.3)

Therefore, if qi k t = 0,∀k ∈K, it follows thatΛi t = Ii t . The two definitions that follow illustrate

the information availability over the planning horizon T and the sequence of actions in each

period t ∈ T .

Definition 4.2. The initial inventory Ii 0 for each demand point i ∈P is observed and known

with certainty. It can be positive, zero or negative.

As a consequence, the probability of stock-out of any demand point in period t = 0 is either

0 or 1.

Definition 4.3. For each demand point i ∈P and period t ∈ T , we have: 1) a potential regular

delivery which sets Λi t 2) followed by a realization of the demand ρi t . In other words, for a

given period t , deliveries take place before demand realizations.

Given that both the stock-out cost χi and the emergency delivery cost ζi for demand point

i are only paid in a state of stock-out, we are interested in calculating the probability of

stock-out for all i ∈P over the planning horizon. To do this, we adapt the ideas presented

in Section 3.2.2 of Chapter 3 in the context of the waste collection IRP. Consider a regular

delivery to demand point i in period g ∈ T . We identify four possible ways of reaching a

state of stock-out. Given the stochastic demand decomposition formula (4.1) and the action

sequence in Definition 4.3, they and their associated probabilities are formulated as:

• Reaching a state of stock-out in period g +1 from a regular delivery in period g . Its

probability is unconditional and is given by:

�
�
Λi g −ρi g � 0
�
= �
�
εi g �Λi g −� �ρi g

��
. (4.4)

• Reaching a state of stock-out in periods later than g + 1 from a regular delivery in
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period g . Its probability is conditional and is given by:

�
�
Λi g −

h∑
t=g

ρi t � 0

�����Λi g −
h−1∑
t=g

ρi t > 0



=

= �
�

h∑
t=g

εi t �Λi g −
h∑

t=g

�
�
ρi t

� �����
h−1∑
t=g

εi t <Λi g −
h−1∑
t=g

�
�
ρi t

�

, ∀h > g .

(4.5)

• Reaching a state of stock-out in period g ′+1 from a state of stock-out in period g ′ > g .

Its probability is unconditional and is calculated as a special case of formula (4.4) as

follows:

�
�
ωi −ρi g ′ � 0
�
= �
�
εi g ′ �ωi −� �ρi g ′

��
, ∀g ′ > g . (4.6)

• Reaching a state of stock-out in periods later than g ′ + 1 from a state of stock-out

in period g ′ > g . Its probability is conditional and is calculated as a special case of

formula (4.5) as follows:

�
�
ωi −

h∑
t=g ′

ρi t � 0

�����ωi −
h−1∑
t=g ′

ρi t > 0

�
=

= �
�

h∑
t=g ′

εi t �ωi −
h∑

t=g ′
�
�
ρi t

� �����
h−1∑
t=g ′

εi t <ωi −
h−1∑
t=g ′
�
�
ρi t

��
, ∀h > g ′ > g .

(4.7)

Appendix B proves that the calculation of the probabilities of overflow for a collection pro-

blem (see Section 3.2.2 of Chapter 3) is identical. For a demand point i with a regular delivery

in period g , the above probabilities are mapped on a binary tree as illustrated in Figure 4.2,

in which the state of stock-out is shaded in gray. The probability of stock-out in period t > g

is the sum of the probabilities of all possible paths reaching a stateσi t = 1 starting from the

root node with an inventory after delivery of Λi g in period g . The probability of stock-out in

period g is calculated on the basis of the previous tree, and is 0 or 1 for g = 0. Thus, we arrive

at the general expression for the probability of stock-out of demand point i in period t :

pDP
i t = �
�
σi t = 1
��Λi m : m =max

�
0, g ∈ T : g < t : ∃k ∈K : yi k g = 1

��
. (4.8)

It correctly defines the probability of stock-out as conditional on the inventory after delivery

of the most recent regular delivery, identified for each demand point i by the index m . The

max operator returns the period 0 if the demand point has not had any regular deliveries

prior to period t . For a general distribution Φ, expression (4.8) is non-linear in m and Λi m .

Given the discretized ML policy introduced in Section 4.2, we prove the following:

Proposition 4.1. Under a discretized ML policy, the stock-out probabilities in expression (4.8)

can be pre-computed. Moreover, the number of probabilities to pre-compute grows linearly

with the number of discrete levels.
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Figure 4.2: Demand Point State Probability Tree
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Proof. For the unconditional probabilities (4.4) and (4.6), the number of distinct expressions

to evaluate is linear in the number of periods t ∈ T , while for the conditional probabilities

(4.5) and (4.7) it is polynomial. As a consequence, the resulting stock-out probabilities in

formula (4.8) can be efficiently pre-computed. Secondly, the formula defines the probability

ofσi t = 1 as conditional only on the inventory level Λi m chosen in the most recent delivery

period m . The probabilities (4.8) are precomputed for each r ∈Li ,∀i ∈P , hence the number

grows linearly with the number of discrete levels.

The emergency deliveries still apply an OU policy, otherwise the combinatorial dimen-

sion would becomes intractable. Appendix C.1 demonstrates the use of simulation to pre-

compute the stock-out probabilities (4.4)–(4.7) given a general distribution Φ and any cova-

riance structure K among the error terms ε in formula (4.2). In Section 4.2, it was mentioned

that the discretized ML inventory policy is used for the sake of tractability in order to avoid

cumbersome calculations at runtime. Indeed, as mentioned in the proof to Proposition 4.1,

the ability to pre-compute the stock-out probabilities relies on the discrete values of Λi t .

Finally, for expression (4.8) to be rigorously defined, the value of Λi m must be the expected

one. This condition always holds for an OU policy as we deliver up to capacity. However,

the ML policy implies a non-negative probability of the chosen Λi m being lower than the

realized inventory. There are several possibilities of handling this, including:
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• Performing no delivery. This approach leads to a significant increase in complexity

due to the additional conditionality now associated with the period m of the most

recent regular delivery in formula (4.8), which makes it unattractive.

• Picking up the excess inventory. This approach destroys the monotonicity of the cumu-

lative quantity on the vehicle at each point, increasing the complexity of calculating

the probability of route failure, and thus leading to tractability issues (see Section 4.3.3

below).

• Discarding the excess inventory. This approach is the most appealing from a modeling

point of view as it allows the use of the expected values Λi m both in the calculation of

stock-out and route failure probabilities. Discarding excess inventory can in principle

be penalized, its probability being a straightforward extension of formula (4.8). We

thus impose the following:

Assumption 4.1. A regular delivery to demand point i ∈ P in period t ∈ T discards any

inventory above the chosen level Λi t . Thus, a regular delivery sets Λi t according to expectation.

Assumption 4.1 underlies the calculation of the stock-out probabilities as defined by formula

(4.8) as well as the calculation of the route failure probabilities discussed in Section 4.3.3

next.

4.3.3 Route Failure Probabilities

Recalling the notation introduced in Section 4.2, for each vehicle k in a given solution,

we identify the set of supply point delimited trips Sk . Let the binary decision variables

xi j k t = 1 if vehicle k traverses arc (i , j ) in period t , and 0 otherwise. For a vehicle k , given

xi j k t ,∀i , j ∈P , t ∈ T , Algorithm 4.1 builds the set of supply point delimited trips Sk , where

as before S is a trip in Sk . The algorithm identifies the sequence of visits using the routing

variables xi j k t for each period t ∈ T . A visit to a supply point starts a new trip S . In the

context of multi-period trips, the supply points delimiting the trips S ∈Sk may be visited

in different periods t . Thus, each trip S is further decomposed into sets St , where St ∈S

is the set of demand points in trip S that are visited in period t .

The above notation is used in the formulation of the probability of route failure, which is the

probability of the total demand in trip S ∈Sk exceeding the vehicle capacity Ωk . We define

the quantity ΓS delivered in trip S as:

ΓS =
∑
S0∈S

∑
s∈S0

(Λs 0− Is 0) +
∑

t ∈T \0

∑
St ∈S

∑
s∈St

�
Λs t −Λs m +

t−1∑
h=m

ρs h



,

where m =max(0, g ∈ T : g < t : ∃k ′ ∈K : ys k ′g = 1) .

(4.9)

The first summand in formula (4.9) represents the quantity delivered in period t = 0 for

which there is no uncertainty, while the second summand defines the quantity delivered in
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Algorithm 4.1: Construction of the Set of Supply Point Delimited Trips Sk for Vehicle k

Input any solution with values of xi j k t ,∀i , j ∈P , t ∈ T for vehicle k
Output set of supply point delimited trips Sk for vehicle k

1: S ←Sk ←�
2: for t ∈ T do
3: St ←�
4: c ← j :
∑

o ′∈O′
k t

∑
j∈Nk t

xo ′ j k t = 1

5: while c /∈O′′
k t do

6: if c ∈D then
7: add St as an element of S ; add S as an element of Sk

8: St ←S ←�
9: else if c ∈P then

10: add c as an element of St

11: end if
12: c ← j :

∑
j∈Nk t

xc j k t = 1
13: end while
14: add St as an element of S
15: end for

periods t > 0 given the action sequence in Definition 4.3 and the expected inventory after

delivery under Assumption 4.1. Similar to formula (4.8), the index m identifies the most

recent regular delivery to point s . Having defined ΓS , the probability of route failure in trip

S ∈Sk performed by vehicle k ∈K becomes:

pRF
S ,k = � (ΓS >Ωk ) . (4.10)

Formula (4.10) captures the probability of multiple route failures in each trip S . Unlike

in the case of the stock-out probabilities, the probabilities of route failure depend on the

optimization decisions, in particular the sets Sk ,∀k ∈K at each solution and the values of

Λs t and Λs m . As a consequence, these probabilities cannot be precomputed. Moreover, the

distribution of ΓS is generally unknown. The resulting complexity in calculating the route

failure probabilities and the need for tractability necessitate the two assumptions below.

Assumption 4.2. The calculation of the route failure probabilities assumes independent and

identically distributed (iid) error terms εi t drawn from any distribution Φ of ε. Consider ε as

defined by equation (4.2) above. We impose the iid assumption on the error terms by setting:

Φ (ε) =
∏
t ∈T

∏
i∈P
Φ′ (εi t ) , (4.11)

where Φ′ is the marginal cumulative distribution function of εi t .

Assumption 4.2 is widely used in the literature (Gendreau et al., 2016). In our framework it is

only imposed for the calculation of the route failure probabilities, and the distribution Φ is

still kept general. Assumption 4.2 renders the demands ρs h in formula (4.9) independent
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of s ∈ P and h ∈ T . Now the distribution of ΓS depends only on the number n of sum-

med demands, which given the action sequence of Definition 4.3 is bounded by |P |(|T | −1).
Therefore, an empirical distribution function can be derived for each n and used at run-

time. The use of simulation for this partial pre-processing of the route failure probabilities

through the derivation of empirical distribution functions is elaborated in Appendix C.2.

The numerical experiments in Section 4.6.2 show that for normally distributed error terms

the effect on computation time of this approach, in comparison to analytical approximation,

is insignificant.

Assumption 4.3. The calculation of the route failure probabilities ignores the effect of demand

points stocking out earlier than expected.

Including the probability of demand points stocking out earlier than expected leads to com-

plex conditionality given the multiplicity of demand point visits in each trip S . In addition,

it precludes the possibility of partially pre-processing the route failure probabilities as dis-

cussed above. The effect of Assumption 4.3 on the objective function is further discussed in

Section 4.4.1 and shown to be marginal in the numerical experiments in Section 4.6.2.

4.4 Optimization Model

In Sections 4.4.1, 4.4.2 and 4.4.3 below, we present the objective function and the constraints

of the optimization model. It integrates demand stochasticity through the derivation of

the probabilities of stock-out and route failure demonstrated in Sections 4.3.2 and 4.3.3,

respectively, given all the accompanying definitions and assumptions. The formulations

below are presented and interpreted from a distribution point of view. However, since

collection can be viewed as the distribution of empty space, the optimization model itself

does not change.

To complete the notation, we provide the list of decision variables, including those already

used in Section 4.3. Starting with the binary variables, xi j k t = 1 if vehicle k traverses arc (i , j )
in period t , 0 otherwise; yi k t = 1 if point i ∈O∪P ∪D is visited by vehicle k in period t , 0

otherwise; zk t = 1 if vehicle k is used in period t , 0 otherwise; ci r = 1 if visit day combination

r ∈ Ci is assigned to demand point i , 0 otherwise; �i r t = 1 if inventory level r ∈Li is chosen

for demand point i in period t , 0 otherwise. Moving to the continuous variables, qi k t is the

expected delivery quantity to demand point i by vehicle k in period t ; Qi k t is the expected

quantity on vehicle k arriving at point i ∈O∪P ∪D in period t ; Ii t is the expected inventory

at demand point i at the start of period t ; Si k t is the start-of-service time of vehicle k at point

i ∈O∪P ∪D in period t ;
¯
bk t and b̄k t are the lower and upper bound on the tour duration

of vehicle k in period t ; and
¯
B and B̄ are the lower and upper bound on the workload for

each vehicle. These definitions appear in Table 4.1.
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4.4.1 Objective Function

The objective function consists of four deterministic and two stochastic components, all of

which are independent of one another. Different combinations of these make it possible to

model a variety of routing problems, whether with deterministic and stochastic demands.

Starting with the deterministic components, the Expected Inventory Holding Cost (EIHC) is

the cost due to keeping the expected inventory at the demand points. Since the inventories

in the first period after the end of the planning horizon are completely determined by the

decisions taken during the planning horizon, the EIHC is computed for t ∈ T ∪T +, where

T + is the planning horizon shifted right by one period. The EIHC is formulated as:

EIHC=
∑

t ∈T ∪T +

∑
i∈P
ηi Ii t . (4.12)

The Visit Cost (VC) component applies a cost for each visit to a demand point:

VC=
∑
t ∈T

∑
k∈K

∑
i∈P
ξi yi k t . (4.13)

The Routing Cost (RC) component applies the three vehicle-related costs, namely the per-

period deployment cost ϕk , the unit-distance running cost βk and the unit-time running

cost θk , for each period t ∈ T and each vehicle k ∈K:

RC=
∑
t ∈T

∑
k∈K

⎛
⎝ϕk zk t +βk

∑
i∈Nk t

∑
j∈Nk t

πi j xi j k t +θk

⎛
⎝ ∑

o ′′∈O′′
k t

So ′′k t −
∑

o ′∈O′
k t

So ′k t

⎞
⎠
⎞
⎠. (4.14)

The Workload Balancing (WB) component attempts to balance the workload over the plan-

ning horizon equally among the vehicles by penalizing the difference between the lowest

and the highest vehicle workload:

WB=Θ(B̄ −
¯
B ) . (4.15)

Moving to the stochastic components, the Expected Stock-Out and Emergency Delivery Cost

(ESOEDC) component, as its name suggests, reflects the stock-out and emergency delivery

cost and writes as:

ESOEDC=
∑

t ∈T ∪T +

∑
i∈P

�
χi +ζi −ζi

∑
k∈K

yi k t



pDP

i t , (4.16)

where the probability of stock-out at the demand point pDP
i t is defined by formula (4.8). For

demand point i in period t , the ESOEDC component applies the stock-out cost χi and the

emergency delivery cost ζi in case there is no regular delivery in that period, and only the

stock-out costχi in case there is a regular delivery. Although there is no uncertainty in period

t = 0, we still need to pay the stock-out cost if the demand point is in a state of stock-out.
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4.4. Optimization Model

Since the stock-out probabilities in the first period after the end of the planning horizon are

completely determined by the decisions taken during the planning horizon, the ESOEDC is

also computed for t ∈ T ∪T +.

The Expected Route Failure Cost (ERFC) captures the risk of the vehicles running out of

capacity before reaching the next scheduled visit to a supply point due to higher than

expected demands. It is expressed as:

ERFC=
∑
k∈K

∑
S ∈Sk

ψCS pRF
S ,k , (4.17)

where, as in Section 4.3.3, Sk is the set of supply point delimited trips executed by vehicle

k , S ∈Sk is a particular trip in that set, and CS is the average routing cost of going from

the demand points in S to the nearest supply point and back. The parameter ψ ∈ [0,1],
which we refer to as the Route Failure Cost Multiplier (RFCM), is used to scale up or down

the degree of conservatism of the ERFC component.

The resulting objective function z is non-linear due to the non-linear nature of the ESOEDC

and ERFC components. In its general form, it is formulated as:

min z = EIHC + VC + RC +WB + ESOEDC + ERFC. (4.18)

The RC, ESOEDC and ERFC components are generalized from Section 3.2.2 of Chapter 3. The

optimization model can be applied in a rolling horizon fashion, as described in Section 3.4.3

of Chapter 3. That is, the objective function is evaluated over the planning horizon, but

the decisions to implement are those in period t = 0. As a consequence, the decisions to

implement in period t = 0 are forward-looking. After they are implemented, the planning

horizon is rolled over by one period and the problem is solved again. Thus, at each rollover

we include more information about the future.

Objective Function Overestimation of the Real Cost.

While the ESOEDC component captures the probability of demand points stocking out in

each period of the planning horizon, the rest of the components do not, as the probability

expressions would become intractable (see Section 4.3.3 above). Trudeau and Dror (1992)

solve a stochastic IRP with the assumption of a single delivery and stock-out for each demand

point over the planning horizon. Given this setup, Trudeau and Dror (1992) come up with

analytical expressions of the effect on the routing and route failure cost of demand points

stocking out earlier than expected. Given their assumptions, if a demand point stocks out

earlier than expected, it is simply skipped in the tours. The generality of our framework

prevents us from developing tractable analytical expressions of the effect of demand points

stocking out earlier than expected on all components of the objective function. Yet, we can

to a certain extent analyze the mismatch between the modeled objective function cost and

the real cost. Let us introduce the following:
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Definition 4.4. Given a scenario with a demand point stocking out earlier than expected, a

reaction policy is defined as the adjustment of the subsequent decisions in response to the

emergency delivery. It is important to distinguish between the recourse action, this being the

emergency delivery, and the reaction policy.

Reaction policies can vary from doing nothing to completely re-optimizing the subsequent

decisions. Given the un-captured effect of demand points stocking out earlier than expected,

we prove the following:

Proposition 4.2. In the absence of the EIHC component, objective function (4.18) overestima-

tes the real cost.

Proof. Consider demand point i ∈ P that stocks out in period g and is not visited for a

regular delivery in period g . For a do-nothing reaction policy, there is no effect on the VC,

RC and WB components as it implies no change in the routing decisions. The ESOEDC

component already captures the probability of demand points stocking out in each period

of the planning horizon. For the effect on the ERFC component, we identify two cases:

1. There is a vehicle k ∈K that visits point i for a regular delivery during trip S ∈Sk in

period t > g . Given the emergency delivery to point i in period g , vehicle k will deliver

less than expected in trip S , reducing the probability of route failure pRF
S ,k according

to formula (4.10).

2. Alternatively, there is no trip S that visits point i in period t > g . Therefore, pRF
S ,k

remains unaffected for all trips S ∈Sk ,∀k ∈K.

Given the existence of a more sophisticated reaction policy, with an optimal reaction policy at

the extreme, the overestimation of the real cost may be higher. The above discussion assumes

out the EIHC component. In a distribution problem, a stock-out in period g , followed by

an emergency delivery, results in inventory levels Ii t being higher than expected for t > g .

Thus, expression (4.12) of the EIHC underestimates the inventory holding cost for t > g .

It is the contrary for a collection problem, where an overflow in period g , followed by an

emergency collection, results in inventory levels Ii t being lower than expected for t > g . In

this case, expression (4.12) of the EIHC overestimates the inventory holding cost.

The overestimation due to the do-nothing reaction policy is straightforward to evaluate

through simulation on the final solution. Contrarily, the evaluation of the effect of an optimal

reaction policy would require the re-optimization of the decisions after each stock-out. We

can avoid the computational burden of the latter by computing bound information on

the maximum overestimation. This is further explored in the numerical experiments in

Section 4.6.2.
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4.4.2 Deterministic Constraints

The deterministic constraints are extended from those presented in Section 3.2.2 of Chapter 3.

Starting with the basic routing constraints, tours must have an origin and a destination depot,

as ensured by constraints (4.19), which also allow for simple relocation tours not visiting any

demand or supply points. Constraints (4.20) and (4.21) forbid returns to the origin depots

and departures from the destination depots. Given the possibility of open tours, we need to

ensure that a vehicle’s destination depot in period t is the same as its origin depot in period

t +1. Constraints (4.22) propagate this condition through the planning horizon. Further on,

constraints (4.23) and (4.24) link the visit and the routing variables, and constraints (4.25)

ensure that a demand point is visited at most once per period. Accessibility restrictions

and continuity of service are enforced by constraints (4.26). Constraints (4.27) ensure flow

conservation.∑
o ′∈O′

k t

∑
j∈Nk t

xo ′ j k t =
∑

i∈Nk t

∑
o ′′∈O′′

k t

xi o ′′k t , ∀t ∈ T , k ∈K (4.19)

∑
i∈Nk t

xi o ′k t = 0, ∀t ∈ T , k ∈K, o ′ ∈O′
k t (4.20)

∑
j∈Nk t

xo ′′ j k t = 0, ∀t ∈ T , k ∈K, o ′′ ∈O′′
k t (4.21)

∑
i∈Nk t

xi o k t =
∑

j∈Nk (t+1)

xo j k (t+1), ∀t ∈ T , k ∈K, o ∈O′′
k t ∩O′

k (t+1) (4.22)

yi k t =
∑

j∈Nk t

xi j k t , ∀t ∈ T , k ∈K, i ∈Nk t \O′′
k t (4.23)

yj k t =
∑

i∈Nk t

xi j k t , ∀t ∈ T , k ∈K, j ∈O′′
k t (4.24)

∑
k∈K

yi k t � 1, ∀t ∈ T , i ∈P (4.25)

yi k t �αi k t , ∀t ∈ T , k ∈K, i ∈P ∪D (4.26)∑
i∈Nk t

xi j k t =
∑

i∈Nk t

x j i k t , ∀t ∈ T , k ∈K, j ∈P ∪D (4.27)

The periodicity aspect is established by constraints (4.28), which assign exactly one visit

period combination to each demand point, and constraints (4.29), which in turn limit visits

to the periods corresponding to the assigned visit period combination (Cordeau et al., 1997).

The set Ci may contain visit period combinations with different frequencies, which makes

the visit frequency part of the optimization decisions.∑
r∈Ci

ci r = 1, ∀i ∈P (4.28)

∑
k∈K

yi k t −
∑
r∈Ci

αr t ci r = 0, ∀t ∈ T , i ∈P (4.29)
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The inventory constraints at the demand points comply with the action sequence in Defi-

nition 4.3. Constraints (4.30) track the expected inventory in period t as a function of the

expected inventory, the quantity delivered to the point, and its expected demand in period

t − 1. Constraints (4.31) ensure that the expected inventory remains non-negative, and

constraints (4.32) force a delivery if the inventory is below zero in period t = 0. Constraints

(4.33)–(4.36) define the choice of a discrete inventory level and the delivery quantity it entails.

In particular, constraints (4.33) stipulate that if a demand point is visited, then a discrete

inventory level after delivery must be chosen. Constraints (4.34) and (4.35) provide a lower

and an upper bound on the delivery quantity which, if the point is visited, is equal to the

difference between the chosen discrete inventory level after delivery and the expected inven-

tory. The latter also imply that if the point is visited, the chosen level will be higher than the

expected inventory. Constraints (4.36) force the delivery quantity to zero if the point is not

visited. The big-M values in constraints (4.34) and (4.36) are equal to 2ωi for t = 0 and to

ωi otherwise, reflecting the fact that the expected delivery quantity cannot exceed demand

point capacity, except in period t = 0.

Ii t = Ii (t−1) +
∑
k∈K

qi k (t−1)−�(ρi (t−1)), ∀t ∈ T +, i ∈P (4.30)

Ii t � 0, ∀t ∈ T +, i ∈P (4.31)

− Ii 0 �ωi

∑
k∈K

yi k 0, ∀i ∈P (4.32)∑
k∈K

yi k t −
∑
r∈Li

�i r t = 0, ∀t ∈ T , i ∈P (4.33)

qi k t �
∑
r∈Li

r �i r t − Ii t −M (1− yi k t ), ∀t ∈ T , k ∈K, i ∈P (4.34)

qi k t �
∑
r∈Li

r �i r t − Ii t +ωi (1− yi k t ), ∀t ∈ T , k ∈K, i ∈P (4.35)

qi k t �M yi k t , ∀t ∈ T , k ∈K, i ∈P (4.36)

In the context of vehicle capacities, constraints (4.37) limit the cumulative quantity delivered

by the vehicle at each demand point, while constraints (4.38) reset it to zero at the supply

points. Keeping track of the cumulative quantity delivered by the vehicle is achieved by

constraints (4.39). In the context of multi-period trips, constraints (4.40) link the quantity

delivered by the vehicle from one period to the next. Forcing the vehicle to visit a supply

point immediately after the origin depot or immediately before the destination depot applies

to certain problems and is exemplified in Section 4.5 next.

qi k t �Qi k t �Ωk , ∀t ∈ T , k ∈K, i ∈P (4.37)

Qi k t = 0, ∀t ∈ T , k ∈K, i ∈D (4.38)

Qi k t +qj k t �Q j k t +Ωk

�
1− xi j k t

�
, ∀t ∈ T , k ∈K, i ∈Nk t , j ∈Nk t \D (4.39)

Qo ′k (t+1) �Qo ′′k t , ∀t ∈ T , k ∈K, o ′ ∈O′
k t , o ′′ ∈O′′

k t (4.40)
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The next set of constraints expresses the intra-period temporal characteristics of the pro-

blem. Constraints (4.41) calculate the start-of-service time at each point and eliminate the

possibility of subtours. Constraints (4.42) enforce the time windows. Constraints (4.43)

bound the tour duration from above and below. Constraints (4.44) enforce the maximum

tour duration, and with it availabilities and vehicle use. Constraints (4.45) and (4.46) bound

the total tour duration over the planning horizon for each vehicle. The difference between
¯
B

and B̄ is the difference between the lowest and highest vehicle workload over the planning

horizon, which is penalized by the WB component in the objective function.

Si k t +δi +τi j k t � Sj k t +
�
μi +δi +τi j k t

� �
1− xi j k t

�
, ∀t ∈ T , k ∈K, i ∈Nk t , j ∈Nk t (4.41)

λi yi k t � Si k t �μi yi k t , ∀t ∈ T , k ∈K, i ∈Nk t (4.42)

¯
bk t �
∑

o ′′∈O′′
k t

So ′′k t −
∑

o ′∈O′
k t

So ′k t � b̄k t , ∀t ∈ T , k ∈K (4.43)

b̄k t �Hk t zk t , ∀t ∈ T , k ∈K (4.44)

¯
B �
∑
t ∈T ¯

bk t , ∀k ∈K (4.45)

B̄ �
∑
t ∈T

b̄k t , ∀k ∈K (4.46)

Finally, lines (4.47)–(4.48) establish the variable domains.

xi j k t , yi k t , zk t , ci r ′ ,�i r ′′t ∈ {0, 1}, ∀t ∈ T , k ∈K, i , j ∈Nk t , r ′ ∈ Ci , r ′′ ∈Li (4.47)

qi k t ,Qi k t , Ii t ,Si k t ,
¯
bk t , b̄k t ,

¯
B , B̄ � 0, ∀t ∈ T , k ∈K, i ∈Nk t (4.48)

4.4.3 Probabilistic Constraints

As an alternative to integrating stochastic demand information in the objective function

through the ESOEDC and the ERFC components, it can be included at the constraint level in

the form of probabilistic constraints. Constraints (4.49) and (4.50) below impose a maximum

allowable probability of stock-out and route failure, respectively.

pDP
i t � γ

DP, ∀t ∈ T , i ∈P (4.49)

pRF
S ,k � γ

RF, ∀k ∈K,S ∈Sk (4.50)

4.5 Application Examples

The framework developed and presented in Sections 4.2, 4.3 and 4.4 can be applied to

problems from different fields of routing and logistics optimization. In the sections below,

we discuss in more detail a vehicle routing problem, a health care inventory routing problem,

a waste collection inventory routing problem, a maritime inventory routing problem, and a

facility maintenance problem.
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4.5.1 The Vehicle Routing Problem

In a VRP setting, the presence of stochastic demands may lead to route failures but stock-

outs do not apply. To adapt the framework, we define a planning horizon T = {0,1,2}, s.t.

Hk 0 =Hk 2 = 0,∀k ∈K, i.e. the planning horizon consists of three periods and no vehicle is

available in periods t = 0 and t = 2. Moreover, Ii 0 =ωi and Li = {ωi },∀i ∈P , i.e. the initial

inventory of all demand points is equal to capacity and we apply an OU inventory policy.

Given the action sequence of Definition 4.3, the visits to the demand points deliver the

demands ρi 0 realized in period 0. The VRP is a single-period problem and the fact that it is

effectively solved for period t = 1 is of no consequence. In model (VRP), the objective (4.51)

consists of the RC and the ERFC components. Given constraints (4.38) and (4.39), constraints

(4.52) force a visit to a supply point immediately after the origin depot. Constraints (4.25) are

replaced by constraints (4.53) below to enforce a delivery to each demand point in period

t = 1, a necessary condition for a feasible VRP solution. The periodicity related constraints

(4.28) and (4.29) are dropped as they become irrelevant for a single period.

(VRP) min z =RC + ERFC (4.51)

s.t. Constraints (4.19)–(4.24), (4.26)–(4.27), (4.30)–(4.48)

Qo ′k 1 =Ωk , ∀k ∈K, o ′ ∈O′
k 1 (4.52)∑

k∈K
yi k 1 = 1, ∀i ∈P (4.53)

4.5.2 The Health Care Inventory Routing Problem

The health care IRP generalizes the nurse routing and scheduling problem, in which nurses

visit patient homes to provide treatment. In this problem, P is the set of patient homes

and D is the set of medical facilities. In addition to providing treatment, nurses deliver

medications with stochastic demand. Continuity of care and workload balancing, which are

the two paramount concerns in the nurse routing problem, are supported by the framework.

As is the periodic aspect, given that medical treatments typically have to be performed with

a certain frequency. Pricing can also be introduced in the setup via a negative visit cost. We

keep the model (HCIRP) general, including all constraints, and with the objective function

(4.54) including all but the EIHC component.

(HCIRP) min z = VC + RC +WB + ESOEDC + ERFC (4.54)

s.t. Constraints (4.19)–(4.48)

4.5.3 The Waste Collection Inventory Routing Problem

This is the problem discussed in detail in Chapter 3. In this IRP variant, trucks collect waste

from containers with stochastic demands. Here, P denotes the set of waste containers and

D denotes the set of disposal facilities. The unified framework formulated in Sections 4.2, 4.3
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and 4.4 can be applied with minimal changes by relabeling the problem as the distribution

of empty space. The objective function of model (WCIRP) mimics the objective in Chapter 3

and includes the RC, ESOEDC and ERFC components. Given constraints (4.38) and (4.39),

constraints (4.56) force a visit to a disposal facility immediately before the destination depot.

(WCIRP) min z =RC + ESOEDC + ERFC (4.55)

s.t. Constraints (4.19)–(4.48)

Qo ′′k t = 0, ∀t ∈ T , k ∈K, o ′′ ∈O′′
k t (4.56)

4.5.4 The Maritime Inventory Routing Problem

In this problem, a fleet of ships transports a commodity from a set D of supply terminals

to a set P of demand terminals. A particular feature of this application is that emergency

deliveries may be impractical due to long shipping distances, which would make the state

of stock-out at a demand terminal a final state. This can be achieved simply by setting

the probabilities defined by expression (4.6) to one. Since emergency deliveries are not

performed, the emergency delivery cost ζi = 0,∀i ∈P . Maritime routing problems are also

characterized by open and multi-period tours, which may include idling. In our framework,

constraints (4.19) allow for open tours, while multi-period tours are enabled by defining the

set of depots so that ∃o ∈O s.t. πo i =πi o = 0,∀i ∈P∪D andO′
k t ≡O′′

k t ≡O,∀t ∈ T , k ∈K, or

in other words there is an origin and a destination depot at zero distance from each demand

and supply terminal. A tour can thus effectively end at a demand or supply terminal in

period t and start from it in period t +1. This graph extension is a modeling feature that

can be efficiently exploited in the solution methodology. The objective function of model

(MIRP) includes all but the WB component. The VC component, in particular, may be used

to capture terminal docking fees.

(MIRP) min z = EIHC + VC + RC + ESOEDC + ERFC (4.57)

s.t. Constraints (4.19)–(4.48)

4.5.5 The Facility Maintenance Problem

The facility maintenance problem is a probability-based routing problem in which a set of

facilities is visited by a set of technicians for inspection. In this problem, the set P represents

the facilities, while the set D is irrelevant. Uncertainty with respect to breakdowns can be

considered as accumulating in a fashion similar to that of inventory. Consider facility i ∈P
in period t . We can interpret the state σi t = 1 as a breakdown, and the state σi t = 0 as

operational. If a facility is in a state of breakdown in period t , an emergency visit must be

performed to repair it. The probability of breakdown pDP
i t of facility i in period t is adapted
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from expression (4.8) as a function of the most recent visit to the facility and is modeled as:

pDP
i t = �
�
σi t = 1
�� g ∈�: g < t : ∃k ∈K : yi k g = 1

�
. (4.58)

The use of the set �, which includes the negative integers, implies that the most recent visit

may be before the start of the planning horizon T . The states σi 0,∀i ∈P are known with

certainty. The objective function (4.59) in model (FMP1) is the sum of routing cost and the

Expected Emergency Repair Cost (EERC). All inventory related constraints (4.30)–(4.36) and

vehicle capacity related constraints (4.37)–(4.40) are irrelevant and are hence dropped. The

new set of constraints (4.60) is added to force a visit to a facility in a state of breakdown.

(FMP1) min z =RC + EERC (4.59)

s.t. Constraints (4.19)–(4.29), (4.41)–(4.48)∑
k∈K

yi k t = 1, ∀t ∈ T , i ∈P : pDP
i t = 1 (4.60)

The EERC is a reformulation of the ESOEDC from formula (4.16) and is expressed as:

EERC=
∑

t ∈T ∪T +

∑
i∈P

pDP
i t ζi . (4.61)

Since the probabilities in the facility maintenance problem are provided exogenously, as

opposed to being calculated based on demand stochasticity, an alternative formulation

involving the probabilistic constraints (4.49) is given in model (FMP2). Since the treatment

of the probability of breakdown is in the constraints, the objective (4.62) is routing-only.

(FMP2) min z =RC (4.62)

s.t. Constraints (4.19)–(4.29), (4.41)–(4.48)

Constraints (4.49)

Constraints (4.60)

Given that the facility maintenance problem considers no demands, unlike in the case of

the waste collection IRP, there is no deterministic equivalent problem that simply ignores

the stochastic components. We could imagine several deterministic policies, for example

periodicity-based visits enforced by constraints (4.28)–(4.29). A more flexible deterministic

alternative would be visiting a facility i ∈P at least νi times over the planning horizon. In

the model (FMPD) below, this is ensured by constraints (4.63).

(FMPD) min z =RC

s.t. Constraints (4.19)–(4.29), (4.41)–(4.48)

Constraints (4.60)∑
t ∈T

∑
k∈K

yi k t � νi , ∀i ∈P (4.63)
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4.6 Numerical Experiments

In the following, we carry out a series of experiments to investigate various features of the

proposed unified framework. Section 4.6.1 introduces the instance sets with the new set of

facility maintenance instances. Section 4.6.2 sets the background with the main conclusions

of Chapter 3 on the waste collection IRP instances and performs further experiments on

this set. In particular, it studies the effect on tractability of using empirical distribution

functions for calculating the route failure probabilities at runtime, and analyzes the objective

function’s overestimation of the real cost. Section 4.6.3 presents the new case study based

on the facility maintenance problem. Various solution methodologies may be appropriate

for our unified framework, as long as they can handle the probability-based calculations and

support its rich routing features. We use the ALNS developed in Chapter 3, which was shown

to have excellent performance on VRP and IRP benchmark instances from the literature

and to be very stable on the waste collection IRP instances. The ALNS is implemented as a

single-thread application in Java and the probability calculations for the state probability

trees (Figure 4.2) are performed in R. All tests have been run on a 3.33 GHz Intel Xeon X5680

server running a 64-bit Ubuntu 16.04.2. In all experiments, each instance is solved 10 times.

4.6.1 Instances

The waste collection IRP instances introduced in Section 3.4.3 of Chapter 3 are 63 instances

of white glass collections performed in the canton of Geneva, Switzerland in the years 2014,

2015 and 2016. A map of the collection area was presented in Chapter 2. In these instances,

demands are forecast using the count data mixture model presented in Section 3.2.1 of

Chapter 3 using the previous 90 days of data, and assuming iid normal error terms εi t for all

i ∈P and t ∈ T , which is supported by the data. Absence of historical container level data

prevents demand forecasting for certain weeks of the sample period, for which instances are

not generated.

The second set consists of 94 instances of the facility maintenance problem with an average

of 42 facilities and a maximum of 62. These instances are built from the same data used for

building the waste collection IRP instances. However, since the facility maintenance problem

described in Section 4.5.5 does not consider demands, we are not limited by the absence of

historical container level data. Hence, the 94 instances of the facility maintenance problems

vs. the 63 instances of the waste collection IRP. For each facility i ∈P , we set a service duration

of 30 minutes, and tours are now constrained to a maximum duration of eight hours, instead

of four. The probability of breakdown is modeled using the cumulative distribution function

of the log-logistic distribution. That is, the probability pDP
i t of breakdown of facility i in period

t defined in formula (4.58) is given by:

pDP
i t =

1

1+
� t−g
α

�−β , (4.64)
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Figure 4.3: Breakdown Probabilities for Different Values of α
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where g is the period of the most recent visit. We set the value of β to 5, while α is randomly

chosen for each facility as an integer between 10 and 15, inclusive. Figure 4.3 plots the bre-

akdown probability for the different values of the α parameter. The probability accumulates

in a way similar to how inventory builds up in the IRP. In addition, for each facility in period

0, we draw a random integer between 1 and 3, inclusive, for the number of days since the

most recent visit.

4.6.2 Solving the Waste Collection Inventory Routing Problem

In Chapter 3, we develop an ALNS that exhibits excellent performance on VRP and IRP

benchmark instances from the literature. Using it, we demonstrate that our stochastic

model performs significantly better compared to alternative deterministic policies in its

ability to reduce the occurrence of container overflows for the same routing cost. Here,

we conduct further experiments on these instances. In particular, we assess the effect on

tractability of using empirical distribution functions at runtime for calculating the route

failure probabilities, and analyze the objective function’s overestimation of the real cost

previously discussed in Section 4.4.1. A note worth mentioning is that the waste collection

IRP presented in Chapter 3 considers a single depot, while this chapter extends the setup

to multiple depots. In this context, Appendix A.3 evaluates the benefit of allowing open

tours with different origin and destination depots, with a vehicle’s destination depot on day

t becoming its origin depot on day t +1. The results indicate that the benefit of open tours

first discussed in Chapter 2 holds and may even be more convincing in a multi-day setting.

Appendix A.3 also describes a new depot replacement operator that is added to the list of

ALNS repair operators in Section 3.3.2 of Chapter 3.

Assessing the Effect of Empirical Distribution Functions on Tractability.

As described in Section 4.3.3, assuming iid error terms drawn from any distribution Φ allows

the partial pre-processing of the route failure probabilities through the derivation of empiri-

cal distribution functions to be used at runtime. Clearly, the main risk of using empirical
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distribution functions is their impact on tractability and the precision of the resulting proba-

bility. To investigate this, we use the simulation methodology described in Appendix C.2 to

build Empirical Cumulative Distribution Functions (ECDFs) for M = 100,000 draws. The

ECDFs are constructed using the EmpiricalDistribution class of the Apache Commons

Math 3.6.1 release1. We test two configurations for the ECDFs, one binning the draws in

1000 bins and one binning them in 100 bins. Computational experiments show that the

configuration with 1000 bins exhibits a squared error with respect to the normal distribution

in the order of 10−7, while for the configuration with 100 bins, it is in the order of 10−6.

Table 4.2 reports the results of the experiments. The experiments are performed for an Emer-

gency Collection Cost (ECC) ζi = 100 CHF for all containers i ∈P and a Route Failure Cost

Multiplier (RFCM)ψ= 1. In the table, each row reports averaged values over the 63 instances.

The first column identifies the version of the ALNS used, i.e. the original one of Chapter 3 vs.

the one using ECDFs, while the second column identifies the binning configuration. The

original ALNS uses the analytical approximation of the normal distribution of Abramowitz

and Stegun (1972), which is possible given the normality of the error terms of the waste

collection IRP instances. The next two columns show the ECC and the RFCM, which are the

same for all instances. The fifth, sixth and seventh columns present the best, average and

worst cost over 10 runs. In a similar fashion, the eighth, ninth and tenth columns report the

best, average and worst computation time, and the eleventh, twelfth and thirteenth columns

report the best, average and worst number of calls to the ECDFs over 10 runs. Expectedly,

Table 4.2 shows that the different implementations have no impact on the solution cost. We

also observe that the implementation with 100 bins has a computation time that is virtually

the same as that of the original implementation. However, as mentioned before, the binning

configuration with 1000 bins has a squared error which is one degree of magnitude lower,

while its computation time is only about 5% higher. Therefore, this configuration may be

preferable. In summary, unless the distribution of the forecasting error terms adheres to

the simple convolution property, as in the case of the normal distribution, the route failure

probabilities cannot be evaluated analytically at runtime. Nevertheless, the results of Ta-

ble 4.2 indicate that using pre-processed ECDFs to calculate the route failure probabilities

preserves tractability and has a negligible impact on computation time.

Table 4.2: Impact of Empirical Distribution Functions on Tractability

Cost (CHF) Runtime (s.) ECDF calls (millions)

ALNS version Bins ECC RFCM Best Avg Worst Best Avg Worst Best Avg Worst

Original – 100.00 1.00 662.65 666.64 672.87 870.65 906.84 936.40 – – –
ECDFs 1000 100.00 1.00 662.63 666.74 673.35 909.06 948.77 982.68 52.95 58.90 65.00
ECDFs 100 100.00 1.00 662.49 666.46 672.73 869.52 903.81 932.79 52.94 58.44 63.90

1http://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/index.html
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Assessing the Objective Function’s Overestimation of the Real Cost.

In Section 4.4.1, we discussed the objective function’s overestimation of the real cost, which

is due to the un-captured effect in most parts of the objective function of demand points

stocking out earlier than expected. To study this effect, we perform the simulation expe-

riment described in Section 3.4.3 of Chapter 3 counting the number of realized overflows.

Given the final solution of each instance, we simulate 10,000 scenarios, sampling the inde-

pendent normally distributed error terms εi t for each container i ∈P and each day t ∈ T ,

and applying them to the expected demand �(ρi t ). Then, for each scenario, we analyze the

effect of realized overflows on the objective function’s overestimation of the real cost.

Computing the overestimation due to a do-nothing reaction policy is trivial. In the absence

of inventory holding costs, which is the case for the waste collection IRP instances, the effect

is only present in the ERFC component. Clearly, the overestimation will be higher for an

optimal reaction policy which, in the occurrence of overflows, re-optimizes all subsequent

decisions. However, computing the overestimation due to an optimal reaction policy has

a significant computational burden, as it requires that re-optimization be done after each

overflow for the 10,000 simulated scenarios. Therefore, we consider the following intuitive

upper bound on the overestimation due to an optimal reaction policy. Consider a container

i that overflows on day g and is visited for a regular collection on days t > g . Now, take the

minimum day h =min t > g on which container i is visited for a regular collection and posit

an optimal reaction policy so good that it removes the cost effect of container i from all days

t � h . In other words, 1) we remove the container from all tours performed on days t � h .

This implies the highest possible overestimation of the RC and ERFC components. 2) We

also remove the probability of overflow on days t � h , which implies the highest possible

overestimation of the ESOEDC component.

Figure 4.4 plots the overestimation for a do-nothing reaction policy as well as the discussed

upper bound on the overestimation for an optimal reaction policy of objective (4.55) at the

75th, 90th, 95th and 99th percentile of the 10,000 scenarios. We present the results for an

Emergency Collection Cost (ECC) ζi = 25, 50 and 100 CHF, identical for all containers, and a

Route Failure Cost Multiplier (RFCM)ψ= 1. Each box-plot is constructed using the average

values over 10 runs for each of the 63 instances. The overestimation for the do-nothing

reaction policy is marginal, which is due to the low probability of route failure observed in

general for the waste collection IRP instances (see Section 3.4.3 in Chapter 3). Unsurprisingly,

the upper bound on the overestimation for the optimal reaction policy appears to be linked

to the level of the ECC. The median upper bound is approximately zero for the 75th, 90th

and 95th percentile, with the maximum values reaching 2.5%. It becomes more pronounced

at the 99th percentile, where the median values are 0.61%, 0.37% and 0.22% for an ECC of

100 CHF, 50 CHF and 25 CHF, respectively, which indicates the generally very low level of

overestimation of the real cost. The maximum values do not exceed 8% for an ECC of 100 CHF,

and 4% for an ECC of 50 CHF and 25 CHF. There is a strong correlation in the order of 70%

between the number of realized overflows and the upper bound across the 63 instances. In
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Figure 4.4: Objective Function’s Overestimation of the Real Cost

(a) Objective Function Overestimation for ECC = 100 CHF, RFCM = 1
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(b) Objective Function Overestimation for ECC = 50 CHF, RFCM = 1
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(c) Objective Function Overestimation for ECC = 25 CHF, RFCM = 1
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Section 4.3, we argued the importance of tractability in terms of the probability calculations

that enter the objective function. Using simpler probability expressions ignores some of the

uncertainty propagation which, as proved in Proposition 4.2, leads to an overestimation of

the real cost. Nevertheless, the results here indicate that this overestimation is marginal, and

even a straightforward bound on the optimal reaction policy implies a median overestimation

of the real cost of less than 1%.

4.6.3 Solving the Facility Maintenance Problem

The facility maintenance problem, as defined in Section 4.5.5, considers a set of facilities that

have to be periodically inspected in order to limit the occurrence of breakdowns. Unlike the

waste collection IRP, this problem does not consider demands. Thus, there is no determinis-

tic equivalent to the stochastic problem. We start by comparing the two stochastic models

proposed in Section 4.5.5. The models (FMP1) and (FMP2) treat uncertainty using a proba-

bilistic objective function and probabilistic constraints, respectively. While both approaches

use the same probability information, they do not use it in the same way. Specifically, the
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probabilistic objective approach calculates the probability of incurring the emergency repair

cost and lets the model determine the best balance between the routing and the expected

emergency repair cost. The breakdown probabilities in the final solution thus depend on the

value of the emergency repair cost itself. The probabilistic constraints approach controls

the probability of breakdown in a rather artificial way. One usually knows what it costs to

perform an emergency repair, while it is unclear what a reasonable value of the maximum

allowable probability of breakdown γDP should be. At any rate, while these two approaches

are different modeling-wise and from a conceptual stance, they are expected to be able to

produce the same range of results. To verify this, we solve the model (FMP1) for a set of

Emergency Repair Cost (ERC) ζi values, where ζi is identical for each facility i ∈P , and the

model (FMP2) for a set of values for γDP.

The results are summarized in Tables 4.3 and 4.4, where each line is an averaged result

over the 94 instances. In both tables, the first column identifies the modeling approach,

the second one reports the value of the ERC and the third one the value of the maximum

allowable breakdown probability γDP. In Table 4.3, the fourth column presents the average

runtime in seconds, while the fifth and sixth columns report the average number of tours

and facility visits, respectively. The rest of the columns report the best, average and worst

results over 10 runs, and the percent gap between the average and best, and the worst and

best results. Computation times are reasonable and, as expected, strongly correlated to

the number of facility visits, and as a result to the cost. Not surprisingly, higher numbers

of facility visits also correspond to higher numbers of tours. The gap between the average

and the best solutions is in the order of 1-2%, and the gap between the worst and the best

solutions is in the order of 2-3%, evidence of the stability of the ALNS.

Table 4.4 decomposes the solution cost into Routing Cost (RC) and Expected Emergency

Repair Cost (EERC), whose averages are provided in the fourth and fifth columns, respectively.

The last four columns are the result of a simulation experiment with 10,000 scenarios as

Table 4.3: Basic Results for Model (FMP1) vs. Model (FMP2)

Avg Num Avg Num Best Cost Avg Cost Worst Cost Gap Avg- Gap Worst-
Model ERC γDP Runtime (s.) Tours Visits (CHF) (CHF) (CHF) Best (%) Best (%)

(FMP1) 1000.00 – 585.81 3.18 51.90 1810.57 1831.88 1857.70 1.18 2.60
(FMP1) 500.00 – 558.97 2.98 45.88 1594.88 1618.29 1641.24 1.47 2.91
(FMP1) 250.00 – 508.93 2.51 39.35 1404.90 1421.62 1443.89 1.19 2.78
(FMP1) 100.00 – 419.05 1.81 27.19 1125.71 1139.90 1158.42 1.26 2.91
(FMP1) 50.00 – 484.82 0.87 12.70 852.41 853.69 855.13 0.15 0.32
(FMP1) 25.00 – 478.33 0.84 2.75 556.32 556.32 556.32 0.00 0.00
(FMP2) – 0.25 248.72 0.84 2.31 195.73 195.73 195.73 0.00 0.00
(FMP2) – 0.20 319.59 0.99 6.81 304.19 304.27 304.52 0.03 0.11
(FMP2) – 0.15 410.53 1.37 19.91 575.17 576.80 579.06 0.28 0.68
(FMP2) – 0.10 500.31 1.99 29.02 836.40 841.00 845.57 0.55 1.10
(FMP2) – 0.08 550.26 2.27 36.31 1003.84 1010.44 1016.76 0.66 1.29
(FMP2) – 0.05 584.48 2.62 41.07 1144.97 1154.82 1166.69 0.86 1.90
(FMP2) – 0.04 584.95 2.86 41.63 1201.01 1212.19 1226.82 0.93 2.15
(FMP2) – 0.03 627.74 2.88 43.83 1237.16 1249.44 1264.50 0.99 2.21
(FMP2) – 0.02 667.10 3.49 49.01 1438.88 1453.06 1463.91 0.99 1.74
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Table 4.4: Performance Indicators for Model (FMP1) vs. Model (FMP2)

Avg Num Breakdowns

Model ERC γDP Avg RC (CHF) Avg EERC (CHF) 75th Perc. 90th Perc. 95th Perc. 99th Perc.

(FMP1) 1000.00 – 1444.59 387.29 1.21 1.98 2.47 3.44
(FMP1) 500.00 – 1304.26 314.03 1.76 2.53 3.13 4.20
(FMP1) 250.00 – 1108.69 312.94 2.59 3.49 4.13 5.34
(FMP1) 100.00 – 780.78 359.12 5.20 6.55 7.41 9.07
(FMP1) 50.00 – 369.76 483.93 11.55 13.54 14.74 17.06
(FMP1) 25.00 – 201.93 354.39 16.46 18.76 20.18 22.84
(FMP2) – 0.25 195.73 0.00 16.75 19.02 20.48 23.17
(FMP2) – 0.20 304.27 0.00 14.35 16.50 17.82 20.36
(FMP2) – 0.15 576.80 0.00 9.19 10.97 12.07 14.18
(FMP2) – 0.10 841.00 0.00 5.62 6.98 7.85 9.58
(FMP2) – 0.08 1010.44 0.00 3.91 5.06 5.84 7.29
(FMP2) – 0.05 1154.82 0.00 2.53 3.48 4.11 5.31
(FMP2) – 0.04 1212.19 0.00 2.17 3.06 3.58 4.75
(FMP2) – 0.03 1249.44 0.00 2.01 2.82 3.41 4.52
(FMP2) – 0.02 1453.06 0.00 1.22 2.02 2.47 3.43

the one previously described, and report the average number of breakdowns over the 94

instances at the 75th, 90th, 95th and 99th percentile of the 10,000 scenarios. There appears

to be, as expected, a clear negative correlation between the routing cost and the number of

breakdowns at any percentile. This happens because higher routing costs are associated with

more frequent facility visits and, as per formula (4.64), with lower breakdown probabilities.

Moreover, we notice that the routing cost and the number of breakdowns for models (FMP1)

and (FMP2) vary within similar ranges. This is confirmed by Figure 4.5, which is a visual

representation of the above results. It demonstrates that the two approaches are logically

equivalent, with similar routing costs corresponding to similar levels of occurrence of break-

downs. We stress again that both approaches are probabilistic, using the same uncertainty

information in different ways.

To complete the picture, we compare the two probabilistic models to model (FMPD) of

Section 4.5.5, which is a flexible deterministic approach oblivious to any uncertainty infor-

mation. It considers a routing-only objective function and stipulates that each facility i ∈P
must be visited at least νi times during the planning horizon. Table 4.5, which is structured

in the same way as Table 4.4, summarizes the results for νi = 1 and 2, with νi identical for

all i ∈P . Some of the instances become infeasible for higher values of νi . The table clearly

shows that it takes a much higher routing cost to achieve similar levels of occurrence of bre-

akdowns, thus highlighting the superiority of the stochastic modeling approaches. Similar

to Section 3.4.3 of Chapter 3, we compare the performance of two approaches in terms of

number of breakdowns at different percentiles. Thus, we isolate the EERC component from

the solution cost of the probabilistic models, and compare only the RC components.
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Figure 4.5: Comparison of Routing Cost and Breakdowns for Model (FMP1) vs. Model (FMP2)
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Table 4.5: Performance Indicators for Model (FMPD)

Avg Num Breakdowns

Model ERC νi Avg RC (CHF) Avg EERC (CHF) 75th Perc. 90th Perc. 95th Perc. 99th Perc.

(FMPD) – 2 1945.96 0.00 3.16 4.10 4.56 5.71
(FMPD) – 1 1140.10 0.00 4.28 5.47 6.26 7.77

4.7 Summary

This chapter introduces, analyzes and formulates a unified framework for modeling and

solving various classes of rich routing problems. Demand is stochastic, can be non-stationary,

and is forecast with any model that provides the expected demands over the planning horizon

and the distribution of the error terms. The formulation includes many rich routing features

relevant to real-world problems, such as multiple depots, open and multi-period tours,

intermediate facilities, time windows, maximum tour duration, accessibility restrictions,

visit periodicities and service choice, workload balancing, continuity of service, etc.

The practical applicability of the approach is reinforced by the fact that the probability

information related to demand stochasticity can be pre-computed or at least partially pre-

processed. We highlight the fact that the stock-out/overflow/breakdown probabilities can be

pre-computed for error terms from any distribution and with any covariance structure among

them. The assumption of iid error terms, still from any distribution, remains necessary for

partially pre-processing the route failure probabilities. The last restriction allows us to
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preserve tractability, which is critical for operational problems such as those discussed in the

text. Finally, we show that certain problems where the inventory component is not present,

such as facility maintenance, can still be viewed through the prism of inventory routing,

with event probabilities at the demand points, or breakdown probabilities in this specific

example, accumulating as would inventory.

Using the waste collection IRP instances from Chapter 3, we demonstrate that pre-processing

the route failure probabilities through the derivation of ECDFs under the assumption of

iid error terms is sufficient to preserve tractability. Simulating the error terms on the final

solution further allows us to verify the low level of occurrence of overflows and shows that the

objective is an excellent representation of the real cost. On the new set of facility maintenance

instances, our framework is able to achieve the same level of occurrence of breakdowns for a

significantly lower routing cost compared to alternative deterministic policies.
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This chapter borrows from the articles:

Markov, I., Varone, S., and Bierlaire, M. (2016). Integrating a heterogeneous fixed fleet

and a flexible assignment of destination depots in the waste collection VRP with inter-

mediate facilities, Transportation Research Part B: Methodological 84:256-273.

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2016). Inventory

routing with non-stationary stochastic demands. Technical report TRANSP-OR 160825.

Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland.

Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2017). A general

framework for routing problems with stochastic demands. Proceedings of the 17th Swiss

Transport Research Conference (STRC), May, 17-19, 2017.

The work therein has been performed by the author in collaboration with Prof. Michel

Bierlaire, Prof. Jean-François Cordeau, Prof. Yousef Maknoon and Prof. Sacha Varone.

In this chapter, Section 5.1 revisits the objectives and contributions, and analyzes how they

are supported by the main findings in Chapters 2, 3 and 4. Given the direct applicability of

our work, Section 5.2 examines its practical implications and the challenges we may face in

the way of its widespread adoption. Finally, Section 5.3 closes by identifying and discussing

promising areas of future research.

5.1 Main Findings

In this thesis, we propose a unified framework for modeling and solving various classes of

rich routing problems with stochastic demands, including among others the VRP and the

IRP. We solve numerous challenges related to the realistic modeling of demand uncertainty,
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its effect on undesirable events and the costs of their associated recourse actions. These

elements are used in the development of a tractable approach and a powerful solution

methodology, successfully applied on a real case study inspired by the problem of collecting

recyclables from sensorized containers in the canton of Geneva, Switzerland. Chapter 2

starts with the deterministic single-day problem, a rich VRP with intermediate facilities. For

it, we build an MILP formulation, which is enhanced with a number of valid inequalities and

includes a variety of rich routing features, in particular a heterogeneous fixed fleet and the

possibility of open tours. Moreover, it considers a general cost function corresponding to

the cost structure of a typical firm. To solve realistic instances, we develop a meta-heuristic

approach based on multiple neighborhood search.

The extensive computational testing confirms the benefit of our valid inequalities to the

optimization model. The meta-heuristic approach achieves optimality on small instances,

exhibits competitive performance in comparison to state-of-the-art solution methods for

special cases of our problem, and leads to important savings in the state of practice. It

presents fast computation times and outperforms significantly the solution currently in

place at the collector in our case study in terms of quality and functionality. We are also

able to show that the possibility of open tours with different origin and destination depots

can lead to noticeable savings, especially in rural and sparsely populated areas where such

benefits will be most pronounced.

In Chapter 3, we extend the single-day problem to a finite horizon, which results in the waste

collection IRP. Here, demand is stochastic, can be non-stationary, and is forecast using any

model that provides the expected demands over the planning horizon and a measure of

uncertainty represented by the standard deviation of the error terms, the latter assumed to

be iid normal. The objective captures demand uncertainty with the goal of minimizing the

expected cost, including the expected cost of recourse actions, subject to a range of practical

and policy-related constraints. To manage the increased complexity, we build a powerful

Adaptive Large Neighborhood Search (ALNS) algorithm which produces excellent results on

VRP and IRP benchmarks sets from the literature.

The computational experiments demonstrate that including probabilistic information in the

objective function leads to a relatively modest increase in the routing cost, while avoiding

major expenditures that otherwise occur even at moderate percentiles of the simulated

demand realization scenarios. The probabilistic approach significantly outperforms alterna-

tive deterministic policies of using artificially low capacities for the containers and the trucks

in its ability to limit the occurrence of container overflows for the same routing cost. We also

analyze the solution properties of a rolling horizon approach in terms of empirical lower

and upper bounds. Our results show the benefit of a dynamic stochastic approach, which

includes new information at each rollover, in comparison to a static stochastic approach

over the same planning horizon.

Chapter 4 generalizes the approach in a unified framework for rich routing problems with sto-
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chastic demands. The formulation includes many rich routing features relevant to real-world

problems, such as multiple depots, open and multi-period tours, intermediate facilities, time

windows, maximum tour duration, accessibility restrictions, visit periodicities and service

choice, workload balancing, continuity of service, etc. Demand is stochastic, can be non-

stationary, and is now forecast using any model that provides the expected demands over

the planning horizon and the distribution of the error terms. We relax fully or partially the

assumption of iid normal error terms, consider a general inventory policy, discuss tractability

related topics, and illustrate applications to a variety of rich routing problems borrowed from

the literature and inspired from practice. In particular, we show that certain problems where

the inventory component is not present, such as facility maintenance, can still be viewed

through the prism of inventory routing, with event probabilities at the demand points, or

breakdown probabilities in this specific example, accumulating as would inventory.

The computational experiments focus on the topic of complexity vs. tractability, indicating

that the modeling simplifications we use for preserving tractability do not compromise

our representation of the real cost. The numerical experiments on a new set of facility

maintenance instances confirm the conclusions from the waste collection IRP instances

of the superiority of the stochastic approach in comparison to alternative deterministic

policies.

5.2 Practical Implications

Waste collection is one of the most important logistical activities performed by any munici-

pality, and also one of the most expensive. According to various estimates, collection costs

account for more than 60% of waste management costs (Johansson, 2006; Tavares et al., 2009;

Greco et al., 2015; Asimakopoulos et al., 2016). Recycling, on the other hand, can alleviate

problems related to landfill capacity and pollution, and many countries have already set

ambitious target levels for recycling. As part of its Circular Economy Strategy, the European

Union, for example, has adopted legislative proposals to set a common target for recycling

65% of municipal and 75% of packaging waste by 2030, limiting at the same time the use

of landfills (European Commission, 2016). Given the high cost of waste management and

the significant proportion of collection costs, even small improvements in the latter can

lead to substantial financial savings for waste collectors, municipalities, and ultimately the

taxpayer.

In this context, waste management firms are often resistant to change, with collection

traditionally based on fixed tours executed with a daily or weekly frequency and little to no

regard for optimality. That being said, the market is becoming more competitive. In the

Geneva area alone, there are multiple collectors of recyclable materials. They invoice the

municipality based on collected volume. Thus, the efficient fleet utilization and routing, and

the intelligent scheduling of container visits are of paramount importance. Our framework

can easily be embedded in a Geographic Information System (GIS), with an interactive user
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interface for problem definition and solution display. Moreover, it is straightforward to

include some user input in the solution, such as intentionally skipping or visiting certain

containers. The GIS would allow plotting the solution with shortest or fastest paths among

containers and, most importantly, exporting it in a GPS readable format on a tablet or another

device that the truck driver uses to navigate. Unfortunately, such high-tech collectors are still

not the norm in most parts of the world, but the application of intelligent waste collection is

gaining traction, evidenced by the number of pilot projects involving waste collection GIS

and sensorized containers (see e.g. Ghose et al., 2006; Oliveira Simonetto and Borenstein,

2007; Krikke et al., 2008; Repoussis et al., 2009; Rovetta et al., 2009; Tavares et al., 2009;

Zamorano et al., 2009; Arribas et al., 2010; Faccio et al., 2011; McLeod et al., 2013; Mes, 2012;

Anghinolfi et al., 2013; Mes et al., 2014; Christodoulou et al., 2016). Beliën et al. (2014) provide

a comprehensive review of municipal solid waste collection and management problems.

An interesting practical observation from our work with actors in the waste management

industry is the importance of the ability to explain what the models and algorithms do.

Intuitive and commonsense approaches have better chances of being adopted in practice.

Our framework is based on a sophisticated modeling and solution approach, yet the con-

cepts behind it–probabilities, costs, undesirable events–and the relationships among them

defined in the objective and constraints are universal and easy to understand. From a more

general point of view, our unified framework is an effort to bridge the gap between theory

and practice, highlighted and discussed by Gendreau et al. (2016) in their survey of stochastic

vehicle routing problems. We include rich practice-driven routing features and relax com-

monly used assumptions in the literature, such as iid normal random variables or demand

stationarity. Finally, we integrate real-world demand forecasting models and show that the

resulting framework becomes operational and provides excellent results on real case studies.

5.3 Future Research Directions

This thesis treats a complex real-world problem, integrating techniques from optimization,

statistics and simulation, and relying on efficient algorithmic implementations. Thus, it

lends itself to a wide array of potential future work directions. We can classify them into two

groups: those of mainly practical interest and those of mainly theoretical interest. Starting

from the first group, in our view the most important task is the development of additional

benchmark instances, which will allow us to test the framework’s full capabilities on different

problem types. While there exist benchmark instances for many of the reviewed problems,

in particular those modeled in Chapter 4, they are largely deterministic or involve simplistic

routing structures. Thus, it is crucial that the instances be based on, or at least derived from,

real data. We are interested in evaluating how the framework performs on concrete problems

faced by real actors in the transportation field.

The optimization models presented in this work already include a variety of rich routing

features. Still, other practically relevant ideas of particular interest may be the generaliza-
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tion of single to multiple time windows or the integrated solution of the multi-commodity

problem. A further extension of the latter is compartmentalization, which allows vehicles to

deliver or collect more than one commodity at a time (Mendoza et al., 2011). In Switzerland,

for example, glass is often collected separately as white and colored glass. Since both types

are usually recycled at the same facility, they can be collected by the same vehicle. Flexible

compartmentalization where the compartment separators can be adjusted after each vehicle

emptying offer the possibility of further savings. Moreover, in the absence of specific requi-

rements, any commodity can be transported by any vehicle. Since a vehicle may perform

multiple intermediate facility visits during a tour, it may transport a different commodity

after each visit. Finally, this can be considered in a competitive market where suppliers

or collectors compete for customers, and where undesirable events such as stock-outs or

overflows may lead to customers switching to the competition. Different strategic behaviors,

including collaboration, may be applicable. These extensions would undoubtedly lead to

complications in the solution methodology, with the need for developing new and more

sophisticated operators for the ALNS, or any other methodology deemed appropriate.

In our framework, demand is modeled at discrete time periods and inventory is updated

at the start of each period, which is not necessarily the case in reality. Indeed, visiting a

customer at different times on a given day will probably imply different delivery quantities.

Furthermore, the absence of a stock-out at the start of the day does not prevent the possibility

of stock-out later that same day. Real-time, or online, optimization can be used to deal with

continuous time demands. In this setup, the system is updated after each customer visit

and the subsequent decisions are fully or partially re-optimized based on the latest available

information, given the observed inventories of the already visited customers. Alternatively,

the availability of more frequent sensor information can be exploited using a rolling horizon

approach over a finer time discretization, for example an hour. This leads us to the second

group of future work directions–those of primarily theoretical interest. From a more general

perspective, our framework opens the door to developing even more comprehensive ob-

jective functions, capturing further probability propagations. This should make it possible

to relax some of the assumptions and allow for increasingly complex routing structures.

Finally, integration of other stochastic elements, in particular travel and service times, is

extremely relevant, especially in application areas such as maritime routing. Finding the

balance between modeling realism and the preservation of tractability is one of the main

challenges in this direction.

In terms of solution methodology, rich routing problems of realistic size preclude the use of

fully exact approaches. At the same time, the performance of meta-heuristics can only be

evaluated on special cases of these problems, for which benchmark instances with known

optimal solutions exist. Thus, an important future work area concerns the development of

theoretical lower bounds. Our optimization models rely on arc-based formulations which

are known to provide weak lower bounds (Semet et al., 2014; Poggi and Uchoa, 2014). Such

models quickly become intractable even for moderate instance sizes. A promising direction

is the development of a path-based formulation and a state-of-the-art column generation
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procedure. While this is rather straightforward for the linear and deterministic case where

the pricing problem is an Elementary Shortest Path Problem with Resource Constraints

(ESPPRC), the non-linear nature of our objective function will certainly pose challenges

in this regard. Certain simplifications in the routing structure and approximations like

demand discretization may be sufficient to linearize the objective function and cast the

pricing problem as an ESPPRC. Alternatively, a more complicated pricing problem will need

to be modeled and solved. At any rate, even if the column generation approach is unable to

solve realistic-size instances, it may still be capable of providing good-quality lower bounds

on the ALNS, in addition to the encouraging indications we already have in terms of its

stability in general and its performance on classical VRP and IRP benchmarks from the

literature.
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A Waste Collection IRP: Additional
Analysis

A.1 Waste Collection IRP: Collection Strategies

Tables A.1, A.2 and A.3 below report the average level, the average level at collection, and

the number of instances with container collections, by day, respectively. Each row in the

tables is an averaged result over 10 runs of the 63 instances for complete solutions with

different Emergency Collection Costs (ECC) and Route Failure Cost Multipliers (RFCM), and

for the routing-only solution. In the tables, the first three columns identify the objective, i.e.

complete vs. routing-only, the ECC and the RFCM, while the rest of the columns report the

relevant statistics for each table for t ∈ T ∪T +.

Starting from Table A.1, we note that the average level on day t = 0 is independent of any

action and is thus the same for each combination of ECC and RFCM. For the rest of the days,

the principal difference is between the series of complete solutions on the one hand and the

routing-only solution on the other. The average container level of the routing-only solution

is often twice as high as that of the complete solutions. With the exception of day t = 0, the

average level of containers in the complete solution is in the order of 20 or 30%, while that

Table A.1: Average Level of All Containers by Day

Avg level Avg level Avg level Avg level Avg level Avg level Avg level Avg level
Objective ECC RFCM t = 0 (%) t = 1 (%) t = 2 (%) t = 3 (%) t = 4 (%) t = 5 (%) t = 6 (%) t = 7 (%)

Complete 100.00 1.00 56.40 23.65 27.51 32.16 27.38 24.65 30.71 35.93
Complete 100.00 0.50 56.40 23.57 27.19 32.08 27.66 24.54 30.61 35.82
Complete 100.00 0.25 56.40 23.53 27.03 32.09 28.15 24.49 30.55 35.76
Complete 100.00 0.00 56.40 23.49 27.24 32.03 27.82 24.55 30.61 35.82
Complete 50.00 1.00 56.40 25.45 27.28 32.50 25.72 26.58 32.64 37.85
Complete 50.00 0.50 56.40 25.68 27.43 32.65 25.11 26.58 32.64 37.85
Complete 50.00 0.25 56.40 25.74 27.41 32.66 25.43 26.51 32.57 37.79
Complete 50.00 0.00 56.40 25.62 27.39 32.62 25.44 26.50 32.56 37.77
Complete 25.00 1.00 56.40 26.38 27.42 32.60 25.14 27.83 33.89 39.10
Complete 25.00 0.50 56.40 26.41 27.42 32.49 24.97 27.80 33.87 39.08
Complete 25.00 0.25 56.40 26.50 27.50 32.64 24.99 27.81 33.87 39.08
Complete 25.00 0.00 56.40 26.49 27.45 32.50 24.79 27.79 33.85 39.06
Routing-only 0.00 0.00 56.40 53.40 41.82 42.82 48.01 53.90 59.96 65.17
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of the routing-only solution is in the order of 40, 50 or 60%, undoubtedly contributing to

the much higher number of container overflows reported in Table 3.8. As far as the series of

complete solutions is concerned, we observe some minor differences suggesting in most

cases that the average level of containers is inversely correlated to the ECC.

In Table A.2, we see that the differences in the level of collected containers are less pronoun-

ced for the first two days and become progressively higher later in the planning horizon. On

days t = 3 and t = 4, the complete solutions collect containers that are on average less than

half full in order to minimize the probability of overflows on days t = 5, t = 6 and t = 7, where

there are no collections. On the other hand, the routing-only solution collects containers

that are on average 70 to 80% full, focusing only on those containers that are expected to

overflow in the planning horizon, and ignoring all the rest.

Table A.3 reports for each day of the planning horizon the number of instances, from a total

of 63, which collect containers on that day. While we do not see much difference for day

t = 0, the differences for the rest of the planning horizon are consequential. The complete

Table A.2: Average Level of Collected Containers by Day

Avg level Avg level Avg level Avg level Avg level Avg level Avg level Avg level
Objective ECC RFCM t = 0 (%) t = 1 (%) t = 2 (%) t = 3 (%) t = 4 (%) t = 5 (%) t = 6 (%) t = 7 (%)

Complete 100.00 1.00 64.12 61.81 63.31 44.27 41.63 – – –
Complete 100.00 0.50 64.23 61.56 63.82 44.37 42.21 – – –
Complete 100.00 0.25 64.10 61.53 63.26 44.39 42.42 – – –
Complete 100.00 0.00 64.09 61.51 64.71 44.15 42.42 – – –
Complete 50.00 1.00 64.73 61.85 57.95 44.20 41.90 – – –
Complete 50.00 0.50 64.80 61.74 59.33 43.90 42.54 – – –
Complete 50.00 0.25 64.76 61.69 – 44.10 42.81 – – –
Complete 50.00 0.00 64.78 61.65 59.43 44.03 42.47 – – –
Complete 25.00 1.00 65.19 61.84 55.70 44.39 41.82 – – –
Complete 25.00 0.50 65.19 61.84 57.33 44.27 40.26 – – –
Complete 25.00 0.25 65.26 61.72 53.45 44.38 42.07 – – –
Complete 25.00 0.00 65.25 61.72 55.92 44.09 41.99 – – –
Routing-only 0.00 0.00 78.73 72.68 78.32 78.76 71.60 – – –

Table A.3: Number of Instances with Container Collections by Day

Num for Num for Num for Num for Num for Num for Num for Num for
Objective ECC RFCM t = 0 t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

Complete 100.00 1.00 60 3 2 47 45 – – –
Complete 100.00 0.50 60 3 2 44 49 – – –
Complete 100.00 0.25 60 3 2 45 49 – – –
Complete 100.00 0.00 60 3 2 46 47 – – –
Complete 50.00 1.00 59 6 1 50 31 – – –
Complete 50.00 0.50 59 6 1 52 33 – – –
Complete 50.00 0.25 59 6 0 52 34 – – –
Complete 50.00 0.00 59 6 1 53 33 – – –
Complete 25.00 1.00 57 6 2 49 21 – – –
Complete 25.00 0.50 57 6 3 51 19 – – –
Complete 25.00 0.25 57 6 3 50 24 – – –
Complete 25.00 0.00 57 6 4 53 21 – – –
Routing-only 0.00 0.00 52 60 36 6 4 – – –
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solutions seem to postpone collections until days t = 3 and t = 4 in order to minimize the

probability of overflow on days t = 5, t = 6 and t = 7, where the vehicles are not available

for performing collections. The routing-only solution, being completely oblivious to the

probability of overflow, performs most of the collections until day t = 2, thus allowing

containers to be fuller later in the planning horizon. This is a clear example of the lack

of foresight in the routing-only solution, and why it results in a much higher number of

overflows. As far as the series of complete solutions is concerned, the solutions with a higher

ECC seem to perform more collections and shift collections later in the planning horizon.

A.2 Waste Collection IRP: Effect of Lower Truck Capacity on the

Solution Cost

The results in Tables 3.7 and 3.8, and Figure 3.6 indicate the low level of occurrence overflows

and the associated marginal contribution of the ERFC component to the total solution cost.

We perform additional analysis to study this effect by rerunning the experiments on the 63

waste collection IRP instances using lower capacity trucks. For each instance, we reduce the

truck capacities to n% of their original values, where n varies from 100% to 20% by a step

of 10%. Some of the instances become infeasible for n < 20%. We solve the problem with

the complete objective function for an ECC of 100 CHF and an RFCM of one. The goal is to

analyze how the objective function and its components, in particular the ERFC component,

react to lowering the truck capacity.

Parts (a), (b) and (c) of Figure A.1 below plot the effect of lowering the truck capacities

on the average routing cost, the average overflow cost, and the average route failure cost,

respectively. We observe that the effect is most noticeable for n < 50%, suggesting that the

original vehicle capacities are quite high relative to the container demands. Noting the

differences in the scales of the y-axes, we observe that the highest nominal increase is in

the average routing cost, while the highest relative increase is in the average route failure

Figure A.1: Effect of Lower Truck Capacity on the Solution Cost
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cost. The latter goes from practically zero to a median value of 3.43 CHF, with the maximum

reaching 22.56 CHF. While this increase is important in relative terms, the ERFC component

still remains a small fraction of the total cost. This is due to the fact that tours adapt to lower

vehicle capacities by making more dump visits on average, thus partially shifting of the effect

to the routing cost.

A.3 Waste Collection IRP: Effect of Open Tours on the Solution Cost

For the waste collection VRP in a deterministic setting, Chapter 2 finds an average impro-

vement of 2.54% when allowing open tours with an optimization of the home depot on

modifications of the Crevier et al. (2007) instances. The improvement exceeds 10% for some

of the instances, and appears to be negatively correlated with the instance size. To evaluate

this effect in a multi-day setting, we add additional depots to the 63 waste collection IRP

instances. The number of added depots is specific to each vehicle and relies on the case

study data. In the resulting instances, each vehicle is allowed to visit up to 3 depots, one of

them being its home depot. All vehicles are free to end their tours at any depot on day t and

start from this depot on day t +1, and are only required to return to their home depots on

Friday. We analyze the cost benefit of open tours on the complete objective with an ECC of

100 CHF and an RFCM of one, and on the routing-only objective.

Figure A.2 plots the best results over 10 runs for each instance, where part (a) depicts the

effect on the routing cost and part (b) on the overflow cost. The contribution of the route

failure cost component to the total cost is immaterial and is ignored in the analysis. The

results indicate the clear cost benefit of open tours. For both the complete and the routing-

only objective function, allowing open tours leads to an average decrease of the routing cost

of approximately 10%. The effect holds virtually across all instances as visible in part (a) of

Figure A.2. It is less pronounced in the case of the overflow cost for the complete objective

function. Nevertheless, while less noticeable in absolute terms, the average relative decrease

is again approximately 10%. The case study in Chapter 2 mentions regions where open tours

Figure A.2: Effect of Open Tours on the Solution Cost
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with destination depots different from the origin depots are practiced. Therefore, this result

demonstrates that the findings and conclusions therein are valid, and in fact even stronger,

for a multi-day problem. The improvements for a multi-day problem do not seem to be

related to the instance size.

The experiments in this section use the ALNS of Section 3.3 of Chapter 3. To handle multiple

depots, we add the following operator to the list of repair operators in Section 3.3.2:

• Replace a destination depot: This operator selects a random tour and replaces its

destination depot with a random destination depot o ∈O′′
k t , where t ∈ T is the period

in which the tour is executed and k ∈K is the vehicle executing it. The algorithm then

finds h =min t ′ > t s.t. Hk h > 0, i.e. the next period h for which vehicle k is available,

and changes the origin depot of the tour that vehicle k executes in period h to o .
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B Equivalence of Stock-out and Over-
flow Probabilities

At the demand point level, the undesirable event for a distribution problem is a stock-out,

while for a collection problem it is an overflow. Here, we prove the following:

Proposition B.1. The calculation of the probability of overflow for a collection problem is

identical to the calculation of the probability of stock-out for a distribution problem.

Proof. Let Λ′i g denote the inventory after a regular collection of demand point i in period

g . This collection is accompanied by a corresponding delivery of empty space. Thus, the

empty space inventory after a regular delivery is Λi g =
�
ωi −Λ′i g

�
, whereωi is the capacity

of demand point i . Given a regular collection in period g , the unconditional probability of

overflow of demand point i in period g +1 is expressed as:

�
�
Λ′i g +ρi g �ωi

�
= �
��
ωi −Λ′i g

�−ρi g � 0
�
= �
�
Λi g −ρi g � 0
�

, (B.1)

the last expression being equivalent to expression (4.4) for a distribution problem. Given a

regular collection in period g , the conditional probability of overflow in periods d > g +1 is

expressed as:

�
�
Λ′i g +

h∑
t=g

ρi t �ωi

�����Λ′i g +
h−1∑
t=g

ρi t <ωi



=

�
��
ωi −Λ′i g

�− h∑
t=g

ρi t � 0

�����
�
ωi −Λ′i g

�− h−1∑
t=g

ρi t > 0



=

�
�
Λi g −

h∑
t=g

ρi t � 0

�����Λi g −
h−1∑
t=g

ρi t > 0



, ∀h > g ,

(B.2)

the last expression being equivalent to expression (4.5) for a distribution problem. The

proofs for the unconditional and conditional probabilities of overflow given an emergency

collection in period g ′ > g follow as special cases.
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C Processing Stochastic Information

C.1 Pre-computing the Stock-out Probabilities

To pre-compute the unconditional and conditional probabilities of stock-out (4.4)–(4.7),

choose a sufficiently large number M and for m ∈ {1, . . . , M } simulate:

em =
�
e m

11 , · · · , e m
1|T |, e m

21 , · · · , e m|P ||T |
�

, (C.1)

by drawing ε from Φ, where ε is the vector of error terms defined by equation (4.2). Using

the result of (C.1), the probability in formula (4.4) is pre-computed as:

�
�
Λi g −ρi g � 0
�
= �
�
εi g �Λi g −� �ρi g

��
=

∑M
m=1 IF
�
e m

i t �Λi g −� �ρi g

�
, 1, 0
�

M
. (C.2)

Using the same technique, the probability in formula (4.5) develops and pre-computes as:

�
�
Λi g −

h∑
t=g

ρi t � 0

�����Λi g −
h−1∑
t=g

ρi t > 0



=

= �
�

h∑
t=g

εi t �Λi g −
h∑

t=g

�
�
ρi t

� �����
h−1∑
t=g

εi t <Λi g −
h−1∑
t=g

�
�
ρi t

�

=

=
�
�∑h

t=g εi t �Λi g −∑ht=g �
�
ρi t

�
,
∑h−1

t=g εi t <Λi g −∑h−1
t=g �
�
ρi t

��
�
�∑h−1

t=g εi t <Λi g −∑h−1
t=g �
�
ρi t

�� =

=

∑M
m=1 IF
�∑h

t=g e m
i t �Λi g −∑ht=g �

�
ρi t

�
AND
∑h−1

t=g e m
i t <Λi g −∑h−1

t=g �
�
ρi t

�
, 1, 0
�

∑M
m=1 IF
�∑h−1

t=g e m
i t <Λi g −∑h−1

t=g �
�
ρi t

�
, 1, 0
� ,

∀h > g .

(C.3)

The function IF ([condition], 1, 0) is equal to 1 if the condition is satisfied, and to 0 otherwise.

The probabilities in formulas (4.6) and (4.7) are pre-computed as special cases of (C.2) and

(C.3), respectively. The time complexity of calculating each probability is linear in M .
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Appendix C. Processing Stochastic Information

C.2 Partially Pre-processing the Route Failure Probabilities

Formula (4.10), which defines the probability of route failure, develops as:

� (ΓS >Ωk ) =

= � (�(ΓS ) +E >Ωk ) =

= � (E >Ωk −�(ΓS )) ,

(C.4)

where the cumulative error term E is derived from the definition of the delivery quantity ΓS

in trip S in formula (4.9) as follows:

E =
∑

t ∈T \0

∑
St ∈S

∑
s∈St

t−1∑
h=m

εs h . (C.5)

In the general case, the distribution of E is unknown. And while probabilities (C.4) can be

approximated using the simulation techniques presented in Appendix C.1, the number of

combinations involving different periods, demand points and discrete inventory levels is

prohibitive for them to be pre-computed. However, under Assumption 4.2 of iid error terms

from any distribution, the probability information can be partially pre-processed at the

same time preserving tractability.

Under Assumption 4.2 of iid error terms, the distribution of E depends only on the number

of error terms summed in expression (C.5), which is bounded by N = |P |(|T |−1) as discussed

in Section 4.3.3 of Chapter 4. Pre-processing is performed by choosing a sufficiently large

number M and for m ∈ {1, . . . , M } simulating:

e m
g =

g∑
t=1

εi t , ∀g ∈ {1, . . . , N }, (C.6)

by drawing εi t from the marginal distributionΦ′ for any i ∈P (see Section 4.3.3 in Chapter 4).

Using the result of (C.6), we derive an empirical distribution function Φemp
g of the values

{e 1
g , . . . , e M

g },∀g ∈ {1, . . . , N }. Given Assumption 4.2 and formulation (C.6), ∃g ∈ {1, . . . , N } s.t.

E ∼Φemp
g . These empirical distribution functions are then used at runtime to calculate the

probabilities in formula (C.4).
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· Research assistant: I was the main scientific developer and programmer of

a decision support tool for solving vehicle and inventory routing problems
faced by several recyclable waste collectors.

Oct, 2013

– Apr, 2016

· Teaching assistant: I collaborated internationally in publishing two articles
in the domain of finance with an application of OR techniques. I also de-
veloped a decision support tool for planning the problem of cleaning and
moving containers faced by several waste collectors. I was additionally in-
volved in finance and OR-related courses.

May 2011

– Sep, 2013

PROJECTS

Ecological Waste Management
· This CTI project was the focus of my PhD research. I solved numerous

scientific challenges related to the modeling and solving of vehicle and in-
ventory routing problems with numerous practice-driven constraints, and
the integration of demand uncertainty and forecasting. The project invol-
ved close collaboration with our industrial partner EcoWaste SA.

Oct, 2013

– Mar, 2016

141



Optimization of Waste Container Displacements and Cleaning
· I adapted a dial-a-ride genetic algorithm for the container displacements

and cleaning problem faced by EcoWaste SA, which I integrated in an inte-
ractive graphical user interface for defining and solving the problem, plot-
ting the results, and exporting them in a GPS readable format.

Feb, 2013

– Aug, 2013

RESEARCH INTERNSHIPS

CIRRELT, Montreal, Canada
· My research stay, supervised by Prof. Jean-François Cordeau, resulted in

the formulation of a real-world stochastic inventory routing problem and
the development of a solution methodology. I presented this work at se-
veral scientific conferences in 2016, and we co-authored an article.

Oct, 2015

– Dec, 2015

SELECTED PUBLICATIONS

Papers in International Journals

· Scarinci, R., Markov, I., and Bierlaire, M. (2017). Network design of a transport system ba-
sed on accelerating moving walkways, Transportation Research Part C: Emerging Techno-
logies 80: 310–328.

· Markov, I., Varone, S., and Bierlaire, M. (2016). Integrating a heterogeneous fixed fleet and
a flexible assignment of destination depots in the waste collection VRP with intermediate
facilities. Transportation Research Part B: Methodological, 84: 256–273.

· Dewaele, B., Markov, I., Pirotte, H., and Tuchschmid, N.S. (2013). Does manager offshore
experience count in the alternative UCITS universe? Journal of Alternative Investments,
16(1): 72–85.

· Markov, I., Oeuvray, R., and Tuchschmid, N.S. (2013). Non-fully invested derivative-free
bond index replication. Financial Markets and Portfolio Management, 27(1): 101–124.

Papers in Conference Proceedings

· Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2017). A general
framework for routing problems with stochastic demands. Proceedings of the 17th Swiss
Transport Research Conference (STRC), May, 17-19, 2017.

· Markov, I., Lapparent, M. (de), Bierlaire, M., and Varone, S. (2015). Modeling a waste
disposal process via a discrete mixture of count data models. Proceedings of the 15th
Swiss Transport Research Conference (STRC), April 15-17, 2015, Ascona, Switzerland.

· Markov, I., Varone, S., and Bierlaire, M. (2014). Vehicle routing for a complex waste col-
lection problem. Proceedings of the 14th Swiss Transport Research Conference (STRC), May
14-16, 2014, Ascona, Switzerland.

Technical Reports

· Scarinci, R., Markov, I., and Bierlaire, M. (2017). Network design of a transport system
based on accelerating moving walkways. Technical report TRANSP-OR 170123, Transport
and Mobility Laboratory, EPFL, Lausanne, Switzerland.

· Markov, I., Bierlaire, M., Cordeau, J.-F., Maknoon, Y., and Varone, S. (2016). Inventory
routing with non-stationary stochastic demands. Technical report TRANSP-OR 160825,
Transport and Mobility Laboratory, EPFL, Lausanne, Switzerland.

142



· Markov, I., Varone, S., and Bierlaire, M. (2015). The waste collection VRP with interme-
diate facilities, a heterogeneous fixed fleet and a flexible assignment of origin and desti-
nation depot. Technical report TRANSP-OR 150212, Transport and Mobility Laboratory,
EPFL, Lausanne, Switzerland.

TEACHING EXPERIENCE

Teaching Assistantship

Optimization and Simulation Spring 2016

EPFL, Doctoral level, Exercises and labs

Decision-aid Methodologies in Transportation Spring 2014, 2015, 2017

EPFL, Master level, Exercises and labs

Introduction to Optimization Fall 2014, 2015, 2016, 2017

EPFL, Bachelor level, Exercises and labs

Probability and Statistics Fall 2013

EPFL, Bachelor level, Exercises and labs

Supervision of Master’s Theses
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treprise, la logistique et le transport, Montreal, Canada.

· Markov, I., Lapparent, M. (de), Varone, S., and Bierlaire, M. (2015). Towards an integrated
approach for demand forecasting and vehicle routing in recyclable waste collection. hE-
ART 2015 – 4th Symposium of the European Association for Research in Transportation,
September 11, 2015, DTU, Copenhagen, Denmark.

· Markov, I., Lapparent, M. (de), Varone, S., and Bierlaire, M. (2015). Vehicle routing and
demand forecasting in a generalized waste collection problem. VeRoLog 2015 – Fourth
meeting of the EURO Working Group on Vehicle Routing and Logistics Optimization, June
9, 2015, University of Vienna, Austria.

· Markov, I., Lapparent, M. (de), Bierlaire, M., and Varone, S. (2015). Modeling a waste dis-
posal process via a discrete mixture of count data models. 15th Swiss Transport Research
Conference (STRC), April 16, 2015, Ascona, Switzerland.

· Markov, I., Varone, S., and Bierlaire, M. (2014). Solving a complex waste collection rou-
ting problem with intermediate disposals. hEART 2014 – 3rd Symposium of the European
Association for Research in Transportation, September 12, 2014, University of Leeds, UK.

· Markov, I., Varone, S., and Bierlaire, M. (2014). Vehicle routing for a complex waste col-
lection problem. VeRoLog 2014 – Third meeting of the EURO Working Group on Vehicle
Routing and Logistics Optimization, June 23, 2014, University of Oslo, Norway.

· Markov, I., Varone, S., and Bierlaire, M. Vehicle routing for a complex waste collection pro-
blem. 14th Swiss Transport Research Conference (STRC), May 14, 2014, Ascona, Swit-
zerland.

· Markov, I., Varone, S., and Bierlaire, M. (2014). Waste collection routing with time windows
and intermediate disposal trips. 12th Joint Operations Research Days, May 9, 2014, EPFL,
Lausanne, Switzerland.

145




