
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. A. Lenstra, président du jury
Prof. M. Odersky, directeur de thèse

Prof. A. Abel, rapporteur
Prof. F. Pottier, rapporteur

Prof. V. Kunčak, rapporteur

Higher-Order Subtyping with Type Intervals

THÈSE NO 8014 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 10 NOVEMBRE 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE MÉTHODES DE PROGRAMMATION 1
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Sandro STUCKI

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/148034251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments
During my time as a PhD student at EPFL, I have had the great fortune to meet, collaborate

with, and learn from many wonderful people. Without them – my colleagues, mentors, friends,

and family – this work would not have been possible, and I am grateful for their support.

I am grateful to Martin, my advisor, for introducing me to functional programming as an

undergraduate many years ago, for taking me on as a PhD student at LAMP, and for giving me

the freedom to pursue my own research interests during my PhD studies.

To Andreas Abel, François Pottier, and Viktor Kunčak, for accepting to serve on my thesis jury,

and to Arjen Lenstra for chairing it. I greatly appreciate the time and effort they invested in

reading the initial draft of this dissertation, giving me insightful and constructive feedback,

and traveling to Lausanne to participate in my defense.

To my friends and colleagues Heather and Vojin, who welcomed me during my first visit to

LAMP and immediately took me under their wings, always ready to help and to lend an ear,

both in times of exhilaration and desperation.

To my friend and lab mate Manohar, for all the fun we’ve had over the years at and off work,

writing papers, attending and organizing conferences, taking road trips, missing a plane and

deciding to visit Niagara Falls instead, for countless discussions about life, its meaning and

the universe, poetry and jam sessions at Sat that lead to some hilarious performances, and for

doing all of it with a smile.

To Denys and Amir, for TA-ing the Foundations of Software class with me, and for their

unquestioning support and kind words when I needed to take time off to be with my family.

To Tiark and Nada, for mentoring me during the first part of my PhD, helping me write my

first paper, and introducing me to generative programming, domain-specific languages, and

dependent object types.

To Sébastien, for his help in translating the abstract of this dissertation, where his eye for detail

was much appreciated, but also for his heroic attempts to teach some of us LAMPions to sing,

and in general, for his positive attitude to life and his infectious laugh.

To my office mates throughout the years, Lukas, Hubert, Dima, Vladimir, Vera, Guillaume, and

Olivier, for many friendly “hello”s and “good night”s to start and end the work day with a smile,

and for letting me monopolize our much too small whiteboard for weeks at a time. Special

thanks go to Hubert, for many discussions about the PhD, life, and the universe, usually over

beers, and to Guillaume for many discussions about type inference rules, Dotty bugs, and

the universe, usually over burgers. It’s fair to say that this dissertation could not have been

completed without Guillaume’s uncanny ability to produce counter examples to my theories

i

Acknowledgments

and to answer any question about the Dotty type checker one could possibly come up with.

To Aggelos, Mano, and Vlad for working evenings and weekends to organize last year’s Scala

Symposium with me, and to Heather and Philipp for mentoring us – your advice was much

needed and much appreciated.

To all the other LAMPions, past and present, Alex, Danielle, Eugene, Fabien, Felix, Fengyun,

Guillaume Massé, Ingo, Jorge, Julien, Natascha, Nico, Olaf, Ondřej, and Tobias for five years of

collaborations, lunches, and coffee breaks full of philosophical discussions, beers at Satellite

and The Great Escape, ski weekends in the nearby alps, and for simply being a great bunch.

To the organizers of the 2014 Oregon Programming Languages Summer School (OPLSS), for

introducing me to dependent types, proof assistants, and a group of inspiring people in the

field of programming languages, teachers and students alike.

To Paolo, for sharing his wealth of knowledge on just about any topic in programming lan-

guages, and for many discussions about some of the more subtle points of this work.

To my students Arjen, Cédric, and Fengyun who taught me more than I could possibly have

taught them.

To Jean, Jérôme, and Vincent – the “Kappa gang” at Paris 7 and ENS – for showing me that

programming languages theory is about more than just programming, and for introducing

me to the fascinating subjects of systems and synthetic biology. Special thanks go to Vincent,

who hosted me during a six-months research internship in Edinburgh, for mentoring me,

encouraging me to tackle problems I had no idea how to solve, giving me the tools to solve

them anyway, and for teaching me to have fun in the process.

To Vincent’s students and collaborators, Ricardo, Sebastian, Philipp, and Tobias, for the great

times we’ve had in Edinburgh, exploring master equations, category theory, the dynamics of

branching polymers and most of the cask ales served in Edinburgh’s pubs. I met Ricardo in

Vincent’s office on my first day at Edinburgh University, and we immediately became brothers

in crime. Equally bewildered and enthralled by the strange diagrams on Vincent’s whiteboard,

we decided to figure them out together and each gained a friend in the process. I thank Vincent,

Ricardo, and Tobias for the six months that followed and for the many collaborations, meetings,

and adventures we shared, and continue to share, long after my initial stay in Edinburgh.

To Anu, Jan Eric, Olle, Ponna, Stefan, and the rest of the team at Mitrionics, where I did my

MSc thesis and spent two great years as an engineer, for mentoring me and for recognizing

and awaking the budding scientist in me.

To Helen Fielding, for providing an open ear and words of wisdom during a particularly difficult

time, and for reminding me of the importance of setting the right priorities in life.

To my brother André and my parents Esthi and Ruedi, to whom I owe everything and whose

unconditional love and support have carried me through many ups and downs. I could not

have wished for anything more.

And I am especially grateful to my wife Lisa, for her incredible patience and her unwavering

support during the past five years, for challenging me when I am being complacent, for

encouraging me when I am in despair, but most of all, for believing in me. You are the best.

Lausanne, October 15, 2017 Sandro Stucki

ii

Abstract
Modern, statically typed programming languages provide various abstraction facilities at both

the term- and type-level. Common abstraction mechanisms for types include parametric

polymorphism – a hallmark of functional languages – and subtyping – which is pervasive in

object-oriented languages. Additionally, both kinds of languages may allow parametrized (or

generic) datatype definitions in modules or classes. When several of these features are present

in the same language, new and more expressive combinations arise, such as (1) bounded

quantification, (2) bounded operator abstractions and (3) translucent type definitions. An

example of such a language is Scala, which features all three of the aforementioned type-level

constructs. This increases the expressivity of the language, but also the complexity of its type

system.

From a theoretical point of view, the various abstraction mechanisms have been studied

through different extensions of Girard’s higher-order polymorphic λ-calculus Fω. Higher-

order subtyping and bounded polymorphism (1 and 2) have been formalized in Fω<: and its

many variants; type definitions of various degrees of opacity (3) have been formalized through

extensions of Fω with singleton types.

In this dissertation, I propose type intervals as a unifying concept for expressing (1–3) and other

related constructs. In particular, I develop an extension of Fω with interval kinds as a formal

theory of higher-order subtyping with type intervals, and show how the familiar concepts

of higher-order bounded quantification, bounded operator abstraction and singleton kinds

can all be encoded in a semantics-preserving way using interval kinds. Going beyond the

status quo, the theory is expressive enough to also cover less familiar constructs, such as

lower-bounded operator abstractions and first-class, higher-order inequality constraints.

I establish basic metatheoretic properties of the theory: I prove that subject reduction holds

for well-kinded types w.r.t. full β-reduction, that types and kinds are weakly normalizing, and

that the theory is type safe w.r.t. its call-by-value operational reduction semantics. Key to

this metatheoretic development is the use of hereditary substitution and the definition of an

equivalent, canonical presentation of subtyping, which involves only normal types and kinds.

The resulting metatheory is entirely syntactic, i.e. does not involve any model constructions,

and has been fully mechanized in Agda.

The extension of Fω with interval kinds constitutes a stepping stone to the development of

a higher-order version of the calculus of Dependent Object Types (DOT) – the theoretical

foundation of Scala’s type system. In the last part of this dissertation, I briefly sketch a possible

extension of the theory toward this goal and discuss some of the challenges involved in

iii

Abstract

adapting the existing metatheory to that extension.

Keywords: type systems, higher-order subtyping, type intervals, bounded polymorphism,

bounded type operators, singleton kinds, dependent kinds, dependent object types, metathe-

ory, type safety, hereditary substitution.

iv

Résumé
Les langages de programmation statiquement typés modernes fournissent des utilitaires

d’abstraction tant au niveau des termes que des types. Parmi les mécanismes d’abstraction

communs, l’on trouve le polymorphisme paramétrique – un étendard des langages fonction-

nels – et le sous-typage – omniprésent dans les langages orientés objet. De plus, ces deux

types de langages peuvent permettre de définir des types de données paramétrés (aussi dits

génériques) au sein de modules ou de classes. Lorsque plusieurs de ces fonctionnalités sont

présentes dans un même langage, de nouvelles combinaisons, plus expressives, surgissent,

parmi lesquelles (1) la quantification bornée, (2) les abstractions d’opérateur bornées et (3)

les définitions de types translucides. Un exemple d’un tel langage est Scala, lequel comprend

les trois constructions au niveau des types susmentionnées. Ces combinaisons augmentent

l’expressivité du langage, mais rendent également son système de types plus complexe.

D’un point de vue théorique, les différents mécanismes d’abstraction ont été étudiés au travers

de diverses extensions de Fω, le λ-calcul avec polymorphisme d’ordre supérieur de Girard. Le

sous-typage d’ordre supérieur et le polymorphisme borné (1 et 2) ont été formalisés comme

Fω<: et ses nombreuses variantes ; les définitions de type aux divers degrés de transparence (3)

l’ont été au moyen d’extensions de Fω avec des types singleton.

Dans cette thèse, je propose les intervalles de type comme un concept unifié pour exprimer

(1–3) ainsi que d’autres constructions qui y sont reliées. En particulier, je développe une

extension de Fω avec sortes intervalle, et montre comment les concepts familiers que sont

la quantification bornée d’ordre supérieur, l’abstraction d’opérateur bornée et les sortes

singleton peuvent tous être encodés avec des sortes intervalle, en préservant la sémantique.

J’établis les propriétés métathéoriques élémentaires de la théorie : je prouve que la réduction

de sujet est vérifiée pour les types aux sortes bien formées par rapport à la β-réduction

complète, que les types et sortes supportent la normalisation faible, et que la théorie présente

un typage sûr par rapport à sa sémantique de réduction opérationnelle par valeur. Deux

points clef de ce développement métathéorique sont l’usage de substitution héréditaire et la

définition d’une présentation canonique du sous-typage équivalente qui inclut uniquement

des types et sortes normalisés. La métathéorie qui en résulte est entièrement syntaxique – c’est-

à-dire qu’elle ne comprend aucune construction modèle – et a été complètement mécanisée

en Agda.

L’extension de Fω avec des sortes intervalle constitue une étape majeure pour développer une

version du calcul à Types Objet Dépendants (DOT, Dependent Object Types), la fondation

théorique du système de types de Scala. Dans la dernière partie de cette thèse, j’entrouvre

v

Résumé

une extension possible de la théorie en vue de cet objectif, et traite de quelques défis qui se

présentent lorsque l’on tente d’adapter la métathéorie existante à cette extension.

Mots clefs : systèmes de types, sous-typage d’ordre supérieur, intervalles de type, polymor-

phisme borné, opérateurs de type bornés, sortes singleton, sortes dépendantes, types objet

dépendants, métathéorie, typage sûr, substitution héréditaire.

vi

Contents
Acknowledgments i

Abstract (English/Français) iii

List of figures ix

1 Introduction 1

1.1 Contributions and overview . 4

2 Background 7

2.1 Upper bounds . 9

2.2 Intervals and singletons . 11

2.3 First-class Inequalities . 12

2.4 Related work . 14

3 The declarative system 21

3.1 Syntax . 21

3.1.1 Encodings . 24

3.1.2 Structural operational semantics . 25

3.2 Declarative typing and kinding . 26

3.2.1 Context and kind formation . 27

3.2.2 Kinding and typing . 30

3.2.3 Subkinding and subtyping . 31

3.2.4 Kind and type equality . 35

3.3 Basic metatheoretic properties . 37

3.3.1 Substitution lemmas . 37

3.3.2 Admissible order-theoretic rules . 39

3.4 Validity . 40

3.4.1 The extended system . 42

3.4.2 Equivalence . 48

3.5 Congruence lemmas for type and kind equality 48

3.6 Admissible rules for higher-order extrema and intervals 49

3.7 Subject reduction for well-kinded types . 55

3.8 Type safety . 56

vii

Contents

4 Normalization of types 61

4.1 Normalization of raw types and kinds . 61

4.1.1 Syntax . 62

4.1.2 Weak equality . 63

4.1.3 Hereditary substitution in raw types . 64

4.1.4 Normalization of raw types . 69

4.1.5 Soundness of normalization . 71

4.2 Simple kinding of normal types . 72

4.2.1 Simply-kinded hereditary substitution . 75

4.2.2 Simplification and normalization of kinding 77

5 The canonical system 85

5.1 Soundness and basic properties . 91

5.1.1 Order-theoretic properties . 93

5.1.2 Canonical replacements for declarative rules 95

5.1.3 Simplification of canonical kinding . 97

5.2 The hereditary substitution lemma . 98

5.2.1 Validity . 101

5.2.2 Lifting of weak equality to canonical equality 102

5.3 Completeness of canonical kinding . 103

5.4 Inversion of canonical subtyping . 106

5.5 Type safety revisited . 108

6 Extending the theory 111

6.1 Type members in Scala and DOT . 111

6.2 Higher-order type members . 113

6.2.1 Avoiding additional reductions in types . 114

6.2.2 Permitting additional reductions in types 115

6.2.3 Non-termination . 116

7 Conclusion 119

Bibliography 121

Curriculum vitae 127

viii

List of Figures
3.1 Syntax of Fω·· . 22

3.2 Syntactic shorthands and encodings . 24

3.3 Call-by-value reduction . 25

3.4 Full β-reduction in types and kinds . 26

3.5 Declarative presentation of Fω·· – part 1 . 28

3.6 Declarative presentation of Fω·· – part 2 . 29

3.7 Extended declarative kinding and subkinding . 43

4.1 Alternative syntax for types . 62

4.2 Weak type equality . 63

4.3 Hereditary substitution . 65

4.4 Recursive structure of hereditary substitution . 66

4.5 Normalization of types . 69

4.6 Simplified kinding . 74

5.1 Canonical presentation of Fω·· – part 1 . 86

5.2 Canonical presentation of Fω·· – part 2 . 87

5.3 Top-level transitivity-free canonical subtyping . 106

ix

1 Introduction

Modern, statically typed programming languages provide various abstraction facilities, both

at the term level and at the type level. Common abstraction mechanisms for types include

parametric polymorphism – a hallmark of languages following the functional paradigm, such

as ML, Haskell or Agda – and subtyping – which is pervasive in object-oriented languages,

such as C++, Java or Scala. Additionally, both kinds of languages may allow parametrized (or

generic) datatype definitions in modules or classes.

When several of these features are present in the same language, new and more expressive

combinations arise. Such combinations include

1. bounded quantification,

2. bounded type operators, and

3. translucent type definitions.

The presence of these abstraction mechanisms increases the expressivity of the language, but

also the complexity of its type system.

Scala is a multi-paradigm language that integrates functional and object-oriented concepts

and features all of the aforementioned type-level constructs. This is illustrated by the following

code snippet.

object boundedUniversal {

trait Bounded[B, F[_ <: B]] { def apply[X <: B]: F[X] }

type All[F[_]] = Bounded[Any, F]

}

The snippet defines a module boundedUniversal with two parametrized type members: a

trait Bounded and a type alias All. Scala’s traits are similar to Java’s interfaces or ML’s module

signatures. They represent (partly) abstract datatypes or modules that can be refined through

subtyping, combined through mixin composition, and instantiated through object creation.

1

Chapter 1. Introduction

The trait Bounded is parametrized by a proper type B and a type operator F. The abstract

operator F is declared to take a single (unnamed) type parameter, which in turn is upper-

bounded by B, i.e. constrained to be a subtype of B. The parameter F is thus an example of an

abstract bounded operator (2).

The interface of the trait Bounded consists of a single polymorphic method apply, which takes

a single type parameter X, again upper-bounded by B, and returns an instance of F[X], i.e. the

type resulting from applying the abstract operator F to the abstract type X. This application is

permitted because of the bound X <: B, which ensures that X is indeed a subtype of B. The

method apply is an example of bounded quantification (1). Indeed the trait Bounded and the

type alias All are just Scala encodings of the bounded and unbounded universal quantifiers

found in F≤ [25, 14].

The definitions of the trait Bounded and the type alias All are examples of (3). The definition

of Bounded is partly abstract (in the object-oriented sense of the word): although some of its

interface is exposed, concrete instances of Bounded may refine that interface while keeping

the details of such refinements hidden. The type alias All, on the other hand, is completely

transparent: the compiler identifies any occurrences of the type All[F] with those of its

definition Bounded[Any, F] – hence the name type alias. The following method definition

illustrates this.

import boundedUniversal._

def boundedListAsAll(x: Bounded[Any, List]): All[List] = x

There is a spectrum of more or less abstract type definitions ranging from completely trans-

parent type aliases to completely abstract (or opaque) type members. We will have more to

say about this spectrum in the next chapter.

Although the concepts of bounded quantification and bounded type operators (1 and 2) may

seem quite different from abstract definitions of various degrees (3), all three are in fact closely

related. Returning to our example, the types Bounded and All can themselves be seen as

bounded abstract operators. Indeed, the above definitions could be rewritten as follows:1

object boundedUniversal {

type Bounded[B, F[_ <: B]] <: { def apply[X <: B]: F[X] }

type All[F[_]] >: Bounded[Any, F] <: Bounded[Any, F]

}

This version is closer to how type definitions are represented in the calculus of Dependent

Object Types (DOT), Scala’s core calculus [4].

The trait Bounded is now represented as an abstract type declaration with only an upper

1As of Scala version 2.12.3 this code is valid and accepted by the compiler. Somewhat ironically, the next
generation Scala compiler Dotty [40], which uses DOT as a core calculus, no longer accepts this code.

2

bound. This means that its interface remains exposed – any instance of Bounded[B, F] is also

an instance of the structural record { def apply[X <: B]: F[X] } containing the method

apply. Conversely, not every record (or class) with a method apply is automatically an instance

of the type Bounded[B, F], only those that explicitly extend or mix in an instance of Bounded.

This ensures that Bounded continues to behave like a nominal type, as Scala traits are supposed

to.2

Unlike Bounded, the abstract type All is both upper- and lower-bounded. In general, a type

declaration of the form X >: A <: B, irrespective of whether X is a type member or a type

parameter, introduces an abstract type X that is bounded by A from below and by B from above.

The bounds constrain the possible concrete definitions of X to be supertypes of A and subtypes

of B. In other words, the declaration X >: A <: B specifies a type interval in which X must be

contained. Type aliases such as All take the form of singleton intervals X >: A <: A, where

the lower and upper bounds coincide. Because subtyping in Scala is antisymmetric, this

effectively identifies the abstract type X with its singleton bound A.

Scala’s type system also features a pair of extremal types Any and Nothing. The type Any is

maximal, i.e. it is a supertype of every other type, while the type Nothing is minimal, i.e. a

subtype of every other type. Thanks to the extremal types, abstract types X with only an upper

or lower bound A can be thought of as inhabiting the degenerate intervals X >: Nothing <: A

and X >: A <: Any, respectively.

This suggests a uniform treatment of 1–3 through type intervals, and indeed, this is essentially

how bounded quantification (1) and type definitions (3) are modeled in DOT. Unfortunately,

DOT lacks intrinsics for higher-order computation, such as type operator abstractions and ap-

plications, so that our theoretical understanding of the corresponding Scala features, including

bounded operators (2), remains limited.

Traditionally, 1–3 have been studied through typed λ-calculi, and in particular through some-

what orthogonal extensions of Girard’s higher-order polymorphic λ-calculus Fω [27]. Higher-

order subtyping and bounded polymorphism (1 and 2) have been formalized in Fω<: and its

many variants; type definitions of various degrees of opacity (3) have been formalized through

extensions of Fω with singleton types.

The treatment of 1 and 3 in DOT and the above code examples suggest a different, unified

approach to studying 1–3: the development of a formal theory of higher-order subtyping

with type intervals. By studying type intervals in their own right, we may even hope to find a

theory that is strictly more general that previous treatments of 1–3, revealing novel or at least

unfamiliar type-level abstraction mechanisms in the process.

2For details on how Scala traits and their refinements may be encoded in DOT, we refer the interested reader to
Chapter 2 of Amin’s dissertation [3].

3

Chapter 1. Introduction

1.1 Contributions and overview

In summary, we propose the following thesis:

Higher-order bounded quantification, bounded operator abstraction and single-

ton kinds are specific instances of the more general concept of type intervals; a

formal theory of higher-order subtyping with type intervals thus subsumes and

generalizes existing theories of these concepts.

To demonstrate this thesis, we proceed as follows.

Background and related work

In Chapter 2, we review the concepts of bounded quantification, bounded type operators and

type definitions through various examples. Along the way, we illustrate the use of type intervals

by elaborating the examples into a prospective extension of Fω with interval kinds. We also

sketch some less familiar but powerful idioms involving type intervals, such as first-class

higher-order type inequalities, and discuss the problems that arise from abstractions over

intervals with inconsistent bounds.

We survey previous work on higher-order subtyping, bounded polymorphism and translucent

type definitions in the second part of the chapter, and discuss how and where our work fits

into the overall program of developing theoretical foundations for Scala’s type system.

The declarative system

We introduce Fω·· – our formal theory of higher-order subtyping with type intervals – in Chap-

ter 3. Fω·· is a typed lambda calculus extending Fω with higher-order subtyping and interval

kinds.

Throughout Chapter 3, we present the syntax and structural operational semantics of Fω·· , as

well as its declarative typing, kinding, subtyping, subkinding and equality rules. We prove

some basic metatheoretic properties of the system – just enough to show that the subject

reduction property (aka preservation) holds for well-kinded types. In the last part of the

chapter, we discuss type safety of Fω·· and the challenges involved in proving it. We conclude

Chapter 3 with an outline of our strategy for proving type safety in the next two chapters.

Normalization of types

In Chapter 4, we show that types and kinds in Fω·· are weakly normalizing. To this end, we

define a bottom-up normalization procedure based on hereditary substitution that computes

the βη-normal forms of types and kinds, and prove its soundness.

4

1.1. Contributions and overview

The chapter is divided into two parts. The first half of the chapter defines the hereditary

substitution and normalization functions on raw, i.e. unkinded, types and establishes basic

properties. In the second half, we introduce a set of simplified kinding judgments. Simplified

kinding serves a dual purpose: firstly, it provides a syntactic characterization of normal types,

and secondly, it allows us to establish important properties about hereditary substitutions and

normal forms that are key to the technical development presented in the next chapter.

The canonical system

In Chapter 5, we introduce a canonical system of judgments covering the kind and type level

of Fω·· . In contrast to those of the declarative system, the judgments of the canonical system

are defined directly on βη-normal forms, and restrict the use of subkinding.

We first introduce and discuss the inference rules for the various canonical judgments and com-

pare them against their declarative counterparts. Then, we develop the necessary metatheory

to establish equivalence of the canonical and declarative presentations: we prove soundness

of the canonical system, preservation of the canonical judgments under hereditary substitu-

tions, inversion of canonical subtyping, and finally completeness of the canonical system. We

conclude the chapter by completing the type safety proof laid out in Chapter 3.

The metatheoretic development presented in Chapters 3 to 5 has been fully mechanized using

the Agda proof assistant [37].3

Extending the theory

The extension of Fω with interval kinds is just one step in a larger effort to formalize Scala’s

type system. Although it provides a theoretical foundation for several of Scala’s type-level

abstraction mechanisms, Fω·· lacks other important type system constructs found in Scala, such

as abstract type members and path-dependent types. Conversely, the calculus of Dependent

Object Types (DOT) – the core calculus of the new Dotty compiler for Scala [40] – features

abstract type members and path-dependent types but no higher-order type operators. Ideally,

we would like to combine the two calculi to obtain a full theory of higher-order dependent

object types. In Chapter 6, we briefly sketch a possible extension of Fω·· toward this goal and

discuss some of the challenges involved in adapting the existing metatheory to that extension.

3The Agda source code is freely available at https://github.com/sstucki/f-omega-int-agda

5

2 Background

Before we go on to formally define our theory of type intervals Fω·· , let us illustrate the use

of the more familiar abstraction mechanisms – bounded quantification, bounded operator

abstraction and singleton kinds – as well as their encodings through interval kinds, in a bit more

detail. We do so informally, by deconstructing our introductory example, and reconstructing

it in various typed λ-calculi. As we go along, we introduce the above-mentioned constructs,

one by one, and show how they can be encoded in Fω·· . In the next chapter, we make these

encodings more formal.

We start by revisiting our Scala example from the previous chapter.

object boundedUniversal {

trait Bounded[B, F[_ <: B]] { def apply[X <: B]: F[X] }

type All[F[_]] = Bounded[Any, F]

}

Recall the different abstraction mechanisms used in this example:

1. bounded quantification – in the signature of the polymorphic method apply, which has

a type parameter X bounded by B;

2. bounded type operators – specifically the type parameter F of the trait Bounded, which is

itself an abstract type operator with a parameter bounded by B, and

3. type definitions – namely that of Bounded, which is partly abstract, and that of All,

which is fully transparent.

If we want to translate this example from Scala into a typed λ-calculus, a good starting point is

Girard’s higher-order polymorphic λ-calculus Fω [27]. Although Fω has no notion of subtyping,

we can at least express the essence of the operator All. Consider the following, more direct

definition of All

trait All[F[_]] { def apply[X]: F[X] }

7

Chapter 2. Background

and its Fω-counterpart

A =λY :∗→∗.∀X :∗.Y X

The named, parametrized trait All[F[_]] has been replaced by an anonymous operator ab-

straction taking an argument Y of kind ∗→∗; the signature apply[X]: F[X] of the polymor-

phic method apply has been replaced by the universally quantified type ∀X :∗.Y X . Through-

out this dissertation, we use the letters A, B , C , etc. as metavariables denoting types, and X ,

Y , Z for denoting object variables.1 In accordance with this naming convention, we have

changed the name of the type parameter F[_] of All to Y .

The object variable X , bound by the universal quantifier in the body of A’s definition, desig-

nates a proper type, as indicated by its declared kind ∗. The variable Y bound in the enclosing

abstraction, on the other hand, designates a unary operator, as indicated by its declared arrow

kind ∗ → ∗. Hence, the type A itself is a higher-order type operator. We recover a proper

type by applying A to a suitable type argument. For example, by applying A to the operator

λX :∗. X → X , we obtain the polymorphic identity

A (λX :∗. X → X) = (λY :∗→∗.∀X :∗.Y X) (λX :∗. X → X) = ∀X :∗. X → X .

The above definition of A is a meta-definition, i.e. just a convenient shorthand for the longer

type expression λY :∗→∗.∀X :∗.Y X . But we can also give an object-level definition of A

in Fω. Assume we are given some term t in which we would like to use A as an abstract type

operator. Then we can bind A to a type variable Z occurring freely in t , using term-level type

abstraction and instantiation,

(λZ :(∗→∗) →∗. t) (λY :∗→∗.∀X :∗.Y X).

Such definitions can be a bit hard to parse, so we adopt the following encoding of let-bindings,

to enhance readability:

let X1 : K1 = A1; . . . ; Xm : Km = Am ;

x1 : B1 = s1 ; . . . ; xn : Bn = sn

in t

= (λX1:K1. · · ·λXm :Km .λx1:B1. · · ·λxn :Bn . t) A1 · · · Am s1 · · · sn .

Using a let-binding, the definition of Z becomes

let Z : (∗→∗) →∗ = λY :∗→∗.∀X :∗.Y X

in t .

1To be precise, we use X , Y , Z to denote both concrete object variables as well as metavariables ranging over
object variables.

8

2.1. Upper bounds

This definition is opaque, i.e. the term t sees the signature of Z , but not its definition. For

example, consider

let Z : (∗→∗) →∗ = λY :∗→∗.∀X :∗.Y X in

let x : ∀X :∗. X → X = λX :∗.λz:X . z in — OK

let y : Z (λX :∗. X → X) = λX :∗.λz:X . z in . . . — type error

The second definition in this example type checks whereas the third one does not. The

problem is that the variable Z is fully abstract, i.e. we have Z �=λY :∗→∗.∀X :∗.Y X as types,

despite the definition on the first line. We will return to this issue shortly, but first, let us extend

the example to include bounded quantification.

2.1 Upper bounds

There are several extensions of Fω with higher-order subtyping and bounded quantification;

one of the simplest and most popular is Pierce and Steffen’s version of Fω<: [42]. In Fω<:, universal

types take the general form ∀X ≤ A:K .B where A and B are types and K is a kind. The type

A is called the upper bound of the variable X , and must be of kind K . The upper bound A

constrains the possible type arguments C , to which instances of ∀X ≤ A:K .B can be applied,

to those that are subtypes C ≤ A of A. This is useful for defining polymorphic functions where

one has partial information about the types being abstracted over.

For example, the following Scala method withLength can only be applied to instances x of

type Y, which must be a subtype of Seq[Int], the trait of integer sequences from the Scala

collections library.

def withLength[Y <: Seq[Int]](x: Y): (Y, Int) = (x, x.length)

The method withLength makes crucial use of the information that Y is a subtype of Seq: since

x is an instance of Y, and hence a sequence of integers, it must have a field called length,

which is part of the sequence interface.

The type Seq[Int] has many concrete implementations, such as List, Array, etc. If we apply

the method withLength to an instance of List[Int], we get a result of type (List[Int], Int),

i.e. a pair consisting of a list of integers and its length.

val x = List(1, 2, 3)

withLength(x) // returns (List(1, 2, 3), 3) of type (List[Int], Int)

Crucially, the type of the result is (List[Int], Int) rather than (Seq[Int], Int) because

withLength is a polymorphic method, returning pairs (Y, Int) for given Y.

Returning to our introductory example, we can define abstract types ZB and ZA in Fω<:, which

9

Chapter 2. Background

closely resemble the definitions of Bounded and All, respectively.

let ZB : ∗→ (∗→∗) →∗=λY1:∗.λY2:∗→∗.∀X ≤ Y1:∗.Y2 X ;

ZA : (∗→∗) →∗ = ZB �
in . . .

Here � denotes the maximum or top type, Fω<:’s version of Any.

There are still two important differences between the above definitions and the corresponding

Scala definitions of Bounded and All. Firstly, the Fω<: definitions are again opaque: we have

ZB � �= λY2:∗→∗.∀X ≤�:∗.Y2 X in the body of the let-expression. Secondly, the signature

of ZB is less precise than that of Bounded: the second parameter F[_ <: B] of Bounded is a

bounded operator, i.e. its argument has an upper bound B. The second argument Y2 of ZB ,

meanwhile, has no such bound. Although this does not make the definition of ZB ill-typed (or

rather, ill-kinded), it still represents a loss of information.

In order to faithfully represent Bounded, we have to extend Fω<: with bounded operator ab-

stractions. Such an extension has been developed by Compagnoni and Goguen under the

name Fω≤ [18]. Operator abstractions in Fω≤ are of the form λX ≤ A:K .B , where A is the upper

bound of X and must be of kind K , much like the upper bound of a universally quantified type

∀X ≤ A:K .B . But unlike universals, which are proper types, operator abstractions inhabit ar-

row kinds; and since abstractions carry bounds in Fω≤ , so do arrow kinds. Given types A and B

of kind J and K , respectively, the kind of an operator abstraction λX ≤ A: J .B is (X ≤ A: J) → K .

This makes arrow kinds type-dependent, which substantially complicates the meta theory of

Fω≤ when compared to that of Fω<:.

In Fω≤ , we can give the following definitions to represent Bounded and All.

let ZB : (Y1:∗) → ((X ≤ Y1:∗) →∗) →∗=λY1:∗.λY2:(X ≤ Y1:∗) →∗.∀X ≤ Y1:∗.Y2 X ;

ZA : (∗→∗) →∗ = ZB �
in . . .

Following common convention, we omit the upper bound A of bindings X ≤ A : K when

A =� and write J → K as a shorthand for simple, non-dependent arrow kinds, i.e. arrow kinds

(X : J) → K where X does not occur freely in K .

Compared to Fω<:, type variable binders are more uniform in Fω≤ . There are four sorts of type

variable binders in Fω≤ , all of which introduce bindings of the form X ≤ A : K .

λX ≤ A:K . t term-level type abstraction

λX ≤ A:K .B type-level operator abstraction

∀X ≤ A:K .B type-level universal quantification

(X ≤ A:K) → J kind-level dependent arrow

10

2.2. Intervals and singletons

Note that every variable is accompanied by a kind K and a type bound A of kind K . There is an

alternative representation of these four constructs where A and K are combined into a single

expression called a power kind [13, 20].

Just as the powerset P (A) of a set A is the set of all subsets of A, so the powerkind P (A) of

a proper type A is the kind of all subtypes of A. In other words, the statements A ≤ B and

A : P (B) are equivalent. In a system with power kinds, bindings of the form X ≤ A : ∗ can then

be expressed as X : P (A), e.g. the following definition of ZB is equivalent to one given above.

let ZB : (Y1:∗) → (P (Y1) →∗) →∗=λY1:∗.λY2:P (Y1) →∗.∀X :P (Y1).Y2 X

in . . .

Power kinds are strictly more expressive than the four binders of Fω≤ because their use is not

restricted to bindings. They can also be used in every other position where a kind is expected.

For example, we can obtain a more transparent definition of ZB by using a power kind in the

codomain of its signature.

let ZB : (Y1:∗) → (Y2:P (Y1) →∗) → P (∀X :P (Y1).Y2 X)

= λY1:∗.λY2:P (Y1) →∗.∀X :P (Y1).Y2 X

in . . .

The signature of ZB tells us that, when we apply ZB to suitable type arguments A and B , the

result is a subtype of ∀X :P (A).B X , i.e. we have ZB A B ≤ ∀X :P (A).B X in the body of the

let-definition; or equivalently

ZB ≤ λY1:∗.λY2:P (Y1) →∗.∀X :P (Y1).Y2 X .

Power kinds can thus be used to express semi-transparent, upper-bounded type definitions,

similar to the definition of the trait Bounded in our introductory example.

Power kinds are very expressive, but they are clearly not the end of the story. We still lack ways

to express (a) lower-bounded definitions, and (b) fully transparent definitions, such as that

of All in our running example.

Enter interval kinds.

2.2 Intervals and singletons

As the name implies, an interval kind A . .B is inhabited by a range of proper types C , namely

those that are supertypes C ≥ A of its lower bound A and subtypes C ≤ B of its upper bound B .

In other words, kinding statements of the form C : A . .B are equivalent to pairs of subtyping

statements A ≤ C and C ≤ B . We will establish this equivalence more formally in the next

chapter.

11

Chapter 2. Background

Power kinds are simply degenerate intervals P (A) =⊥ . . A where the lower bound is the mini-

mum or bottom type ⊥, our equivalent of Scala’s Nothing type. Since every proper type is a

supertype of ⊥, intervals of the form ⊥ . . A are effectively unconstrained from below. Dually,

intervals of the form A . .� are unconstrained from above, and can thus be used to encode

lower-bounded definitions. Interval kinds of the form A . . A, where the lower and upper

bounds coincide, are called singleton kinds or simply singletons. Given a singleton instance

B : A . . A, we have both A ≤ B and B ≤ A, which, assuming an antisymmetric subtyping rela-

tion, implies A = B . Singleton kinds can thus be used to encode transparent definitions and

have been studied for that purpose by Stone and Harper [49]. We adopt their notation and

write S(A) = A . . A for the singleton containing just A.

Using interval kinds, we refine our definitions of ZB and ZA one last time.

let ZB : (Y1:∗) → (Y2:⊥ . .Y1 →∗) →⊥ . . (∀X :⊥ . .Y1.Y2 X)

= λY1:∗.λY2:⊥ . .Y1 →∗.∀X :⊥ . .Y1.Y2 X ;

ZA : (Y :∗→∗) → (ZB �Y) . . (ZB �Y) = ZB �
in . . .

In the body of the let-definition, we now have ZB A B ≤∀X :⊥ . . A.B X and ZA C = ZB �C for

all suitably kinded types A, B and C , as desired.

Interval kinds A . .B are only well-formed if A and B are proper types, i.e. of kind ∗. Similarly,

the extremal types � and ⊥ are proper types, so kinding statements of the form A : ⊥ . .B can

only be used to encode upper bounds on proper types A. To express all of the binders found

in Fω≤ , we need a way to encode bindings of the form X ≤ A : K , for arbitrary kinds K . This

is indeed possible thanks to (a) higher-order interval kinds A . .K B where K is an arbitrary

kind and A, B are a pair of types of kind K , and (b) higher-order extrema �K and ⊥K which

are supertypes and subtypes, respectively, of arbitrary types A : K . As we will see in the next

chapter, both higher-order intervals and higher-order extrema can be encoded using other

kind- and type-level constructs.

2.3 First-class Inequalities

Instances C : A . .B of an interval kind A . .B represent types bounded by A and B respectively.

But they also represent proofs that A ≤ C and C ≤ B , and – by transitivity of subtyping –

that A ≤ B . In other words, the inhabitants of interval kinds A . .B represent first-class type

inequalities A ≤ B . Similarly, higher-order intervals represent type operator inequalities.

Among other things, this allows us to postulate type operators with associated subtyping rules

through type variable bindings. For example, we may postulate intersection types A∧B by

assuming an abstract binary type operator X∧ and the usual typing rules for intersections as

abstract type inequalities Y≤L , Y≤R and Y≤∧. For readability, we abbreviate dependent arrow

12

2.3. First-class Inequalities

kinds (X1: J) → (X2: J) →···→ (Xn : J) → K with multiple parameters X1, X2, . . . , Xn : J of kind J

as (X1, X2, . . . , Xn : J) → K , and we use a bar to mark abstract operators, writing e.g. ∧̄ instead

of X∧.

∧̄ : ∗→∗→∗,

Y≤L : (X1, X2:∗) → (∧̄X1 X2) . . X1, Y≤R : (X1, X2:∗) → (∧̄X1 X2) . . X2,

Y≤∧ : (Z , X1, X2:∗) → Z . . X1 → Z . . X2 → Z . . (∧̄X1 X2).

The two assumptions Y≤L and Y≤R correspond to the left- and right-hand projection rules for

intersections, respectively, i.e. they say that A ∧B ≤ A and A ∧B ≤ B for any pair of proper

types A, B . The assumption Y≤∧ encodes the fact that intersections are greatest lower bounds,

i.e. that A ≤ B ∧C for any triple of types A, B and C such that A ≤ B and A ≤C .

To see this, let A, B and C be proper types and assume that A ≤ B and A ≤C . Then we also

have A : A . .B and A : A . .C , and hence Y≤∧ A B C A A : A . . (∧̄B C), from which we conclude

A ≤ ∧̄B C .

We can also postulate recursive inequations. For example, the following bindings encode an

equi-recursive type constructor μ : (∗ → ∗) → ∗ that, when applied to a unary operator A,

represents the fixpoint μ A of A.

μ̄ : (∗→∗) →∗,

Y≤L : (X :∗→∗) → (μ̄X) . . (X (μ̄X)), Y≤R : (X :∗→∗) → (X (μ̄X)) . . (μ̄X).

Together, the assumptions Y≤L and Y≤R say that μ A = A (μ A), i.e. that μ A is a fixpoint of A.

The above examples are only possible because we do not impose any consistency constraints on

the bounds of intervals. That is, an interval kind A . .B is well-formed, irrespective of whether

A ≤ B is actually provable or not. For example, the signature of the abstract intersection

operator ∧̄ above does not tell us anything about how the type application ∧̄ A B is related to

its first argument A, nor does the abstract left projection inequality Y≤L impose any constraints

on its parameters X1 and X2. It is therefore impossible to say anything about the relationship

of the bounds ∧̄X1 X2 and X1 of the codomain of Y≤L , other than that they are both proper

types. We can certainly not prove that ∧̄X1 X2 ≤ X1 in general. We say that the bounds of an

interval A . .B are consistent if we can prove that A ≤ B , or equivalently, if we can exhibit an

instance C : A . .B ; otherwise we say that the bounds are inconsistent.

One drawback of allowing type variable bindings with inconsistent bounds is that reduction

of terms under such assumptions is not safe in general, because inconsistent bounds may

correspond to absurd inequalities.

For example, under the absurd assumption Z : � . .⊥, we have �≤ Z ≤⊥, i.e. the subtyping

relation becomes trivial. As a consequence, we can type both non-terminating and stuck

13

Chapter 2. Background

terms.

(λx:�. x x) (λx:�. x x) : � — non-terminating, but � ≤ Z ≤ ⊥ ≤ �→�
(λX :∗.λx:X . x) (λx:�. x) : � — stuck, but ∀X :∗. X → X ≤ � ≤ Z ≤ ⊥ ≤ �→�

This means that, in general, it is unsafe to reduce terms under absurd assumptions. Note

that these examples do not break type safety of Fω·· overall though. The absurd assumption

Z : � . .⊥ can never be instantiated, and hence reduction of closed terms remains perfectly

safe. We discuss this point in more detail at the end of Chapter 3.

2.4 Related work

Higher-order subtyping and bounded polymorphism. Bounded quantification has been

studied in detail through numerous calculi and type systems. The conceptual core of these

systems is summarized in F≤, an extension of System F with subtyping and bounded universal

quantification [25, 14]. There are two variants of F≤ that are commonly considered: the

Kernel variant F<: [14], which is based on Cardelli and Wegner’s Kernel Fun [15], and Full F≤,

which is due to Curien and Ghelli [25]. The difference between the two calculi lies in their

subtyping rule for bounded universal quantifiers. In Full F≤, subtyping relates the bounds

of universally quantified types contravariantly, while F<: requires that bounds of related

universals be identical. This makes F≤ more expressive than F<: but also renders subtyping

in F≤ undecidable, while subtyping remains decidable in F<:. We refer interested readers to

Chapters 26 and 28 of Pierce [43] for a detailed comparison of F≤ and F<: and a discussion

of the decidability issue. Decidability of subtyping is not the focus of this dissertation, so we

adopt the more permissive, F≤-variant of the subtyping rule for bounded universal quantifiers

in Fω·· . This means that subtyping in Fω·· is most likely undecidable. However, the metatheory

developed in Chapters 3–5 is largely unaffected by this choice and could easily be adapted to

the more restrictive F<:-variant of the subtyping rule.

An extension of Girard’s higher-order polymorphic λ-calculus Fω [27] with higher-order sub-

typing and F≤-style bounded quantification was first proposed by Cardelli under the name

Fω<: [12]. Basic meta theoretic properties of Fω<: were established by Pierce and Steffen [42],

Compagnoni [19], and Compagnoni and Goguen [17]. Extensions of Fω<: with intersection

types (Fω∧) [19, 16] and bounded operator abstractions (Fω≤) [18] have been developed by Com-

pagnoni and Goguen. An extension of higher-order subtyping and bounded quantification to

dependent types was developed by Zwanenburg using the general framework of Pure Type

Systems (PTS) [54]. More recently, Abel and Rodriguez developed a variant of Fω<: where types

are identified up to βη-equality (rather than just β-equality) and proved its decidability using

the purely syntactic technique of hereditary substitution [2]. Of these extensions, Compagnoni

and Goguen’s Fω≤ and Abel and Rodriguez’s variant of Fω<: resemble Fω·· most closely.

Many of the ideas found in Fω<: go back to early work by Cardelli on power types [11]. In analogy

14

2.4. Related work

to a powerset, the power type P (A) of a given type A is inhabited by all subtypes of A, and the

subtyping relationship B ≤ A is just a shorthand for the typing B : P (A) in Cardelli’s system.

Note that P (A) is itself a type, despite the fact that it is being used to classify other types (here

B : P (A)). This is permitted because Cardelli’s system has the Type:Type property, i.e. the kind

of types is itself a type. While this property makes the system very expressive, it has some

undesirable side-effects, e.g. type expressions in this system are non-normalizing [27, 10].

Cardelli was well aware of this issue, and in a later work with Longo, replaced power types with

the better behaved power kinds [13]. Power kinds can be directly expressed in Fω·· as interval

kinds that are bounded by ⊥ from below: P (A) =⊥ . . A.

Crary proposes an extension of Fω with power kinds as a general calculus for higher-order

subtyping [20]. He uses this calculus to give a coercion-based interpretation of higher-order

subtyping via a translation into a subtyping-free extension of Fω. The representations of

higher-order bounded quantifiers and operators in this system are very similar to those used

in Fω·· . In his PhD dissertation, Crary describes an alternative, predicative system (λK) featuring

both power kinds and singleton kinds [22].

In addition to bounded polymorphism and translucent type definitions, Scala’s type system

also features polarized higher-order subtyping. In a system with polarized subtyping, the

kinds of operators are annotated with the polarity or variance of their arguments, which allows

for more flexible subtyping of operator applications. For example, the type parameter X of

the List[+X] datatype from the Scala standard library is annotated covariantly, which means

that List[A] <: List[B] whenever A <: B. By contrast, the type parameter of the Array[X]

datatype has no annotation, which means that Array[A] <: Array[B] only if A and B are

equal types. An extension of Fω<: with polarized higher-order subtyping was first considered

by Cardelli in an unpublished note [12] and subsequently formalized by Steffen [47], and

Duggan and Compagnoni [26]. More recently, Abel proposed the use of polarized subtyping in

conjunction with sized types as a means for termination checking in languages with recursive

types [1]. Fω·· does not support polarity annotations; hence all type operators in Fω·· behave

like Scala’s Array datatype, i.e. A B1 ≤ A B2 only if B1 = B2. We leave the extension of Fω·· to

higher-order polarized subtyping for future work.

Translucency and singleton kinds. The notion of translucency was introduced by Harper

and Lillibridge in the setting of of ML-style modules with sharing constraints [29]. They

proposed translucent sums, a generalization of weak sum types (aka existential types), as a

uniform way of representing modules containing type definitions with varying degrees of

opacity (fully transparent, fully opaque, or translucent). In contrast, previous approaches had

been restricted to either fully opaque or fully transparent definitions [33].

Stone and Harper later proposed singleton kinds as an alternative mechanism for representing

type definitions with sharing constraints [49]. Like translucent sums, singleton kinds are

expressive enough to cover transparent, opaque, and translucent definitions. An in-depth

15

Chapter 2. Background

discussion of singleton kinds, along with a formal treatment of their relation to translucent

sums, is given by Stone [48]. A machine-verified semantics of SML, including a formalization

of ML-modules based on singleton kinds, is described in Lee et al. [32].

A predicative variant of singleton kinds already appears in Crary’s dissertation [22]. Stone and

Harper later described their version of singleton kinds in an impredicative theory based on

Fω [49]. Even before that, Aspinall introduced a related notion of singleton types [8]. Singleton

types allow internalizing term-level definitions in much the same way that singleton kinds

internalize type definitions. There are subtle but important differences between the two

theories that go beyond the level in the type-kind hierarchy at which they apply. For example,

Aspinall’s system has no explicit equality judgment (on terms). Instead, equality judgments of

the form Γ�s = t : A are just shorthands for typing judgments Γ�s : {t }A , where {t }A denotes

the singleton type containing just the term t of type A. Singleton types {t }A are parametrized

by an index type A that indicates the underlying type of t . By contrast, the theories of Crary,

Harper and Stone use explicit equality judgments (on types) and corresponding rules for

relating singletons to judgmental equalities. The singleton kind inhabited by a proper type A

is denoted by S(A), without an explicit kind index. Singletons over arbitrary – possibly higher-

order – types A of kind K , written S(A : K), are not intrinsic but may be encoded. Interval

kinds are most closely related, both conceptually and formally, to Stone and Harper’s singleton

kinds.

Hereditary substitutions. The metatheoretic development presented in Chapters 3–5 of this

dissertation is purely syntactic, i.e. it does not rely on a logical-relations-style interpretation of

types or any other form of model construction. This is possible thanks to a technique known

as hereditary substitution [52]. Roughly, hereditary substitution allows for the substitution of

one βη-normal form into another while maintaining normality of the result. Intermediate β-

redexes resulting from substituting an abstraction for a variable in head position are eliminated

recursively in a bottom-up fashion, i.e. through further hereditary substitutions. Hereditary

substitution is defined directly on types by structural recursion on the simplified kind of the

type being substituted. This guarantees the totality of the hereditary substitution function

and gives rise to a purely syntactic normalization procedure for types and kinds. Hereditary

substitution is also crucial in our definition of canonical kinding, and subtyping judgments

in Chapter 5 and in establishing the equivalence of these judgments and their declarative

counterparts. It is via this equivalence that we prove subtyping inversion and ultimately type

safety of Fω·· .

Hereditary substitution and similar syntactic techniques have been used to prove weak nor-

malization of a variety of systems. A particularly illuminating example is provided by Keller

and Altenkirch who use hereditary substitution to implement a (total) normalization function

for simply-typed lambda terms in Agda [31]. They go on to prove soundness (every term has a

βη-normal form) and completeness (βη-equal terms have identical normal forms) of their

normalizer, using Agda both as a programming language and as a theorem prover.

16

2.4. Related work

Abel and Rodriquez use hereditary substitution to show that subtyping is decidable in a variant

of Fω<: extended with η-conversion of types [2]. Their treatment of normal types inspired our

definitions of type normalization and simplified kinding in Chapter 4. Another source of

inspiration was Harper and Licata’s presentation of Canonical LF [28]. In Canonical LF, typing

and kinding are defined directly on βη-normal forms. Because LF is a dependently typed

language, the kinding rules normally involve substitutions. Since substitutions do not preserve

normal forms, Canonical LF uses hereditary substitution for such typing rules. Similarly, we

use hereditary substitution in our canonical kinding and subkinding rules in Chapter 5.

Because of its syntactic nature, hereditary substitution is well-suited for mechanizing metathe-

oretic properties in proof assistants with limited proof-theoretic strength such as Twelf [41].

For example, hereditary substitution has been used in the formalization and mechanization

of the equational theory of singleton kinds [21] and the semantics of the SML language [32] in

Twelf.

Foundations of Scala. One of the goals of Fω·· is to act as an intermediate step in the devel-

opment of a higher-order version of the calculus of Dependent Object Types (DOT). The DOT

calculus [4] is both a theoretical foundation for Scala’s type system as well as the core calculus

underlying the experimental Dotty compiler for Scala [40]. Yet, while the Scala type system and

the Dotty compiler support type-level computation and higher-order subtyping through type

definitions, DOT lacks higher-order type-level constructs to faithfully model such features.

Over the years, many formal calculi have been developed to model Scala’s type system. These

can be grouped roughly into two categories: earlier systems model the Scala type system

faithfully and in some detail, including features such as inheritance, mixin composition,

nominal class hierarchies and inner classes; more recent systems belonging to the DOT family

of calculi abstract over many of the details and focus on essential features such as abstract

type members and path-dependent types.

Among the early systems to model Scala, the νObj calculus is the most comprehensive [38].

It models objects and classes with abstract and concrete type members, mixin composition,

and admits an encoding of full F≤ as well as generic classes. Unlike for most of the other early

systems, basic metatheoretic properties of νObj have been established: e.g. both type safety

and undecidability of type checking have been proven for νObj. Featherweight Scala [23],

was introduced as an algorithmic alternative to νObj in order to study type checking in Scala.

Although it is not as rich as the νObj calculus, it still covers many of Scala’s type system

features, including nested classes, mixins and abstract type members. Type checking was

proven decidable for Featherweight Scala, while a proof of type safety was left as future work.

Odersky et al. discussed encodings of some type operators in νObj [38], but these were

later found to be insufficient for expressing more complex, higher-order type operators by

Moors et al. [35]. To address these shortcoming of νObj, they proposed a new calculus, Scalina,

as a foundation for higher-kinded types in Scala, which, at that point, did not yet support fully

17

Chapter 2. Background

general higher-order type operators. The type and kind system of Scalina is rather expres-

sive. It includes interval kinds and supports a form of polarized higher-order subtyping [47]

through the somewhat non-standard notions of un-types and un-members, which do not have

a counterpart in Scala. Type and kind safety was never established for Scalina but it inspired an

extension of Scala’s type system with higher-order subtyping, including higher-order bounded

polymorphism, type operators and type definitions [34]. Recent work on the Dotty compiler

prompted a radical redesign of Scala’s type checker, and in particular the way in which type

parameters in class and type definitions are handled. This sparked renewed interest in the

foundations of higher-kinded types in Scala [39].

The core calculus underlying the Dotty compiler is DOT [4]. Several variants of DOT exist,

differing both in their expressiveness and in the presentation of the operational semantics

(small vs. big-step, environment vs. substitution-based). Compared to earlier systems, the

members of the DOT family are much more parsimonious, both in the number of type-system

constructs that are intrinsically supported, as well as the number of judgments involved in

their static semantics. This was crucial for the development of machine-verified type safety

proofs of the various DOT calculi. An initial draft of DOT was given by Amin et al. [5] and a first

type safety proof for a restricted subset called μDOT was established by Amin and Rompf [7].

The first proof of full DOT, using a big-step semantics and including a full subtyping lattice

and recursive records with self-types was described and mechanized by Rompf and Amin [44].

A simpler safety proof, based on a simplified variant of DOT using a small-step semantics

and a more restricted subtyping relation was presented by Amin et al. shortly thereafter [4].

Additional machine-verified proofs for different variations of DOT and other metatheoretic

properties have since been developed [45, 3, 6, 51].

Central to all variants of DOT is the notion of abstract type members, which corresponds closely

to the eponymous construct in Scala. The type, or declaration { L : A . .B } of an abstract type

member consists of a type label L and a pair of types A and B that bound L from below and

above, respectively. In other words, the declaration associates L with a type interval A . .B .

In Fω·· , we separate the concept of type intervals from that of abstract type members and study

type intervals in their own right through the notion of interval kinds. This allows arbitrary

types – not just type members – to inhabit intervals.

While DOT admits encodings of some type operators, none of the DOT calculi developed so

far are expressive enough to cover the general (higher-order) type computations supported by

Scala’s type system. Although we do not develop a higher-order theory of dependent object

types in this dissertation, we see Fω·· as a first step toward the development of such a theory.

For example, the notion of interval kinds leads to a natural generalization of type member

declarations to the higher-order setting: a higher-order type member declaration { L : K }

associates the type label L with an arbitrary kind K , which may or may not be a (higher-order)

type interval.

18

2.4. Related work

Abstraction over inconsistent assumptions. The problem that computations can become

unsafe under absurd assumptions is well known. It is present in theories that permit abstrac-

tions over coercions that can be applied implicitly, i.e. that need not appear in the expressions

being coerced. Safety issues arise when abstractions are allowed over possibly absurd coer-

cions, i.e. coercions that can never be instantiated, but expressions making implicit use of

such coercions are nevertheless allowed to be reduced. We say that an abstraction is consistent

if we could instantiate (i.e. prove) its assumption at the point of abstraction, and inconsis-

tent otherwise. Note that whether or not an abstraction is consistent may depend on earlier

assumptions (and their consistency).

An early example of this problem appears in the extensional version of Martin-Löf’s Type

Theory (MLTT). In his 1990 book Programming in Martin-Löf ’s Type Theory [36], Nordström

shows how the extensional equality type Eq(A, s, t), which is inhabited by proofs that s and t

are equal terms of the type A, can be used to construct a non-terminating term, assuming

a proof of an absurd equation, similar to the example we described earlier in this section.2

This is despite the fact that MLTT is normalizing, i.e. that every closed, well-typed term has a

normal form in MLTT. The key feature of extensional equality that allows for this to happen

is that explicit assumptions like Γ �x : Eq(A, s, t), can be reflected into equality judgments

Γ�s = t : A by the elimination rule for Eq. Such judgments can then be used to identify s and

t implicitly, i.e. without x appearing explicitly in any term. Inhabitants of Eq can thus act as

implicit term coercions. Similarly, explicit assumptions like Γ�X : A . .K B , can be turned into

subtyping, or inequality judgments Γ�A ≤ B : K , and thus be used as implicit type coercions.

The effect of inconsistent assumptions on the safety of System F-like calculi with subtyping

has been studied in depth by Cretin, Rémy, and Scherer [24, 46]. Cretin and Rémy propose a

variant of System F with coercion constraints, called Fcc [24], which distinguishes between co-

herent coercions that can be erased (i.e. be used implicitly) and incoherent coercions that must

be introduced and eliminated explicitly through corresponding syntactic forms. Programs

involving only coherent coercions can be evaluated safely using full β-reduction, while reduc-

tion under incoherent abstractions is not allowed. The resulting calculus is expressive enough

to cover different variants of subtyping, F≤-style bounded quantification, instance-bounded

quantification, and GADTs. Scherer and Rémy improve on this scheme, by allowing even

finer-grained control over inconsistent abstractions through the notion of assumption hiding,

which temporarily hides an implicit coercion in a term and thus unblocks reduction [46].

Following the approach used in DOT [4, 45], we do not track coherence of coercions in Fω·· ,

nor do we syntactically distinguish between consistent and inconsistent abstraction. While

this simplifies the calculus and its metatheory, it also means that all abstractions must be

considered inconsistent and reduction is unsafe in open terms.

2For details, see Chapter 14 of Nordström’s book [36].

19

3 The declarative system

In this chapter, we introduce Fω·· – our formal theory of higher-order subtyping with type

intervals. Fω·· is a typed lambda calculus extending Girard’s Fω [27] with subtyping. Like

Compagnoni and Goguen’s Fω≤ [18], it features bounded polymorphism as well as bounded

operator abstraction, but unlike Fω≤ , it expresses abstract type bounds through interval kinds.

Throughout this chapter, we present the syntax and structural operational semantics of Fω·· ,

as well as its declarative typing, kinding, subtyping, subkinding and equality rules. We prove

some basic metatheoretic properties of the system – just enough to show that the subject

reduction property (aka preservation) holds for well-kinded types. To conclude the chapter,

we discuss the challenges involved in proving type safety and outline a strategy to do so. The

next two chapters are dedicated to putting this strategy into practice.

3.1 Syntax

The syntax of Fω·· is given in Fig. 3.1. The syntax of terms and types is identical to that of

Fω except for the extremal type constants � and ⊥. The top type � denotes the greatest (or

maximum) proper type w.r.t. subtyping, that is, any other proper type is a subtype of �. The

top type is found in most calculi that feature bounded quantification as a convenient means

for modeling unbounded quantification. Since � is an upper bound of any type, declaring it

as an upper bound on a type variable effectively leaves the variable unbounded. Dually, the

bottom type ⊥ is the least (or minimum) proper type w.r.t. subtyping. Compared to the top

type, the bottom type features in few of the calculi with bounded quantification. However,

it plays a crucial role in Fω·· , as we will see shortly. As usual for a calculus in the Fω-family,

there are three forms of abstraction, one each for abstracting terms in terms (λx: A. t), types in

terms (λX :K . t), and types in types (λX :K . A). Each comes with an associated application form

(st , t A, and AB), and a type or kind former (A → B , ∀X :K . A, and (X : J) → K).

Following Pierce and others [43, 42, 16] we use Church-style syntax for abstractions, i.e. λs

carry domain annotations (kinds for abstractions over type variables and types for term

abstractions). These annotations are a mixed blessing: on the one hand, the kind annotations

21

Chapter 3. The declarative system

x, y, z, . . . Term variable

s, t ::= Term
x term variable
λx: A. t term abstraction
s t term application
λX :K . t type abstraction
t A type application

u, v, w ::= Value
λx: A. t term abstraction
λX :K . t type abstraction

Γ,Δ ::= Typing context
∅ empty context
Γ, x: A term variable binding
Γ, X :K type variable binding

X ,Y , Z , . . . Type variable

A,B ,C ::= Type
X type variable
� top/maximum type
⊥ bottom/minimum type
A → B function type
∀X :K . A universal type
λX :K . A operator abstraction
A B operator application

J ,K ,L ::= Kind
A . .B type interval
(X : J) → K dependent operator kind

j ,k, l ::= Simple kind
∗ kind of proper types
j → k operator kind

Figure 3.1 – Syntax of Fω·· .

in operator abstractions will play a crucial role when we prove weak normalization for types

and kinds in the next chapter; on the other hand, they complicate the formulation of some

subtyping rules (as we will see in Section 3.2) and that of certain commutativity properties (as

we will see in Sections 4.1.2 and 4.2.2). A Curry-style (or domain-free) development of Fω·· might

avoid these complications but would require a different approach to proving normalization of

types.

The main difference between Fω·· and other calculi in the Fω-family is reflected in its kind

language. Firstly, the usual kind of proper types ∗ is replaced by the interval kind former A . .B .

Intuitively, an interval kind A . .B represents the collection of types bounded by the pair of

types A, B . It is inhabited by all proper types C : A . .B that are both supertypes of A and

subtypes of B . The degenerate case ⊥ . .� represents the collection of all proper types since

every such type is bounded by ⊥ from below and by � from above. In other words, ⊥ . .� is

simply the kind of proper types, and hence we define the shorthand ∗=⊥ . .�.

Secondly, most variants of Fω, irrespective of whether they allow subtyping or not, have a

simple kind language (as described by the non-terminal k in Fig. 3.1). In contrast, Fω·· has a

dependent kind language. In particular, the arrow kind (X : J) → K acts as a binder for the type

variable X which may appear freely in the codomain K . The reason for this choice should be

clear: since types are allowed to appear in kinds (as the bounds of intervals), one may wish

to use the argument type X to constrain the codomain K . For example, the result of a type

operator of kind (X :∗) →⊥ . . X is guaranteed to be a subtype of its argument. Dependent kinds

also play an important role when modeling bounded type operators. For example, consider

a binary type operator of kind (X :∗) → (Y :⊥ . . X) →∗. Here, the interval kind ⊥ . . X of the

22

3.1. Syntax

second argument Y ensures that the operator can only applied to types A, B if the latter is a

subtype of the former. This idea is not new: Compagnoni and Goguen’s Fω≤ , which features

upper-bounded type operators, also allows arrow kinds to be dependent [18].

Following common convention, we identify expressions e (i.e. terms, types and kinds), up

to α-equivalence. In other words, two expressions are considered equal if they only differ in

the names of their bound term or type variables. We write e ≡ e ′ when we wish to stress the

fact that the expressions e and e ′ are α-equivalent. The set of free variables of an expression

e is denoted by fv(e). We write s[x := t] to denote the capture-avoiding substitution of t for

the free term variable x in the term s, and e[X := A] to denote the type variable substitution

of A for X in the expression e. For hygiene, we adopt Barendregt’s variable convention [10],

i.e. we assume the names of bound variables in any given expression to be different from those

of free variables. This avoids accidental name capture by substitutions and other syntactic

operations. When we wish to stress that a variable X is fresh w.r.t. an expression e, we write

X ∉ fv(e).

We generally assume that the variables bound in a typing context Γ be distinct so that we may

think of contexts as finite maps from sets of bound variables to the associated types and kinds.

We write dom(Γ) for the domain of Γ, i.e. the set of variables bound in Γ, Γ(x) for the type

associated with the term variable x and Γ(X) for the kind associated with the type variable X .

Given two contexts Γ and Δ with disjoint domains dom(Γ)∩dom(Δ) =∅, we define (Γ,Δ) as

the context obtained by concatenating Γ and Δ. When spelling out contexts, we typically omit

the empty context ∅, writing e.g. Γ= x: A,Y :K instead of Γ=∅, x: A,Y :K .

We abbreviate (X : J) → K by J → K whenever X does not appear freely in K . This conven-

tion, together with the shorthand ∗ for ⊥ . .�, allows us to informally treat the language

of simple kind expressions k as a sub-language of the (dependent) kind expressions K .

More formally, there is an injection ι(k) of simple kinds into kinds given by ι(∗) = ⊥ . .�
and ι(j → k) = (X :ι(j)) → ι(k), which we will usually omit, writing k instead of ι(k). In the

opposite direction, we define a simplification map |K | from kinds to simple kinds which forgets

any dependencies in the kind K (see Fig. 3.2). Given a kind K , we say K simplifies to |K | or that

|K | is its simplification. We say that a pair of kinds J , K , simplify equally if |J | ≡ |K |. It is easy to

verify that simplification is left-inverse to the injection ι, i.e. we have |ι(k)| = k.

A useful property of simple kinds is that they are stable under substitution. We will make

ample use of the following lemma in proofs throughout Chapters 4 and 5.

Lemma 3.1 (stability of simplifications). Let A be a type, K a kind and X a type variable that

occurs freely in K . Then |K [X := A]| ≡ |K |.

Proof. By straightforward induction on the structure of K .

23

Chapter 3. The declarative system

Kind constants

∗ = ⊥ . .�
∅ = � . .⊥

Higher-order type intervals A . .K B ∗K

A . .A′ ..B ′ B = A . .B

A . .(X : J)→K B = (X : J) → A X . .K B X

for X ∉ fv(A)∪ fv(B)

∗A ..B = ⊥ . .�
∗(X : J)→K = (X : J) →∗K

Higher-order extrema �K ⊥K

�A ..B = �
�(X : J)→K = λX : J .�K

⊥A ..B = ⊥
⊥(X : J)→K = λX : J .⊥K

Kind simplification |K |

|A . .B | = ∗
|(X : J) → K | = |J |→ |K |

Bounded quantification and type operators

∀X ≤ A:K .B = ∀X :(⊥K) . .K A.B

λX ≤ A:K . t = λX :(⊥K) . .K A. t

(X ≤ A: J) → K = (X :(⊥J) . .J A) → K

λX ≤ A:K .B = λX :(⊥K) . .K A.B

Figure 3.2 – Syntactic shorthands and encodings

3.1.1 Encodings

Together with the extremal types � and ⊥, interval kinds allow us to express bounded quan-

tification and bounded operators over proper types. For example, the F≤-style universal type

∀X ≤ A.B can be expressed as ∀X :⊥ . . A.B in Fω·· . If we wish to extend this principle to

higher-order bounded quantification and type operators, we need corresponding higher-order

interval kinds and extremal types. Fω·· does not provide intrinsic syntax for these constructs.

Instead, they are encoded via type abstraction and dependent kinds, as shown in Fig. 3.2.

The encoding of higher-order maxima �K is standard (see e.g. [43, 18]), and that of higher-order

minima ⊥K follows the same principle. The encoding of higher-order interval kinds A . .K B

resembles that of higher-order singleton kinds given by Stone and Harper in [49]. This is not

a coincidence: in Fω·· , singleton kinds are simply a special case of interval kinds where the

upper and lower bounds coincide. Adopting Stone and Harper’s notation for singletons, we

define S(A : K) = A . .K A. The intuition behind all these encodings is grounded in the fact

that higher-order subtyping is just the pointwise lifting of subtyping on proper types, i.e. two

type operators A and B of kind K →∗ are subtypes A ≤ B precisely if applying them to any

argument C : K results in the subtyping relationship A C ≤ B C on proper types. By the same

reasoning, upper and lower bounds on types, such as extrema or the bounds of type intervals,

may be lifted pointwise to form higher-order bounds. We will make this intuition more precise

in Section 3.6, where we give a number of admissible subtyping rules for higher-order interval

kinds and extremal types.

Note that the extremal types �K and ⊥K for a given kind K need not inhabit K . To see this,

consider the singleton kind K = S(⊥ : ∗) =⊥ . .⊥. Clearly, �K =� is not contained in K . But

24

3.1. Syntax

CBV reduction s −→v t

(λx: A. t) v −→v t [x := v]
(R-APPABS)

(λX :K . t) A −→v t [X := A]
(R-TAPPTABS)

s −→v s′

s t −→v s′ t
(R-APP1)

t −→v t ′

v t −→v v t ′
(R-APP2)

t −→v t ′

t A −→v t ′ A
(R-TAPP)

Figure 3.3 – Call-by-value reduction

what is the smallest kind that contains both �K and ⊥K ? Given a kind K , we define ∗K as the

kind that takes the same arguments as K but forgets the bounds of its eventual return kind

(see Fig. 3.2). For proper type intervals, ∗A ..B is simply ∗. Equivalently, the kind ∗K can be

seen as a higher-order interval, namely ∗K = (⊥K) . .K (�K). In other words, ∗K is exactly the

smallest higher-order interval wide enough to accommodate the higher-order extremal types

for K . We will prove the equivalence of the two definitions in Section 3.6.

With higher-order intervals and extrema in place, it is straightforward to express Fω≤ -style

higher-order bounded operators and universal quantifiers (see Fig. 3.2).

Fω·· also admits an encoding of (higher-order) existential quantifiers (aka weak sums). The en-

coding of unbounded existentials is a straightforward generalization of the Church-encoding

for existential quantifiers in System F; we refer the interested reader to [43, Section 24.3] for

details. Starting from unbounded existentials, higher-order type intervals may then be used to

express bounded existential quantification just as for the universal case.

3.1.2 Structural operational semantics

We adopt a standard call-by-value (CBV) semantics for Fω·· . The one-step CBV reduction

relation −→v is defined in Fig. 3.3, and we denote its reflexive, transitive closure, CBV reduction,

by −→∗
v . Since these relations are untyped, and therefore largely independent from the type

and kind language, they are essentially identical to corresponding CBV reduction relations

defined for Fω (see e.g. [43, Fig. 30-1]).

The choice of CBV as the evaluation strategy is only significant insofar as it forbids reduction

under binders. As we will see in Section 3.8, the subject reduction property (also known as

preservation) does only hold for closed well-typed terms in Fω·· , i.e. for terms typed in the

empty context. Reductions under binders, such as term or type abstractions, on the other

hand, are unsafe. Hence, we could have picked a call-by-name (CBN) semantics instead, but

not one based on e.g. full β-reduction.

Subject reduction does hold for open types and kinds, however. We define the one-step β-

reduction relation −→β on types and kinds as the compatible closure of β-contraction of

type operators w.r.t all the type and kind formers (see Fig. 3.4). We write −→∗
β

for its reflexive,

25

Chapter 3. The declarative system

Full β-reduction in types A −→β B

(λX :K . A)B −→β A[X := B]
(TR-APPABS)

K −→β K ′

∀X :K . A −→β ∀X :K ′. A
(TR-ALL1)

A −→β A′

∀X :K . A −→β ∀X :K . A′
(TR-ALL2)

A −→β A′

A → B −→β A′ → B
(TR-ARR1)

K −→β K ′

λX :K . A −→β λX :K ′. A
(TR-ABS1)

A −→β A′

λX :K . A −→β λX :K . A′
(TR-ABS2)

B −→β B ′

A → B −→β A → B ′
(TR-ARR2)

A −→β A′

A B −→β A′ B
(TR-APP1)

B −→β B ′

A B −→β A B ′ (TR-APP2)

Full β-reduction in kinds J −→β K

A −→β A′

A . .B −→β A′ . .B
(TR-INTV1)

J −→β J ′

(X : J) → K −→β (X : J ′) → K
(TR-DARR1)

B −→β B ′

A . .B −→β A . .B ′ (TR-INTV2)

K −→β K ′

(X : J) → K −→β (X : J) → K ′ (TR-DARR2)

Figure 3.4 – Full β-reduction in types and kinds

transitive closure, β-reduction, and =β for its equivalence closure, β-equality. We discuss

subject reduction for types and kinds in more detail in Section 3.7.

3.2 Declarative typing and kinding

The rules for typing of terms, kinding of types, and for deriving type and kind (in)equalities

are given in Figures 3.5 and 3.6. There are quite a number of judgments involved, so we give a

summary below. We refer to this set of rules as the declarative system (or presentation) of Fω··
as opposed to the simplified and canonical systems we will introduce in the next two chapters.

The rules for term typing are again very similar to those of Fω, while the kinding rules differ in

a few key respects. The rules for subtyping, subkinding and the equality relations on types and

kinds differ significantly from those of other systems. In the remainder of this section, we will

discuss each of the judgments in turn, explaining the design of the rules, especially where they

differ from those found in other systems.

26

3.2. Declarative typing and kinding

Judgments. Figures 3.5 and 3.6 define the following judgments by mutual induction.

Γ ctx the context Γ is well-formed

Γ�K kd the kind K is well-formed in context Γ

Γ� J ≤ K J is a subkind of K in Γ

Γ� J = K J and K are equal kinds in Γ

Γ�A : K the type A has kind K in context Γ

Γ�A ≤ B : K A is a subtype of B in K and Γ

Γ�A = B : K A and B are equal types of kind K in Γ

Γ�t : A the term t has type A in context Γ

We sometimes write Γ�J to denote an arbitrary judgment in the a context Γ. This includes

the context formation judgment Γ ctx which we may think of as a nullary relation in the

context Γ.

Throughout this thesis, we assume the following well-scopedness conventions for judgments

without mentioning them explicitly in individual definitions. If Γ�J then

1. following our convention for typing contexts, all the variables bound in Γ are assumed

distinct, in particular, if Γ, X :K �J then X ∉ dom(Γ);

2. only variables bound in Γ are allowed to occur freely to the right of the turnstile, i.e.

fv(J) ⊆ dom(Γ).

These conventions apply in particular to all of the judgments listed above.

3.2.1 Context and kind formation

The rules for context formation Γ ctx are standard. Starting from the empty context, term and

type variable bindings may be added provided the declared types and kinds are themselves

well-formed. Since types and kinds may contain type variables as sub-expressions, the order

of bindings in a context matters. The declared types and kinds of a binding may refer to type

variables introduced earlier – those to the left of the binding – but not to the variable being

introduced. As usual, the declared type of a term variable must be a proper type. The rules of

the remaining judgments are set up so that they can only be derived in well-formed contexts.

In most variants of Fω, kinds are simple and form a separate syntactic category. Such kinds are

necessarily well-formed. But in Fω·· , kinds are type-dependent, so ill-formed kind expressions,

such as ⊥ . .λX :K . A or (X :∗) → X �, may arise and need to be excluded from derivations

through the use of a kind formation judgment Γ�K kd. Because types may appear in kinds,

this judgment needs to be mutually defined with the kinding judgment Γ�A : K – as witnessed

by the interval formation rule WF-INTV. A kind interval is well-formed if its lower and upper

bounds are proper types. No effort is made to prevent the formation of intervals where the

declared lower bound is not a subtype of the declared upper bound. For example, the empty

kind ∅=� . .⊥ is a well-formed interval in any well-formed context, as demonstrated by the

27

Chapter 3. The declarative system

Context well-formedness Γ ctx

∅ ctx
(C-EMPTY)

Γ ctx Γ�K kd

Γ, X :K ctx
(C-TMBIND)

Γ ctx Γ�A : ∗
Γ, x: A ctx

(C-TPBIND)

Kind well-formedness Γ�K kd

Γ�A : ∗ Γ�B : ∗
Γ�A . .B kd

(WF-INTV)
Γ� J kd Γ, X : J �K kd

Γ�(X : J) → K kd
(WF-DARR)

Kinding Γ�A : K

Γ ctx Γ(X) = K

Γ�X : K
(K-VAR)

Γ ctx

Γ�� : ∗ (K-TOP)
Γ ctx

Γ�⊥ : ∗ (K-BOT)

Γ�A : ∗ Γ�B : ∗
Γ�A → B : ∗ (K-ARR)

Γ� J kd Γ, X : J �A : K

Γ�λX : J . A : (X : J) → K
(K-ABS)

Γ�A : B . .C

Γ�A : A . . A
(K-SING)

Γ�K kd Γ, X :K �A : ∗
Γ�∀X :K . A : ∗ (K-ALL)

Γ�A : (X : J) → K Γ�B : J

Γ�A B : K [X := B]
(K-APP)

Γ�A : J Γ� J ≤ K

Γ�A : K
(K-SUB)

Typing Γ�t : A

Γ ctx Γ(x) = A

Γ�x : A
(T-VAR)

Γ�A : ∗ Γ�B : ∗
Γ, x: A �t : B

Γ�λx: A. t : A → B
(T-ABS)

Γ�s : A → B Γ�t : A

Γ�s t : B
(T-APP)

Γ�K kd Γ, X :K �t : A

Γ�λX :K . t : ∀X :K . A
(T-TABS)

Γ�t : ∀X :K . A Γ�B : K

Γ�t B : A[X := B]
(T-TAPP)

Γ�t : A Γ�A ≤ B : ∗
Γ�t : B

(T-SUB)

Figure 3.5 – Declarative presentation of Fω·· – part 1
28

3.2. Declarative typing and kinding

Subkinding Γ� J ≤ K

Γ�A2 ≤ A1 : ∗ Γ�B1 ≤ B2 : ∗
Γ�A1 . .B1 ≤ A2 . .B2

(SK-INTV)

Γ� J2 ≤ J1 Γ, X : J2 �K1 ≤ K2

Γ�(X : J1) → K1 kd

Γ�(X : J1) → K1 ≤ (X : J2) → K2
(SK-DARR)

Subtyping Γ�A ≤ B : K

Γ�A : K

Γ�A ≤ A : K
(ST-REFL)

Γ�A : B . .C

Γ�A ≤� : ∗ (ST-TOP)

Γ, X : J �A : K Γ�B : J

Γ�(λX : J . A)B ≤ A[X := B] : K [X := B]
(ST-β1)

Γ�A : (X : J) → K X ∉ fv(A)

Γ�λX : J . A X ≤ A : (X : J) → K
(ST-η1)

Γ�A2 ≤ A1 : ∗ Γ�B1 ≤ B2 : ∗
Γ�A1 → B1 ≤ A2 → B2 : ∗ (ST-ARR)

Γ, X : J �A1 ≤ A2 : K
Γ�λX : J1. A1 : (X : J) → K
Γ�λX : J2. A2 : (X : J) → K

Γ�λX : J1. A1 ≤λX : J2. A2 : (X : J) → K
(ST-ABS)

Γ�A : B1 . .B2

Γ�B1 ≤ A : ∗ (ST-BND1)

Γ�A1 ≤ A2 : B . .C

Γ�A1 ≤ A2 : A1 . . A2
(ST-INTV)

Γ�A ≤ B : K Γ�B ≤C : K

Γ�A ≤C : K
(ST-TRANS)

Γ�A : B . .C

Γ�⊥≤ A : ∗ (ST-BOT)

Γ, X : J �A : K Γ�B : J

Γ�A[X := B] ≤ (λX : J . A)B : K [X := B]
(ST-β2)

Γ�A : (X : J) → K X ∉ fv(A)

Γ�A ≤λX : J . A X : (X : J) → K
(ST-η2)

Γ�K2 ≤ K1 Γ, X :K2 �A1 ≤ A2 : ∗
Γ�∀X :K1. A1 : ∗

Γ�∀X :K1. A1 ≤∀X :K2. A2 : ∗ (ST-ALL)

Γ�A1 ≤ A2 : (X : J) → K
Γ�B1 = B2 : J

Γ�A1 B1 ≤ A2 B2 : K [X := B1]
(ST-APP)

Γ�A : B1 . .B2

Γ�A ≤ B2 : ∗ (ST-BND2)

Γ�A1 ≤ A2 : J Γ� J ≤ K

Γ�A1 ≤ A2 : K
(ST-SUB)

Kind equality Γ� J = K

Γ� J ≤ K Γ�K ≤ J

Γ� J = K
(SK-ANTISYM)

Type equality Γ�A = B : K

Γ�A ≤ B : K Γ�B ≤ A : K

Γ�A = B : K
(ST-ANTISYM)

Figure 3.6 – Declarative presentation of Fω·· – part 2
29

Chapter 3. The declarative system

following lemma.

Lemma 3.2. The kind of proper types ∗ and the empty kind ∅ are both well-formed in any

well-formed context, i.e. the following are derivable.

Γ ctx

Γ�∗ kd
(WF-STAR)

Γ ctx

Γ�∅ kd
(WF-EMPTY)

Proof. Both derivations use only K-BOT, K-TOP and WF-INTV.

We say that the bounds of an interval A . .B are consistent in some context Γ if Γ�A ≤ B : ∗, i.e.

if A is provably a subtype of B in Γ, and inconsistent otherwise. We say that the bounds of A . .B

are absurd if they are inconsistent even as closed types, i.e. if �A : ∗ and �B : ∗ but �A �≤ B : ∗.

For example, the bounds of ∗ are consistent in the empty context while those of ∅ are absurd.

Given the context Γ= X :∗,Y :∗, the bounds of the interval X . .Y are inconsistent because we

can cannot establish that Γ�X ≤ Y : ∗, but not absurd because X and Y are open types. We

discuss advantages and drawbacks of allowing well-formed interval kinds with inconsistent

bounds at the end of this chapter.

The formation rule WF-DARR for dependent arrow kinds is just the standard formation rule

for dependent arrow types (aka dependent product types) lifted to the kind level.

3.2.2 Kinding and typing

The kinding rules K-VAR, K-TOP and K-BOT for variables and extremal types are standard.

Since these three rules are the “leaves” of kinding derivations, each of them has a premise

ensuring the well-formedness of its context.

The formation rules K-ARR and K-ALL for arrow and universal types are also standard. They

simply ensure that all their sub-expressions are well-formed. The rule K-ALL resembles the

formation rule for universal quantifiers in Fω but differs from the corresponding rules found

in systems with bounded polymorphism because bounds on the variable X are expressed

in the kind K rather than featuring explicitly in the universal type constructor. Similarly, the

introduction and elimination rules for type operators, K-ABS and K-APP, resemble more

closely those found in Fω than those in e.g. Fω<: or Fω≤ . The extra premise Γ� J kd ensures that

the domain J of an abstraction is a well-formed kind. It is usually omitted in systems where

kinds are simple, though it does appear in presentations of Fω that treat terms, kinds and types

as a single syntactic category, such as those found in the Pure Type System (PTS) literature

(see e.g. [10]).

The last two kinding rules, K-SING and K-SUB, are used to adjust the kind of a type. The

subsumption rule K-SUB is just a kind-level analog of the rule T-SUB and reflects the intuition

that the inhabitants of a kind J also inhabit any superkind K of J . The rule K-SING acts as

an introduction rule for interval kinds or, more specifically, for singleton kinds. It states that

any proper type A inhabits the (singleton) interval A . . A which is upper and lower-bounded

30

3.2. Declarative typing and kinding

by A itself. Similar singleton introduction rules have been proposed by Stone and Harper for

kinds [49] and by Aspinall for types [8]. Note that the singleton introduction rule potentially

narrows the kind of a type, i.e. the kind A . . A assigned to A in the conclusion might be a

subkind of the kind B . .C assigned to A in the premise. This is in contrast to the subsumption

rule which can only widen the kind of a type, i.e. we have J ≤ K .

The typing rules are entirely standard, with the possible exception of some additional con-

text and kind formation premises that would be redundant in variants of Fω with simple

kinds. Examples are the rules T-VAR and T-TABS: the former has a premise ensuring the well-

formedness of the context in which the variable is typed, the latter requires well-formedness

of the domain of the type abstraction being introduced. The type abstraction and elimination

rules T-ABS and T-TAPP resemble again more closely those found in Fω than those found

in calculi with bounded polymorphism. The rules T-ABS and T-APP are just the usual intro-

duction and elimination rules for (simple) arrow types. Finally, the subsumption rule T-SUB

allows the type A of a term to be widened to any proper supertype B of A, i.e. any type such

that Γ�A ≤ B : ∗.

3.2.3 Subkinding and subtyping

Unlike most other calculi in the Fω-family, Fω·· features both subtyping and subkinding. The use

of subkinding in Fω·· is both natural and essential. It is natural since kinds are type-dependent.

In particular, if a proper type A is contained in some type interval B . .C , then one naturally

expects A to also be contained in a wider interval B ′ . .C ′, where B ′ ≤ B and C ≤ C ′. This

suggests a containment order on interval kinds – wider intervals contain smaller intervals –

which generates subkinding and is captured by the rule SK-INTV. Stone and Harper define

analogous rules for the special case of singleton kinds [49], which are admissible in Fω·· .

Lemma 3.3. The following subkinding rules for singletons are admissible.

Γ�A : ∗
Γ�S(A : ∗) ≤∗ (SK-SINGSTAR)

Γ�A1 = A2

Γ�S(A1 : ∗) ≤ S(A2 : ∗)
(SK-SING)

Proof. The rule SK-SINGSTAR is derivable using ST-TOP, ST-BOT and SK-INTV. The proof

of SK-SING follows immediately from the premises of ST-ANTISYM – the only rule that can be

used to derive Γ�A1 = A2 – and SK-INTV.

Subkinding is also essential. It is thanks to the interval subkinding rule SK-INTV that we can

express bounded polymorphism and bounded type operators in Fω·· . Consider the example of

a polymorphic term t : ∀X ≤ A:∗.B and assume we are given some type argument C : ∗ such

that C ≤ A : ∗. We would like to apply t to C . Desugaring the type of t as per the encoding

of bounded universal quantifiers discussed in Section 3.1.1, we obtain t : ∀X :⊥ . . A.B . How

can we apply this term to the type C even though its kind ∗ differs from the expected kind

⊥ . . A? Thanks to the singleton introduction rule K-SING discussed in the previous section, we

know that C also has kind C . .C , and thanks to subkinding, it is then sufficient to show that

31

Chapter 3. The declarative system

this (singleton) interval is contained in the interval ⊥ . . A – which is indeed the case. The full

derivation is

Γ�t : ∀X :⊥ . . A.B

Γ�C : ∗
(K-SING)

Γ�C : C . .C

Γ�C : ∗
(ST-BOT)

Γ�⊥≤C : ∗ Γ�C ≤ A : ∗
(SK-INTV)

Γ�C . .C ≤⊥ . . A
(K-SUB)

Γ�C : ⊥ . . A
(T-TAPP)

Γ�t C : B [X :=C]

We will generalize this principle to higher-order bounded quantifiers and type operators in

Section 3.6.

The rule SK-DARR lifts the interval containment order through dependent arrow kinds. As

usual, the dependent arrow constructor is contravariant in its domain and covariant in its

codomain. Since arrow kinds are dependent, we have to extend the context with a binding

for X when comparing the codomains; but what should be the declared kind of this binding?

Since Γ� J2 ≤ J1, the kind X : J2 corresponds to a stronger assumption: wherever X : J2, we

expect X : J1 to hold as well, but the opposite need not be true. However, we would still

like the codomain K1 of the left-hand side (X : J1) → K1 to be well-formed under the weaker

assumption X : K1. The extra premise Γ�(X : J1) → K1 kd ensures that this is the case. Aspinall

and Compagnoni use a similar condition in their (S-π) rule for subtyping dependent product

types [9].

Subtyping judgments Γ�A ≤ B : K are indexed by a common kind K in which the types A and

B are related. This common kind is relevant because two types A, B may be related when seen

as inhabitants of some common kind K but not when seen as inhabitants of other, possibly

distinct kinds K1 �= K2. For example, the extremal types � and ⊥ are related as proper types,

i.e. �⊥≤� : ∗, but not as inhabitants of their respective singleton kinds ⊥ . .⊥ and � . .�, i.e.

letting K1 =⊥ . .⊥ and K2 =� . .�, we have �⊥ : K1 and �⊥ : K2 but �K1 �≤ K2 and �K2 �≤ K1,

so that ⊥ and � are related in neither K1 nor K2.

For a given context Γ and kind K , the subtyping relation Γ�A ≤ B : K is a preorder, i.e. it is

reflexive and transitive. As is customary for declarative presentations of subtyping, we include

a pair of rules, ST-REFL and ST-TRANS, to reflect this fact. Note that there are no such rules for

subkinding. Instead, we will prove them admissible in Section 3.3.2. In Chapter 5, we will see

that some (but not all) instances of ST-REFL and ST-TRANS can be eliminated.

The rules ST-TOP and ST-BOT establish � and ⊥ as the maximum and minimum proper types

w.r.t. subtyping. Both rules have a single premise Γ � A : B . .C ensuring that the extremal

types are only related to other proper types. In Section 3.6, we will show that similar rules

are admissible for the higher-order extrema �K and ⊥K defined earlier. The kinding of the

premises of ST-TOP and ST-BOT may be a bit surprising: the kind B . .C does not match the

common kind ∗ in the conclusion. As we are about to see, every type inhabiting a proper type

interval also inhabits ∗, so why not simply use the premise Γ�A : ∗? It turns out that the proof

32

3.2. Declarative typing and kinding

of the very fact that proper types inhabit ∗ depends crucially on the extra flexibility in ST-TOP

and ST-BOT.

Lemma 3.4. Types inhabiting interval kinds are proper types. If Γ�A : B . .C , then also Γ�A : ∗.

Proof. The result is derivable as

Γ�A : B . .C
(K-SING)

Γ�A : A . . A

Γ�A : B . .C
(ST-BOT)

Γ�⊥≤ A : ∗
Γ�A : B . .C

(ST-TOP)
Γ�A ≤� : ∗

(SK-INTV)
Γ�A . . A ≤⊥ . .�

(K-SUB)
Γ�A : ⊥ . .�

Note that the proof makes essential use of the rules ST-BOT and ST-TOP in a way that would

be impossible if we were to strengthen their premises as suggested above.

The rules ST-β1 and ST-β2 correspond to β-contraction and reduction, respectively. Together,

they ensure that β-convertible types are subtypes. The two separate rules are necessary

because subtyping is not symmetric. Alternatively, we could have combined the two rules

into a single type equality rule but that would have complicated the definition of type equality

which, in its current form, is pleasingly simple and easy to work with.

Similarly, the rules ST-η1 and ST-η2 relate η-convertible types. Most presentations of Fω

do not include rules for η-conversion but they play an important role in Fω·· for two reasons.

Firstly, on a conceptual level, they are necessary to relate type operators to the higher-order

extrema and interval types defined in Section 3.1.1. Hence they feature prominently in the

proofs of properties associated with these encodings, in particular the admissible formation,

(sub)kinding and (sub)typing rules (see Section 3.6). Secondly – and perhaps more impor-

tantly – on a metatheoretic level, the η-rules will prove essential in establishing an equivalence

between the declarative presentation of subtyping given in this chapter and the alternative,

canonical presentation we will give in Chapter 5. This equivalence is at the heart of our type

safety proof for Fω·· . As we will see in in Chapter 5, canonical subtyping judgments relate

only η-long β-normal types, which is why both β and η rules are necessary to establish the

equivalence. There are some other variants of Fω where η-conversion is of similar importance.

Stone and Harper’s λΠΣS≤ , admits an encoding of higher-order singleton types similar to our

encoding of type intervals [49]. The system features η-like extensionality rules which are

crucial to relate singleton kinds to their inhabitants. Abel and Rodriguez prove that subtyping

is decidable for a variant of Fω<: with η-conversion [2]. Their proof makes essential use of

an algorithmic subtyping judgment that only relates η-long β-normal types; a type equality

judgment including η-conversion is used to relate the algorithmic judgment to a declarative

one.

The rules ST-ARR and ST-ALL for subtyping instances of the arrow and universal type formers

are again fairly standard. Both are contravariant in the domain and contravariant in the

codomain. The rule for universals is similar to the subkinding rule for dependent arrow

33

Chapter 3. The declarative system

kinds SK-DARR in that we compare the codomains under the stronger assumption X : K2 and

ensure well-formedness of the left-hand side via the additional premise Γ�∀X :K1. A1 : ∗.

Most variants of Fω<: separate subtyping of type operator applications into a subtyping rule

that only compares the heads of applications, and a congruence rule for type equality w.r.t.

application. Here we fuse these two rules into a single subtyping rule ST-APP. As we will see

in Section 3.3.2, the usual rules can be recovered via subtyping reflexivity and antisymmetry.

Since we do not track the variance (or polarity) of type operators, applications of operators

are considered subtypes only if their arguments agree up to type equality. Hence, the rule ST-

APP uses subtyping to compare the heads of applications and type equality to compare their

arguments. Since arrow kinds are dependent in Fω·· , a suitable type must be substituted in the

conclusion for the free type variable X in the codomain K . The arguments B1 and B2 are both

equally suitable candidates; we pick the former.

The rule for subtyping operator abstractions, ST-ABS, is maybe the most unusual when

compared to other variants of Fω. Typically, one would find a version of the following, weaker

subtyping rule instead.

Γ� J1 = J2 Γ, X : J1 �A1 ≤ A2 : K

Γ�λX : J1. A1 ≤λX : J2. A2 : (X : J1) → K
(ST-ABSWEAK)

The premises of the rule reflect the facts that (i) type equality is a congruence w.r.t. operator

abstractions, and (ii) subtyping is lifted pointwise to type operators. The first premise may

be omitted in a system with simple kinds or if there is a separate equality rule for operator

abstractions.

The strengthened rule ST-ABS retains point (ii) but allows abstractions to be subtypes even if

their domain annotations J1 and J2 do not match. Intuitively, these annotations are part of the

signatures (i.e. the kinds) of the respective abstractions, not of the operators itself; therefore

they should only matter for subtyping insofar as they ensure that the abstractions being related

are of the same kind. This would be obvious if we used a Curry-style representation of operator

abstractions and omitted domain annotations altogether. But is this intuition justified for our

Church-style presentation? As the following example illustrates, it is.

Let Γ be some typing context containing the binding X : ∗→∗ and A a proper type in Γ, so that

we have Γ�X : ∗→∗ and Γ�A : ∗. The abstract type operator X has declared kind ∗→∗, but

by subsumption, it also has kind Γ�X : (Y :⊥ . . A) →∗. That is, the unbounded type operator

X may be used wherever an A-bounded type operator is required. By subsumption, ST-ETA1

and ST-ETA2, it follows that

Γ � λY :∗. X Y ≤ X ≤ λY :⊥ . . A. X Y : (Y :⊥ . . A) →∗
Γ � λY :⊥ . . A. X Y ≤ X ≤ λY :∗. X Y : (Y :⊥ . . A) →∗

i.e. the two η-expansions of X are mutual subtypes, despite the fact that their type annotations

differ (unless A =�). Seeing as such subtyping relationships can already be established via

34

3.2. Declarative typing and kinding

the η-rules, it seems reasonable to adopt a subtyping rule for abstractions that allows us to

derive them directly.

The first premise of ST-ABS says that the bodies of the two abstractions are subtypes in the

common codomain K , assuming a parameter in the common domain J . The two remaining

premises ensure that both abstractions – irrespective of their domain annotations – inhabit the

common arrow kind (X : J) → K . We will show in Section 3.7 that the weaker rule ST-ABSWEAK

given above remains admissible.

So far, we have seen how a type interval A . .B can be formed, using WF-INTV, and introduced

using K-SING, but we have yet to see how the bounds A and B of the interval can be put to use.

Type intervals are “eliminated” by turning them into subtyping judgments via a pair of bound

projection rules ST-BND1 and ST-BND2. Given an instance A : B . .C of a type interval B . .C ,

ST-BND1 and ST-BND2 assert that the types A and B are indeed lower and upper bounds,

respectively, of A. When A is a variable, we may use rule ST-BND2 together with K-VAR to

derive judgments of the form Γ�X ≤C , similar to those obtained using the familiar variable

subtyping rule from F≤. In other words, the bound projection rules allow us to reflect subtyping

assumptions into subtyping judgments. In fact, together with ST-TRANS, they can be used to

reflect arbitrary subtyping assumptions Γ(X) = A . .B – consistent or not – into corresponding

subtyping judgments Γ�A ≤ B .

Γ ctx Γ(X) = A . .B
(K-VAR)

Γ�X : A . .B
(ST-BND1)

Γ�A ≤ X : ∗

Γ ctx Γ(X) = A . .B
(K-VAR)

Γ�X : A . .B
(ST-BND2)

Γ�X ≤ B : ∗
(ST-TRANS)

Γ�A ≤ B : ∗
We will discuss the ramifications of such derivations for type safety in Section 3.8.

As for kinding judgments, there are two subtyping rules that allow us to adjust the kinds of

subtyping judgments, ST-SUB and ST-INTV. The former is the analog of K-SUB for subtyping:

if a pair of types A, B is related in some kind J , they remain related in any superkind K of J .

The rule ST-INTV, on the other hand, is the subtyping counterpart of the interval introduction

rule K-SING: if A is a subtype of B in some interval C . .D , then surely A is still a subtype of B

in the interval A . .B bounded by those very same types. Indeed, A . .B is the smallest interval

in which the two types are related. Hence, as for the corresponding kinding rules, ST-SUB

generally widens the kind of a subtyping judgment, while ST-INTV generally narrows it.

3.2.4 Kind and type equality

The kind and type equality judgments are each generated by exactly one rule: SK-ANTISYM

for kind equality and ST-ANTISYM for type equality. As their names suggest, these rules make

subkinding and subtyping antisymmetric w.r.t. kind and type equality by definition. In most

variants of Fω with subtyping, the subtyping relation is not defined to be antisymmetric.

Instead antisymmetry may or may not be an admissible property that has to be proven, and

35

Chapter 3. The declarative system

such proofs are generally rather challenging (see e.g. [17]). In Fω·· , antisymmetry is not an

admissible property, however. To see this, consider a pair of proper types A and B such

that Γ � A : B . .B in some context Γ. Since B is both a lower and an upper bound of A, we

would like to identify the two types, i.e. we would like to conclude that Γ � A = B : ∗. But

without antisymmetry, this is not always possible. E.g. if A is a type variable A = X such that

Γ(X) = B . .B , we can derive that X and B are mutual subtypes using the bound projection

rules ST-BND1 and ST-BND2, but without antisymmetry we have no way to derive Γ�X = B : ∗.

One might argue that, instead of antisymmetry, we should introduce a rule to reflect singleton

instances into type equality judgments, such as the following rule due to Stone and Harper [49].

Γ�A : S(B : ∗)

Γ�A = B : ∗ (TEQ-SING)

Interestingly, antisymmetry of proper types can be derived immediately using this rule and

some other rules about type intervals. Let A, B be a pair of (provably) proper types such that

Γ�A ≤ B : ∗ and Γ�B ≤ A : ∗. Then

Γ�A : ∗
(K-SING)

Γ�A : A . . A

Γ�B ≤ A : ∗ Γ�A ≤ B : ∗
(SK-INTV)

Γ�A . . A ≤ B . .B
(K-SUB)

Γ�A : B . .B
(TEQ-SING)

Γ�A = B : ∗
As we will see in Section 3.6, similar properties hold for inhabitants A : S(B : K) of higher-order

singletons, so this principle can be extended to type equalities in arbitrary kinds K . That

is, assuming suitable congruence rules for kind and type equality, covering at least the kind

formers, as well as operator abstractions and applications. In summary, replacing SK-ANTISYM

and ST-ANTISYM with a rule like TEQ-SING would not break antisymmetry but “obfuscate” it,

at the expense of additional type and kind equality rules, which would be necessary to recover

the expressiveness of the current equality judgments. In light of this, the current set of rules

seems preferable.

Because the antisymmetry rules are the only way to derive kind and type equalities, any

property that holds for mutual subkinds or subtypes also holds for equal kinds or types,

respectively. For example, admissibility of the following subsumption rule for type equality

follows immediately from the rule ST-SUB and antisymmetry.

Corollary 3.5. The following subsumption rule for type equality is admissible.

Γ�A = B : J Γ� J ≤ K

Γ�A = B : K
(TEQ-SUB)

In what follows, we sometimes need to relate the bindings appearing in two syntactically

different contexts Γ and Δ. To this end, we define context equality Γ=Δ ctx as the pointwise

lifting of type and kind equality to context bindings:

36

3.3. Basic metatheoretic properties

∅=∅ ctx

Γ=Δ ctx Γ� J = K

Γ, X : J =Δ, X :K ctx

Γ=Δ ctx Γ�A = B : ∗
Γ, x: A =Δ, x:B ctx

3.3 Basic metatheoretic properties

With the dynamics and statics in place, we can begin our work on the metatheory of Fω·· . In this

section, we present some basic properties, which can be roughly divided into two categories.

First, we show that all the judgments are preserved under various operations on contexts

(weakening, substitution, narrowing); second, we establish some order-theoretic properties

about the four binary relations on kinds and types (subkinding, subtyping, kind and type

equality). As a warm-up, we prove our earlier claim that judgments can only be derived in

well-formed contexts.

Lemma 3.6 (context validity). Let Γ be a context. If Γ �J for any of the judgments defined

above, then Γ ctx.

Proof. By (simultaneous) induction on the derivations of the various judgments. The cases

for context formation judgments and rules that contain Γ ctx as a premise are trivial. For

other rules, the result follows by applying the IH to any of the premises that do not extend the

context. There is always at least one such premise.

3.3.1 Substitution lemmas

The next three lemmas are the cornerstones of our metatheory. They establish that the various

judgments of our theory are preserved under certain well-formed transformations on contexts:

addition of a well-formed binding, i.e. weakening of the context, substitution of a term or type

variable by an identically typed or kinded term or type, respectively, and substitution of a

binding for one with a wider kind or type, i.e. context narrowing.

Lemma 3.7 (weakening). A judgment remains true if its context is extended by a well-formed

binding. Let Γ,Δ be contexts and Γ,Δ�J for any of the judgments defined above. Then

1. for any type A and x ∉ dom(Γ,Δ), if Γ�A : ∗, then Γ, x: A,Δ�J ;

2. for any kind K and X ∉ dom(Γ,Δ), if Γ�K kd, then Γ, X :K ,Δ�J .

Corollary 3.8 (iterated weakening). If Γ,Δ ctx and Γ�J , then Γ,Δ�J .

Lemma 3.9 (substitution). A judgment remains true if a suitable well-formed expression is

substituted for one of the variables bound in its context.

1. If Γ�t : A and Γ, x: A,Δ�J , then Γ,Δ�J [x := t].

2. If Γ�A : K and Γ, X :K ,Δ�J , then Γ,Δ[X := A] �J [X := A].

37

Chapter 3. The declarative system

Lemma 3.10 (context narrowing – weak version). A judgments remains true if the type or kind

of one of the variables bound in its context is narrowed.

1. If Γ�A : ∗, Γ�A ≤ B : ∗ and Γ, x:B ,Δ�J , then Γ, x: A,Δ�J .

2. If Γ� J kd, Γ� J ≤ K and Γ, X :K ,Δ�J , then Γ, X : J ,Δ�J .

Corollary 3.11 (context conversion). If Γ ctx, Γ=Δ ctx and Δ�J , then Γ�J .

The context narrowing lemma is a bit weaker than one might expect. In particular, the premises

Γ�A : ∗ and Γ� J kd seem redundant – surely, if Γ�A ≤ B : ∗ then A and B ought to be proper

types. This property – called subtyping validity – does indeed hold, but we are not quite ready

to prove it yet. Indeed, one of the prerequisites of the proof is the context narrowing lemma

itself. Once we have established subtyping validity, we will strengthen Lemma 3.10; until then

we will have to make due with the weak version.

Lemmas 3.7, 3.9 and 3.10 are proven in that order, each by simultaneous induction on the

derivations of the various judgments. The proofs of Lemmas 3.9 and 3.10 rely on Corollary 3.8

for the variable cases T-VAR and K-VAR. All three proofs are entirely standard, so we only

present an excerpt from the proof of Lemma 3.9 to illustrate the basic strategy. In it, we will

make use of the following helper lemma about substitutions.

Lemma 3.12 (substitutions commute). Let e be some arbitrary expression, A, B types and X , Y

distinct type variables such that X ∉ fv(B). Then e[X := A][Y := B] ≡ e[Y := B][X := A[Y := B]]

Proof. By induction on the structure of e.

Proof of Lemma 3.9. The two parts are proven separately, each by induction on the derivation

of the second premise (Γ, x: A,Δ�J for the first part, Γ, X :K ,Δ�J for the second). For the

context formation judgment, the proofs proceed by a local induction on the structure of Δ. We

show the cases for K-VAR and ST-β1 for the second part of the lemma. The other cases are

similar.

• Case K-VAR. J is X : J and we have Γ, X :K ,Δ ctx and (Γ, X :K ,Δ)(Y) = J . By the IH, we

get Γ,Δ[X := A] ctx. We distinguish two sub-cases based on whether Y = X .

– Sub-case Y = X . We want to show that Γ,Δ[X := A] � A : K [X := A]. By well-

scopedness, X does not occur freely in K , so we have K [X := A] ≡ K . The desired

result follows from applying iterated weakening (Corollary 3.8) to the premise

Γ�A : K .

– Sub-case Y �= X . We want to show that Γ,Δ[X := A] �Y : J [X := A]. Since the

domains of Γ and Δ are disjoint, Y must appear either in Γ or Δ but not in both. If

Y ∈ dom(Γ), then X does not occur freely in J = Γ(Y) and hence (Γ,Δ[X := A])(Y) =
J ≡ J [X := A]. Otherwise (Γ,Δ[X := A])(Y) = (Δ[X := A])(Y) = J [X := A]. In either

case we conclude by K-VAR.

38

3.3. Basic metatheoretic properties

• Case ST-β1. J is (λY : J1.B1)B2 ≤ B1[X := B2] : J2[X := B2] and we have Γ, X :K ,Δ,Y : J1 �
B1 : J2 and Γ, X :K ,Δ�B2 : J1. By the IH we get

Γ,Δ[X := A],Y : J1[X := A] � B1[X := A] : J2[X := A] and

Γ,Δ[X := A] � B2[X := A] : J1[X := A].

Applying ST-β1, we obtain

Γ,Δ[X := A] � ((λY : J1.B1)B2)[X := A] ≤ B1[X := A][Y := B2[X := A]]

: K [X := A][Y := B2[X := A]]

and using Lemma 3.12 twice, it follows that

Γ,Δ[X := A] �((λY : J1.B1)B2)[X := A] ≤ B1[Y := B2][X := A] : K [Y := B2][X := A]

which concludes the case.

3.3.2 Admissible order-theoretic rules

The rules ST-REFL and ST-TRANS establish that subtyping is a preorder. Via ST-ANTISYM, we

can lift these properties to type equality, and show that the latter is symmetric. Together, these

properties make type equality an equivalence relation.

Corollary 3.13. Type equality is an equivalence, i.e. the following equality rules are admissible.

Γ�A : K

Γ�A = A : K
(TEQ-REFL)

Γ�A = B : K

Γ�B = A : K
(TEQ-SYM)

Γ�A = B : K B =C : K

Γ�A =C : K
(TEQ-TRANS)

The same is true of kind equality, though we first have to establish that subkinding is a preorder.

Lemma 3.14. Subkinding is a preorder, i.e. the following subkinding rules are admissible.

Γ�K kd

Γ�K ≤ K
(KS-REFL)

Γ�K ≤ J J ≤ L

Γ�K ≤ L
(KS-TRANS)

Proof. Separately for each rule, by structural induction on K for KS-REFL and on J for KS-

TRANS. For the type interval cases we use the corresponding order-theoretic properties of

subtyping. The proof of transitivity uses context narrowing (Lemma 3.10) and context validity

(Lemma 3.6) for subkinding in the case where J = (X : J1) → J2.

39

Chapter 3. The declarative system

Corollary 3.15. Kind equality is an equivalence, i.e. the following equality rules are admissible.

Γ�K kd

Γ�K = K
(KEQ-REFL)

Γ�K = J J = L

Γ�K = L
(KEQ-TRANS)

Γ�K = J

Γ� J = K
(KEQ-SYM)

In addition, the following variants of subtyping and subkinding reflexivity are also admissible,

which makes the subtyping and subkinding relations partial orders w.r.t. type and kind equality.

Γ�A = B : K

Γ�A ≤ B : K
(ST-REFL-TEQ)

Γ� J = K

Γ� J ≤ K
(SK-REFL-KEQ)

Another consequence of these rules is that we can treat well-typed terms and well-kinded

types up to type and kind equality, respectively.

Corollary 3.16 (conversion). The following are admissible.

Γ�A : J Γ� J = K

Γ�A : K
(K-CONV)

Γ�A ≤ B : J Γ� J = K

Γ�A ≤ B : K
(ST-CONV)

Γ�t : A Γ�A = B : ∗
Γ�t : B

(T-CONV)

Γ�A = B : J Γ� J = K

Γ�A = B : K
(TEQ-CONV)

In light of their order-theoretic properties, we often call kind and type equality judgments

equations and subkinding and subtyping judgments inequations. We sometimes use equa-

tional reasoning notation in proofs, i.e. we write

Γ � A1 = A2 = ·· · = Ai ≤ Ai+1 ≤ ·· · = An ≡ An+1 ≡ ·· · = Am : K

to denote chains of (in)equations where the use of the corresponding transitivity rules is left

implicit. In so doing, we may freely mix the relations ≤, = and ≡ provided that they are defined

on the same sort (i.e. kinds or types). Such chains are always interpreted as judgments of the

weakest relation they contain.

3.4 Validity

In this section, we state and prove a number of validity properties for the various judgments

defined earlier. Roughly, we say that a judgment is valid if all its parts are well-formed. For

example, subkinding validity states that, if Γ � J ≤ K , then both J and K are actually well-

formed kinds. We saw another example earlier: context validity (Lemma 3.6) states that the

context Γ of any judgment Γ�J is well-formed. Here is a summary of the validity properties

that remain to be proven.

40

3.4. Validity

Lemma 3.17 (validity). The judgments defined in Figures 3.5 and 3.6 enjoy the following validity

properties.

(kinding validity) If Γ�A : K , then Γ�K kd.

(typing validity) If Γ�t : A, then Γ�A : ∗.

(subkinding validity) If Γ� J ≤ K , then Γ� J kd and Γ�K kd.

(subtyping validity) If Γ�A ≤ B : K , then Γ�A : K and Γ�B : K .

(kind equation validity) If Γ� J = K , then Γ� J kd and Γ�K kd.

(type equation validity) If Γ�A = B : K , then Γ�A : K and Γ�B : K .

These validity properties provide a “sanity check” for the static semantics developed in this

chapter, but they also play a crucial role in the proofs of other important properties, such as

subject reduction, soundness of type normalization and and type safety.

Unfortunately, the validity properties are harder to prove than one might expect. The proofs

of kinding, subkinding and subtyping validity require the following functionality lemma for

the case of ST-APP.

Lemma 3.18 (functionality). Let Γ�A1 = A2 : K .

1. If Γ, X :K ,Δ� J kd, then Γ,Δ[X := A1] � J [X := A1] = J [X := A2].

2. If Γ, X :K ,Δ�B : J , then Γ,Δ[X := A1] �B [X := A1] = B [X := A2] : J [X := A1].

But a naive attempt at proving this lemma directly leads to a circular dependency on kinding

and subtyping validity, in a way that is not easily resolved. In particular, it is not sufficient to

simply prove the two statements simultaneously.

It is instructive to play through the critical cases encountered when attempting to prove

Lemmas 3.17 and 3.18 directly to see where things go wrong and to better understand the

solution described in the next section. We start with subtyping validity, attempting a proof

by induction on subtyping derivations. For the case of the application rule ST-APP, we are

given Γ � A1 ≤ A2 : (X : J) → K and Γ �B1 = B2 : J , and we would like to show that Γ � A1 B1 :

K [X := B1] and Γ � A2 B2 : K [X := B1]. We can already spot the source of trouble: the type

B1 that is being substituted for X in the kind of the second type application differs from the

argument type B2. By the IH, we get Γ�A2 : (X : J) → K and Γ�B2 : J , and applying K-APP we

obtain Γ�A2 B2 : K [X := B2] but, as expected, the kinds do not match up. If we could show

that Γ�K [X := B2] = K [X := B1], then by K-CONV, we would be done. Enter functionality of

kind formation.

For the functionality lemma, we attempt a proof by simultaneous induction on kind formation

and kinding derivations and consider the case where the current kinding derivation ends in

an instance of the operator abstraction rule K-ABS. In addition to the premise Γ�B1 = B2 : J ,

we are given derivations for Γ, X : J �K1 kd and Γ, X : J ,Y :K1 �A : K2, and we want to show that

Γ� (λY :K1. A)[X := B1] = (λY :K1. A)[X := B2] : ((Y :K1) → K2)[X := B1].

41

Chapter 3. The declarative system

To do so, we would like to use the rule ST-ABS together with ST-ANTISYM but we first need to

establish the right-hand validity of the above equation, i.e. that

Γ�(λY :K1. A)[X := B2] : ((Y :K1) → K2)[X := B1].

Clearly, Lemma 3.17 would be helpful here: equation validity would give us Γ�B2 : J , from

which we could obtain Γ�(λY :K1. A)[X := B2] : ((Y :K1) → K2)[X := B2] by Lemma 3.9. This is

almost what we need. Again, we face a mismatch in kinds that could, in principle, be remedied

by using functionality of kind formation together with K-CONV. Concretely, we would like

to invoke the IH to derive Γ �((Y :K1) → K2)[X := B1] = ((Y :K1) → K2)[X := B2]. Alas, we do

not have a suitable sub-derivation to do so. Although Γ�(Y :K1) → K2 kd follows from kinding

validity, we cannot not apply the IH to this result because it is not a sub-derivation of our

overall premise. Indeed, none of the sub-derivations we are given are sufficient to derive the

required kind equation.

Note that we could finish the proof of this case if only (1) the rule ST-ABS had an additional

premise Γ, X : J ,Y :K1 �K2 kd and (2) the IH was a bit stronger, so that we could use it to derive

Γ,Y :K1[X := B1] �K2[X := B1] = K2[X := B2].

This, together with a similar use of the IH on the first premise of ST-ABS and some uses of

Lemma 3.9, ST-REFL-TEQ and SK-DARR, would be enough to derive Γ�((Y :K1) → K2)[X :=
B2] ≤ ((Y :K1) → K2)[X := B1], which we could then put to use with K-SUB. Indeed, these are

the basic ideas that will allow us to resolve the circular dependency between Lemma 3.17

and Lemma 3.18. We start by addressing point (1).

3.4.1 The extended system

We define a pair of extended kinding and subtyping judgments in Fig. 3.7 where some rules

have been endowed with additional premises. Only the rules that differ from those defined

previously are mentioned in the figure, and the additional premises are highlighted in gray. We

call these extra premises validity conditions. Crucially, the validity conditions of an extended

rule are redundant in the sense that they follow (more or less) directly from the remaining

premises of the rule via Lemma 3.17. For example, the extended rule K-EXTABS carries the

extra premise Γ, X : J �K kd which follows directly from applying kinding validity to the rule’s

second premise Γ, X : J �A : K . Thanks to this invariant, the two sets of rules are in fact equiva-

lent – every derivation of an extended kinding or subtyping judgment has a corresponding

derivation that uses only original rules, and vice-versa. We give a formal equivalence proof in

Section 3.4.2.

Since kinding and subkinding are defined mutually with all the other judgments of the declar-

ative system (except typing), the extension indirectly affects those judgments as well. We

call the entire set of extended judgments the extended (declarative) system, as opposed to the

42

3.4. Validity

Kinding . . . Γ�A : K

Γ� J kd Γ, X : J �A : K

Γ, X : J �K kd

Γ�λX : J . A : (X : J) → K
(K-EXTABS)

Γ�A : (X : J) → K Γ�B : J

Γ, X : J �K kd Γ�K [X := B] kd

Γ�A B : K [X := B]
(K-EXTAPP)

Subtyping . . . Γ�A ≤ B : K

Γ, X : J �A : K Γ�B : J
Γ�A[X := B] : K [X := B]

Γ, X : J �K kd Γ�K [X := B] kd

Γ�(λX : J . A)B ≤ A[X := B] : K [X := B]
(ST-EXTβ1)

Γ, X : J �A : K Γ�B : J
Γ�A[X := B] : K [X := B]

Γ, X : J �K kd Γ�K [X := B] kd

Γ�A[X := B] ≤ (λX : J . A)B : K [X := B]
(ST-EXTβ2)

Γ�A1 ≤ A2 : (X : J) → K Γ�B1 = B2 : J

Γ�B1 : J Γ, X : J �K kd Γ�K [X := B1] kd

Γ�A1 B1 ≤ A2 B2 : K [X := B1]
(ST-EXTAPP)

Figure 3.7 – Extended declarative kinding and subkinding

original (declarative) system. We will sometimes distinguish the two systems by writing Γ�d J

for judgments of the original system and Γ�e J for those of the extended system. Since the

two systems are equivalent, this distinction only matters in a few key situations – notably the

development in the remainder of this section. When we refer to the “declarative system” in

the following chapters, we will always mean the original declarative system, unless otherwise

noted.

The idea of extending a set of inference rules with redundant premises in order to simplify

metatheoretic proofs is not new. For example, Harper and Pfenning use similar premises to

establish validity properties for the typing judgments of a variant of LF [30]. Furthermore,

some readers will have noticed that a few of the original declarative rules already carry re-

dundant premises. For example, the first premise Γ� J kd of the rule K-ABS could easily be

reconstructed from its second premise Γ, X : J �A : K via context validity (Lemma 3.6). The

rules WF-DARR, K-ALL, T-ABS, and T-TABS carry similar validity conditions. We include these

premises primarily because their presence simplifies the proof of the substitution lemma

(Lemma 3.9). Context validity, on the other hand, remains easily provable without them.

To prove the validity properties stated in Lemma 3.17 for both the original and extended

systems, we use the following strategy:

1. prove that the validity properties hold for the extended judgments;

2. prove that the two systems are equivalent, i.e. that

43

Chapter 3. The declarative system

(a) the extended rules are sound w.r.t to the original ones – we can drop the validity

conditions without affecting the conclusions of any derivations – and that

(b) the extended rules are complete w.r.t. to the original ones – the additional validity

conditions follow from the remaining premises of the extended rules via the validity

properties proved in step 1;

3. prove that the validity properties hold for the original system via the equivalence –

convert original derivations to extended derivations (via completeness), derive the

property in question, convert the conclusion back (via soundness).

Before we continue, we should point out that some of the validity conditions introduced

in Fig. 3.7 are not actually necessary for the proof of Lemmas 3.17 and 3.18 – some even

complicate the proofs. However, we will face a similar cyclic dependency later on when

attempting to prove the equivalence of the (original) declarative system and the canonical

system of judgments introduced in Chapter 5. Rather than introducing yet another extension

to the declarative system later, we opt for a combined system containing all of the extra

conditions.

We start the development set out above by noting that all the basic metatheoretic properties

established in Section 3.3 still hold for the extended system. The proofs carry over with minor

adjustments to deal with the additional premises. Next, we prove a variant of the functionality

lemma discussed above but using the extended kinding and subtyping rules.

Lemma 3.19 (functionality – extended version). Substitutions of equal types in well-formed

expressions result in well-formed equations. Let Γ, Δ, Σ be contexts, K a kind and A1, A2 types,

such that Γ�A1 : K and Γ�A2 : K , the context Γ,Σ is well-formed and the following equations

hold:

Γ�A1 = A2 : K Γ,Σ = Γ,Δ[X := A1] ctx Γ,Σ = Γ,Δ[X := A2] ctx.

1. If Γ, X :K ,Δ� J kd, then Γ,Σ� J [X := A1] = J [X := A2].

2. If Γ, X :K ,Δ�B : J , then Γ,Σ�B [X := A1] = B [X := A2] : J [X := A1].

Note that the lemma has been strengthened – so that it is applicable to any type variable

binding in a context, not just the last one – and simultaneously weakened – by adding extra

conditions on A1, A2 and the target context Γ,Σ. The latter are effectively validity conditions

ensuring that the proof of the lemma does not depend on Lemma 3.17. The separate target

context Σ is used to symmetrize the treatment of context extensions, which is helpful when

dealing with kind annotations in contravariant positions.

Proof. The two parts are proven simultaneously, by induction on extended kind formation

and kinding derivations, respectively. The proof of the first part is relatively straightforward,

while the proof of the second part deserves some attention. We present a few key cases, the

others are similar.

44

3.4. Validity

• Case K-VAR. We have B = Y , J = Γ(Y) and Γ, X :K ,Δ ctx. We distinguish two cases based

on Y .

– Sub-case Y = X . We have J = K ≡ K [X := A1] since X ∉ fv(K). By iterated weaken-

ing, we get Γ,Σ�A1 = A2 : K [X := A1] and we are done.

– Sub-case Y �= X . We have (Γ,Δ[X := A1])(Y) ≡ J [X := A1], either because Y ∈
dom(Γ) and X ∉ fv(J), or because Y ∈ dom(Δ) and (Δ[X := A1])(Y) = J [X := A1].

Furthermore, since Γ,Σ= Γ,Δ[X := A1] ctx we have

Γ,Σ � (Γ,Σ)(Y) = (Γ,Δ[X := A1])(Y) ≡ J [X := A1].

We conclude by K-VAR, K-CONV, and TEQ-REFL.

• Case K-ALL. We have B =∀Y : J1.B1 and J =∗ for some kind J1 and type B1, as well as

Γ, X :K ,Δ� J1 kd and Γ, X :K ,Δ,Y : J1 �B1 : ∗. We want to show that (∀Y : J1.B1)[X := A1]

and (∀Y : J1.B1)[X := A2] are mutual subtypes. To do so, we first prove that

Γ,Σ � (∀Y : J1.B1)[X := A1] : ∗ Γ,Σ � (∀Y : J1.B1)[X := A2] : ∗
Γ,Σ � J1[X := A2] ≤ J1[X := A1] Γ,Σ � J1[X := A1] ≤ J1[X := A2]

Γ,Σ, X : J1[X := A2] � B1[X := A1] ≤ B1[X := A2] : ∗
Γ,Σ, X : J1[X := A1] � B1[X := A2] ≤ B1[X := A1] : ∗

then apply ST-ALL twice, and conclude with ST-ANTISYM. The two kinding judgments

follow from the premises by the substitution lemma (Lemma 3.9), the two subkinding

judgments by the IH. The last two subtyping judgments require some extra work.

Note that the additional type variable bindings in the two judgments differ syntactically,

so we will have to use the IH twice, with different target contexts. In each case we need

to show that the kind of the additional binding is well-formed and equal to J1[X := A1]

and J1[X := A2], respectively. Concretely, we need to show that

Γ,Σ� J1[X := A2] = J1[X := A1] kd Γ,Σ� J1[X := A2] kd

Γ,Σ� J1[X := A2] = J1[X := A2] kd

for the first invocation of the IH, and three analogous statements for the second. The

first equation follows from the two subkinding judgments above via ST-ANTISYM. The

context formation judgment and the first equation follow from the substitution lemma

and TEQ-REFL. This is sufficient to apply the IH and obtain the first of the two remaining

subtyping judgments via ST-REFL-TEQ. The proof of the second one is similar.

45

Chapter 3. The declarative system

• Case K-EXTAPP. We have B = B1 B2 and J = J2[Y := B2] for some B1, B2, J2, as well as

Γ�A1 : K , Γ�A2 : K

Γ�A1 = A2 : K , Γ,Σ ctx

Γ,Σ= Γ,Δ[X := A1] ctx, Γ,Σ= Γ,Δ[X := A2] ctx,

Γ, X :K ,Δ�B1 : (Y : J1) → J2, Γ, X :K ,Δ�B2 : J1,

Γ, X :K ,Δ,Y : J1 � J2 kd, Γ, X :K ,Δ� J2[Y := B2] kd

for some J1. We want to establish that that (B1 B2)[X := A1] and (B1 B2)[X := A2] are

mutual subtypes in J2[Y := B2][X := A1], i.e. that

Γ,Σ � (B1 B2)[X := A1] ≤ (B1 B2)[X := A2] : J2[Y := B2][X := A1], and (3.1)

Γ,Σ � (B1 B2)[X := A2] ≤ (B1 B2)[X := A1] : J2[Y := B2][X := A1]. (3.2)

The first half is fairly straightforward. Applying the IH to the first two premises of K-

EXTAPP yields corresponding equations, the first of which we turn into an inequation

via ST-REFL-TEQ.

Γ,Σ � B1[X := A1] ≤ B1[X := A2] : ((Y : J1) → J2)[X := A1],

Γ,Σ � B2[X := A1] = B2[X := A2] : J1[X := A1].

In order to apply ST-EXTAPP we also need to derive the following validity conditions:

Γ,Σ�B2[X := A1] : J1[X := A1], Γ,Σ,Y : J1[X := A1] � J2[X := A1] kd,

Γ,Σ� J2[X := A1][Y := B2[X := A1]] kd.

All three follow from premises of K-EXTAPP and the substitution lemma (Lemma 3.9),

followed by a use of Corollary 3.11 to adjust the contexts. Adjusting the context of

Γ,Δ[X := A1],Y : J1[X := A1] � J2[X := A1] kd, requires a bit more work because we need

to prove that the kind of the extra binding Y : J1[X := A1] is well-formed. To do so, we

first invoke context validity (Lemma 3.6) on the second validity condition of K-EXTAPP,

which gives us Γ, X :K ,Δ� J1 kd. Form this, we derive the desired well-formedness proof

via the substitution lemma. By ST-EXTAPP and Lemma 3.12, we arrive at (3.1).

We have to work a bit harder to prove (3.2). Again, we want to apply ST-EXTAPP, and

again, the first two premises follow from the IH – this time followed by a use of TEQ-SYM

to adjust the direction – and ST-REFL-TEQ to turn the first equation into a subtyping

statement. The validity conditions are

Γ,Σ�B2[X := A2] : J1[X := A1], Γ,Σ,Y : J1[X := A1] � J2[X := A1] kd,

Γ,Σ� J2[X := A1][Y := B2[X := A2]] kd.

We have already established the second condition; the third one follows from applying

46

3.4. Validity

the substitution lemma to the first two. So it remains to prove the first.

We start by deriving Γ,Σ �B2[X := A2] : J1[X := A2] via the substitution lemma and

context conversion. Next, we would like to use the IH to show that Γ,Σ� J1[X := A2] =
J1[X := A1] in order to adjust the kind of the previous judgment via K-CONV. But to do

so, we need to find a derivation of Γ, X :K ,Δ� J1 kd that is a strict sub-derivation of our

current instance of K-EXTAPP.

Fortunately, this is always possible, thanks to the validity condition Γ, X :K ,Δ,Y : J1 �
J2 kd. Since the contexts of kind formation judgments are always well-formed them-

selves (see Lemma 3.6), it suffices to traverse the derivation tree of this judgment up-

wards along kind formation and kinding rules until one arrives at a “leaf” – an instance

of K-VAR, K-TOP or K-BOT – which holds a well-formedness derivation for the current

context. That context formation derivation, in turn, contains a sub-derivation of the

desired kind formation judgment. Readers who are skeptical of this somewhat informal

argument are encouraged to state and prove a helper lemma that combines the IH with

the “lookup procedure” just described. The lemma is proven simultaneously with the

main lemma, by induction on kind formation and kinding derivations.

With all the validity conditions in place, we apply ST-EXTAPP to obtain

Γ,Σ � (B1 B2)[X := A2] ≤ (B1 B2)[X := A1] : J2[X := A1][Y := B2[X := A2]].

To complete the proof of 3.2, we use ST-CONV and

Γ,Σ � J2[X := A1][Y := B2[X := A2]]

= J2[X := A2][Y := B2[X := A2]] (by Lemma 3.9)

≡ J2[Y := B2][X := A2] (by Lemma 3.12)

= J2[Y := B2][X := A1] (by the IH)

using our earlier result Γ,Σ � J1[X := A2] = J1[X := A1] in the first step and the final

validity condition of K-EXTAPP in the last.

We are now ready to prove Lemma 3.17 in the extended system, simultaneously with the

following lemma.

Lemma 3.20. Subtypes inhabiting interval kinds are proper subtypes. If Γ�A ≤ B : C . .D, then

also Γ�A ≤ B : ∗.

Proof of Lemma 3.17 and Lemma 3.20 – extended version. All the validity properties are proven

simultaneously with Lemma 3.20, by induction on the derivations of the respective premises.

The proof is now mostly routine, thanks to the validity conditions. The only interesting cases

are those of of ST-APP, where we use the functionality lemma to adjust the kind of the right-

hand validity proof, and ST-INTV, where we use Lemma 3.20. The proof of Lemma 3.20 uses

subtyping validity in turn.

47

Chapter 3. The declarative system

Corollary 3.21. Equal types in intervals are equal as proper types. If Γ�A = B : C . .D, then

also Γ�A = B : ∗.

3.4.2 Equivalence

The next and final step in our program for proving Lemma 3.17 is to establish the equivalence

of the two declarative systems.

Lemma 3.22. The original and extended declarative systems are equivalent: Γ�d J iff Γ�e J .

Proof. The proof of soundness (⇐) is nearly trivial – we simply forget all the validity conditions.

The proof of completeness (⇒) is only slightly more involved: the sub-derivations of the

original rules are translated to the extended system recursively, then the missing premises

– the validity conditions – are proved from the original premises using the extended version

of Lemma 3.17 and, where necessary, the substitution lemma.

Thanks to this equivalence, all the validity properties laid out in Lemma 3.17 also hold for the

original judgments of the declarative system. Our original functionality lemma (Lemma 3.18)

and the following strengthened version of Lemma 3.10 follow as corollaries of validity and

Lemmas 3.19 and 3.10, respectively.

Corollary 3.23 (context narrowing – strong version).

1. If Γ�A ≤ B : ∗ and Γ, x:B ,Δ�J , then Γ, x: A,Δ�J .

2. If Γ� J ≤ K and Γ, X :K ,Δ�J , then Γ, X : J ,Δ�J ,

3.5 Congruence lemmas for type and kind equality

Another consequence of the validity properties established in the previous section, is that

we are now able to prove a number of admissible congruence rules for kind and type equality.

These follow the same structure as the corresponding subkinding and subtyping rules but are

generally a bit simpler. Firstly, we no longer need to pay attention to the variance (or polarity)

of constructor arguments because equality is symmetric. Secondly, the left-hand validity

conditions present in the rules SK-DARR and ST-ALL become redundant in the corresponding

equality rules because the kind annotations in the left- and right-hand sides are convertible.

Finally, thanks to symmetry, only one rule is needed for β-conversion, and likewise for η-

conversion.

Lemma 3.24. Kind equality is a congruence with respect to the interval and dependent arrow

kind formers, i.e. the following kind equality rules are admissible.

Γ�A1 = A2 : ∗ Γ�B1 = B2 : ∗
Γ�A1 . .B1 = A2 . .B2

(KEQ-INTV)

Γ� J1 = J2 Γ, X : J1 �K1 = K2

Γ�(X : J1) → K1 = (X : J2) → K2

(KEQ-DARR)

48

3.6. Admissible rules for higher-order extrema and intervals

Lemma 3.25. Type equality is a congruence with respect to the various type formers and includes

β and η-conversion, i.e. the following type equality rules are admissible.

Γ�K1 = K2 Γ, X :K1 �A1 = A2 : ∗
Γ�∀X :K1. A1 =∀X :K2. A2 : ∗

(TEQ-ALL)

Γ, X : J �A1 = A2 : K

Γ�λX : J1. A1 : (X : J) → K

Γ�λX : J2. A2 : (X : J) → K

Γ�λX : J1. A1 =λX : J2. A2 : (X : J) → K
(TEQ-ABS)

Γ�A1 = A2 : ∗ Γ�B1 = B2 : ∗
Γ�A1 → B1 = A2 → B2 : ∗

(TEQ-ARR)

Γ�A1 = A2 : (X : J) → K Γ�B1 = B2 : J

Γ�A1 B1 = A2 B2 : K [X := B1]
(TEQ-APP)

Γ�A1 = A2 : B . .C

Γ�A1 = A2 : A1 . . A1

(TEQ-SING)

Γ, X : J �A : K Γ�B : J

Γ�(λX : J . A)B = A[X := B] : K [X := B]
(TEQ-β)

Γ�A : (X : J) → K X ∉ fv(A)

Γ�λX : J . A X = A : (X : J) → K
(TEQ-η)

Proof. The admissibility proofs of the above rules all follow the same basic pattern. We

want to show that the left- and right-hand sides of the conclusions are mutual subkinds or

subtypes, respectively. To do so, we employ the respective subkinding and subtyping rules,

adjusting the kinds of additional bindings and subtyping judgments using context narrowing

(Corollary 3.23), subsumption ST-SUB, conversion ST-CONV and functionality (Lemma 3.18)

where necessary. When additional validity properties are required, Lemma 3.17 delivers the

required well-formedness or well-kindedness proofs.

3.6 Admissible rules for higher-order extrema and intervals

In this section, we state and prove admissible rules that justify the encodings of higher-order

extremal types and interval kinds given in Section 3.1.1. Many of these rules are straightforward

generalizations of the corresponding rules for the types �, ⊥ and for proper type intervals

A . .B . The remaining rules and lemmas mostly deal with the family of kinds ∗K , which plays a

crucial role in the other encodings and the proofs of their respective properties.

We start by stating and proving a formation rule for ∗K .

Lemma 3.26. The kind ∗K is well-formed whenever K is, i.e. the following is admissible.

Γ�K kd

Γ�∗K kd
(WF-KMAX)

Proof. By induction on the structure of K . The base case uses WF-STAR.

The kind ∗K is a widened version of K , i.e. the latter is always a subkind of the former. As a

consequence, any type of kind K is also of kind ∗K .

49

Chapter 3. The declarative system

Lemma 3.27. Any well-formed kind K is a subkind of ∗K .

Γ�K kd

Γ�K ≤∗K
(SK-KMAX)

Proof. By straightforward induction on the structure of K .

Corollary 3.28. If Γ�A : K , then also Γ�A : ∗K .

The following two lemmas introduce admissible kinding rules for the higher-order extremal

types, and prove that ⊥K and �K are in fact extrema in ∗K , i.e. they are the least and greatest

inhabitants of ∗K , respectively.

Lemma 3.29. Higher-order extremal types are well-formed if their index kind is.

Γ�K kd

Γ��K : ∗K
(K-TMAX)

Γ�K kd

Γ�⊥K : ∗K
(K-TMIN)

Proof. Separately, by induction on the structure of K . The cases for dependent arrow kinds

use WF-KMAX.

Lemma 3.30. The types �K and ⊥K are the maximal and minimal elements of ∗K , respectively.

Γ�A : K

Γ�A ≤�K : ∗K
(ST-TMAX)

Γ�A : K

Γ�⊥K ≤ A : ∗K
(ST-TMIN)

Proof. Separately, by induction on the structure of K . Corollary 3.28 is used to adjust the kind

of the premises where necessary. In the inductive step, we use ST-ABS and the η-rules ST-η1,2.

For example, for K = (X :K1) → K2 we have

Γ � A ≤ λX :K1. A X for X ∉ fv(A) (by ST-η2)

≤ λX :K1.�K2 (by the IH and ST-ABS)

≡ �(X :K1)→K2 : ∗(X :K1)→K2 . (by definition)

Having generalized the properties of the extremal types to their higher-order counterparts,

we now turn to interval kinds. We start with an admissible formation rule for higher-order

intervals.

Lemma 3.31. Higher-order interval kinds are well-formed if their bounds are.

Γ�A : K Γ�B : K

Γ�A . .K B kd
(WF-HOINTV)

Proof. By induction on the structure of K . The inductive step uses kinding validity, K-VAR

and K-APP to expand the bounds.

50

3.6. Admissible rules for higher-order extrema and intervals

The subkinding rule SK-INTV for proper type intervals also generalizes straightforwardly to

intervals over arbitrary type operators.

Lemma 3.32. Higher-order interval kinds are widened in accordance with their bounds.

Γ�A2 ≤ A1 : K Γ�B1 ≤ B2 : K

Γ�A1 . .K B1 ≤ A2 . .K B2
(SK-HOINTV)

Proof. By induction on the structure of K . The inductive step uses subtyping validity, K-VAR,

TEQ-REFL and ST-APP to expand the bounds, and WF-HOINTV to establish well-formedness

of the left-hand side.

Next, we would like to prove an admissible higher-order singleton introduction rule that

generalizes K-SING. Ideally, we would like to show that any well-kinded type Γ�A : K inhabits

its corresponding singleton kind S(A : K). This is not necessarily true, however. Consider

the case of an operator variable X with declared type Γ(X) = ∗ → ∗. The singleton kind

corresponding to X is S(X : ∗ → ∗) = (Y :∗) → X Y . . X Y , so we would like to prove that

Γ �X : (Y :∗) → X Y . . X Y . Which kinding rules could we use to adjust the kind of X to the

desired singleton kind? Since K-SING can only be applied to proper types, our only option is

to use the subsumption rule K-SUB. But unfortunately, the declared kind ∗→∗ of X is a strict

supertype of the singleton kind (Y :∗) → X Y . . X Y , so this cannot work.

We can, however, assign the desired singleton kind to the η-expansion of X , i.e. to λY :∗. X Y .

Unlike X , the application X Y in the body of the η-expansion is a proper type, so we can

use K-SING to narrow its kind. The full derivation is

Γ�∗ kd

Γ,Y :∗�X : ∗→∗ Γ,Y :∗�Y : ∗
(K-APP)

Γ,Y :∗�X Y : ∗
(K-SING)

Γ,Y :∗�X Y : X Y . . X Y
(K-ABS)

Γ�λY :∗. X Y : (Y :∗) → X Y . . X Y

This principle generalizes to arbitrary well-kinded types: the η-expansion of a well-kinded

type Γ�A : K always inhabits the corresponding singleton kind S(A : K).

Given a type A, we define the weak η-expansion η̄K (A) of A as η̄B ..C (A) = A and η̄(X : J)→K (A) =
λX : J . η̄K (A X) where, as usual, we assume that X ∉ fv(A). We call this expansion “weak”

because the argument X in the definition λX : J . η̄K (A X) of the arrow case is not η-expanded

further. This means that the result is not η-long. This is sufficient for the purpose of this

section; we will define a stronger version in the next chapter.

As expected, a type of kind K is equal to its weak η-expansion in K .

Lemma 3.33. Weak η-expansion is sound, i.e. if Γ�A : K , then Γ�A = η̄K (A) : K .

Proof. By induction on the structure of K , using TEQ-η and TEQ-ABS in the inductive case.

51

Chapter 3. The declarative system

Lemma 3.34. The η-expansions of type operators inhabit their higher-order singleton intervals.

Γ�A : K

Γ�η̄K (A) : S(A : K)
(K-HOSING)

Proof. By induction on the structure of K . The base case follows from K-SING, the inductive

step from the usual combination of kinding validity, K-VAR, K-APP and WF-HOINTV.

Corollary 3.35. If Γ�B1 ≤ A : K and Γ�A ≤ B2 : K , then Γ�η̄K (A) : B1 . .K B2.

Having found ways to form, widen and populate higher-order intervals, we still need a way to

put their bounds to use. To this end, we introduce two higher-order bound projection rules,

which generalize the corresponding rules ST-BND1 and ST-BND2 for proper type intervals.

Lemma 3.36 (higher-order bound projection). Inhabitants of a higher-order interval are

supertypes of its lower bound and subtypes of its upper bound.

Γ�A : B1 . .K B2

Γ�A : K Γ�B1 : K

Γ�B1 ≤ A : K
(ST-HOBND1)

Γ�A : B1 . .K B2

Γ�A : K Γ�B2 : K

Γ�A ≤ B2 : K
(ST-HOBND2)

These rules are a bit weaker than one might expect. In particular, the additional premises

Γ � A : K , Γ �B1 : K and Γ �B2 : K , might seem redundant. They are necessary because we

cannot, in general, invert well-formedness judgments about higher-order intervals. That

is, Γ �B1 . .K B2 kd does not imply Γ �B1 : K and Γ �B2 : K , nor does Γ � A : B1 . .K B2 imply

Γ�A : K . To see this, consider the kind K =⊥ . .∅�, where∅=� . .⊥ is the empty interval (note

the absurd bounds). The kind K is well-formed and inhabited by both ⊥ and �, yet clearly ⊥,�
are not inhabitants of ∅. Note that the formation rule WF-HOINTV for higher-order intervals is

not to blame: although K is well-formed, we cannot prove this fact using WF-HOINTV. There

are simply more well-formed higher-order intervals than can be derived using WF-HOINTV.

Proof of Lemma 3.36. Separately, by induction on the structure of K . In the base case, we use

the interval projection rules ST-BND1,2 as well as ST-INTV and ST-SUB to adjust the kinds of

the resulting inequations. In the inductive step, we use ST-ABS and the η-rules ST-η1,2. For

example, for the left-hand case and K = (X :K1) → K2 we have

Γ � B1 ≤ λX :K1.B1 X (by ST-η2)

≤ λX :K1. A X (by the IH and ST-ABS)

≤ A : (X :K1) → K2. (by ST-η1)

Thanks to the admissible kinding and subtyping rules for higher-order intervals and extrema,

we can now easily derive judgments for forming, introducing or eliminating bounded universal

quantifiers over arbitrary type operators.

52

3.6. Admissible rules for higher-order extrema and intervals

For example, well-formedness of the higher-order universal quantifier ∀X ≤ A:K .B can be

derived as

Γ�A : K
(kinding validity)

Γ�K kd
(K-TMIN)

Γ�⊥K : ∗K

Γ�A : K
(Corollary 3.28)

Γ�A : ∗K
(WF-HOINTV)

Γ�⊥K . .∗K A kd
(Lemma 3.37)

Γ�⊥K . .K A kd Γ, X :⊥K . .K A �B : ∗
(K-ALL)

Γ�∀X ≤ A:K .B : ∗

The derivation uses the following lemma for simplifying interval kinds; its proof is by structural

induction on the index K .

Lemma 3.37. Let A, B be types and K a kind. Then A . .∗K B ≡ A . .K B

Similar derivations exist for the introduction and elimination rules.

Corollary 3.38 (bounded quantification). The following rules for the formation, introduction

and elimination of bounded universal quantifiers are admissible.

Γ�A : K Γ, X :⊥K . .K A �B : ∗
Γ�∀X ≤ A:K .B : ∗ (K-ALLBND)

Γ�A : K Γ, X :⊥K . .K A �t : B

Γ�λX ≤ A:K . t : ∀X ≤ A:K .B
(T-TABSBND)

Γ�t : ∀X ≤ A:K .B Γ�C ≤ A : K

Γ�t (η̄K (C)) : B [X := η̄K (C)]
(T-TAPPBND)

Similar rules for the formation, abstraction and elimination of bounded operators are also

admissible.

Note that we need to η-expand the type argument C in the elimination rule T-TAPPBND before

it can by applied to t . This is because C has kind K , while the polymorphic expression t

expects an argument of kind ⊥K . .K C . As discussed earlier, C is not guaranteed to inhabit that

kind but its η-expansion is – via K-HOSING and a subsequent widening of its kind from C . .K C

to ⊥K . .K C .

There is an alternative encoding of higher-order bounded quantification (and bounded type

operators) that separates the declaration of type variables from that of the subtyping con-

straints imposed by their bounds, at the cost of using an auxiliary type variable with potentially

inconsistent bounds. Assume a partition of the set of type variable names into two distinct

sets of operator names denoted by Xn,Yn, . . . and constraint names denoted by Xc,Yc, . . . We

may then encode an upper-bounded type variable binding X ≤ A : K as a pair of bindings

53

Chapter 3. The declarative system

Xn : K , Xc : Xn . .K A, separating the declaration of the operator name X from the subtyping

constraint X ≤ A. For example, the encoding of bounded universal quantifiers according to

this scheme would be ∀X ≤ A:K .B =∀Xn:K .∀Xc:Xn . .K A.B where Xc ∉ fv(B).

The advantage of this encoding is a cleaner separation between the uses of bounded variable

bindings in kinding and subtyping. Whenever we want to refer to the original type variable X

or its kind, we simply use Xn. When we require a proof of the fact that X ≤ A we obtain one

from Xc via ST-HOBIND1, ST-HOBIND2, and ST-TRANS. The same is true when we instantiate

type parameters. For example, a type application t C , where t has type ∀X ≤ A:K .B and C ≤ A,

is now desugared to t C (η̄K (C)), i.e. only the second type argument, which corresponds to the

constraint parameter Xc, needs to be η-expanded, while the argument C for the parameter Xn

can be left as is. Since Xc does not occur freely in the codomain B of the desugared universal

type, the overall type of the desugared application is just B [Xn :=C]. A clear drawback of this

encoding is the necessary duplication of bindings and the corresponding introduction and

elimination forms (abstraction, application). In addition, the kind Xn . .K A of the constraint

Xc has inconsistent bounds in general, which can be problematic.

In Section 3.1.1, we mentioned an alternative definition for the family of kinds ∗K , namely

∗K = (⊥K) . .K (�K). The original definition, given in Fig. 3.2, has the advantage of being

independent of the definition of the higher-order extrema �K and ⊥K . This allowed us to

prove properties such as WF-KMAX and Lemma 3.27 admissible without appealing to any of

the properties of higher-order extrema, and thereby avoid some cyclic dependencies in the

proofs of the latter. The alternative definition, on the other hand, seems more intuitive. To

conclude the section, we show that the two definitions are equal for well-formed kinds K .

Lemma 3.39. The kind ∗K is equal to the higher-order interval bounded by ⊥K and �K . If

Γ�K kd, then Γ�∗K = (⊥K) . .K (�K).

Proof of Lemma 3.39. By induction on the structure of K . The base case is immediate. In the

inductive step, we use SK-HOINTV and the β-rule TEQ-β.

Let K = (X :K1) → K2. We want to show that

Γ � (X :K1) →∗K2 = (Y :K1) → (⊥(X :K1)→K2 Y) . .K2 (�(X :K1)→K2 Y)

for some Y that does not occur freely in fv(⊥(X :K1)→K2) or fv(�(X :K1)→K2). By the IH, we have

Γ�∗K2 = (⊥K2) . .K2 (�K2) but we need to adjust the bounds of the right-hand interval. We use

the following equation for the lower bound, and an similar one for the upper bound.

Γ � ⊥(X :K1)→K2 Y ≡ λX :K1.⊥K2 Y (by definition)

= ⊥K2 [X := Y] (by K-TMIN and TEQ-β)

≡ ⊥K2 : ∗K2 . (α-renaming)

54

3.7. Subject reduction for well-kinded types

By SK-REFL-KEQ, SK-HOINTV and SK-ANTISYM we obtain

Γ � (⊥K2) . .∗K2
(�K2) = (⊥(X :K1)→K2 Y) . .∗K2

(�(X :K1)→K2 Y)

which we re-index using Lemma 3.37. We conclude by KEQ-REFL and KEQ-DARR.

3.7 Subject reduction for well-kinded types

For most versions of Fω, subject reduction is easy to prove at the type level because their kind

languages are essentially the same as the type language of the simply-typed lambda calculus.

In Fω·· , the proof is complicated by the presence of type-dependent kinds and subkinding.

However these complications are minor. Despite type dependency, the structure of kinds is

still rather simple, as witnessed by the subkinding rules. There are only two shapes of kinds

– intervals and arrows – with exactly one subkinding rule per shape: SK-INTV for relating

intervals and SK-DARR for relating arrows. There is no danger of relating kinds of different

shapes simply because there are no subkinding rules to do so. Contrast this with subtyping,

where we can, in principle, relate proper types of any shape using the bound projection

rules ST-BND1,2 and transitivity.

Thanks to the simple structure of subkinding, it is easy to prove the following generation

lemma.

Lemma 3.40 (generation of kinding for operator abstractions). The following is admissible.

Γ�λX :L. A : (X : J) → K

Γ, X : J �A : K

Proof. By induction on kinding derivations. There are only two relevant cases, K-ABS and K-

SUB. The former is immediate, the latter proceeds by case analysis on subkinding derivations.

We have Γ�λX :L. A : L′ and Γ�L′ ≤ (X : J) → K for some L′. The subkinding judgment must

have been derived using SK-DARR since that is the only rule relating arrow kinds. Hence

L′ = (X : J ′) → K ′ for some kinds J ′, K ′ such that Γ� J ≤ J ′ and Γ, X : J �K ′ ≤ K . By the IH, we

get Γ, X : J ′ �A : K ′. The result follows by context narrowing (Corollary 3.23) and K-SUB.

To show that subject reduction holds for kinding, we first prove that individual β-reduction

steps can be lifted to type and kind equality.

Lemma 3.41.

1. If Γ� J kd and J −→β K , then Γ� J = K .

2. If Γ�A : K and A −→β B, then Γ�A = B : K .

The proof uses a weak congruence rule TEQ-ABSWEAK for operator abstractions analogous to

the weak subtyping rule ST-ABSWEAK discussed in Section 3.2, as well as the following variant

of TEQ-β.

55

Chapter 3. The declarative system

Γ� J1 = J2 Γ, X : J1 �A1 = A2 : K

Γ�λX : J1. A1 =λX : J2. A2 : (X : J1) → K
(TEQ-ABSWEAK)

Γ, X : J �A : K Γ�B : J Γ�λX :L. A : (X : J) → K

Γ�(λX :L. A)B = A[X := B] : K [X := B]
(TEQ-β′)

Both rules are easily proven admissible using the validity conditions and congruence rules

introduced in Section 3.4.

Proof of Lemma 3.41. The two parts are proven simultaneously, by induction on kind forma-

tion and kinding derivations, respectively, followed by a case-analysis on the last rule used

to derive the β-step. Most cases are straightforward. They follow the general strategy of first

applying the IH to the premise that corresponds to the sub-expression taking a reduction

step, before concluding with the relevant congruence rule and KEQ-REFL or TEQ-REFL where

necessary. In the case for K-ABS we use TEQ-ABSWEAK. The only interesting case is that

for K-APP when the reduction step is a β-contraction. There we use the generation lemma for

operator abstraction (Lemma 3.40) and the rule TEQ-β′ discussed above.

Subject reduction for kinds and types follows now almost trivially from Lemma 3.41.

Theorem 3.42 (subject reduction for kinding). Full β-reduction preserves well-formedness of

kinds and well-kindedness of types.

1. If Γ� J kd and J −→∗
β

K , then Γ�K kd.

2. If Γ�A : K and A −→∗
β

B, then Γ�B : K .

Proof. By repeated application of Lemma 3.41 and equation validity.

As we will see in the next section, things are not quite as simple at the term level.

3.8 Type safety

Following Wright and Felleisen’s syntactic approach [53], we would like to establish the safety of

our calculus by proving the two properties of progress and preservation (aka subject reduction).

Proposition 3.1 (type safety). Well-typed terms do not get stuck.

(progress) If �t : A, then either t = v for some value v, or t −→v t ′ for some term t ′.
(preservation) If Γ�t : A and t −→v t ′, then Γ�t ′ : A.

Unfortunately, preservation for well-typed terms does not hold in its usual form in Fω·· . Note

that unlike the progress property, which only holds in the empty context, preservation is

expected to hold in arbitrary contexts, i.e. for open terms. Indeed, this is the convention we

adopted for the type-level subject reduction theorem (Theorem 3.42) in the previous section.

But reduction of open terms is not safe in Fω·· . The culprit are type variable bindings with

inconsistent bounds.

56

3.8. Type safety

Consider the following example. Assume v and A such that � v : A and � A �≤ A → B : ∗
for any B , i.e. v is a closed value of type A that cannot be applied to other terms of type

A. For example, take the polymorphic identity function v = λX :∗.λx:X . x which is of type

A = ∀X :∗. X → X . In Fω·· , closed universals are not subtypes of closed arrows,1 and hence

�∀X :∗. X → X �≤ (∀X :∗. X → X) → B : ∗. We will give a formal proof of this fact in Chapter 5

(see Lemma 5.30).

Since v cannot be applied to other As, the application t = (λx: A. x) v v is ill-typed as a closed

term. The inner application (λx: A. x) v is just the identity function on A applied to v ; its type

is again A, which – by assumption – is not a type that takes arguments of type A itself, hence

we cannot apply it to v again. Yet, as the following derivation illustrates, we can show that t is

well-typed in the context Γ= X : (A → A) . . (A → A → A).

...

Γ�λx: A. x : A → A

...

Γ�X : (A → A) . . (A → A → A)
(ST-BND1)

Γ�A → A ≤ X : ∗

...

Γ�X : (A → A) . . (A → A → A)
(ST-BND2)

Γ�X ≤ A → A → A : ∗
(ST-TRANS)

Γ�A → A ≤ A → A → A : ∗
(T-SUB)

Γ�λx: A. x : A → A → A Γ�v : A
(T-APP)

Γ�(λx: A. x) v : A → A Γ�v : A
(T-APP)

Γ�(λx: A. x) v v : A

Note that both A → A and A → A → A are proper types, so the interval (A → A) . . (A → A → A)

is well-formed, as is the context Γ. But since �A �≤ A → A : ∗, the bounds of the interval are

absurd – assuming that subtyping is well-behaved at least for closed types.

To see how this example breaks preservation, consider what happens when t takes a reduction

step. By R-APP1 and R-APPABS we have

(λx: A. x) v v −→v (x[x := v]) v ≡ v v.

Since Γ � (λx: A. x) v v : A, we would expect the resulting term v v to also have type A, but

that is not the case. In fact, the application v v is ill-typed, even in Γ. The assumption

X : (A → A) . . (A → A → A) is useless here, since v does not have type A → A.

If we take v =λX :∗.λx:X . x as suggested earlier, then v v is not only ill-typed, it is also stuck.

Type abstractions expect type arguments, but v is a term, so it cannot be applied to itself.

Hence v v is neither a value nor can it be reduced further.

This example illustrates that it is not safe to evaluate open terms in Fω·· . But what about closed

terms? If we close off the term t from our example using a type abstraction, we obtain the

value λX :(A → A) . . (A → A → A). (λx: A. x) v v . Because it is a value, there are no applicable

1There are systems where universal types are subtypes of their instantiations, i.e. ∀X :K . A ≤ A[X := B] for some
B , but this is not the case for Fω·· , where universals have to be eliminated explicitly using K-APP. Other candidates
for v and A would be v =λx:⊥. x with A =⊥→⊥ or A =�.

57

Chapter 3. The declarative system

CBV reduction rules, and preservation holds trivially. And, assuming the bounds of the binding

X : (A → A) . . (A → A → A) are indeed absurd, we cannot possibly supply a type argument

to this polymorphic term either: if there were some closed type �C : (A → A) . . (A → A → A),

then we would have �A → A ≤ A → A → A : ∗ by the bound projection rules and transitivity,

and hence the interval would have consistent bounds after all. At least superficially, it looks

like preservation might hold for closed terms.

Throughout the next two chapters, we will formalize this intuition and work our way towards

a proof of the following weakened version of preservation.

Theorem 3.43 (preservation – weak version). CBV reduction preserves the types of closed terms.

If �t : A and t −→v t ′, then �t ′ : A.

To conclude the chapter, let us briefly explore the challenges involved in proving the weak

preservation theorem and some strategies to address them. Following the approach used to

prove Lemma 3.41, we start by stating a generation lemma for term and type abstractions.

Since the subtyping rules are more complex than those for subkinding, our generation lemma

for typing is a bit weaker than the one for kinding. In particular, rather than yielding a single

typing judgment, it concludes with a pair of typing and subtyping judgments.

Lemma 3.44 (generation of typing for term and type abstraction).

1. If Γ�λx: A. t : B, then Γ, x: A �t : C and Γ�A →C ≤ B : ∗ for some C .

2. If Γ�λX :K . t : A, then Γ, X :K �t : B and Γ�∀X :K .B ≤ A : ∗ for some B.

Note that the lemma puts lower bounds on the types of the abstractions but does not say

anything about their shapes. For example, we do not know if the type B of a term abstraction

is actually an arrow type, only that it is lower-bounded by one.

Next, assume we are attempting a proof of the preservation theorem by induction on typing

derivations and case analysis on CBV reduction rules. The interesting cases are again those

where β-reductions occur. For example, consider the case of T-APP when the reduction step is

an instance of R-APPABS. We have t = (λx:B. s) v with �λx:B. s : C → A and �v : C for some B

and C . By generation, x:B �s : D and �B → D ≤C → A : ∗ for some D . To continue, we would

like to show that �C ≤ B : ∗ and �D ≤ A : ∗. As expected, this is where things get challenging.

The rules ST-ARR and ST-ALL tell us that the type formers for arrows and universals preserve

the subtyping order – they are both antitone in their first argument and monotone in the

second one. What we need to show now is that these constructors also embed the subtyping

order, i.e. we would like to show that the following rules are admissible:

Γ�A1 → B1 ≤ A2 → B2 : ∗
Γ�A2 ≤ A1 : ∗ Γ�B1 ≤ B2 : ∗

Γ�∀X :K1. A1 ≤∀X :K2. A2 : ∗
Γ�K2 ≤ K1 Γ, X :K2 �A1 ≤ A2 : ∗

58

3.8. Type safety

We will refer to these properties as inversion of subtyping, although, strictly speaking, it is not

the subtyping relation that is being inverted but the rules for subtyping the arrow and universal

type formers. There are several features of the subtyping rules that severely complicate the

proof of subtyping inversion.

1. The presence of the bound projection rules ST-BND1,2, together with transitivity, allow

derivations of the form A ≤ X ≤ B : ∗ where A and B need not even be of the same shape.

For example, under suitably absurd assumptions we can derive

Γ � A → B ≤ X ≤ ∀X :K .C : ∗.

2. The rules for β and η-conversion, together with transitivity, may change the shapes of

related types in the middle of a subtyping derivation, e.g. from a type former to a type

application.

Γ � A1 → A2 ≤ (λX :∗. X → A2) A1 ≤ ·· · ≤ (λX :∗. X → B2)B1 ≤ B1 → B2 : ∗

3. The subsumption rule ST-SUB may change the kinds of related types in the middle of a

subtyping derivation.

We address these points as follows. Firstly, we avoid issues caused by absurd bounds by

proving subtyping inversion only in the empty context, i.e. only for closed types. That is

sufficient for proving weak preservation and, as the above example illustrates, it is the best

we can do, unless we fundamentally change the way abstractions over type variables with

inconsistent bounds are introduced and eliminated. Secondly, we eliminate uses of the β

and η rules by adopting an alternative presentation of subtyping which we dub canonical

subtyping. Canonical subtyping judgments only relate types in η-long β-normal form, which

means that the β or η rules cannot occur in a canonical subtyping derivation, otherwise at

least one side of the corresponding inequation would not be in normal form. The canonical

presentation of subtyping also deals with the last issue in the above list. In canonical subtyping

derivations, subsumption is relegated to certain carefully chosen positions, similarly to the

way subtyping is handled in algorithmic or bidirectional typing.

The core challenge of the proof of subtyping inversion will thus consist in establishing that

the canonical and declarative presentation of subtyping are equivalent, and in particular that

every well-formed kind and every well-kinded type has a normal form. This will be the topic

of the next two chapters.

59

4 Normalization of types

The declarative subtyping rules described in the previous chapter contain a great deal of

redundancy. One source of redundancy is the computational nature of types and kinds them-

selves. Subtyping relates βη-convertible types and kinds, which are semantically equal but

differ in their syntactic structure. This impedes any direct, structural approach to establishing

subtyping inversion, even for closed types.

In this chapter we take a first step towards a canonical presentation of subtyping by eliminating

this source of redundancy. We show that types and kinds in Fω·· are weakly normalizing and can

thus be put into a canonical form: theirβη-normal form. We define a bottom-up normalization

procedure based on hereditary substitution and prove its soundness, i.e. that any given type is

judgmentally equal to the normal form computed for it by this procedure.

The chapter is divided into two parts. Section 4.1 defines the hereditary substitution and nor-

malization functions on raw, i.e. unkinded, types and establishes basic properties. Section 4.2

introduces a set of simplified kinding judgments which provide a syntactic characterization of

normal types and allow us to establish important properties about hereditary substitutions

and normal forms, notably a pair of commutativity lemmas (Lemmas 4.17 and 4.26) that play

an important role in the development of the next chapter.

4.1 Normalization of raw types and kinds

In this section, we define a bottom-up normalization procedure on raw types and kinds. A

key ingredient is hereditary substitution [52]. Roughly, hereditary substitution differs from

ordinary substitution in that it immediately eliminates any β-redexes created when substi-

tuting an abstraction for a variable at the head of an application. Thanks to this strategy,

hereditary substitution preserves well-kinded normal forms, as we will show in the second

part of this chapter. The challenge in defining a hereditary substitution function adapted to

our dependently kinded setting is, of course, ensuring its totality, i.e. that it terminates on all

inputs.

61

Chapter 4. Normalization of types

F,G ::= Head
X type variable
� top/maximum type
⊥ bottom/minimum type
D → E function type
∀X :K .E universal type
λX :K .E operator abstraction

D,E ::= F E Elimination

D ,E ::= Spine
ε empty spine
D,E concatenation

J ,K ,L ::= Kind
D . .E type interval
(X : J) → K dependent operator kind

γ,δ ::= Simple kinding context
∅ empty context
γ, X :k type variable binding

Figure 4.1 – Alternative syntax for types

Before we present our variant of hereditary substitution and the resulting normalization

procedure for types and kinds, we first establish a few preliminaries.

4.1.1 Syntax

We begin by introducing an alternative syntax for types that is better suited to our definition

of hereditary substitution. The key difference between this presentation of types and the the

more standard one given in the previous chapter is that the arguments of repeated applications

are grouped together in sequences called spines. The syntactic structure of spines closely

matches that of the kinds of operators being applied to them, which is key to our presentation

of hereditary substitution. Using this alternative syntax, every type is represented as an

application (or elimination) of an operator to zero or more arguments. Hence we call this

presentation of types elimination form. The grammar of elimination forms is given in Fig. 4.1.

Applications form a separate syntactic category, called eliminations, and are composed of a

head followed by a sequence of arguments, called the spine. A head is any type form that is not

an application. Intuitively, heads are atomic operators that may be applied to a sequence of

type arguments to form compound types. This is true even for proper type constants such as

� and ⊥, which are considered nullary operators. Every head F has an associated elimination

form F ε where it is applied to an empty spine. We often omit ε and informally treat heads as a

subset of eliminations. Spines are just sequences of eliminations. We adopt vector notation

for spines, writing E for the sequence E = E1,E2, . . . ,En . We sometimes use vector notation

for other sorts of expressions as well, e.g. A denotes a sequence of types. We write (D ,E) for

the concatenation of two sequences D and E . The alternative representation extends to kinds

as well, though we do not use separate notation to distinguish normal kinds or from those in

elimination form. When the distinction is important, it is usually clear from the context.

The two representations of types are isomorphic. Given a type A, we write A for its elimination

form. Conversely, we write E , E and F and for the type, or sequence of types, underlying

an elimination form E , a spine E or a head F , respectively. More often though, we omit the

62

4.1. Normalization of raw types and kinds

Weak equality of heads F ≈G

X ≈ X
(WEQ-VAR)

D1 ≈ D1 E1 ≈ E2

D1 → E1 ≈ D2 → E2
(WEQ-ARR)

�≈� (WEQ-TOP)

K1 ≈ K2 E1 ≈ E2

∀X :K1.E1 ≈∀X :K2.E2
(WEQ-ALL)

⊥≈⊥ (WEQ-BOT)

|K1| ≡ |K2| E1 ≈ E2

λX :K1.E1 ≈λX :K2.E2
(WEQ-ABS)

Weak equality of eliminations and spines D ≈ E D ≈ E

F1 ≈ F2 E 1 ≈ E 2

F1 E 1 ≈ F2 E 2
(WEQ-ELIM)

ε≈ ε
(WEQ-EMPTY)

D1 ≈ D2 E 1 ≈ E 2

D1,E 1 ≈ D2,E 2
(WEQ-CONS)

Weak equality of kinds J ≈ K

D1 ≈ D2 E1 ≈ E2

D1 . .E1 ≈ D2 . .E2
(WEQ-INTV)

J1 ≈ J2 K1 ≈ K2

(X : J1) → K1 ≈ (X : J2) → K2
(WEQ-DARR)

Figure 4.2 – Weak type equality

explicit markings and freely mix both representations, knowing that appropriate conversions

could always be inserted. For example, we write D E instead of D E , A B instead of A B and

F D E instead of F (D ,E).

We also define a notion of simple kinding contexts, to be used primarily in Section 4.2. Simple

kinding contexts γ, δ are best thought of as typing contexts consisting exclusively of type

variable bindings X :k with simple kind annotations k (as opposed to full kind annotations K).

Their grammar is given in Fig. 4.1. As for full contexts, we assume that the variables bound in a

simple context are all distinct. We write dom(γ) for the set of variables bound in γ and (γ,δ)

for the concatenation of two simple contexts when dom(γ)∩dom(δ) =∅.

4.1.2 Weak equality

So far we have considered two equality relations on types: syntactic equality, or α-equivalence

A ≡ B , and judgmental type equality Γ�A = B : K . Syntactic equality is simple but restrictive;

judgmental type equality is flexible but complex. We now define an additional equality relation

A ≈ B on types, called weak equality, which trades some of the simplicity of syntactic equality

for some of the flexibility of judgmental equality.

Just as syntactic equality, weak equality is defined directly on raw types and kinds. However, un-

like syntactic equality, weak equality identifies type operator abstractions up to simplification

of their domain annotations, as shown in the following inference rule:

63

Chapter 4. Normalization of types

|J | ≡ |K | A ≈ B

λX : J . A ≈λX :K .B
(WEQ-ABS)

Weak equality is the smallest congruence (w.r.t. to all the type and kind formers) including

the above rule. The complete set of inference rules is given in Fig. 4.2. Since we will mostly

use weak equality to relate types and kinds in elimination form, we present inference rules for

equality of heads, spines, eliminations and kinds.

The definition of weak equality includes no explicit inference rules for reflexivity, transitivity

or symmetry, but these are easily proven admissible.

Lemma 4.1. Weak equality is an equivalence, i.e. it is reflexive, transitive and symmetric.

E ≈ E
(WEQ-REFL)

E1 ≈ E2 E2 ≈ E3

E1 ≈ E3
(WEQ-TRANS)

E1 ≈ E2

E2 ≈ E1
(WEQ-SYM)

Although these three rules only cover the case of eliminations, analogous properties hold for

kinds, heads and spines, i.e. weak equality is an equivalence on both types and kinds.

Proof. The three properties of reflexivity, transitivity and symmetry are proven separately;

each simultaneously on the structure of kinds, eliminations, heads and spines, with a case

analysis of the final rules used in the corresponding weak equality derivations.

One may wonder why we did not adopt an even weaker notion of equality that ignores domain

annotations altogether and identifies abstractions such as λX :∗.E and λX :∗→∗.E . The

answer is that weak equality is designed to fit well with the notion of simplified kinding

introduced in Section 4.2, which ignores dependencies in kinds but preserves the simple

kinding structure of types. The following property of weak equality will also prove useful in

this setting.

Lemma 4.2. Weakly equal kinds simplify equally. If K1 ≈ K2, then |K1| ≡ |K2|.

Proof. By straightforward induction on the derivation of K1 ≈ K2.

4.1.3 Hereditary substitution in raw types

In the next chapter, we will introduce a set of canonical rules that are defined directly on

normal forms. Since kinds in Fω·· are dependent, some of the kinding and subtyping rules

involve substitutions in kinds, e.g. K-APP or ST-β1,2. Unfortunately, substitutions do not

preserve normal forms because substituting an operator abstraction for the head of a neutral

type introduces a new redex. For example (Y A)[Y :=λX :K .B] ≡ (λX :K .B) A is not a normal

form, even if Y A and λX :K .B are. To define a canonical counterpart of e.g. K-APP directly on

normal kinds and types, we need a variant of substitution that immediately eliminates the

β-redexes it introduces. Thankfully, there is an operation that does precisely that: hereditary

substitution [52].

64

4.1. Normalization of raw types and kinds

Hereditary substitution D[X k := E]

(Y D)[X k := E] = E ·k (D[X k := E]) if Y = X ,

Y (D[X k := E]) otherwise,

(�D)[X k := E] = � (D[X k := E])

(⊥D)[X k := E] = � (D[X k := E])

((D1 → D2)D)[X k := E] = (D1[X k := E] → D2[X k := E]) (D[X k := E])

((∀Y :K .D ′)D)[X k := E] = (∀Y :K [X k := E].D ′[X k := E]) (D[X k := E])

((λY :K .D ′)D)[X k := E] = (λY :K [X k := E].D ′[X k := E]) (D[X k := E])

for Y �= X ,Y ∉ fv(E).

D[X k := E]
ε[X k := E] = ε

(D ′,D)[X k := E] = (D ′[X k := E]), (D[X k := E])

K [X k := E]

(D1 . .D2)[X k := E] = D1[X k := E] . .D2[X k := E]

((Y : J) → K)[X k := E] = (Y : J [X k := E]) → K [X k := E] for Y �= X ,Y ∉ fv(E).

Reducing application D ·k E

D ·∗ E = D E

D ·k→l E = D ′[X k := E] if D =λX : J .D ′,
D E otherwise.

D ·k E
D ·k ε = D

D ·k (E ′,E) = (D ·k1→k2 E ′) ·k2 E if k = k1 → k2,

D (E ′,E) otherwise.

Figure 4.3 – Hereditary substitution
65

Chapter 4. Normalization of types

D[X k := E] J [X k := E]

D[X k := E]

D ·k E D ·k E

(k = k ′,D < D)

(k = k ′,D < D ′)

(k = k ′,D < J)

(k = k ′, J < J ′)

(k = k ′,D < D ′)

(k = k ′,D < D) (k = k ′, J < D)

(k = k ′)

(k = k ′)
(k < k ′)

(k < k ′)

Figure 4.4 – Recursive structure of hereditary substitution

Our definition of hereditary substitution is given in Fig. 4.3. Hereditary substitution in raw

kinds, eliminations and spines is defined mutually with reducing application of eliminations

to eliminations and spines by recursion on the structure of the simple kind parameter k.

The definitions of hereditary substitution in kinds, eliminations on spines proceed by inner

recursion on the structure of the parameters K , D and D , respectively. The mutually recursive

structure of the five functions is illustrated as a call graph in Fig. 4.4. Nodes represent functions

while edges represent calls among them. The edge labels indicate which parameter (if any)

decreases during the corresponding call. Note that there are two calls where no parameter

decreases: in the case where D = X V , hereditary substitution in eliminations D[X k := E] is

defined in terms of a reducing application E ·k (D[X k := E]) where the simple kind k remains

unchanged; there is a similar case in the definition of D ·k E . But as Fig. 4.4 illustrates, at least

one of the relevant parameters decreases along every cycle in the call graph, i.e. there are no

recursive calls where all the parameters remain the same. Hence the five functions remain

structurally recursive, ensuring their totality.

There is only one recursive case in the definition of reducing applications to spines D ·k E ,

namely that where the simple kind parameter k and the spine parameter E are both compound

expressions, i.e. where we have k = k1 → k2 and E = E ,E ′. This is where spines shine. Because

the structure of spines – like that of arrow kinds – is right-associative, we can recursively

unwind E and k at the same time. The recursive call (D ·k E) ·k2 E ′ matches the tail E ′ of

the spine with the domain k2 of the arrow kind. This is precisely why we choose to define

hereditary substitutions on elimination forms.

Our presentation of hereditary substitution differs slightly from others in the literature. The

reasons for this are twofold. Firstly, our definition of hereditary substitution needs to cover

dependent kinds, which is not the case for some other systems; secondly, we wanted our

definition to be easily mechanized using a theorem prover. Like Keller and Altenkirch, we

define hereditary substitution by structural recursion and mutually with reducing applica-

tion [31]. Their paper describes an Agda implementation of hereditary substitution for simply

typed lambda terms; i.e. it has already been mechanized in a theorem prover. However, their

66

4.1. Normalization of raw types and kinds

implementation uses an intrinsically typed representation of lambda terms, which does not

immediately generalize to a system with dependent types (or kinds). We choose, instead, to de-

fine hereditary substitution directly on raw, i.e. unkinded, type expressions. As a consequence,

there are degenerate cases and the results of hereditary substitutions are not necessarily

normal.

In that respect, our definition is closer to that given by Abel and Rodriguez who also define

hereditary substitution directly on raw types [2]. Their definition also relies on the structure of

kinds to ensure termination, but it requires tracking the kinds of both input types and result

types, as well as their relationship to each other, in order to establish termination. This is

necessary because their definition, unlike ours or that of Keller and Altenkirch, does not collect

arguments of repeated applications in spines.

Neither of these definitions cover dependent types or kinds. Our approach of distinguishing

between dependent and simple kinds and defining hereditary substitution by recursion on the

latter was inspired by Harper and Licata’s formalization of Canonical LF [28]. However, rather

than defining a recursive function, they give an inductive definition of hereditary substitution

as a collection of relations on raw but normal types and kinds. The relations are functional

but partial, thus avoiding degenerate cases. On the other hand, functionality and termination

have to be established separately for their definition.

We extend hereditary substitution pointwise to contexts, i.e. given a context Γ, a type variable

Y ∉ dom(Γ), a simple kind k and a type E , we define Γ[Y k := E] as

∅[Y k := E] = ∅

(Γ, x:D)[Y k := E] = Γ[Y k := E], x : D[Y k := E]

(Γ, X :K)[Y k := E] = Γ[Y k := E], X : K [Y k := E].

Next, we describe some simple properties of hereditary substitution. Since it is defined

pointwise on spines, hereditary substitution commutes with spine concatenation.

Lemma 4.3. Let D1 and D2 be spines, then (D1,D2)[X k := E] ≡ (D1[X k := E],D2[X k := E]),

for any X , k and E.

Just as for ordinary substitution, simplified kinds are stable under hereditary substitution.

Lemma 4.4 (stability of simplifications under hereditary substitution). Let J be a kind, X a

type variable, k a simple kind and A a type. Then |J [X k := A]| ≡ |J |.

Proof. By straightforward induction on the structure of J .

The following lemma shows that hereditary substitutions of weakly equal types preserve weak

equality.

67

Chapter 4. Normalization of types

Lemma 4.5. Weak equality is a congruence w.r.t. hereditary substitution and reducing applica-

tion. Let E1 ≈ E2,

1. if K1 ≈ K2, then K1[X k := E1] ≈ K2[X k := E2];

2. if D1 ≈ D2, then D1[X k := E1] ≈ D2[X k := E2];

3. if D1 ≈ D2, then D1[X k := E1] ≈ D2[X k := E2];

4. if D1 ≈ D2, then E1 ·k D1 ≈ E2 ·k D2;

5. if D1 ≈ D2, then E1 ·k D1 ≈ E2 ·k D2.

Proof. The structure of the proof mirrors that of the recursive definitions of hereditary sub-

stitution and reducing application. All five parts are proven simultaneously, by induction

on the structure of k. Parts 1–3 proceed by an inner induction on the derivations of K1 ≈ K2,

D1 ≈ D2 and D1 ≈ D2, respectively. Parts 4 and 5 proceed by a case analysis on the final

rules used to derive E1 ≈ E2 and D1 ≈ D2, respectively. Since weak equality of eliminations is

necessarily derived using WEQ-ELIM, part 2 proceeds by a case analysis on the final rule used

to derive F1 ≈ F2, where F1 and F2 are the heads, respectively, of E1 = F1D1 and E2 = F2D2. In

the case for WEQ-ABS, we use stability of kind simplification under hereditary substitution

(Lemma 4.4). In the case for WEQ-VAR, we use the IH twice: first for part 3 to derive D1[X k :=
E1] ≈ D2[X k := E2], then for part 5, to derive E1 ·k (D1[X k := E1]) ≈ E2 ·k (D2[X k := E2]). In the

second instance, k does not decrease nor is D1[X k := E1] ≈ D2[X k := E2] a sub-derivation of

the current premise. This use of the IH is nevertheless justified because any subsequent use of

the IH for part 2 in the proof of part 5 must occur after the use of the IH for part 4, at which

point k has necessarily decreased.

Since the essential difference between ordinary and hereditary substitution is that the latter

reduces newly created β-redexes, one would expect the results of ordinary and hereditary

substitutions to be β-convertible. As the following lemma shows, this is indeed the case.

Lemma 4.6. Ordinary substitutions and applications in types β-reduce to hereditary substitu-

tions and reducing applications, respectively. Let E be an elimination, X a type variable and k

a simple kind, then

1. K [X := E] −→∗
β

K [X k := E] for any kind K ;

2. D[X := E] −→∗
β

D[X k := E] for any type D;

3. for any D1, D2 and D , if D1[X := E] −→∗
β

D2, then (D1 D)[X := E] −→∗
β

D2 (D[X k := E]);

4. E D −→∗
β

E ·k D for any type D;

5. E D −→∗
β

E ·k D for any spine D .

Proof. All five parts are proven simultaneously, by induction on the structure of k. Parts 1–3

proceed by an inner induction on the structure of K , D and D , respectively. Parts 4 and 5

proceed by a case analysis on E and D , respectively. All parts rely on compatibility of β-

reduction with the kind and type formers.

68

4.1. Normalization of raw types and kinds

η-expansion of neutral types ηK (E)

ηD1 ..D2 (E) = E

η(X : J)→K (E) = λX : J .ηK (E (η J (X))) for X ∉ fv(E).

Normalization nfΓ(A)

nfΓ(X) = ηK (X) if Γ(X) = K ,

X otherwise,

nfΓ(�) = �
nfΓ(⊥) = ⊥
nfΓ(A → B) = nfΓ(A) → nfΓ(B)

nfΓ(∀X :K . A) = ∀X :K ′.nfΓ,X :K ′(A) where K ′ = nfΓ(K),

nfΓ(λX :K . A) = λX :K ′.nfΓ,X :K ′(A) where K ′ = nfΓ(K),

nfΓ(A B) = E [X |K | := nfΓ(B)] if nfΓ(A) =λX :K .E ,

(nfΓ(A)) (nfΓ(B)) otherwise.

nfΓ(K)

nfΓ(A . .B) = nfΓ(A) . .nfΓ(B)

nfΓ((X : J) → K) = (X : J ′) → nfΓ,X : J ′(K) where J ′ = nfΓ(J).

Figure 4.5 – Normalization of types

As an immediate consequence of the previous lemma and subject reduction, the results of

hereditary substitutions in well-formed kinds and well-kinded types are judgmentally equal to

their ordinary counterparts.

Corollary 4.7 (soundness of hereditary substitution). Let Γ�A : K , then

1. if Γ, X :K ,Δ� J kd, then Γ,Δ[X := A] � J [X := A] = J [X |K | := A];

2. if Γ, X :K ,Δ�B : J , then Γ,Δ[X := A] �B [X := A] = B [X |K | := A] : J [X := A].

4.1.4 Normalization of raw types

Based on hereditary substitution, we define a bottom-up normalization function nf on kinds

and types. It is a straightforward extension of the normalization function given by Abel and

Rodriguez [2], adjusted to also cover dependent kinds. The function nf is defined directly on

raw types and kinds and relies on a separate function for η-expanding variables. The definition

of both functions is given in Fig. 4.5.

The η-expansion ηK (E) of a type E of kind K is defined by recursion on the structure of K .

69

Chapter 4. Normalization of types

It is defined for any type E , though it is designed primarily to expand neutral forms, i.e.

eliminations of the form E = X V where V is a spine consisting entirely of βη-normal forms. In

the definition of nf, η-expansion is used exclusively to expand type variables, which are indeed

neutral types. The η-expansion ηK (E) is similar to the weak η-expansion η̄K (A) defined in the

previous chapter, except that ηK (E) also expands newly introduced argument variables, so

that, when applied to a neutral type, the result is η-long.

Normalization nfΓ(A) and nfΓ(K) of raw types A and raw kinds K in a context Γ are defined

by mutual recursion on A and K , respectively. The case of applications uses hereditary

substitution to eliminate β-redexes. Note the crucial use of domain-annotations: in order to

hereditarily substitute a type argument in the body of an operator abstraction λX :K .E , we

need to guess its simple kind, or equivalently, the simple kind of X . Since the normalization

function is defined directly on raw, unkinded types, the only way to obtain this information is

from the declared kind K of X in the abstraction.

The context parameter Γ of nf is used to look up the declared kinds of variables, which drive

their η-expansion. To ensure that the resulting η-expansions are normal, the context Γ must

itself be normal.

We extend normalization pointwise to contexts, i.e. we define nfΓ(Δ) as

nfΓ(∅) =∅ nfΓ(Δ, x: A) = nfΓ(Δ), x:nfΓ,Δ(A) nfΓ(Δ, X :K) = nfΓ(Δ), X :nfΓ,Δ(K)

We drop the subscript Γ if it is the empty context, i.e. nf (Δ) = nf∅(Δ).

Since nf is a total function defined directly on raw types and kinds, it necessarily contains

degenerate cases, i.e. the resulting types need not be β-normal. For example, the case

of applications relies on the domain annotations K of operator abstractions λX :K . A in

head position to be truthful. The ill-kinded type Ω = (λX :∗. X X)(λX :∗. X X) will result in

nf (Ω) ≡ (X X)[X ∗ := λX :∗. X X] ≡ (λX :∗. X X) ·∗ (λX :∗. X X) ≡Ω. However, we will show in

Section 4.1.5 that, for well-kinded types Γ � A : K and well-formed kinds Γ �K kd, the type

nfΓ(A) and kind nfΓ(K) are guaranteed to be η-long β-normal forms.

Before we can do so, we need to establish some basic properties of η-expansion and normal-

ization. Unsurprisingly, simplified kinds are stable under normalization.

Lemma 4.8 (stability of simplifications under normalization). Let Γ be a context and K a kind.

Then |nfΓ(K)| ≡ |K |.

Proof. By straightforward induction on the structure of K .

Extending kind simplification pointwise to contexts, we define |Γ| as

|∅| =∅ |Γ, x: A| = |Γ| |Γ, X :K | = |Γ|, X :|K |

It is easy to see that context lookup commutes with simplification, i.e. |Γ|(X) = |Γ(X)|, and that

70

4.1. Normalization of raw types and kinds

simplified contexts are stable under (hereditary) substitution and normalization, i.e.

|Γ[X := A]| = |Γ| |Γ[X k := A]| = |Γ| |nf (Γ)| = |Γ|

The following two lemmas show that η-expansion and normalization preserve weak equality.

Importantly, this is true even if the corresponding kinds and contexts, respectively, are not

themselves weakly equal but simplify equally – a much weaker requirement.

Lemma 4.9. Weak equality is preserved by η-expansion along kinds that simplify equally. If

|J | ≡ |K | and D ≈ E, then η J (D) ≈ ηK (E).

Proof. By induction on the structure of J and case analysis on the final rule used to derive

D ≈ E .

Lemma 4.10. Kinds and types normalize weakly equally in contexts that simplify equally. Let Γ

and Δ be contexts such that |Γ| ≡ |Δ|. Then

1. nfΓ(K) ≈ nfΔ(K) for any kind K , and

2. nfΓ(A) ≈ nfΔ(A) for any type A.

Proof. Simultaneously, by induction on the structure of K and A, respectively. In the type

variable case A = X we use Lemma 4.9; in the operator application case A = A1 A2 we use

Lemma 4.5.2; in the cases for dependent operator kinds, universal types and operator abstrac-

tion, we use Lemma 4.2.

4.1.5 Soundness of normalization

To conclude this section, we show that η-expansion and normalization do not fundamentally

alter the meaning of a type or kind. Well-kinded types and well-formed kinds are judgmentally

equal to their normalized counterparts.

Lemma 4.11 (soundness of η-expansion). Well-kinded neutral types are equal to their η-

expansions. Let Γ�X V : K , then Γ�X V = ηK (X V) : K .

Proof. By induction on the structure of K . In the case for K = (Y :K1) → K2 we use kinding

validity and a case analysis on the final rule of the resulting kind formation derivation to obtain

Γ�K1 kd and Γ,Y :K1 �K2 kd. By context validity, K-VAR and the IH, we have Γ,Y :K1 �Y =
ηK1 (Y) : K2. By the weakening lemma, TEQ-REFL, TEQ-APP and a second use of the IH, we

obtain Γ,Y :K1 �X V Y = ηK2 (X V (ηK1 (Y))) : K1, and hence

Γ� X V = λY :K1. X V Y (by TEQ-η)

= λY :K1.ηK2 (X V (ηK1 (Y))) : K . (by KEQ-REFL and TEQ-ABSWEAK)

71

Chapter 4. Normalization of types

Lemma 4.12 (soundness of normalization). Well-formed kinds and well-kinded types are

equal to their normal forms.

1. If Γ�K kd, then Γ�K = nfnf (Γ)(K).

2. If Γ�A : K , then Γ�A = nfnf (Γ)(A) : K .

3. If Γ ctx, then Γ= nf (Γ) ctx.

Proof. Simultaneously by induction kind formation, kinding and context formation deriva-

tions, respectively. Most cases are routine. The interesting cases are K-VAR and K-APP. To

avoid clutter, we omit the subscript nf (Γ) in the remainder of the proof, writing e.g. nf (A)

instead of nfnf (Γ)(A).

• Case K-VAR. We have A = X and Γ(X) = K for some X and K , as well as Γ ctx. By the IH

for part 3, we obtain Γ= nf (Γ) ctx and hence Γ�K ≡ Γ(X) = nf (Γ)(X) ≡ nf (K). By K-VAR

and K-CONV we get Γ �X : nf (K), and by Lemma 4.11, Γ �X = ηnf (K)(X) : nf (K). We

conclude by KEQ-SYM and K-CONV.

• Case K-APP. We have A = A1 A2 with Γ�A1 : (X :K1) → K2 and Γ�A2 : K1. Applying the

IH twice, we obtain Γ�A1 = nf (A1) : (X :K1) → K2 and Γ�A2 = nf (A1) : K1, and hence

Γ�A1 A2 = (nf (A1))(nf (A2)) : K2[X := A2] by TEQ-APP. Next, we distinguish two cases:

nf (A1) = λX : J .E and nf (A1) �= λX : J .E . In the latter case, we are done. Otherwise, we

use equation validity, generation of kinding for operators (Lemma 3.40) and kinding

validity to derive Γ�nf (A1) : K1, Γ, X :K1 �E : K2 and Γ, X :K1 �K2 kd. It follows that

Γ� (λX : J .E) (nf (A2)) = E [X := nf (A2)] (by TEQ-β′)

= E [X |K1| := nf (A2)] : K2[X := nf (A2)]. (by Corollary 4.7)

Functionality (Lemma 3.18) and TEQ-SYM give us Γ �K2[X := nf (A2)] = K2[X := A2],

which allows us to adjust the kind of the previous equation via TEQ-CONV, and to

conclude the case by TEQ-TRANS.

4.2 Simple kinding of normal types

The function nf assigns to each raw type A in a given context Γ a unique type nfΓ(A). But

as we have seen, the type nfΓ(A) may not be βη-normal if A is ill-kinded. In this section, we

prove the converse: whenever A is well-kinded in Γ, the type nfnf (Γ)(A) is a η-long β-normal

form. To do so, we first introduce a set of simplified kinding judgments. Roughly, a simplified

kinding judgment γ�E : k establishes that the type E is a normal form of simple kind k in the

simple context γ. Given γ�E : k, we say that E is a simply (well-)kinded normal form, or just

that E is simply kinded. As we are about to show, every well-kinded type Γ�A : K has a simply

well-kinded normal form |Γ| �E : |K |, namely E = nfnf (Γ)(A) (see Lemma 4.20 below).

It is important to note that the converse is not true: not every simply kinded type is well-kinded.

Because kind simplification forgets dependencies, there are necessarily some ill-kinded types

72

4.2. Simple kinding of normal types

that are considered simply well-kinded according to the judgments we are about to introduce.

However, every simply kinded type is guaranteed to be an η-long β-normal form and, as

we will see in this section, simple kinding is preserved by operations such as hereditary

substitution and η-expansion. Hence simple kinding allows us to prove important properties

about these operations on βη-normal forms without subjecting ourselves to the complexity of

fully dependent kinds.

To enhance readability, we use the following naming conventions for normal forms: the

metavariables U , V , W denote normal types, while M and N denote neutral types.1 No special

notation is used for normal kinds.

Judgments. Fig. 4.6 defines the following judgments by mutual induction.

γ�K kds the kind K is simply well-formed and normal in γ

γ�V : k the type V is a normal form of simple kind k in γ

γ�ne N : k the type N is a neutral form of simple kind k in γ

γ� j : V : k applying an operator of simple kind j to the normal spine V

yields a type of simple kind k in γ.

The judgments for simple kind formation and kinding follow the syntactic structure of normal

kinds and types. A type V is a βη-normal form γ�V : k of simple kind k if it is either a proper

type introduced by one of the basic type formers applied to normal arguments (rules SK-TOP,

SK-BOT, SK-ARR, and SK-ALL), an operator abstraction with a normal body (rule SK-ABS),

or a simply kinded neutral type (rule SK-NE). Simply kinded neutral forms γ �ne N : k are

eliminations headed by an abstract type operator, i.e. a type variable X , which is applied to a

spine of normal types V (rule SK-VARAPP). Finally, a simply well-formed normal kindγ�K kds

is either a type interval bounded by normal types (rule SWF-INTV) or a dependent arrow with

normal domain and codomain (rule SWF-DARR). Note that type operator abstractions are the

only normal forms of (simple) arrow kind. This ensures that normal types are always η-long.

The simple spine kinding judgment γ� j : V : k is different from the other judgment forms in

that it is a quaternary rather than a ternary relation. The simple kinds j and k should be read

as inputs and outputs, respectively, of such judgments: when a type of kind j is applied to the

spine V (the subject of the judgment), the resulting type is of kind k – as exemplified by the

rule SK-VARAPP.

There is no formation judgment for simple contexts γ since such contexts only contain simple

type variable bindings, i.e. bindings assigning simple kinds to type variables, and there is no

such thing as an ill-formed simple kind.

1This is just notation. We do not consider normal forms a separate syntactic category, e.g. the letters U , V , W
are metavariables denoting types (typically in elimination form) rather than non-terminals in some grammar of
normal forms.

73

Chapter 4. Normalization of types

Simplified well-formedness of kinds γ�K kds

γ�U : ∗ γ�V : ∗
γ�U . .V kds

(SWF-INTV)
γ� J kds γ, X :|J | �K kds

γ�(X : J) → K kds
(SWF-DARR)

Kinding of neutral types γ�ne N : k

γ(X) = j γ� j : V : k

γ�ne X V : k
(SK-VARAPP)

Simple spine kinding γ� j : V : k

γ�k : ε : k
(SK-EMPTY)

γ�U : j γ�k : V : l

γ� j → k : U ,V : l
(SK-CONS)

Simple kinding of normal types γ�V : k

γ�� : ∗ (SK-TOP)

γ�U : ∗ γ�V : ∗
γ�U →V : ∗ (SK-ARR)

γ� J kds γ, X :|J | �V : k

γ�λX : J .V : |J |→ k
(SK-ABS)

γ�⊥ : ∗ (SK-BOT)

γ�K kds γ, X :|K | �V : ∗
γ�∀X :K .V : ∗ (SK-ALL)

γ�ne N : ∗
γ�N : ∗ (SK-NE)

Figure 4.6 – Simplified kinding

Because kinding is simplified, there is no notion of subkinding or kind equality, and hence

no need for a subsumption rule. As a consequence, the simple kind formation and kinding

rules are syntax-directed; in a given context, the rules unambiguously assign simple kinds

to any normal type. Since neutral types N are always of the form N = X V for some X and

V , the judgment from γ�ne N : k is somewhat superfluous and the rule SK-VARAPP could, in

principle, be merged into SK-NE. However, the rule SK-NE only covers proper neutral types,

i.e. those of simple kind ∗. We keep the separate judgment for neutrals as it is convenient

when reasoning about higher-order neutral types (see e.g. the admissible rule SK-NEAPP and

Lemma 4.18 below).

Another important property of simplified kinding is that none of the rules involve substitutions

in kinds. This substantially simplifies the proofs of some key lemmas about hereditary substi-

tutions and reducing applications discussed later on in this section, such as Lemma 4.16 which

states that hereditary substitutions preserve simple kinding (and thus normal forms) and that

74

4.2. Simple kinding of normal types

simple kinding of reducing applications is admissible. It is also important in establishing

admissibility of the following simple rules about spines and neutral types.

Lemma 4.13. The following simple kinding rules for spine concatenation and application of

neutrals are admissible.

γ� j : U : k γ�k : V : l

γ� j : U ,V : l
(SK-CONCAT)

γ� j : U : k → l γ�V : k

γ� j : U ,V : l
(SK-SNOC)

γ�ne N : j → k γ�V : j

γ�ne N V : k
(SK-NEAPP)

Proof. The proofs are done separately for each of the three rules in the order the rules are

listed. The proof for SK-CONCAT is by induction on the derivation of the first premise. The

rule SK-CONS is derivable from SK-SNOC as a special case where V =V ,ε, using SK-EMPTY

and SK-CONS. The proof of SK-NEAPP starts with a case analysis on the final rule used to

derive Γ �ne N : j → k. The only rule for deriving such judgments is SK-VARAPP, hence N

must be of the form N = X U with γ(X) = l and γ � l : U : j → k. We conclude by SK-SNOC

and SK-VARAPP.

4.2.1 Simply-kinded hereditary substitution

Before we can prove that hereditary substitutions preserve simple kinding, we first need to

establish the usual weakening properties for simple kind formation and kinding.

Lemma 4.14 (weakening). A simple judgment remains true if its context is extended by an

additional binding. Let γ, δ be simple contexts, k a simple kind and X ∉ dom(γ,δ). If γ,δ�J

for any of the simple judgments defined above, then γ, X :k,δ�J .

Proof. Simultaneously for all four judgments, by induction on the derivation of γ,δ�J .

Corollary 4.15 (Iterated weakening). Given a pair γ, δ of disjoint simple contexts, if γ �J ,

then γ,δ�J .

Lemma 4.16 (hereditary substitution). Hereditary substitutions and reducing applications

preserve the simple kinds of types as well as simple well-formedness of kinds. Let γ, δ be simple

contexts and X such that X ∉ dom(γ,δ). Assume further that γ�V : k for some V and k. Then

1. if γ, X :k,δ� J kds, then γ,δ� J [X k :=V] kds;

2. if γ, X :k,δ�U : j , then γ,δ�U [X k :=V] : j ;

3. if γ, X :k,δ�ne N : j , then γ,δ�N [X k :=V] : j as a normal form;

4. if γ, X :k,δ� j : U : l , then γ,δ� j : U [X k :=V] : l ;

5. if k = k1 → k2 and γ�U : k1, then γ�V ·k1→k2 U : k2;

6. if γ�k : U : j , then γ�V ·k U : j .

75

Chapter 4. Normalization of types

Note that hereditary substitutions preserve the simple kinds of neutral types but not neutrality

itself.

Proof. All six parts are proven simultaneously by induction on the structure of k. Parts 1–4

proceed by an inner induction on the simple formation or kinding derivations for J , U , N

and U , respectively. Parts 5 and 6 proceed by a case analysis on the final rules used to derive

γ�V : k1 → k2 and γ�k : V : j , respectively; for part 5, the only applicable rule is SK-ABS. For

part 3, in the case for SK-VARAPP when N = X U , we use iterated weakening (Corollary 4.15)

and the IH (for 4), respectively, to obtain γ,δ�V : k and γ,δ�k : U [X k :=V] : j . To conclude

the case, we apply the IH again (for 6). In this second use of the IH, k does not decrease nor is

γ,δ�k : U [X k :=V] : j a strict sub-derivation of the current premise. However, in order to use

the IH for part 3 again from within the proof of part 6, we must go through part 5, at which

point k necessarily decreases. Again, the structure of the proof mirrors that of the mutually

recursive definitions of hereditary substitution and reducing application.

Thanks to Lemma 4.16, we can now prove the following commutativity lemma about hereditary

substitutions, which will play an important role in the proof of Lemma 4.26 below and in the

development of the next chapter.

Lemma 4.17 (commutativity of hereditary substitutions). Hereditary substitutions of simply

kinded types commute; hereditary substitutions of simply kinded types commute with simply

kinded reducing applications. Let γ1 �U : j and γ1, X :k,γ2 �V : k. Then

1. if γ1, X : j ,γ2,Y :k,γ3 � J kds, then

J [Y k :=V][X j :=U] ≡ J [X j :=U][Y k :=V [X j :=U]];

2. if γ1, X : j ,γ2,Y :k,γ3 �W : l , then

W [Y k :=V][X j :=U] ≡ W [X j :=U][Y k :=V [X j :=U]];

3. if γ1, X : j ,γ2,Y :k,γ3 �ne N : l , then

N [Y k :=V][X j :=U] ≡ N [X j :=U][Y k :=V [X j :=U]];

4. if γ1, X : j ,γ2,Y :k,γ3 �l1 : W : l2, then

W [Y k :=V][X j :=U] ≡ W [X j :=U][Y k :=V [X j :=U]];

5. if k = k1 → k2 and γ1, X : j ,γ2 �W : k1, then

(V ·k1→k2 W)[X j :=U] ≡ (V [X j :=U]) ·k1→k2 (W [X j :=U]);

6. if γ1, X : j ,γ2 �k : W : l , then (V ·k W)[X j :=U] ≡ (V [X j :=U]) ·k (W [X j :=U]).

Proof. All six parts are proven simultaneously by simultaneous induction on the structures

76

4.2. Simple kinding of normal types

of j and k. Simultaneous structural induction on j and k means roughly that it is sufficient

for either one of j or k to decrease in an induction step. More formally, denote by � the

sub-expression order on simple kinds, then the simultaneous induction order < on unordered

pairs { j ,k} of simple kinds is defined as { j1, j2} < {k1,k2} if j1 � k1 and j2 � k2. Importantly,

< is defined over unordered pairs which allows us to exchange j and k in an induction step.

Parts 1–4 proceed by an inner induction on the simple formation or kinding derivations for J ,

W , N and W , respectively.

As usual, the interesting cases are those for part 3, when N = Y W and N = X W .

• Case SK-VARAPP, N = Y W . We have γ1, X : j ,γ2,Y :k,γ3 �k : W : l . By Lemma 4.16.4, we

obtain γ1, X : j ,γ2,γ3 �k : W [Y k :=V] : l , and hence we have

(Y W)[Y k :=V][X j :=U]

≡ (V ·k (W [Y k :=V]))[X j :=U] (by definition)

≡ (V [X j :=U]) ·k (W [Y k :=V][X j :=U]) (by the IH for 6)

≡ (V [X j :=U]) ·k (W [X j :=U][Y k :=V [X j :=U]]) (by the IH for 4)

≡ (Y W)[X j :=U][Y k :=V [X j :=U]]. (by definition)

• Case SK-VARAPP, N = X W . We have γ1, X : j ,γ2,Y :k,γ3 � j : W : l . By Lemma 4.16.4, we

obtain γ1, X : j ,γ2,γ3 � j : W [Y k :=V] : l , and hence we have

(X W)[Y k :=V][X j :=U]

≡ (X (W [Y k :=V]))[X j :=U] (by definition)

≡ U · j (W [Y k :=V][X j :=U]) (by definition)

≡ U · j (W [X j :=U][Y k :=V [X j :=U]]) (by the IH for 4)

≡ (U [Y k :=V [X j :=U]]) · j (W [X j :=U][Y k :=V [X j :=U]]) (as Y ∉ fv(U))

≡ (U · j (W [X j :=U]))[Y k :=V [X j :=U]] (by the IH for 6)

≡ (X W)[X j :=U][Y k :=V [X j :=U]]. (by definition)

Note that, in the second case, we switched the roles of the simple kinds j and k when invoking

the IH for part 6.

4.2.2 Simplification and normalization of kinding

Thanks to Lemma 4.12 we know that the definition of the normalization function nf is sound,

i.e. that well-formed kinds Γ �K kd and well-kinded types Γ � A : K are convertible with

nfnf (Γ)(K) and nfnf (Γ)(A), respectively. But we have yet to establish that nfnf (Γ)(K) and nfnf (Γ)(A)

are actually normal forms. In this section, we prove a more general result, namely that,

whenever Γ�K kd and Γ�A : K , it follows that nfnf (Γ)(K) is a simply well-formed normal kind

and and nfnf (Γ)(A) is a simply well-kinded normal type.

77

Chapter 4. Normalization of types

As a first step, we show that the simple kinds of variables and, more generally, of neutral types

are preserved by η-expansion.

Lemma 4.18. η-expansion preserves the simple kinds of neutral types. Assume γ�K kds and

γ�ne N : |K |. Then γ�ηK (N) : |K |.

Proof. By induction on the structure of K . The case fore K = (X :K1) → K2 proceeds by case

analysis on the final rules used to derive γ�(X :K1) → K2 kds and γ�ne N : |K1|→ |K2| and uses

the weakening lemma (Lemma 4.14) as well as SK-NEAPP.

Next, we require a syntactic notion of normal contexts. We define the simple context formation

judgment Γ ctxs as the pointwise lifting of simple kind formation and kinding to bindings:

∅ ctxs

Γ ctxs |Γ| �K kds

Γ, X :K ctxs

Γ ctxs |Γ| �V : ∗
Γ, x:V ctxs

Since simple kind formation and kinding is defined on normal kinds and types, a simply

well-formed context Γ is also normal. Conversely, if we lookup the declared kind or type of a

variable in a simply well-formed context, the result is guaranteed to be a normal form.

Lemma 4.19. The declared kinds and types of variables in a simply well-formed context Γ are

simply well-formed and well-kinded, respectively, in |Γ|, i.e

Γ, X :K ,Δ ctxs

|Γ, X :K ,Δ| �K kds
(SC-TPLOOKUP)

Γ, x:V ,Δ ctxs

|Γ, x:V ,Δ| �V : ∗ (SC-TMLOOKUP)

Proof. Both parts are proven separately by structural induction on Δ and case analysis on the

final rule used to derive the premise. In the inductive case, we use the weakening lemma for

simple kind formation.

With Lemmas 4.18 and 4.19 at hand, it is easy to show that nf does indeed produce normal

forms.

Lemma 4.20 (normalization and simplification). Well-formed kinds and well-kinded types

have simply well-formed and simply kinded normal forms, respectively.

1. If Γ�K kd, then |nf (Γ)| �nfnf (Γ)(K) kds.

2. If Γ�A : K , then |nf (Γ)| �nfnf (Γ)(A) : |K |.
3. If Γ ctx, then nf (Γ) ctxs.

The proof uses the following helper lemma about simplified subkinds, which is proven by

straightforward induction on subkinding derivations.

Lemma 4.21. Subkinds simplify equally. If Γ� J ≤ K , then |J | ≡ |K |.

78

4.2. Simple kinding of normal types

Proof of Lemma 4.20. Simultaneously by induction on declarative kind formation, kinding,

and context formation derivations. The only interesting cases are K-SUB (where we use

Lemma 4.21), K-VAR and K-APP. In the case for K-VAR, where A = X , we use the IH for

part 3 and SC-TPLOOKUP to obtain |nf (Γ)| �K kds for K = nf (Γ)(X), and we conclude by

Lemma 4.18. In the case for K-APP, where A = A1 A2, we start by applying the IH to obtain

|nf (Γ)| �nfnf (Γ)(A1) : |K1| → |K2|, and |nf (Γ)| �nfnf (Γ)(A2) : |K1|. The first of these judgments

must be derived using SK-ABS because that is the only simple kinding rule assigning an

arrow kind to a type. Hence nfnf (Γ)(A1) = λX : J .V for some J and V such that |J | ≡ |K1| and

|nf (Γ)|, X :|K1| �V : |K2|. We conclude by the hereditary substitution lemma for normal types

(Lemma 4.16.2) and Lemma 4.4.

Commutativity of normalization and substitution

We are now almost ready to introduce the canonical presentation of Fω·· . Our final task in this

chapter is to establish another commutativity property that will play a crucial role in proving

equality of declarative and canonical subtyping: the fact that normalization commutes with

substitution.

In the past few sections, we have seen that well-formed kinds and well-kinded types have

normal forms (Lemma 4.20) and that these normal forms are convertible to the kinds and

types they were computed from (Lemma 4.12). By validity, context conversion and kind

conversion, this means that every declarative subtyping judgment Γ � A ≤ B : K has an

associated judgment nf (Γ) �nf (A) ≤ nf (B) : nf (K) relating the normal forms of the original

expressions.

Our goal for the next chapter is to come up with a set of canonical rules for deriving such

judgments which are defined directly on normal forms – similar to the simple kinding and

kind formation judgments introduced in this chapter. To establish equivalence of the two

sets of rules will require a canonical rule – possibly a derivable or admissible one – for every

declarative rule. But some of the declarative rules, such as the subtyping rules ST-β1,2 for

β-conversions, or the kinding rule K-APP for applications, involve substitutions, which do not

preserve normal forms. To see why this is a problem, consider the declarative rule K-APP:

Γ�A : (X : J) → K Γ�B : J

Γ�A B : K [X := B]

By soundness of normalization (Lemma 4.12), type equation validity (Lemma 3.17), and

context conversion (Corollary 3.11), we know that the following is also admissible:

nf (Γ) �U : (X : J ′) → K ′ nf (Γ) �V : J ′

nf (Γ) �nf (A B) : nf (K [X := B])

where U = nf (A), V = nf (B), J ′ = nf (J) and K ′ = nf (K). By Lemma 4.20, we know that U and

V are simply well-kinded normal types, and that J ′ and K ′ are simply well-formed normal

79

Chapter 4. Normalization of types

kinds. For our canonical application rule, we would like to express the type nf (A B) and

the kind nf (K [X := B]) in the conclusion directly using U , V , J ′ and K ′. This is relatively

straightforward for the application nf (A B) because we know that U must be an operator

abstraction U = λX :L.W ; after all, U has simple kind |J | → |K | and normal forms are η-

long. We also know that |L| ≡ |J | ≡ |J ′| (see the proof of Lemma 4.20 for details). Hence

nf (A B) ≡W [X |J ′| :=V] by definition of nf, and we are done.

Things are more complicated for the normal kind nf (K [X := B]). The definition of the normal-

ization function nf does not tell us anything immediately useful about substitutions. Indeed,

we know that substitutions do not preserve normal forms, e.g. (Y V)[Y :=λX : J ′.W] is not a

normal form, even if Y V and λX : J ′.W are. However, Corollary 4.7.1 tells us that substitutions

in kinds are judgmentally equal to hereditary substitutions, i.e. Γ�K [X := B] = K [X |J ′| := B],

and Lemma 4.16.1 tells us that hereditary substitutions preserve normal forms, all of which

suggests that nf (K [X := B]) should be equal to K ′[X |J ′| := V]. This is indeed the case; one

can show that Γ�nf (K [X := B]) = K ′[X |J ′| :=V]. But there is a caveat: the two normal forms

are not syntactically equal, i.e. nf (K [X := B]) �≡ K ′[X |J ′| := V]. Similarly, nf (A[X := B]) �≡
nf (A)[X k := nf (B)] for types A and B in general.

This fact is best illustrated through the case of type variables, i.e. when A = X and we have

nfΓ(X [X := B]) ≡ nfΓ(B) and (nfΓ(X))[X k := nf (B)] ≡ (ηΓ(X)(X))[X k := nf (B)]. We would like

to show that (ηK (X))[X k :=V] is syntactically equal to V at least when all the involved types

and kinds are well-kinded and well-formed, i.e. when Γ �X : K , Γ �V : K and k = |K |. But

this is not the case. The culprit is a mismatch of kind annotations in operator abstractions, as

illustrated by the following counterexample.

Let J1 =� . .� and J2 = ∗ so that Γ � J1 ≤ J2 for any context Γ. Let U =�, V = λX : J2.U and

K = (X : J1) →∗ so that Γ�V : (X : J2) →∗, Γ�(X : J2) →∗≤ K and hence Γ�V : K . Then

ηK (Y) ≡ λZ : J1.Y Z

ηK (Y)[Y |K | :=V] ≡ (λZ : J1.Y Z)[Y |K | :=V]

≡ λZ : J1. (Y Z)[Y |K | :=V] (because Y ∉ fv(J1))

≡ λZ : J1.V ·|K | Z

≡ λZ : J1.λX : J2.U ·|J1|→∗ Z

≡ λZ : J1.U [X |J1| := Z]

≡ λX : J1.U (as X , Z ∉ fv(U))

�≡ λX : J2.U ≡ V. (because J1 �≡ J2)

So we are forced to conclude that ηK (Y)[Y |K | :=V] �≡V in general. The problem, as illustrated

by this example, is that the domain annotation J2 of the type operator abstraction V =λX : J2.U

is not necessarily preserved by the hereditary substitution. It is replaced by the domain J1 of

the declared kind K = (X : J1) →U of Y , which need not be syntactically equal to J1.

80

4.2. Simple kinding of normal types

However, we do have Γ � J1 ≤ J2 and thus |J1| ≡ |J2|. The solution, therefore, is to be more

lenient when comparing domain annotations in operator abstractions: the weak equation

ηK (Y)[Y |K | :=V] ≈V does hold. In fact, it holds for any simply well-formed kind K and simply

well-kinded type U , as the following lemma shows.

Lemma 4.22.

1. Let γ, X : j ,δ�K kds, γ�U : j and γ, X : j ,δ�ne X V : |K |. Then

(ηK (X V))[X j :=U] ≈ (X V)[X j :=U].

Let γ�K kds, then

2. if γ, X :|K |,δ� J kds, then J [X |K | := ηK (X)] ≈ J ;

3. if γ, X :|K |,δ�V : j , then V [X |K | := ηK (X)] ≈ V ;

4. if γ, X :|K |,δ� j : V : l , then V [X |K | := ηK (X)] ≈ V ;

5. if K = (X :K1) → K2, γ�ne N : |K | and γ�V : |K1|, then ηK (N) ·|K |V ≈ ηK2[X |K1 |:=V](N V);

6. if γ�ne N : |K | and γ�|K | : V : ∗, then ηK (N) ·|K |V ≈ N V .

Corollary 4.23. If γ, X : j ,δ�K kds and γ�U : j , then (ηK (X))[X j :=U] ≈ U .

It is in this lemma that we see the true usefulness of weak equality. While syntactic equality is

too strict for this particular commutativity property, using judgmental type and kind equality

would have forced us to formulate its premises in terms of declarative kinding. This would

have resulted in a weaker lemma with a more complicated proof. In the next chapter we will

see that weak equations can be converted into judgmental ones provided the related types or

kinds are well-kinded or well-formed, respectively. Hence, weak equality affords us a relatively

straightforward proof of this lemma (and the next) with a minimal overhead in complexity.

In the proof of Lemma 4.22, we employ the following two helper lemmas. Both are proven by

easy inductions: the first, on the structure of the kind K , for the second, on the derivation of

γ� j : V : k.

Lemma 4.24. Let X �= Y , then (ηK (X D))[Y j := E] ≡ ηK [Y j :=E](X (D[Y j := E])) for any K , D , j

and E.

Lemma 4.25. Let γ�U : j , γ� j : V : k and γ�k : W : l , then U · j (V ,W) ≡ (U · j V) ·k W .

Proof of Lemma 4.22. All six parts are proven simultaneously by induction on the structure

of K . Parts 2–4 proceed by an inner induction on the simple formation and kinding derivations

for J , V and V , respectively. We show a few key cases, the remainder of the proof is routine.

• Part 1, K = (Y :K1) → K2. By inspection of the formation and kinding rules, we must have

γ, X : j ,δ�K1 kds, γ, X : j ,δ,Y :|K1| �K2 kds and γ, X : j ,δ� j : V : |K |. By Lemma 4.16 we

have

γ,δ�(X V)[X j :=U] : |K1|→ |K2| and γ,δ�K1[X j :=U] kds.

81

Chapter 4. Normalization of types

The final kinding rule used to derive the first of these judgments must be SK-ABS

since that is the only rule assigning simple arrow kinds to normal types. Therefore, the

following must hold for some J and W :

(X V)[X j :=U] =λY : J .W (4.1)

|K1| = |J | (4.2)

γ,δ,Y :|J | �W : |K2|. (4.3)

By weakening (Lemma 4.14), Lemma 4.18 and SK-NEAPP we also have

γ, X : j ,δ,Y :|K1| �ne X V (ηK1 (Y)) : |K2|

and hence

(ηK2 (X V (ηK1 (Y))))[X j :=U]

≈ (X V (ηK1 (Y)))[X j :=U] (by IH for 1)

≡ U · j ((V , (ηK1 (Y)))[X j :=U]) (by definition)

≡ (U · j (V [X j :=U])) ·|K | ((ηK1 (Y))[X j :=U]) (by Lemmas 4.3 and 4.25)

≡ (U · j (V [X j :=U])) ·|K | (ηK1[X j :=U](Y)) (by Lemma 4.24)

≡ ((X V)[X j :=U]) ·|K1|→|K2| (ηK1[X j :=U](Y)) (by definition)

≡ (λY : J .W) ·|K1|→|K2| (ηK1[X j :=U](Y)) (by (4.1))

≡ W [Y |K1| := (ηK1[X j :=U](Y))] (by definition)

≈ W (by Lemma 4.2, (4.3) and IH for 3)

We conclude that

(ηK (X V))[X j :=U]

≡ λY :K1[X j :=U]. (ηK2 (X V (ηK1 (Y))))[X j :=U] (by definition)

≈ λY : J .W (by Lemma 4.2, (4.2), the above and WEQ-ABS)

≡ (X V)[X j :=U]. (by (4.1))

• Part 3, case SK-NE. The rule SK-NE has only one premise which must have been

derived using SK-VARAPP, so V = N = Y V and we have γ, X :|K |,δ � j : V : ∗ with

(γ, X :|K |,δ)(Y) = j . We distinguish two cases: Y = X and Y �= X but consider only the

first case here; the second case is simpler. Since Y = X , we have j = |K |, and

V [X |K | := ηK (X)]

≡ ηK (X) ·|K | (V [X |K | := ηK (X)]) (by definition)

≈ ηK (X) ·|K |V (by WEQ-REFL, IH for 4 and Lemma 4.5.4)

≈ X V . (by SK-VARAPP and the IH for 6)

82

4.2. Simple kinding of normal types

• Part 5, K = (X :K1) → K2. By inspection of the formation and kinding rules, we must

have γ�K1 kds and N = Y U with γ�γ(Y) : U : |K |.

ηK (N) ·|K |V ≡ λX :K1.ηK2 (Y U (ηK1 (X))) ·|K |V (by definition)

≡ ηK2 (Y U (ηK1 (X)))[X |K1| :=V] (by definition)

≡ ηK2[X |K1 |:=V](Y ((U , (ηK1 (X)))[X |K1| :=V])) (by Lemma 4.24)

≡ ηK2[X |K1 |:=V](Y U ((ηK1 (X))[X |K1| :=V])) (as X ∉ fv(U))

≈ ηK2[X |K1 |:=V](Y U V). (by IH for 1 and Lemma 4.9)

The use of the IH in the last step corresponds to Corollary 4.23.

With Lemma 4.22 in place, we are ready to prove that normalization weakly commutes with

substitution. In the following, Γ≈Δ denotes the pointwise lifting of weak equality to contexts.

Lemma 4.26. Substitution weakly commutes with normalization of well-formed kinds and

well-kinded types. Let Γ�A : J and V = nfnf (Γ)(A), then

1. if Γ, X : J ,Δ�K kd, then nfnf (Γ,Δ[X :=A])(K [X := A]) ≈ (nfnf (Γ,X : J ,Δ)(K))[X |J | :=V];

2. if Γ, X : J ,Δ�B : K , then nfnf (Γ,Δ[X :=A])(B [X := A]) ≈ (nfnf (Γ,X : J ,Δ)(B))[X |J | :=V];

3. if Γ, X : J ,Δ ctx, then nf (Γ,Δ[X := A]) ≈ nf (Γ), (nfnf (Γ,X : J)(Δ))[X |J | :=V].

Proof. Simultaneously by induction on declarative kind formation, kinding and context forma-

tion derivations. In the case for K-VAR where B = Y , we use Corollary 4.23 if Y = X ; otherwise,

we use the IH for part 3, Lemma 4.2, and Lemma 4.10 to derive nfΓ,Δ[X :=A](Y) ≈ ηK ′(Y), where

K ′ = (nfnf (Γ,X : J ,Δ)(K))[X |J | :=V]. We conclude the case with Lemma 4.24. In the case for K-APP,

we use Lemma 4.5.2 and Lemma 4.17.2.

The very last lemma of this chapter will be used in our equivalence proof in the next chapter

to show that subtyping rules for η-conversion of normal operators are admissible in canonical

kinding.

Lemma 4.27. If Γ�A : (X : J) → K with X ∉ fv(A), then nfnf (Γ)(λX : J . A X) ≈ nfnf (Γ)(A).

Proof. The proof uses Lemma 4.20 to obtain |nf (Γ)| �nfnf (Γ)(A) : |J | → |K | and proceeds by

case analysis on the final rule used to derive this simple kinding judgment; the only applicable

rule is SK-ABS. The remainder of the proof uses equational reasoning very similar to that used

in the proof of Lemma 4.22.1.

83

5 The canonical system

After having characterized the normal forms of kinds and types in the previous chapter, we now

turn to the normalization – or rather, the canonization – of derivations of judgments relating

such normal forms. In this chapter, we introduce a canonical system of judgments covering the

kind and type level of Fω·· . We begin by describing the judgment forms and inference rules of

the canonical system, comparing and contrasting them against their declarative counterparts.

In the remainder of the chapter, we develop the necessary metatheory to establish equivalence

of the canonical and declarative presentations. As a first step, we prove soundness of the

canonical system in Section 5.1. Next, we state and prove a hereditary substitution lemma in

Section 5.2, which establishes that canonical judgments are preserved by hereditary substitu-

tions. This lemma is a key ingredient in proving completeness of the canonical system. We

prove completeness in Section 5.3, after showing that canonical subtyping can be inverted at

the top-level in Section 5.4. We conclude the chapter by completing the type safety proof laid

out at the end of Chapter 3.

85

Chapter 5. The canonical system

Context well-formedness Γ ctx

∅ ctx
(CC-EMPTY)

Γ ctx Γ�K kd

Γ, X :K ctx
(CC-TMBIND)

Γ ctx Γ�V ⇒ V . .V

Γ, x:V ctx
(CC-TPBIND)

Kind well-formedness Γ�K kd

Γ�U ⇒ U . .U Γ�V ⇒ V . .V

Γ�U . .V kd
(CWF-INTV)

Γ� J kd Γ, X : J �K kd

Γ�(X : J) → K kd
(CWF-DARR)

Canonical kinding of variables Γ�var X : K

Γ ctx Γ(X) = K

Γ�var X : K
(CV-VAR)

Γ�var X : J Γ� J ≤ K Γ�K kd

Γ�var X : K
(CV-SUB)

Spine kinding Γ� J ⇒ V ⇒ K

Γ�K ⇒ ε ⇒ K
(CK-EMPTY)

Γ�U ⇔ J Γ� J kd Γ�K [X |J | :=U] ⇒ V ⇒ L

Γ�(X : J) → K ⇒ U ,V ⇒ L
(CK-CONS)

Kinding of neutral types Γ�ne N : K

Γ�var X : J Γ� J ⇒ V ⇒ K

Γ�ne X V : K
(CK-NE)

Kinding checking Γ�V ⇔ K

Γ�V ⇒ J Γ� J ≤ K

Γ�V ⇔ K
(CK-SUB)

Kind synthesis for normal types Γ�V ⇒ K

Γ ctx

Γ�� ⇒ � . .� (CK-TOP)

Γ�U ⇒ U . .U Γ�V ⇒ V . .V

Γ�U →V ⇒ (U →V) . .(U →V)
(CK-ARR)

Γ� J kd Γ, X : J �V ⇒ K

Γ�λX : J .V ⇒ (X : J) → K
(CK-ABS)

Γ ctx

Γ�⊥ ⇒ ⊥ . .⊥ (CK-BOT)

Γ�K kd Γ, X :K �V ⇒ V . .V

Γ�∀X :K .V ⇒ (∀X :K .V) . .(∀X :K .V)
(CK-ALL)

Γ�ne N : U . .V

Γ�N ⇒ N . . N
(CK-SING)

Figure 5.1 – Canonical presentation of Fω·· – part 1
86

Subkinding Γ� J ≤ K

Γ�U2 ≤U1 Γ�V1 ≤V2

Γ�U1 . .V1 ≤U2 . .V2
(CSK-INTV)

Γ� J2 ≤ J1 Γ, X : J2 �K1 ≤ K2

Γ�(X : J1) → K1 kd

Γ�(X : J1) → K1 ≤ (X : J2) → K2
(CSK-DARR)

Subtyping of proper types Γ�U ≤V

Γ�V ⇒ V . .V

Γ�V ≤� (CST-TOP)

Γ�U ≤V Γ�V ≤W

Γ�U ≤W
(CST-TRANS)

Γ�var X : K Γ�K ⇒ V 1 =V 2 ⇒ U . .W

Γ�X V 1 ≤ X V 2
(CST-NE)

Γ�ne N : V1 . .V2

Γ�V1 ≤ N
(CST-BND1)

Γ�V ⇒ V . .V

Γ�⊥≤V
(CST-BOT)

Γ�U2 ≤U1 Γ�V1 ≤V2

Γ�U1 →V1 ≤U2 →V2
(CST-ARR)

Γ�K2 ≤ K1 Γ, X :K2 �V1 ≤V2

Γ�∀X :K1.V1 ⇒ ∀X :K1.V1 . .∀X :K1.V1

Γ�∀X :K1.V1 ≤∀X :K2.V2
(CST-ALL)

Γ�ne N : V1 . .V2

Γ�N ≤V2
(CST-BND2)

Checked subtyping Γ�U ≤V ⇔ K

Γ�V1 ≤V2

Γ�V1 ⇔ U . .W Γ�V2 ⇔ U . .W

Γ�V1 ≤V2 ⇔ U . .W
(CST-INTV)

Γ, X : J �V1 ≤V2 ⇔ K
Γ�λX : J1.V1 ⇔ (X : J) → K
Γ�λX : J2.V2 ⇔ (X : J) → K

Γ�λX : J1.V1 ≤λX : J2.V2 ⇔ (X : J) → K
(CST-ABS)

Kind equality Γ� J = K

Γ� J kd Γ�K kd
Γ� J ≤ K Γ�K ≤ J

Γ� J = K
(CSK-ANTISYM)

Type equality Γ�U =V ⇔ K

Γ�K kd
Γ�U ≤V ⇔ K Γ�V ≤U ⇔ K

Γ�U =V ⇔ K
(CST-ANTISYM)

Spine equality Γ� J ⇒ U =V ⇒ K

Γ�K ⇒ ε= ε ⇒ K
(SPEQ-EMPTY)

Γ�U1 =U2 ⇔ J Γ�K [X |J | :=U1] ⇒ V 1 =V 2 ⇒ L

Γ�(X : J) → K ⇒ U1,V 1 =U2,V 2 ⇒ L
(SPEQ-CONS)

Figure 5.2 – Canonical presentation of Fω·· – part 2
87

Chapter 5. The canonical system

Judgments. Figures 5.1 and 5.2 define the following judgments by mutual induction.

Γ ctx the context Γ is well-formed and normal

Γ�K kd the kind K is well-formed and normal in Γ

Γ� J ≤ K J is a normal subkind of K in Γ

Γ� J = K the normal kinds J and K are equal in Γ

Γ�var X : K the variable X has kind K in Γ

Γ�ne N : K the neutral type N has kind K in Γ

Γ�V ⇒ K the normal type V has synthesized kind K in Γ

Γ�V ⇔ K the normal type V kind checks against K in Γ

Γ�U ≤V U is a proper normal subtype of V in Γ

Γ�U ≤V ⇔ K U is a normal subtype of V in K and Γ

Γ�U =V ⇔ K U and V are equal normal types of kind K in Γ

Γ� J ⇒ V ⇒ K applying an operator of kind J to the normal spine V

yields a type of kind K in Γ.

Γ� J ⇒ U =V ⇒ K applying an operator of kind J to the equal spines U and V

yields types of kind K in Γ.

Like the simplified formation and kinding judgments introduced in the previous chapter,

the canonical judgments are defined directly on normal forms. But unlike the simplified

judgments, the canonical judgments use the full expressivity of the kind language not only

in their subjects, but also in their contexts and predicates. Like the declarative system, the

canonical system therefore contains judgments for forming contexts and kinds, for kinding

types, for subkinding and subtyping, and for identifying types and kinds.

The judgments for kinding and comparing normal types and spines are bidirectional. The

double arrows ⇒ and ⇔ indicate whether a kind participating in such a judgment is con-

sidered an input or an output of the judgment. Kinds appearing at the tail end of a double

arrow (K ⇒ or ⇔ K) are inputs, i.e they are used to determine whether the judgment holds.

Kinds appearing at the front end of a double arrow (⇒ K), on the other hand, are outputs, i.e

they are uniquely determined by the inputs of the judgment. The contexts and subjects of

judgments are always considered inputs.

The kind synthesis judgment Γ�V ⇒ K assigns a unique kind K to a normal type V in the

context Γ. We say that K is the synthesized kind of V in Γ. The rules of the kind synthesis

judgment are similar to those of the declarative kinding judgment, except that the synthesized

kinds are more precise (i.e. smaller w.r.t. the subtyping order), that there is no subsumption

rule, and that the rules for kinding variables and applications have been combined into a

single rule CK-SING for kinding neutral proper types. A quick inspection of the kind synthesis

rules reveals that synthesized kinds are singletons. In particular, the synthesized kind of a

proper type V is just the singleton interval V . .V .

Lemma 5.1. If Γ�U ⇒ V . .W , then V ≡U and W ≡U .

88

The kind checking judgment Γ�V ⇔ K has only one inference rule: the subsumption rule

CK-SUB. This in contrast to other bidirectional systems where introduction forms, such as

abstractions, typically lack type annotations, so that their kinds cannot be readily synthesized

and must be checked instead. In Fω·· , the only introduction forms at the type level are operator

abstractions with Church-style kind annotations. Thanks to these annotations, the kinds of

operator abstractions can be synthesized, making CK-SUB the only kind checking rule. The

operational interpretation of CK-SUB is that, in order to check that a normal type V has kind

K in a context Γ, we first synthesize the singleton kind J of V , then compare J and K to make

sure the former is a subtype of the latter. If that is the case, we say that V kind checks against

K , or simply that V is canonically well-kinded

The canonical kinding judgments Γ�var X : K for variables and Γ�ne N : K for neutral types are

not directed. This is due to the subsumption rule CV-SUB which allows us to widen the kind

J of a variable to a superkind K of J . The additional premise Γ�K kd is a validity condition.

The rule CV-SUB is not actually necessary for variable kinding, but as we will see in section

Section 5.1, its presence considerably simplifies the proofs of the context narrowing and

hereditary substitution lemmas for canonical judgments by rendering the former independent

of the latter. Since the kind K is used in an input position in CV-SUB but in an output position

in CV-VAR, variable kindings are neither kind synthesis nor kind checking judgments.

The canonical spine kinding judgment Γ � J ⇒ V ⇒ K resembles its simple cousin from

the previous chapter, except that both its input kind J and its output kind K may be fully

dependent. This is reflected in the rule CK-CONS, where the head U of the spine U ,V is

hereditarily substituted for X in the codomain K of the overall input kind (X : J) → K to

obtain the input kind K [X |J | := U] for kinding the remainder of the spine V . The use of

hereditary (rather than ordinary) substitution ensures that the resulting kind remains normal.

To guarantee that U is a suitable substitute for X , it is first checked against the declared kind J

of X in the first premise. The additional premise Γ� J kd is again a validity condition.

There is only one rule, CK-NE, for neutral kinding Γ�ne N : K , which simply combines variable

kinding and spine kinding. Since the overall kind of a neutral type is determined by the

ambiguous kind of its head, the neutral kinding judgment is not directed either.

The canonical formation rules for contexts and kinds are almost identical to their declarative

counterparts. The only difference is the form of the premises establishing a type V as a well-

kinded proper type. We use a kind synthesis judgment of the form Γ�V ⇒ V . .V for such

premises rather than the perhaps more intuitive kind checking judgment Γ�V ⇔ ∗. The two

are equivalent, as we will see in the next section, but a derivation of the latter always contains

a derivation of the former as a strict sub-derivation, so we might as well pick the judgment

with the smaller derivation to characterize proper types.

The rules for canonical subtyping are divided into two judgments: subtyping of proper types

Γ�U ≤V on one hand, and checked or kind-directed subtyping Γ�U ≤V ⇔ K on the other.

As the name implies, the proper subtyping judgment Γ �U ≤ V relates only proper types,

89

Chapter 5. The canonical system

and is therefore unkinded. It resembles the subtyping judgment of F≤ except for the lack of

an explicit reflexivity rule, which we will prove admissible in the next section, and a variable

subtyping rule, which is replaced by the more general bound projection rules CST-BND1

and CST-BND2 and the rule CST-NE for subtyping neutrals.1

The most interesting of these three rules is CST-NE. It says that two neutral types X V 1 and

X V 2 headed by a common type variable X are subtypes if their spines are canonically equal,

i.e. if they consist of point-wise equal normal types. Importantly, the spines V 1 and V 2 need

not be syntactically equal: in Fω·· , even normal types may be judgmentally equal yet differ

syntactically. For example, two variables X and Y maybe equal if Y is of singleton kind X . . X ,

i.e. we have Γ, X :∗,Y :X . . X ,Δ�X = Y : ∗. And using inconsistent bounds, arbitrary pairs U , V

of identically kinded normal types may be identified judgmentally, e.g. by bound projection,

transitivity and antisymmetry, we have

Γ, X :U . .V , Y : V . .U , Δ � U = V : ∗

for any pair of proper types U and V . This last example illustrates that there is no easy way

for the normalization function nf to resolve such equalities either. In the presence of higher-

order types with inconsistent bounds, this would likely require some form of higher-order

unification. In systems where types are identified up to β or βη-equality, judgmentally equal

types have syntactically equal normal forms, so that the rule CST-NE can be replaced by a

simple reflexivity rule (see e.g. [2]); in systems with singleton kinds (but no type intervals),

declarations of the form X : S(U : ∗) can be resolved during normalization by reducing X to U

(see e.g. [49]). Neither of these techniques is applicable in Fω·· , so we adopt the more flexible

rule CST-NE instead. As we will see in Section 5.2, the presence of this rule considerably

complicates the metatheory of the canonical system.

The checked subtyping judgment Γ �U ≤ V ⇔ K is kind-directed, i.e. the input kind K

determines whether the types U and V being compared are proper types, in which case

the rule CST-INTV applies, or whether they are of dependent arrow kind, in which case the

rule CST-ABS applies. The rule CST-INTV checks the left- and right-hand types V1, V2 against

the input kind U . .W , and compares them as proper types. Because normal types are η-long,

the only normal types of dependent arrow kind are operator abstractions. The rule CST-ABS

checks whether two such abstractions are subtypes in the common input kind (X : J) → K

by checking them against that kind and comparing their bodies in the kind K under the

additional assumption X : J . As in the declarative subtyping rule for operator abstractions, the

domain annotations J1 and J2 are only used to kind check the respective abstractions, but not

to compare their bodies.

The rules for canonical subkinding are identical to their declarative counterparts, except that

CSK-INTV uses canonical proper subkinding to compare the bounds of the corresponding

intervals.

1For comparison with subtyping in F≤, see e.g. Figs. 26-1 and 26-2 in [43].

90

5.1. Soundness and basic properties

Like their declarative counterparts, canonical equality judgments for kinds Γ � J = K and

types Γ�U =V ⇔ K can only be derived through their respective antisymmetry rules CSK-

ANTISYM and CST-ANTISYM. However, unlike the declarative versions, the canonical antisym-

metry rules have explicit validity conditions. The additional premises Γ� J kd and Γ�K kd

of CSK-ANTISYM ensure that the left- and right-hand sides of the resulting kind equation

are well-formed. The premise Γ �K kd of CST-ANTISYM, ensures that the input kind K of

the judgment is well-formed. No explicit validity conditions are included for the left- and

right-hand sides U , V of CST-ANTISYM since suitable sub-premises are already present in the

two checked subtyping premises Γ�U ≤V ⇔ K and Γ�V ≤U ⇔ K of the rule.

The inference rules of the canonical spine equality judgment Γ� J ⇒ U =V ⇒ K are similar

to those of spine kinding. In the rule SPEQ-CONS, we must again hereditarily substitute one

of the heads of the spines U1,V 1 and U2,V 2 for X in the common codomain K to obtain a

suitable input kind for comparing the tails V 1 and V 2. In accordance with the declarative

application rule ST-APP, we pick U1 as the substitute, knowing that we could just as well have

chosen U2.

Despite its name, the canonical system is not as canonical as one might expect; there are

still quite a few sources of redundancy. Firstly, the variable and neutral kinding judgments

are ambiguous. As discussed earlier, this ambiguity could be avoided by removing the rule

CV-SUB at the cost of complicating the metatheory.

Secondly, several of the canonical rules have extra premises that act as validity conditions,

much like those appearing in the extended declarative system presented in Chapter 3. These

premises are redundant, and thus irrelevant for deriving canonical judgments, but they are

useful when proving metatheoretic properties about the canonical system. It is likely that

these validity conditions could be eliminated using the same approach as for the declarative

system in Chapter 3.

Thirdly, the canonical proper subtyping judgment still features a transitivity rule CST-TRANS.

This rule is necessary because we cannot, in general, eliminate chains of subtyping judgments

of the form Γ�U ≤ X V ≤W . The culprit, as discussed earlier, are inconsistent bounds. If the

declared kind of X has inconsistent bounds, we cannot eliminate the intermediate type X V

and conclude Γ�U ≤W directly. We can, however, eliminate top-level uses of the transitivity

rule CST-TRANS, i.e. those where Γ=∅. We will prove this claim in Section 5.4 where we also

establish inversion of canonical subtyping for closed types.

5.1 Soundness and basic properties

Before we establish any other metatheoretic properties of the canonical system, let us prove its

soundness with respect to the declarative presentation. To avoid confusion, we mark canonical

judgments with the subscript “c” and declarative ones with “d” in the following lemma.

91

Chapter 5. The canonical system

Lemma 5.2 (soundness of the canonical rules).

1. If Γ cctx, then Γ dctx.

2. If Γ�c K kd, then Γ�d K kd.

3. If Γ�c J ≤ K , then Γ�d J ≤ K .

4. If Γ�c J = K , then Γ�d J = K .

5. If Γ�var X : K , then Γ�d X : K .

6. If Γ�ne N : K , then Γ�d N : K .

7. If Γ�c V ⇒ K , then Γ�d V : K .

8. If Γ�c V ⇔ K , then Γ�d V : K .

9. If Γ�c U ≤V , then Γ�d U ≤V : ∗.

10. If Γ�c U ≤V : K , then Γ�d U ≤V : K .

11. If Γ�c U =V : K , then Γ�d U ≤V : K .

12. If Γ�d A : J and Γ�c J ⇒ V ⇒ K , then Γ�d A V : K .

13. If Γ�d A ≤ B : J and Γ�c J ⇒ U =V ⇒ K , then Γ�d AU ≤ B V : K .

Proof. By induction on derivations of the various canonical judgments; for parts 1–11, on the

derivation of the first premise, for parts 12 and 13, on that of the second premise. Most cases

are straightforward. In cases involving synthesized kinding of proper types, we use K-SING

and Lemmas 3.4, 3.20 and 5.1 to adjust kinds where necessary. In cases involving heredi-

tary substitutions, i.e. those for CK-CONS and SPEQ-CONS, we use soundness of hereditary

substitution in kinds (Corollary 4.7.1).

As for the declarative system, the contexts of most canonical judgments are well-formed. There

are two exceptions: kinding and equality of spines. The rules CK-EMPTY and SPEQ-EMPTY

for empty spines offer no guarantee that the enclosing context is well-formed. This is not a

problem in practice, since well-kinded spines only appear in judgments about neutral types,

the heads of which must be kinded in a well-formed context.

Lemma 5.3 (context validity). Assume Γ�J for any canonical judgment except spine kinding

or equality. Then Γ ctx.

Proof. By simultaneous induction on the derivations of the various judgments.

We can prove a few more validity properties at this point. Firstly, since synthesized kinds are

singletons, validity of synthesized kinding judgments follows by CWF-INTV for proper types

and by an easy induction for type operators. Secondly, validity of kind equality as well as

the checked subtyping and type equality judgments follows immediately from the validity

conditions included in the rules CSK-ANTISYM, CST-INTV, CST-ABS and CST-ANTISYM.

Lemma 5.4 (canonical validity – part 1).

(synthesized kinding validity) If Γ�V ⇒ K , then Γ�K kd.

(checked subtyping validity) If Γ�U ≤V ⇔ K , then Γ�U ⇔ K and Γ�V ⇔ K .

(kind equation validity) If Γ� J = K , then Γ� J kd and Γ�K kd.

(type equation validity) If Γ�U =V ⇔ K , then Γ�U ⇔ K , Γ�V ⇔ K and Γ�K kd.

92

5.1. Soundness and basic properties

We prove the remaining validity properties of the canonical system in Section 5.2.1, once we

have shown that hereditary substitutions preserve well-formedness of kinds.

Before we can do so, we need to establish the usual weakening and context narrowing lemmas

for canonical typing.

Lemma 5.5 (weakening). Assume Γ,Δ�J for any of the canonical judgments.

1. If Γ�A ⇒ A . . A, then Γ, x: A,Δ�J .

2. If Γ�K kd, then Γ, X :K ,Δ�J .

Corollary 5.6 (iterated weakening). If Γ,Δ ctx and Γ�J , then Γ,Δ�J .

Lemma 5.7 (context narrowing – weak version).

1. If Γ�A ⇒ A . . A, Γ�A ≤ B : ∗ and Γ, x:B ,Δ�J , then Γ, x: A,Δ�J .

2. If Γ� J kd, Γ� J ≤ K and Γ, X :K ,Δ�J , then Γ, X : J ,Δ�J .

The proofs of both lemmas are routine inductions on the derivations of the respective judg-

ments. The proof of context narrowing is only easy thanks to the rule CV-SUB. Without this

rule, the canonical kinding judgments for variables and neutral types would become synthesis

judgments and context narrowing would no longer hold in its present form for these two judg-

ments. To see this, consider the variable kinding judgment Γ, X :K ,Δ�var X : K , which, after

eliminating CV-SUB, could only be derived using CV-VAR. If we were to narrow the context by

changing the declared kind K of X to some J such that Γ� J ≤ K , then the synthesized kind of

X would necessarily change to J too.

For neutral kinding, we would be in a similar situation as the new synthesized kind of the head

would have to be propagated through the kinding derivation of the spine. Along the way, the

new kind J would have to be unraveled by repeatedly separating J = (X : J1) → J2 into J1, J2

and hereditarily substituting the next element of the spine into the codomain J2. To prove

context narrowing for the remainder of the canonical judgments, we would have to maintain

the invariant that the new synthesized kind of a neutral type is a subtype of the original one,

i.e. if Γ, X :K1,Δ �var N ⇒ K2 and Γ � J1 ≤ K1 then Γ, X : J1,Δ �var N ⇒ J2 and Γ � J2 ≤ K2.

Because spine kinding involves hereditary substitution, a proof involving this invariant would

require a hereditary substitution lemma for subtyping, i.e. a proof that hereditary substitutions

preserve subtyping. We give such a proof in Section 5.2 and, as we will see there, it makes

crucial use of context narrowing itself. By allowing us to establish Lemma 5.7 independently,

the rule CV-SUB thus simplifies the proof of an otherwise rather complicated lemma (see

Lemma 5.16 for details).

5.1.1 Order-theoretic properties

Having established context narrowing, we can prove the usual order-theoretic properties of

canonical subkinding, subtyping, as well as kind and type equality. We start by stating an

93

Chapter 5. The canonical system

proving the various reflexivity properties which, unlike those for the declarative relations, have

to be proven simultaneously for the canonical variants.

Lemma 5.8. The following reflexivity rules are all admissible.

Γ�K kd

Γ�K ≤ K
(CSK-REFL)

Γ�U ⇒ V . .W

Γ�U ≤U
(CST-REFLSYN)

Γ�K kd

Γ�K = K
(CKEQ-REFL)

Γ�V ⇔ K Γ�K kd

Γ�V ≤V ⇔ K
(CST-REFLCK)

Γ�V ⇒ J Γ� J ≤ K Γ�K kd

Γ�V ≤V ⇔ K
(CST-REFLSUB)

Γ� J ⇒ V ⇒ K

Γ� J ⇒ V =V ⇒ K
(SPEQ-REFL)

Γ�V ⇔ K Γ�K kd

Γ�V =V ⇔ K
(CTEQ-REFL)

Proof. The proof is by mutual induction in the structure of the kinds and types being related to

themselves, and then by case-analysis on the final rules of the corresponding kind formation

and kinding derivations. The proof for CST-REFLSUB proceeds by an inner induction on

the derivation of Γ � J ≤ K . In the case for CSK-DARR where V = λX : J1.U and we have

Γ � K1 ≤ J1, Γ, X :K1 � J2 ≤ K2 and Γ, X : J1 �U ⇒ J2, we use context narrowing to adjust

the declared kind of X from J1 to K1 in Γ, X : J1 �U ⇒ J2 before applying the IH to obtain

Γ, X :K1 �U ≤U ⇔ K2.

Transitivity of the various relations and symmetry of the equalities are more easily established,

thanks to the rule CST-TRANS on the one hand, and to the structure of equality on the other.

Lemma 5.9. Canonical subkinding, subtyping, kind and type equality are transitive.

Γ� J ≤ K Γ�K ≤ L

Γ� J ≤ L
(CSK-TRANS)

Γ� J = K Γ�K = L

Γ� J = L
(CKEQ-TRANS)

Γ�U ≤V ⇔ K Γ�V ≤W ⇔ K

Γ�U ≤W ⇔ K
(CST-TRANSCK)

Γ�U =V ⇔ K Γ�V =W ⇔ K

Γ�U =W ⇔ K
(CTEQ-TRANS)

Proof. The proof of CSK-TRANS is by induction on the structure of K and case analysis on

the final rules used to derive the premises. In the case for K = (X :K1) → K2 we use context

narrowing. The proof of CST-TRANS is by induction on the derivation of the first premise.

The proofs of CKEQ-TRANS and CTEQ-TRANS are by inspection of the equality rules and

use CSK-TRANS and CST-TRANS, respectively.

94

5.1. Soundness and basic properties

Lemma 5.10. Canonical kind and type equality are symmetric.

Γ� J = K

Γ�K = J
(CKEQ-SYM)

Γ�U =V ⇔ K

Γ�V =U ⇔ K
(CTEQ-SYM)

Proof. By inspection of the equality rules, CSK-ANTISYM and CST-ANTISYM.

Thanks to context narrowing and subkinding transitivity, we can prove admissibility of the

following subsumption rules for the three checked judgments.

Lemma 5.11. Kind subsumption is admissible in the checked judgments.

Γ�U ⇔ J Γ� J ≤ K

Γ�U ⇔ K
(CK-SUBCK)

Γ�U ≤V ⇔ J Γ� J ≤ K

Γ�U ≤V ⇔ K
(CST-SUBCK)

Γ�U =V ⇔ J Γ� J ≤ K

Γ�U =V ⇔ K
(CTEQ-SUBCK)

Proof. Admissibility is proven separately for the three rules, in the order they are listed. The

proof of CK-SUBCK is by inspection of the kind checking rules and uses CSK-TRANS. The

proof of CST-SUBCK is by induction on the derivation of the second premise Γ� J ≤ K and

uses CK-SUBCK as well as context narrowing for the inductive step. The proof of CTEQ-SUBCK

is by inspection of the equality rules and uses CST-SUBCK.

Kind subsumption subsumes kind conversion thanks to the first of the following three rules,

all of which follow immediately by inspection of the equality and checked subtyping rules.

Γ� J = K

Γ� J ≤ K
(CSK-REFL-KEQ)

Γ�U =V ⇔ K

Γ�U ≤V ⇔ K
(CST-REFL-TEQ)

Γ�U =V ⇔ W . .W ′

Γ�U ≤V
(CST-REFL-TEQ’)

5.1.2 Canonical replacements for declarative rules

Our completeness proof for the canonical system relies on the fact that the normal form nf (A)

of any declaratively well-kinded type Γ�A : K kind checks against the normal form nf (K) of

the corresponding kind K , i.e. that we have nf (Γ) �nf (A) ⇔ nf (K). To simplify the proof of this

fact, we establish a set of admissible kind checking rules below that mirror the corresponding

declarative rules.

We begin by proving that normal forms with synthesized or checked interval kinds also check

against ∗.

95

Chapter 5. The canonical system

Lemma 5.12. Types inhabiting interval kinds are proper types. If Γ�U ⇒ V . .W or Γ�U ⇔
V . .W , then also Γ�U ⇔ ∗.

Proof. If Γ�U ⇒ V . .W , then by Lemma 5.1, Γ�U ⇒ U . .U . From this we derive the result

by CST-BOT, CST-TOP, CSK-INTV and CK-SUB. If Γ �U ⇔ V . .W , then this must have

been derived using CK-SUB and hence Γ�U ⇒ K and Γ�K ≤V . .W . By inspection of the

subkinding rules, K =V ′ . .W ′ for some V ′ and W ′. The result then follows by the first part of

the lemma.

The second part of the proof follows a pattern that is is quite typical for proofs in the remainder

of this chapter. Thanks to the division of kinding into kind synthesis and checking, and

thanks to the simplicity of both kind checking and subkinding derivations, we can often

prove properties of kind checking judgments Γ�U ⇔ K by appealing to similar properties

of kind synthesis judgments Γ�U ⇒ K ′ where K and K ′ have the same shape, i.e. where K

and K ′ are either both intervals or both arrows. Two more examples of this pattern appear

in the following lemma, where the admissibility proofs of the rules CST-CKBND1 and CST-

CKBND2, which have kind checking judgments as their premises, appeal to instances of CST-

SYNBND1 and CST-SYNBND2, respectively, which have similar kind synthesis judgments as

their premises.

Lemma 5.13. All of the following are admissible.

Γ�U ⇔ V . .W

Γ�U ⇒ U . .U
(CK-SING’)

Γ�V ⇒ K

Γ�V ⇔ K
(CK-SYNCK)

Γ�ne N : U . .V

Γ�N ⇔ U . .V
(CK-NECK)

Γ�U ⇔ ∗ Γ�V ⇔ ∗
Γ�U →V ⇔ ∗

(CK-ARR’)
Γ�K kd Γ, X :K �V ⇔ ∗

Γ�∀X :K .V ⇔ ∗
(CK-ALL’)

Γ� J kd Γ, X : J �V ⇔ K

Γ�λX : J .V ⇔ (X : J) → K
(CK-ABS’)

Γ�V1 ≤V2 ⇔ U . .W

Γ�V1 ≤V2 ⇔ V1 . .V2

(CST-INTV’)

Γ�U ⇒ V1 . .V2

Γ�V1 ≤U
(CST-SYNBND1)

Γ�U ⇔ V1 . .V2

Γ�V1 ≤U
(CST-CKBND1)

Γ�U ⇒ V1 . .V2

Γ�U ≤V2

(CST-SYNBND2)

Γ�U ⇔ V1 . .V2

Γ�U ≤V2

(CST-CKBND2)

Γ� J ⇒ U ⇒ (X :K) → L Γ�V ⇔ K Γ�K kd

Γ� J ⇒ U ,V ⇒ L[X |K | :=V]
(CK-SNOC)

Γ� J ⇒ U 1 =U 2 ⇒ (X :K) → L Γ�V1 =V2 ⇔ K

Γ� J ⇒ U 1,V1 =U 2,V2 ⇒ L[X |K | :=V1]
(SPEQ-SNOC)

96

5.1. Soundness and basic properties

Proof. Some of the rules are derivable others are admissible; most of the proofs are straightfor-

ward, so we omit the details. The proofs of the alternate type formation rules use CK-SING’ and

Lemma 5.12. The proofs of the alternate projection rules CST-SYNBND1 and CST-SYNBND2

use Lemma 5.1 and reflexivity; those of CST-CKBND1 and CST-CKBND2 are by inspection

of kind checking and subkinding and use CST-SYNBND1 and CST-SYNBND2, respectively.

The proofs of the last two rules are by induction on the derivations of the respective first

premises.

As in the declarative system, we define canonical context equality Γ=Δ ctx as the pointwise

lifting of canonical type and kind equality to context bindings:

∅=∅ ctx

Γ=Δ ctx Γ� J = K

Γ, X : J =Δ, X :K ctx

Γ=Δ ctx Γ�U =V ⇔ W . .W ′

Γ, x:U =Δ, x:V ctx

5.1.3 Simplification of canonical kinding

In Section 4.2.2 of the previous chapter, we showed that every well-formed kind and well-

kinded type has a simply well-formed or simply well-kinded normal form, respectively (see

Lemma 4.20). Canonically well-formed kinds and canonically well-kinded types are already in

normal form, but we can still simplify their kind formation and kinding derivations, as the

following pair of lemma shows. In the statement of the second lemma, we use the subscript

“nes” to mark simple kinding judgments for neutral types and “ne” to mark their canonical

counterparts.

Lemma 5.14. Canonical subkinds and equal kinds simplify equally. If Γ� J ≤ K or Γ� J = K

then |J | ≡ |K |.

Proof. Separately, by induction on subkinding and kind equality derivations, respectively.

Lemma 5.15 (simplification). Well-formed kinds and well-kinded normal forms, neutrals and

spines are also simply well-formed and well-kinded, respectively.

1. If Γ�var X : K , then |Γ| �nes X : |K |.
2. If Γ�K kd, then |Γ| �K kds.

3. If Γ�ne N : K , then |Γ| �nes N : |K |.
4. If Γ�V ⇒ K , then |Γ| �V : |K |.
5. If Γ�V ⇔ K , then |Γ| �V : |K |.
6. If Γ� J ⇒ V ⇒ K , then |Γ| �|J | : V : |K |.

Proof. Part 1 is proven separately, parts 2–6 are proven simultaneously, all by induction

on the derivations of the respective premises. The cases of CV-SUB and CK-SUB use of

Lemma 5.14.

Thanks to Lemma 5.15, properties of simply kinded normal forms still hold for canonically

kinded normal forms. For example, by Lemmas 5.15 and 4.17, hereditary substitutions in

97

Chapter 5. The canonical system

canonically kinded types commute.

5.2 The hereditary substitution lemma

We have arrived at the core of the technical development of this chapter: the proof of the

hereditary substitution lemma. The hereditary substitution lemma states, roughly, that canon-

ical judgments are preserved by hereditary substitutions of canonically well-kinded types.

Just as the ordinary substitution lemma for the declarative system (Lemma 3.9) played a key

role in the proofs of several metatheoretic properties in Chapter 3, the hereditary substitution

lemma is key to proving important metatheoretic properties of the canonical system. But

unlike that of its ordinary counterpart, the proof of the hereditary substitution lemma is rather

challenging. This is reflected already in the statement of the lemma, which features 24 separate

parts, all of which have to be proven simultaneously (see Lemma 5.16 below).

One reason for the large number of parts is simply that there are more judgment forms in

the canonical system than there are in the declarative system. But the foremost reason is

that the proof of the hereditary substitution lemma circularly depends on functionality of the

canonical judgments, i.e. on the fact that hereditarily substituting canonically equal types

in normal forms yields canonically equal normal forms. This also renders the proof more

challenging since both properties have to be established at the same time.

The main source of complexity is the subtyping rule CST-NE. It is because of this rule that we

have to prove the hereditary substitution and functionality lemmas simultaneously.

To illustrate this, consider the neutral types N = X V and M = X W with V =V1,V2, W =W1,W2

such that X ∉ fv(V)∪ fv(W), and assume some Γ, Δ and U such that

Γ,Δ � λY1: J1.λY2: J2.U ⇔ J and Γ, X : J ,Δ � J ⇒ V = W ⇒ ∗

for J = (Y1: J1) → (Y2: J2) → J3. Then, by CST-NE, we have Γ, X : J ,Δ�N ≤ M .

We would like to hereditarily substitute U ′ =λY1: J1.λY2: J2.U for X in N and M and show that

the resulting types remain subtypes, i.e. that

Γ,Δ[X |J | :=U ′] � N [X |J | :=U ′] ≤ M [X |J | :=U ′].

By the definition of hereditary substitution, we have

N [X |J | :=U ′] ≡ (X V)[X |J | :=U ′] ≡ U ′ ·|J | (V [X |J | :=U ′])

≡ U ′ ·|J |V1 ·|J2|→|J3|V2

≡ ((λY2: J2.U)[Y1
|J1| :=V1]) ·|J2|→|J3|V2

≡ (λY2: J2[Y1
|J1| :=V1].U [Y1

|J1| :=V1]) ·|J2|→|J3|V2

≡ V ′[Y2
|J2| :=V2]

98

5.2. The hereditary substitution lemma

where V ′ =U [Y1
|J1| :=V1]. Similarly, M [X |J | :=U ′] ≡W ′[Y2

|J2| :=W2] for W ′ =U [Y1
|J1| :=W1].

Hence, we need to show that

Γ,Δ[X |J | :=U ′] � U [Y1
|J1| :=V1] ≤ U [Y1

|J1| :=W1] and

Γ,Δ[X |J | :=U ′] � V ′[Y2
|J2| :=V2] ≤ W ′[Y2

|J2| :=W2].

Since they belong to equal spines, V1 and W1 are judgmentally equal as types, and so are V2

and W2. But in general, neither of these pairs of types are syntactically equal, i.e. V1 �≡ W1,

V2 �≡ W2 and V ′ �≡ W ′. To establish the above inequations, we therefore need to show that

simultaneous hereditary substitutions of judgmentally equal types preserve inequations.

The example illustrates a second point, namely that, in order to prove that hereditary substitu-

tions preserve canonical kinding and subtyping, we need to prove that kinding and subtyping

of reducing applications is admissible. Our hereditary substitution lemma must cover all of

these properties, leading to the aforementioned grand total of 24 parts.

Lemma 5.16 (hereditary substitution). Hereditary substitutions of canonically kind-checked

types preserve the canonical judgments; substitutions of canonically equal types in canoni-

cally well-formed and well-kinded expressions result in canonical equations; substitutions of

canonically equal types preserve canonical (in)equations; kinding and subtyping of reducing

applications is admissible. Assume that the following equations hold

Γ�U1 = U2 ⇔ K Γ,Σ = Γ,Δ[X |K | :=U1] ctx Γ,Σ = Γ,Δ[X |K | :=U2] ctx

for given Γ, Δ, Σ, U1, U2, K and X ∉ dom(Γ,Δ,Σ).

1. If Γ, X :K ,Δ� J kd, then Γ,Σ� J [X |K | :=U1] kd.

2. If Γ, X :K ,Δ�var X : J , then Γ,Σ�U1 ⇔ J [X |K | :=U1].

3. If Γ, X :K ,Δ�var Y : J and Y �= X , then Γ,Σ�var Y : J [X |K | :=U1].

4. If Γ, X :K ,Δ�ne N : V . .W , then Γ,Σ�N [X |K | :=U1] ⇔ (V . .W)[X |K | :=U1].

5. If |Γ| � J kds and Γ, X :K ,Δ� J ⇒ V ⇒ L, then

Γ,Σ� J [X |K | :=U1] ⇒ V [X |K | :=U1] ⇒ L[X |K | :=U1].

6. If Γ, X :K ,Δ�V ⇒ J , then Γ,Σ�V [X |K | :=U1] ⇒ J [X |K | :=U1].

7. If Γ, X :K ,Δ�V ⇔ J , then Γ,Σ�V [X |K | :=U1] ⇔ J [X |K | :=U1].

8. If Γ, X :K ,Δ� J kd, then Γ,Σ� J [X |K | :=U1] ≤ J [X |K | :=U2].

9. If Γ, X :K ,Δ� J kd, then Γ,Σ� J [X |K | :=U1] = J [X |K | :=U2].

10. If Γ, X :K ,Δ�var X : J , then Γ,Σ�U1 =U2 ⇔ J [X |K | :=U1].

11. If Γ, X :K ,Δ�ne N : V . .W , then Γ,Σ�N [X |K | :=U1] ≤ N [X |K | :=U2].

12. If |Γ| � J kds and Γ, X :K ,Δ� J ⇒ V ⇒ L, then

Γ,Σ� J [X |K | :=U1] ⇒ V [X |K | :=U1] =V [X |K | :=U2] ⇒ L[X |K | :=U1].

13. If Γ, X :K ,Δ�V ⇒ W . .W ′, then Γ,Σ�V [X |K | :=U1] ≤V [X |K | :=U2].

99

Chapter 5. The canonical system

14. If Γ, X :K ,Δ�V ⇒ J and Γ, X :K ,Δ� J kd, then

Γ,Σ�V [X |K | :=U1] ≤V [X |K | :=U2] ⇔ J [X |K | :=U1].

15. If Γ, X :K ,Δ�V ⇔ J and Γ, X :K ,Δ� J kd, then

Γ,Σ�V [X |K | :=U1] ≤V [X |K | :=U2] ⇔ J [X |K | :=U1].

16. If Γ, X :K ,Δ� J1 ≤ J2, then Γ,Σ� J1[X |K | :=U1] ≤ J2[X |K | :=U2].

17. If |Γ| � J kds and Γ, X :K ,Δ� J ⇒ V 1 =V 2 ⇒ L, then

Γ,Σ� J [X |K | :=U1] ⇒ V 1[X |K | :=U1] =V 2[X |K | :=U2] ⇒ L[X |K | :=U1].

18. If Γ, X :K ,Δ�V1 ≤V2, then Γ,Σ�V1[X |K | :=U1] ≤V2[X |K | :=U2].

19. If Γ, X :K ,Δ�V1 ≤V2 ⇔ J and Γ, X :K ,Δ� J kd, then

Γ,Σ�V1[X |K | :=U1] ≤V2[X |K | :=U2] ⇔ J [X |K | :=U1].

20. If Γ, X :K ,Δ�V1 =V2 ⇔ J , then Γ,Σ�V1[X |K | :=U1] =V2[X |K | :=U2] ⇔ J [X |K | :=U1].

21. If Γ�K ⇒ V ⇒ J , then Γ�U1 ·|K |V ⇔ J .

22. If K = (X :K1) → K2, Γ�V ⇔ K1 and Γ�K1 kd, then Γ�U1 ·|K |V ⇔ K2[X |K1| :=V].

23. If Γ�K ⇒ V 1 =V 2 ⇒ J , then Γ�U1 ·|K |V 1 =U2 ·|K |V 2 ⇔ J .

24. If K = (X :K1) → K2 and Γ�V1 =V2 ⇔ K1, then

Γ�U1 ·|K |V1 =U1 ·|K |V2 ⇔ K2[X |K1| :=V1].

Proof. As for the proof of Lemma 4.16, the structure of the proof mirrors that of the recursive

definition of hereditary substitution itself. All 24 parts are proven simultaneously by induction

in the structure of the simple kind |K |. Parts 1–20 proceed by an inner induction on the

respective formation, kinding, subkinding, subtyping or equality derivations of the expressions

in which U1 and U2 are being substituted for X . Parts 21–24 proceed by a case analysis on

the final rule used to derive Γ �K ⇒ V ⇒ J , Γ �U1 ⇔ K , Γ �K ⇒ V 1 = V 2 ⇒ J and

Γ�U1 =U2 ⇔ K , respectively.

The proofs of parts 1–7 are similar to that of the declarative substitution lemma (Lemma 3.9),

while those of parts 8–20 resemble the proof of the extended functionality lemma (Lemma 3.19).

In cases like CWF-DARR or CK-ALL, where the context is extended by an additional bind-

ing, we use the IH together with context narrowing (Lemma 5.7) to maintain the invariants

Γ,Σ = Γ,Δ[X |K | :=U1] ctx and Γ,Σ = Γ,Δ[X |K | :=U2] ctx.

The cases where the proofs of parts 1–20 differ most substantially from those of Lemma 3.9 and

Lemma 3.19 are parts 4, 11 and the case for CST-NE of part 18, which deal with neutral types.

There, we proceed by case distinction on X = Y , where Y is the head of the corresponding

neutral types. If X = Y , then we proceed using either part 21, or part 23 followed by CST-REFL-

TEQ’. If X �= Y , then we use part 3 and proceed with either part 5 followed by CK-NECK, or

100

5.2. The hereditary substitution lemma

with parts 12 or 17 followed by CST-NE. In the cases for CST-BND1 and CST-BND2, we use

part 4 followed by CST-CKBND1 or CST-CKBND1.

In the cases for CK-CONS and SPEQ-CONS of parts 5, 12 and 17, respectively, where J =
(Y : J1) → J2, we use Lemma 4.17.1 to show that hereditary substitutions in kinds commute, i.e.

that J2[Y |J1| :=V1][X |K | :=U1] ≡ J2[X |K | :=U1][Y |J1| :=V1[X |K | :=U1]]. The necessary simple

kinding derivations are provided by case analysis of the final rule used to derive the premise

|Γ| � J kds and Lemma 5.15.5.

The proofs of parts 22 and 24 resemble that of Lemma 4.16.5 but are complicated slightly

by the presence of subkinding. We show the proof of part 22, that of part 24 is similar. We

have K = (X :K1) → K2, Γ �U1 ⇔ K , Γ �V ⇔ K1 and Γ �K1 kd, and we want to show that

Γ�U1 ·|K |V ⇔ K2[X |K1| :=V]. By inspection of the kind checking and subkinding rules, we

must have U1 = λX : J1.U such that Γ, X : J1 �U ⇒ J2, Γ�K1 ≤ J1 and Γ, X :K1 � J2 ≤ K2, and

by the definition of reducing application, U1 ·|K |V ≡U [X |K1| :=V]. Using context narrowing

and the IH for part 7, we obtain Γ�U [X |K1| :=V] ⇒ J2[X |K1| :=V]. By TEQ-REFL and the IH

for part 16, we have Γ� J2[X |K1| :=V] ≤ K2[X |K1| :=V]. We conclude by CK-SUB.

5.2.1 Validity

With the hereditary substitution lemma in place, we can now prove the remaining validity

properties of the canonical judgments. The most intricate cases are those for spine kinding

and equality, which is where we use Lemma 5.16.

Lemma 5.17 (canonical validity – part 2).

(spine kinding validity) If Γ� J kd and Γ� J ⇒ U ⇒ K , then Γ�K kd.

(spine equation validity) If Γ� J1 ≤ J2 and Γ� J2 ⇒ U =V ⇒ K2, then Γ� J2 ⇒ U ⇒ K2,

Γ� J1 ⇒ V ⇒ K1 and Γ�K1 ≤ K2 for some K1.

(neutral kinding validity) If Γ�N : K , then Γ�K kd.

(subkinding validity) If Γ� J ≤ K , then Γ� J kd and Γ�K kd.

(proper subtyping validity) If Γ�U ≤V , then Γ�U ⇒ U . .U and Γ�V ⇒ V . .V .

(checked kinding validity) If Γ�V ⇔ K , then Γ�K kd.

Proof. Subkinding and proper subtyping validity are proven simultaneously, the remaining

parts are proven separately, in the order they are listed. All parts are proven by induction

on derivations of the judgments they are named after: spine kinding and equation validity

are proven by induction on their respective second premises, the remaining parts on their

respective first premises. In inductive steps of the proofs of spine kinding and equation validity,

we use the hereditary substitution lemmas to derive suitable first premises for applying the

IH. The proof of spine equation validity relies on checked equation validity from Lemma 5.17.

The proof of neutral kinding validity relies on spine kinding validity. In the proof of proper

subtyping validity, we use neutral kinding validity in the cases for the bound projection

rules CST-BND1,2. The proof of checked kinding validity relies on proper subtyping validity.

101

Chapter 5. The canonical system

5.2.2 Lifting of weak equality to canonical equality

In Section 4.2.2 of the previous chapter, we established a number of weak commutativity

properties (see Lemmas 4.22 and 4.26). Among others, we showed that normalization weakly

commutes with hereditary substitution. But up until now, we do not have any effective means

to put these properties to use – we have yet to establish a relationship between weak equality

and the equality judgments of the declarative and canonical systems.

To remedy this situation, we prove that a weak equation U ≈ V can be lifted to canonical

equation Γ �U = V ⇔ K , provided the left- and right-hand sides U , V are well-kinded, i.e.

Γ�U ⇔ K and Γ�V ⇔ K . Similarly, we show that weakly equal kinds are canonically equal

if they are well-formed.

Lemma 5.18. Weakly equal canonically well-formed kinds and well-kinded types are canoni-

cally equal.

1. If Γ� J kd, Γ�K kd and J ≈ K , then Γ� J ≤ K .

2. If Γ�U ⇒ U . .U , Γ�V ⇒ V . .V and U ≈V , then Γ�U ≤V .

3. If Γ�K kd, Γ�U ⇔ K , Γ�V ⇔ K and U ≈V , then Γ�U ≤V ⇔ K .

4. If Γ � J kd, Γ � J ≤ K1, Γ � J ≤ K2, Γ �K1 ⇒ U 1 ⇒ V1 . .W1, Γ �K2 ⇒ U 2 ⇒ V2 . .W2,

and U 1 ≈U 2, then Γ� J ⇒ U 1 =U 2 ⇒ V . .W for some V and W .

5. If Γ� J kd, Γ�K kd and J ≈ K , then Γ� J = K .

6. If Γ�K kd, Γ�U ⇔ K , Γ�V ⇔ K and U ≈V , then Γ�U =V ⇔ K .

Proof. Simultaneously for all 6 parts by simultaneous induction on the corresponding pairs of

kinds, types or spines being related, then by case analysis on the final rules used to derive the

corresponding formation, kinding and weak equality judgments. In the proof of part 5, we

apply the IH for part 1 directly to the equations J ≈ K and K ≈ J , where the latter is derived

using symmetry of weak equality (Lemma 4.1). Neither J nor K decrease in this step, but the

proof of part 5 does not make any further use of the IH and could therefore be inlined in the

proofs of the other parts. The proof of part 5 is similar.

The proofs of the remaining parts are largely routine. The most interesting case is that

of WEQ-CONS in part 4, where we have U 1 = (U1,U ′
1), U 2 = (U2,U ′

2), K1 = (X :K11) → K12,

K2 = (X :K21) → K22, U1 ≈ U2 and U ′
1 ≈ U ′

2. Analyzing the derivations of the remaining

premises, we have

Γ�K11 ≤ J1 Γ, X :K11 � J2 ≤ K12 Γ�K21 ≤ J1 Γ, X :K21 � J2 ≤ K22

such that J = (X : J1) → J2, as well as

Γ�U1 ⇔ K11 Γ�K12[X |K11| :=U1] ⇒ U ′
1 ⇒ V1 . .W1

Γ�U2 ⇔ K21 Γ�K22[X |K21| :=U2] ⇒ U ′
2 ⇒ V2 . .W2

We use CK-SUBCK and the IH for part 6 to derive Γ�U1 =U2 ⇔ J1, then we use hereditary

102

5.3. Completeness of canonical kinding

substitution (Lemmas 5.16.16 and 5.16.8) and Lemma 5.14 to derive

Γ � J2[X |J1| :=U1] ≤ K12[X |K11| :=U1]

Γ � J2[X |J1| :=U1] ≤ J2[X |J1| :=U2] ≤ K22[X |K21| :=U2]

We conclude the case by the IH for part 4 and SPEQ-CONS.

5.3 Completeness of canonical kinding

In the previous chapter, we saw that every declaratively well-formed kind or well-kinded type

has a judgmentally equal βη-normal form (Lemmas 4.12 and 4.20). In this section, we prove

that every declarative judgment has a canonical counterpart where the expressions related by

the original judgment have been normalized. Roughly, whenever Γ�d J holds, we also have

nf (Γ) �c nfnf (Γ)(J). Since normalization does not change the meaning of an expression, this

result establishes completeness of the canonical system w.r.t. to the declarative one.

There are several judgments for kinding types in the canonical system, but only one in the

declarative system. To establish completeness, we show that, if a type A is of kind K according

to declarative kinding, then the normal form nf (A) kind checks against the normal form nf (K),

i.e. if Γ�d A : K , then nf (Γ) �c nf (A) ⇔ nf (K).

When A is a variable A = X , the normal form nf (A) is its η-expansion nf (A) = ηnf (K)(X) and

we use the following lemma to prove that it kind checks against nf (K).

Lemma 5.19 (η-expansion). η-expansion preserves the canonical kinds of neutral types. If

Γ�ne N : K , then Γ�ηK (N) ⇔ K .

Instead of proving the lemma directly, we first prove the following helper lemma.

Lemma 5.20.

1. If Γ, X : J �K kd and Γ, X : J �η J (X) ⇔ J , then Γ, X : J �K [X |J | := η J (X)] = K .

2. If Γ�ne N : J and Γ� J ≤ K , then Γ�ηK (N) ⇔ K .

The first part says that hereditary substitutions of η-expanded variables in kinds vanish, while

the second part is a strengthened version of Lemma 5.19.

Proof. The two parts are proven separately. For the first part, we use simplification of canonical

kinding (Lemma 5.15.2) and Lemma 4.22.2 to derive K [X |J | := η J (X)] ≈ K . By weakening and

the hereditary substitution lemma (Lemma 5.16.1), we have Γ, X : J �K [X |J | := η J (X)] kd. The

conclusion of the first part then follows by Lemma 5.18.5.

The proof of the second part is by induction on the structure of K and case analysis on the

final rule used to derive Γ� J ≤ K . In the base case, we use CK-NECK and CK-SUBCK. In the

103

Chapter 5. The canonical system

inductive case, we have K = (X :K1) → K2, J = (X : J1) → J2 such that Γ�K1 ≤ J1 and Γ, X :K1 �
J2 ≤ K2. By subkinding validity, we further have Γ�K1 kd and Γ, X :K1 �K2 kd. By weakening,

the IH and CSK-REFL, we obtain first Γ, X :K1 �ηK1 (X) ⇔ K1, then Γ, X :K1 �ηK1 (X) ⇔ J1 by

weakening and CK-SUBCK. By inspection of neutral kinding, we know that N = Y V for some

Y and V and that Γ �var Y : L and Γ �L ⇒ V ⇒ (X : J1) → J2. We use weakening, CK-SNOC

and CK-NE to derive Γ, X :K1 �ne Y V (ηK1 (X)) : J2[X |J1| := ηK1 (X)].

Now we see why it was necessary to strengthen the IH: the body of the η-expansion of N has

kind J2[X |J1| := ηK1 (X)] rather than K2 as required by Lemma 5.19. In order to apply the IH,

we show that

Γ, X :K1 � J2[X |J1| := ηK1 (X)] ≡ J2[X |K1| := ηK1 (X)] (by Lemma 5.14)

≤ K2[X |K1| := ηK1 (X)] (by Lemma 5.16.16)

= K2. (by part 1)

We conclude the case by the IH and CK-ABS’.

Lemma 5.19 as well as a strengthened version of Lemma 5.20.1 now follow as corollaries.

Corollary 5.21. If Γ, X : J �K kd, then Γ, X : J �K [X |J | := η J (X)] = K .

To establish completeness of the canonical system w.r.t. the declarative system, we show that

every declarative judgment derived using the extended declarative rules, rather than the origi-

nal ones, has a canonical counterpart. The proof makes crucial use of the validity conditions

present in the extended rules. To avoid confusion, we again mark canonical judgments with

the subscript “c” and extended declarative ones with “e”. To enhance readability, we omit the

subscript nf (Γ), writing e.g. nf (A) instead of nfnf (Γ)(A).

Lemma 5.22 (completeness of the canonical rules – extended version).

1. If Γ ectx, then nf (Γ) cctx.

2. If Γ�e K kd, then nf (Γ) �c nf (K) kd.

3. If Γ�e A : K , then nf (Γ) �c nf (A) ⇔ nf (K).

4. If Γ�e J ≤ K , then nf (Γ) �c nf (J) ≤ nf (K).

5. If Γ�e A ≤ B : C . .D, then nf (Γ) �c nf (A) ≤ nf (B).

6. If Γ�e A ≤ B : K , then nf (Γ) �c nf (A) ≤ nf (B) ⇔ nf (K).

7. If Γ�e J = K , then nf (Γ) �c nf (J) = nf (K).

8. If Γ�e A = B : K , then nf (Γ) �c nf (A) = nf (B) ⇔ nf (K).

9. If Γ�e A : (X : J) → K and X ∉ fv(A), then

nf (Γ) �c nf (λX : J . A X) = nf (A) ⇔ nf ((X : J) → K).

10. If Γ, X : J �e K kd, Γ�e A : J and Γ�e K [X := A] kd, then

nf (Γ) �c nf (K)[X |nf (J)| := nf (A)] = nf (K [X := A]).

104

5.3. Completeness of canonical kinding

11. If Γ, X : J �e A : K , Γ�e B : J , Γ, X : J �e K kd, Γ�e A[X := B] : K [X := B]

and Γ�e K [X := B] kd, then

nf (Γ) �c nf ((λX : J . A)B) = nf (A[X := B]) ⇔ nf (K [X := B]).

Equivalent statements w.r.t. the original declarative rules follow by equivalence of the original

and extended declarative systems.

Proof. All parts are proven simultaneously, by induction on the derivations of the respective

premises, except for parts 9–11, which are helper lemmas that apply the IH directly to all of

their premises but could be inlined in the proofs of the other parts.

Thanks to the admissible rules introduced in Lemma 5.13, the proofs of parts 1–3 are straight-

forward, except for the cases of K-VAR, where we use Lemma 5.19, and K-EXTAPP, where

we use the hereditary substitution lemma to normalize A = A1 A2 if nf (A1) is an abstraction,

and the IH for part 10 together with CK-SUBCK to adjust the kind of the result. The validity

conditions of K-EXTAPP are crucial in this last step.

Parts 5 and 8 follow almost immediately from part 6, part 7 from part 4.

The proofs of parts 9–11 all follow the same pattern. First, we use the IH to normalize the

premises and establish validity of the left- and right-hand sides of the respective equations.

Then we use Lemma 4.27, Lemma 4.26.1 and Lemma 4.26.2, respectively, to derive weak

versions of these equations, and Lemma 5.18 to turn them into canonical equations.

The remaining parts 4 and 6 are the most difficult to prove. The cases of the extended β and η-

conversion rules are covered by parts 9 and 11 thanks to the validity conditions in the extended

rules. The case of ST-EXTAPP is similar to that of K-EXTAPP – again the validity conditions

are crucial. Some of the remaining cases are covered by the admissible rules introduced in

Sections 5.1.1 and 5.1.2. The challenging cases are those where one of the premises of the

corresponding rule extends the contexts, i.e. those of CSK-DARR, CST-ALL and CST-ABS. We

show the case for CSK-DARR here, the other two are similar.

We are given Γ�e K1 ≤ J1, Γ, X :K1 �e J2 ≤ K2 and Γ�e (X : J1) → J2 kd with J = (X : J1) → J2 and

K = (X :K1) → K2. We start by applying the IH to all the premises and analyze the last of the

resulting derivations to obtain

nf (Γ) �c nf (K1) ≤ nf (J1) nf (Γ), X :nf (K1) �c nfnf (Γ,X :K1)(J2) ≤ nfnf (Γ,X :K1)(K2)

nf (Γ) �c nf (J1) kd nf (Γ), X :nf (J1) �c nfnf (Γ,X : J1)(J2) kd.

Note the different contexts nf (Γ, X :K1) and nf (Γ, X : J1) used to normalize J2 in the second and

fourth of these judgments, respectively. This leads to a syntactic difference in the resulting

normal forms, i.e. we have nfnf (Γ,X :K1)(J2) �≡ nfnf (Γ,X : J1)(J2). In order to apply CSK-DARR, we

need to resolve this difference.

105

Chapter 5. The canonical system

Transitivity-free subtyping of closed proper types �tf U ≤V

∅�V ⇒ V . .V

�tf V ≤� (TFST-TOP)

∅�U2 ≤U1 ∅�V1 ≤V2

�tf U1 →V1 ≤U2 →V2
(TFST-ARR)

∅�V ⇒ V . .V

�tf ⊥≤V
(TFST-BOT)

∅�K2 ≤ K1 X :K2 �V1 ≤V2

∅�∀X :K1.V1 ⇒ ∀X :K1.V1 . .∀X :K1.V1

�tf ∀X :K1.V1 ≤∀X :K2.V2
(TFST-ALL)

Figure 5.3 – Top-level transitivity-free canonical subtyping

We notice that |nf (Γ, X : J1)| ≡ |nf (Γ, X :K1)| by Lemma 5.14. Hence, by Lemma 4.10, we have

nfnf (Γ,X : J1)(J2) ≈ nfnf (Γ,X :K1)(J2). Using context narrowing and subkinding validity, we derive

nf (Γ), X :nf (K1) �nfnf (Γ,X : J1)(J2) kd and nf (Γ), X :nf (K1) �nfnf (Γ,X :K1)(J2) kd,

from which we obtain, by Lemma 5.18.1,

nf (Γ), X :nf (K1) �c nfnf (Γ,X : J1)(J2) = nfnf (Γ,X :K1)(J2) ≤ nfnf (Γ,X :K1)(K2)

We conclude the case by CWF-DARR and CSK-DARR.

5.4 Inversion of canonical subtyping

As we saw in Chapter 3, preservation of types under CBV reduction does not hold in arbitrary

contexts. The culprit are type variable bindings with inconsistent bounds. Such bindings can

inject arbitrary inequations into the subtyping relation and hence break putative properties

that hold for subtyping of closed types. For example, the absurd assumption X : � . .⊥ trivial-

izes the subtyping relation under any context in which it appears. To see this, consider the

following derivation, where Γ= X : � . .⊥.

...

Γ�U →V ≤�

...

Γ�ne X : � . .⊥
(CST-BND1)

Γ��≤ X

...

Γ�ne X : � . .⊥
(CST-BND2)

Γ�X ≤⊥
(CST-TRANS)

Γ��≤⊥
(CST-TRANS)

Γ�U →V ≤⊥
...

Γ�⊥≤∀X :K .W
(CST-TRANS)

Γ�U →V ≤∀X :K .W

Under such conditions, subtyping cannot be inverted in any meaningful way. We therefore

consider inversion of canonical subtyping only in the empty context, following the approach

taken by Rompf and Amin in their type safety proof for DOT [45]

106

5.4. Inversion of canonical subtyping

As a first step we show that any top-level uses of the transitivity rule CST-TRANS can be

eliminated. To do so, we introduce a helper judgment �tf U ≤ V , which states that U is a

proper subtype of V in the empty context (see Fig. 5.3). It is easy to see that this judgment is

sound w.r.t. canonical subtyping in the empty context (the proof is by routine induction on

subtyping derivations).

Lemma 5.23 (soundness of top-level subtyping). If �tf U ≤V , then ∅�U ≤V .

Crucially, the inference rules for the judgment �tf U ≤V do not include a transitivity rule, but

the following variant of that rule is admissible.

Lemma 5.24 (top-level transitivity elimination). The following is admissible.

∅�U ≤V �tf V ≤W

�tf U ≤W
(TFST-TRANS)

Proof. The proof is by induction on the derivation of the first premise and case analysis of

the final rule used to derive the second. In the case of CST-TRANS, we use the IH twice. In

the case of CST-BOT where ∅ �⊥ ≤ U and �tf U ≤ V , we use Lemma 5.23 and validity of

canonical typing to derive ∅�V ⇒ V . .V and conclude with TFST-BOT. Similarly, in cases

where the second premise was derived using TFST-TOP, we use validity of canonical subtyping

and TFST-TOP.

Thanks to TFST-TRANS, it is straightforward to establish completeness, and thus equivalence

of the judgments ∅�U ≤V and �tf U ≤V .

Lemma 5.25 (equivalence of top-level subtyping). The two versions of canonical subtyping

are equivalent in the empty context: ∅�U ≤V iff �tf U ≤V .

Proof. We have already proven soundness (⇐). Completeness (⇒) is by induction on the

derivations of ∅�U ≤V and uses TFST-TRANS in the case of CST-TRANS.

Inversion of the canonical subtyping relation in the empty context now follows immediately by

inspection of the transitivity-free subtyping rules and Lemma 5.25. We only state the relevant

cases.

Corollary 5.26 (inversion of canonical subtyping – embedding). Let ∅�U1 ≤U2.

1. If U1 =V1 →W1 and U2 =V2 →W2, then ∅�V2 ≤V1 and ∅�W1 ≤W2.

2. If U1 =∀X :K1.V1 and U2 =∀X :K2.V2, then ∅�K2 ≤ K1 and X :K2 �V1 ≤V2.

Corollary 5.27 (inversion of canonical subtyping – contradiction). Closed arrows are not

canonical subtypes of closed universals and vice-versa. For any U , V , W and K , we have

1. ∅�U →V �≤ ∀X :K .W , and

2. ∅�∀X :K .U �≤V →W .

107

Chapter 5. The canonical system

5.5 Type safety revisited

We are finally ready to prove type safety of Fω·· . We start by proving the declarative version of

subtyping inversion. Again, we only state the relevant cases.

Lemma 5.28 (inversion of declarative subtyping – embedding). Let ∅�A1 ≤ A2 : ∗.

1. If A1 = B1 →C1 and A2 = B2 →C2, then ∅�B2 ≤ B1 : ∗ and ∅�C1 ≤C2 : ∗.

2. If A1 =∀X :K1.B1 and A2 =∀X :K2.B2, then ∅�K2 ≤ K1 and X :K2 �B1 ≤ B2 : ∗.

The proof makes use of the following generation lemma for well-kinded arrow and universal

types, which is proven by induction on kinding derivations.

Lemma 5.29 (generation of kinding for arrows and universals). The following are admissible.

Γ�A → B : ∗
Γ�A : ∗ Γ�B : ∗

Γ�∀X :K . A : ∗
Γ�K kd Γ, X :K �A : ∗

Proof of Lemma 5.28. By completeness of canonical subtyping and soundness of normaliza-

tion. We show only the first part, the second is analogous. Assume ∅�B1 →C1 ≤ B2 →C2 : ∗.

Then by validity of declarative subtyping (Lemma 3.17), generation of kinding for arrow types,

soundness of normalization (Lemma 4.12) and completeness of canonical subtyping, we have

∅�d B1 = nfnf (Γ)(B1) : ∗ ∅�d C1 = nfnf (Γ)(C1) : ∗
∅�d B2 = nfnf (Γ)(B2) : ∗ ∅�d C2 = nfnf (Γ)(C2) : ∗
∅�c nfnf (Γ)(B1) → nfnf (Γ)(C1) ≤ nfnf (Γ)(B2) → nfnf (Γ)(C2)

By inversion and soundness of canonical subtyping, it follows that

∅�d B2 = nfnf (Γ)(B2) ≤ nfnf (Γ)(B1) = B1 : ∗ and

∅�d C1 = nfnf (Γ)(C1) ≤ nfnf (Γ)(C2) = C2 : ∗.

We also prove a declarative counterpart of Corollary 5.27, which is used in the proof of the

progress theorem below.

Lemma 5.30 (inversion of declarative subtyping – contradiction). Closed arrows are not sub-

types of closed universals and vice-versa. For any A, B, C and K , we have

1. ∅�A → B �≤ ∀X :K .C , and

2. ∅�∀X :K . A �≤ B →C .

Proof. By completeness of canonical subtyping, then by contradiction using Corollary 5.27.

This is all we need to prove weak preservation. Recall that weak preservation (Theorem 3.43)

states that CBV reduction preserves the types of closed terms, i.e. if �t : A and t −→v t ′, then

�t ′ : A.

108

5.5. Type safety revisited

Proof of Theorem 3.43. The proof is by induction on typing derivations and case analysis on

CBV reduction rules. The interesting cases are those where β-contractions occur. We revisit the

case of T-APP when the reduction step is an instance of R-APPABS. The case for T-TAPP with R-

TAPPTABS is similar. We have t = (λx:B. s) v with �λx:B. s : C → A and �v : C for some B and

C . By generation of term abstractions (Lemma 3.44.1), x:B �s : D and �B → D ≤C → A : ∗ for

some D. By inversion of subtyping (Lemma 5.28.2), we have �C ≤ B : ∗ and �D ≤ A : ∗ and

hence �v : B and x:B � s : A by subsumption. To conclude the proof we need to show that

�s[x := v] : A, which follows from the substitution lemma (Lemma 3.9).

This establishes the first half of type safety. For the second half, progress, we first need to prove

a standard canonical forms lemma.

Lemma 5.31 (canonical forms). Let v be a closed, well-typed value.

1. If ∅�v ∈ A → B, then v =λx:C . t for some C and t.

2. If ∅�v ∈∀X :K . A, then v =λX : J . t for some J and t.

Proof. Separately for the two parts; each by case analysis, first on v , then on the final typing

rule used to derive the respective premise. Since the only values are abstractions, the relevant

sub-cases are T-ABS, T-TABS and T-SUB. The sub-cases for T-ABS and T-TABS are immediate.

In the sub-cases for T-SUB, we first use the generation lemma for abstractions (Lemma 3.44),

then dismiss impossible sub-cases using Lemma 5.30.

Thanks to the canonical forms lemma, the proof of the progress theorem is now entirely

standard.

Theorem 5.32 (progress). If � t : A, then either t = v for some value v, or t −→v t ′ for some

term t ′.

Proof. By routine induction on typing derivations. The cases for T-APP and T-TAPP use the

canonical forms lemma (Lemma 5.31).

109

6 Extending the theory

One of the goals of Fω·· is to provide a stepping stone to the development of a higher-order

version of the calculus of Dependent Object Types (DOT), Scala’s core calculus [4]. While

DOT admits encodings of some type operators, it is not expressive enough to cover the full

spectrum of type computations supported by Scala’s type system because it lacks intrinsics for

higher-order computations, such as type operator abstractions and applications [39].

Meanwhile, Fω·· lacks other important type system constructs found in Scala, such as type

members and path-dependent types which feature prominently in DOT. Ideally, we would like

to combine the two calculi to obtain a full theory of higher-order dependent object types. In

this chapter, we briefly sketch a possible extension of Fω·· with type members, and discuss

some of the challenges involved in adapting the existing metatheory to that extension.

6.1 Type members in Scala and DOT

Central to all variants of DOT is the notion of type members, which corresponds closely to the

eponymous construct in Scala. We have already seen a few examples of type members in the

introduction. Recall the definition of the module boundedUniversal from Chapter 1:

object boundedUniversal {

trait Bounded[B, F[_ <: B]] { def apply[X <: B]: F[X] }

type All[F[_]] = Bounded[Any, F]

}

In Scala, modules (or objects) such as boundedUniversal are first-class values, i.e. they can

be abstracted over and passed to methods just like any other term. Objects may contain

type members such as Bounded or All, which can be selected using dot-notation, as in

boundedUniversal.All. Type expressions of the form p.M are called type selections, with

M a type label and p = x.f1.f2.· · ·.fn a path, i.e. a (stable) identifier x followed by a sequence

of field selections fi . Since the concrete definition of the type p.M depends on the concrete

111

Chapter 6. Extending the theory

definition of the path p, such types are path-dependent.

To see how type members and path-dependent types might be useful, consider the following

Scala example:

trait Functor {

type F[_]

def map[A, B](g: A => B)(fa: F[A]): F[B]

}

def mapTwice[A](f: Functor, g: A => A)(fa: f.F[A]): f.F[A] =

f.map(g)(f.map(g)(fa))

It defines a trait Functor, which may be thought of as a module signature or type class for

functors. The trait has two members: an abstract type operator F[_] (the action of the functor

on types), and an abstract method map (the action of the functor on maps). The polymorphic

method mapTwice takes an instance f of Functor as its first parameter, and applies f.map twice

to a given function g: A => A and instance fa of F[A]. Note that the signature of the method

mapTwice is path-dependent: the type f.F[A], which is the type of the argument fa as well as

the return type of the method, depends on the Functor instance f.

To call mapTwice, we need a concrete instance of Functor. Here are two candidates:

object listFunctor extends Functor {

type F[X] = List[X]

def map[A, B](g: A => B)(fa: F[A]): F[B] = fa.map(g)

}

object idFunctor extends Functor {

type F[X] = X

def map[A, B](g: A => B)(fa: F[A]): F[B] = g(fa)

}

mapTwice(listFunctor, (x: Int) => x + 1)(List(1, 2, 3)) // List(3, 4, 5)

mapTwice(idFunctor, (x: Int) => x + 1)(1) // 3

In DOT, as in Scala, a type member definition { M = A } is a term-level construct that asso-

ciates a type label M with a proper type A. Type member definitions inhabit type member

declarations of the form { M : A . .B } which are themselves proper types and which consist of a

type label M and a pair of types A and B bounding M from below and above, respectively. In

other words, a type member declaration associates a label M with a type interval A . .B . The

canonical type of a member definition { M = A } is the singleton declaration { M : A . . A }.

112

6.2. Higher-order type members

Since type member definitions in DOT are restricted to proper types, Scala traits with higher-

kinded type members like the one in our Functor example cannot be faithfully modeled in

DOT. In the remainder of this chapter, we take a first step towards a higher-order version of

DOT by sketching a minimal extension of Fω·· with type members.1

6.2 Higher-order type members

While type intervals are baked into type declarations in DOT, we have separated the concept

of type intervals from that of type member declarations in Fω·· through our notion of interval

kinds. This allows arbitrary types – not just type members – to inhabit intervals, and suggests a

natural generalization of type member declarations to the higher-order setting: a higher-order

type member declaration { M : K } associates the type label M with an arbitrary kind K , which

may or may not be a (higher-order) type interval.

Type member definitions are the introduction forms of type member declarations: they pack

types A into terms { M = A }. The corresponding elimination forms are type selections p.M

consisting of a path p and a type label M . As in DOT, we restrict paths p to be either variables

p = x or values p = v , in order to avoid the complexities of fully dependent types and issues

arising from non-normalizing terms in versions of DOT that feature recursion. This restriction

is not unique to DOT, its use, along with that of the dot-notation for type selection, can be

traced back at least to Harper and Lillibridge’s work on translucent sums [29, 33].

To support type members and type selections, we extend the grammar of Fω·· as follows.

M , N , . . . Type label

p, q ::= x | v Path

s, t ::= . . . | { M = A } Type member definition

u, v, w ::= . . . | { M = A } Type member definition (value)

A,B ,C ::= . . . | { M : K } | p.M Type member declaration and selection

On the static side, we add the following inference rules for kinding, typing and subtyping.

Γ�K kd

Γ�{ M : K } : ∗
(K-MEM)

Γ�p : { M : K }

Γ�p.M : K
(K-SEL)

Γ�A : K

Γ�{ M = A } : { M : K }
(T-MEM)

Γ�K1 ≤ K2 kd

Γ�{ M : K1 } ≤ { M : K2 } : ∗
(ST-MEM)

The path typing rules correspond to those for term typing but with the obvious restriction to

1To be more precise, the extension sketched in this chapter corresponds to a higher-order version of the D<:
sub-language of DOT [4, 3]

113

Chapter 6. Extending the theory

path expressions as subjects.

It is less clear if and how one should extend the dynamics of types and terms, i.e. the reduction

relations −→β and −→v , the normalization function nf, and the computational rules of

subtyping, in the presence of type members. Recall that in DOT, there is no explicit notion of

computation in types. The only non-canonical types in DOT are path selections p.M on type

member definitions p = { M = A }. Rather than introducing separate reduction relations on

types and paths, such selections are resolved in DOT through a pair of subtyping rules for path

selections, which allow one to conclude that Γ�A1 ≤ p.M and Γ�p.M ≤ A2, provided that

Γ�p : { M : A1 . . A2 }. These rules closely resemble (and are in fact derivable from) the bound

projection rules ST-BND1,2.

But things are more complicated in Fω·· due to the presence of type operators and type compu-

tations in general. For example, using the current subtyping rules (including the rule ST-MEM

introduced above), we cannot, in general, derive that Γ�({ M = A }.M)B �≤ A B . (We will see a

counterexample shortly.) Another concern is that closed, well-kinded type applications such

as �({ M =λX :∗. X }.M)� must be considered normal forms, unless we extend the definitions

of −→β and nf. This severely complicates the proof of (top-level) inversion of canonical

subtyping.

On the other hand, extending the dynamics of paths and types comes with its own set of

problems. Most importantly – and perhaps surprisingly – a naive extension of −→β with the

following contraction rule for type selections breaks the normalization and subject reduction

properties for well-kinded types.

{ M = A }.M −→β A
(R-MEMSEL)

Let use briefly illustrate the problems associated with each of these alternatives – imposing

DOT-style restrictions on the dynamics of paths and types, or extending −→β with reduction

rules for paths, type selections and type declarations.

6.2.1 Avoiding additional reductions in types

We start by showing why the contraction rule R-MEMSEL is not necessary in DOT, i.e. how

equalities of the form { M = A }.M = A can be established via the bound projection rules ST-

BND1,2, and where this approach falls short in the presence of type operators.

Consider a type member definition { M = A } for some well-kinded proper type Γ � A : ∗.

By K-SING, T-MEM, and K-SEL, we have Γ�{ M = A }.M : A . . A, and hence by ST-BND1,2 and

antisymmetry,

Γ�{ M = A }.M = A : ∗,

114

6.2. Higher-order type members

i.e. we have successfully resolved { M = A }.M to A.

The example relies on A, and thus { M = A }.M , being a proper type, so that K-SING and the

bound projection rules can be applied directly to { M = A }.M . But similar derivations are

possible even if A is a type operator. Consider { M =λX :∗. A } and assume that Γ, X :∗�A : ∗
and Γ�B : ∗ for some B . Then we have Γ�λX :∗. A : (X :∗) → A . . A by K-SING and K-ABS, and

by T-MEM, K-SEL and K-APP, it follows that

Γ� ({ M =λX :∗. A }.M)B : (A . . A)[X := B].

Hence by ST-BND1,2 and antisymmetry,

Γ� ({ M =λX :∗. A }.M)B = A[X := B] : ∗.

Letting B = X and using η-expansion, we can further derive

Γ� { M =λX :∗. A }.M = λX :∗. ({ M =λX :∗. A }.M) X = λX :∗. A : ∗→∗.

However, this principle breaks down if we try to reduce a type selection { M = A }.M where

A is an abstract type operator. To see this, let A = X and assume some Γ and B such that

Γ(X) =∗→∗ and Γ�B : ∗. We can at best derive

Γ� ({ M = X }.M)B : ∗

but this is not precise enough to relate { M = X }.M and X via the bound projection rules.

We conclude that the kinding, typing and subtyping rules are not – in their current form –

powerful enough to resolve type member selections in general. We could of course add typed

contraction rules for type selections directly to the subtyping judgment without extending

the −→β relation or the normalization function nf, but this would still leave us with the

problem of having to invert canonical inequations involving closed “normal forms” such as

({ M =λX :K .U }.M)V at the top level.

6.2.2 Permitting additional reductions in types

Let us instead consider what happens if we extend the −→β relation with the contraction

rule R-MEMSEL mentioned above, as well as three additional rules to make −→β compatible

with the new path and type constructs.

{ M = A }.M −→β A
(R-MEMSEL)

K −→β K ′

{ M : K } −→β { M : K ′ }
(R-MEMDECL)

p −→β p ′

p.M −→β p ′.M
(R-SEL)

A −→β A′

{ M = A } −→β { M = A′ }
(R-MEMDEF)

115

Chapter 6. Extending the theory

These reduction rules seem very natural and allow one to resolve type selections directly in

raw types, e.g.

({ M =λX :K . A }.M)B −→β (λX :K . A)B −→β A[X := B].

However, the rule R-MEMSEL, together with the new kinding and subtyping rules introduced

above, breaks many of the metatheoretic properties we established in Chapters 4 and 5,

including subject reduction in types, normalization and completeness of the canonical system.

It is only partly to blame though: the main culprit is, once again, the possible presence of

assumptions with inconsistent bounds in open terms. In Fω·· , inconsistent bounds are a

problem at the type level in that they prohibit subtyping inversion in non-empty contexts.

With the new rules, in particular K-SEL, type-level assumptions can now be reflected into the

kind level, in a way that was not possible before.

To see this, assume a context Γ = Γ1, X :{ M : ∗ } . . { M : ∗→ ∗ },Γ2. In this context, we have

Γ�{ M =� } : { M : ∗ } but also Γ�{ M =� } : { M : ∗→∗ }, by bound projection (ST-BND1,2),

transitivity (ST-TRANS) and subsumption (T-SUB). By K-SEL, we get Γ�{ M =� }.M : ∗→∗
and by K-APP, Γ�({ M =� }.M)� : ∗. If we now apply R-MEMSEL, we step from a well-kinded

type to the ill-kinded, stuck type ��:

({ M =� }.M)� −→β ��.

And thus we have invalidated subject reduction for open types. Similar counter examples can

be constructed to show that open types are no longer normalizing, invalidating Lemma 4.20

(well-kinded types have simply-kinded normal forms) and Lemma 5.22 (completeness of the

canonical system).

This does of course not mean that type safety no longer holds. It may well be the case that

restricted versions of subject reduction, normalization and subtyping inversion hold for closed

terms. However our proof strategies from Chapter 4 and Chapter 5 rely in essential ways on

types being normalized bottom-up, including the bodies of possibly inconsistent abstractions.

A safety proof for the extended calculus will therefore most likely require a different, more

robust approach to establish normalization. A promising candidate in the form of a logical-

relations-based strong normalization proof for D<: – a subset of DOT – was recently proposed

by Wang and Rompf [51].

6.2.3 Non-termination

Interestingly, the problem of non-terminating types can be recreated in the new Dotty compiler

for Scala [40]. The following code is taken from a recent bug report.2

2Filed on July 18, 2017 by the author. See https://github.com/lampepfl/dotty/issues/2887

116

6.2. Higher-order type members

trait A { type S[X[_] <: [_] => Any, Y[_]] <: [_] => Any; type I[_] }

trait B { type S[X[_],Y[_]]; type I[_] <: [_] => Any }

trait C { type M <: B }

trait D { type M >: A }

object Test {

def test(x: C & D): Unit = {

def foo(a: A, b: B)(z: a.S[b.I,a.I][b.S[a.I,a.I]]) = z

def bar(a: A, y: x.M) = foo(a,y)

def baz(a: A) = bar(a, a)

baz(new A {

type S[X[_] <: [_] => Any, Y[_]] = [Z] => X[Z][Y[Z]];

type I[X] = X

})(1)

}

}

This snippet uses an encoding of the well-known non-terminating untyped SKI-combinator

term S I I (S I I), first into the untyped lambda calculus, then into the Scala type system, in

order to trap the type checker in a non-terminating type reduction. To get the offending type

to kind check, it uses a variant of the above example of inconsistent bounds being reflected

into the kind level.

The code uses an intersection type C & D in order to introduce a pair of type members S and I

with inconsistent kind annotations. The use of the intersection C & D is necessary because

the compiler detects and rejects member declarations with blatantly inconsistent bounds. So

instead, two pairs of conflicting declarations are prepared in the traits A and B and combined

via the shared member M of the intersection C & D.

The example is deceptively simple. It may be surprising that the compiler is not able to detect

the inconsistent bounds and reject them. But in general, such bounds can arise through much

more subtle combinations of traits with seemingly consistent member declarations. Finding a

more systematic approach to detecting such instances remains an open problem.

117

7 Conclusion

We set out to show that higher-order bounded quantification, bounded operator abstractions

and translucent type definitions can be uniformly expressed through the concept of type

intervals. To this end, we developed Fω·· , a formal theory of higher-order subtyping with type

intervals.

In Fω·· , type intervals are represented through interval kinds. We showed how interval kinds

can be used to encode bounded universal quantification, bounded type operators as well as

singleton kinds in a semantics-preserving manner. We also gave examples of how interval

kinds can be used to abstract over and use first-class higher-order type inequalities. We

discussed and illustrated problems that arise when such abstractions are inconsistent, i.e.

when the corresponding interval kinds have inconsistent bounds.

We established basic metatheoretic properties of Fω·· . We proved subject reduction in its full

generality on the type level, and in a restricted form on the term level. We showed that types

and kinds are weakly normalizing by defining a bottom-up normalization procedure on raw

kinds and types and proving its soundness. Our normalization proof is based on hereditary

substitution and thus fully syntactic.

We gave an alternative, canonical presentation of the kind and type level of Fω·· , defined directly

on βη-normal forms. We proved that hereditary substitutions preserve canonical judgments

and used this result to establish equivalence of the declarative and canonical presentations.

We showed that canonical and, by equivalence, declarative subtyping can be inverted in the

empty context. Based on these results, our metatheoretic development culminated in a type

safety proof of Fω·· .

Our entire metatheoretic developments is syntactic, i.e. does not involve any model construc-

tions, and has been fully mechanized in Agda [50].

Finally, we briefly sketched a possible extension of Fω·· toward a higher-order version of the

calculus of Dependent Object Types (DOT) and discussed some of the challenges involved in

adapting the existing metatheory to that extension. Though we leave the full development of

119

Chapter 7. Conclusion

higher-order DOT for future work, we believe that the development of Fω·· constitutes in itself

a non-trivial step toward the goal of developing solid theoretical foundations for the Scala

programming language.

120

Bibliography

[1] A. Abel. Polarized subtyping for sized types. Mathematical Structures in Computer Science,

18:797–822, 10 2008.

[2] A. Abel and D. Rodriguez. Syntactic metatheory of higher-order subtyping. In M. Kaminski

and S. Martini, editors, Proceedings of the 22nd International Workshop on Computer

Science Logic (CSL 2008), 17th Annual Conference of the EACSL, Bertinoro, Italy, September

16–19, 2008, volume 5213 of LNCS, pages 446–460, Berlin, Heidelberg, 2008. Springer.

[3] N. Amin. Dependent Object Types. PhD thesis, School of Computer and Communication

Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland, 2016. EPFL

thesis no. 7156.

[4] N. Amin, S. Grütter, M. Odersky, T. Rompf, and S. Stucki. The essence of dependent object

types. In S. Lindley, C. McBride, P. Trinder, and D. Sannella, editors, A List of Successes

That Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of His 60th

Birthday, volume 9600 of LNCS, pages 249–272. Springer International Publishing, 2016.

[5] N. Amin, A. Moors, and M. Odersky. Dependent object types. In Proceedings of the

19th International Workshop on Foundations of Object-Oriented Languages (FOOL 2012),

Tucson, AZ, USA, October 22, 2012, 2012.

[6] N. Amin and T. Rompf. Type soundness proofs with definitional interpreters. In Pro-

ceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages

(POPL 2017), Paris, France, pages 666–679. ACM, 2017.

[7] N. Amin, T. Rompf, and M. Odersky. Foundations of path-dependent types. In Proceedings

of the 2014 ACM International Conference on Object Oriented Programming Systems

Languages & Applications (OOPSLA 2014), Portland, Oregon, USA, pages 233–249, New

York, NY, USA, 2014. ACM.

[8] D. Aspinall. Subtyping with singleton types. In L. Pacholski and J. Tiuryn, editors,

Computer Science Logic, 8th Workshop (CSL 1994), Kazimierz, Poland, September 25–30,

1994 Selected Papers, volume 933 of LNCS, pages 1–15, Berlin, Heidelberg, 1995. Springer.

[9] D. Aspinall and A. Compagnoni. Subtyping dependent types. Theoretical Computer

Science, 266(1-2):273–309, 2001.

121

Bibliography

[10] H. P. Barendregt. Lambda calculi with types. In S. Abramsky, D. M. Gabbay, and T. S. E.

Maibaum, editors, Handbook of Logic in Computer Science, volume 2, chapter 2, pages

117–309. Oxford University Press, Oxford, UK, 1992.

[11] L. Cardelli. Structural subtyping and the notion of power type. In Proceedings of the

15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

1988), San Diego, California, USA, pages 70–79, New York, NY, USA, 1988. ACM.

[12] L. Cardelli. Notes about Fω<:. Unpublished manuscript, October 1990.

[13] L. Cardelli and G. Longo. A semantic basis for Quest. Journal of Functional Programming,

1(4):417–458, 1991.

[14] L. Cardelli, S. Martini, J. C. Mitchell, and A. Scedrov. An extension of system f with

subtyping. In T. Ito and A. R. Meyer, editors, Proceedings of the International Conference

on Theoretical Aspects of Computer Software (TACS 1991), Sendai, Japan, September 24–27,

1991, pages 750–770, Berlin, Heidelberg, 1991. Springer.

[15] L. Cardelli and P. Wegner. On understanding types, data abstraction, and polymorphism.

ACM Computing Surveys, 17(4):471–523, Dec. 1985.

[16] A. Compagnoni. Higher-order subtyping and its decidability. Information and Computa-

tion, 191(1):41–103, 2004.

[17] A. Compagnoni and H. Goguen. Anti-symmetry of higher-order subtyping. In J. Flum

and M. Rodriguez-Artalejo, editors, Proceedings of the 13th International Workshop on

Computer Science Logic (CSL 1999), 8th Annual Conference of the EACSL Madrid, Spain,

September 20–25, 1999, volume 1683 of LNCS, pages 420–438, Berlin, Heidelberg, 1999.

Springer.

[18] A. Compagnoni and H. Goguen. Typed operational semantics for higher-order subtyping.

Information and Computation, 184(2):242–297, 2003.

[19] A. B. Compagnoni. Decidability of higher-order subtyping with intersection types. In

L. Pacholski and J. Tiuryn, editors, Computer Science Logic, 8th International Workshop,

(CSL 1994), Kazimierz, Poland, September 25–30, 1994, Selected Papers, volume 933 of

LNCS, pages 46–60, Berlin, Heidelberg, 1995. Springer.

[20] K. Crary. Foundations for the implementation of higher-order subtyping. In Proceedings

of the Second ACM SIGPLAN International Conference on Functional Programming (ICFP

1997), Amsterdam, The Netherlands, pages 125–135, New York, NY, USA, 1997. ACM.

[21] K. Crary. A syntactic account of singleton types via hereditary substitution. In Proceedings

of the Fourth International Workshop on Logical Frameworks and Meta-Languages, Theory

and Practice (LFMTP 2009), Montreal, Quebec, Canada, pages 21–29, New York, NY, USA,

2009. ACM.

122

Bibliography

[22] K. F. Crary. Type-Theoretic Methodology for Practical Programming Languages. PhD thesis,

Cornell University, 1998.

[23] V. Cremet, F. Garillot, S. Lenglet, and M. Odersky. A core calculus for Scala type checking.

In R. Královič and P. Urzyczyn, editors, Proceedings of the 31st International Symposium

on Mathematical Foundations of Computer Science (MFCS 2006), Stará Lesná, Slovakia,

August 28–September 1, 2006, volume 4162 of LNCS, pages 1–23, Berlin, Heidelberg, 2006.

Springer.

[24] J. Cretin and D. Rémy. System f with coercion constraints. In Proceedings of the Joint

Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL)

and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),

Vienna, Austria, July 2014, pages 34:1–34:10, New York, NY, USA, 2014. ACM.

[25] P.-L. Curien and G. Ghelli. Coherence of subsumption, minimum typing and type-

checking in F≤. Mathematical Structures in Computer Science, 2(1):55–91, March 1992.

[26] D. Duggan and A. Compagnoni. Subtyping for object type constructors. In Proceedings of

6th International Workshop on Foundations of Object-Oriented Languages (FOOL 6), San

Antonio, TX, USA, January 23, 1999, page 4, 1999.

[27] J.-Y. Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique

d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[28] R. Harper and D. R. Licata. Mechanizing metatheory in a logical framework. Journal of

Functional Programming, 17(4-5):613–673, July 2007.

[29] R. Harper and M. Lillibridge. A type-theoretic approach to higher-order modules with

sharing. In Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL 1994), Portland, Oregon, USA, pages 123–137, New York,

NY, USA, 1994. ACM.

[30] R. Harper and F. Pfenning. On equivalence and canonical forms in the lf type theory.

ACM Transactions on Computational Logic, 6(1):61–101, Jan. 2005.

[31] C. Keller and T. Altenkirch. Hereditary substitutions for simple types, formalized. In Pro-

ceedings of the Third ACM SIGPLAN Workshop on Mathematically Structured Functional

Programming (MSFP 2010), Baltimore, Maryland, USA, pages 3–10, New York, NY, USA,

2010. ACM.

[32] D. K. Lee, K. Crary, and R. Harper. Towards a mechanized metatheory of Standard ML.

In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL 2007), Nice, France, pages 173–184, New York, NY, USA,

2007. ACM.

[33] M. Lillibridge. Translucent Sums: A Foundation for Higher-Order Module Systems. PhD

thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213,

USA, 1997. Available as CMU Technical Report CMU-CS-97-122.

123

Bibliography

[34] A. Moors, F. Piessens, and M. Odersky. Generics of a higher kind. In Proceedings of the

23rd ACM SIGPLAN Conference on Object-oriented Programming Systems Languages and

Applications (OOPSLA 2008), Nashville, TN, USA, pages 423–438, New York, NY, USA,

2008. ACM.

[35] A. Moors, F. Piessens, and M. Odersky. Safe type-level abstraction in Scala. In Proceedings

of the International Workshop on Foundations of Object-Oriented Languages (FOOL 2008),

San Francisco, CA, USA, January 13, 2007, pages 1–13, 2008.

[36] B. Nordström, K. Petersson, and J. M. Smith. Programming in Martin-Löf ’s type theory,

volume 200. Oxford University Press, Oxford, UK, July 1990.

[37] U. Norell. Towards a practical programming language based on dependent type theory.

PhD thesis, Department of Computer Science and Engineering, Chalmers University of

Technology, Göteborg, Sweden, September 2007.

[38] M. Odersky, V. Cremet, C. Röckl, and M. Zenger. A nominal theory of objects with

dependent types. In L. Cardelli, editor, Proceedings of the 17th European Conference on

Object-Oriented Programming (ECOOP 2003), Darmstadt, Germany, July 21–25, 2003,

volume 2743 of LNCS, pages 201–224, Berlin, Heidelberg, 2003. Springer.

[39] M. Odersky, G. Martres, and D. Petrashko. Implementing higher-kinded types in Dotty.

In Proceedings of the 7th ACM SIGPLAN Symposium on Scala (SCALA@SPLASH 2016),

Amsterdam, Netherlands, October 30–November 4, 2016, pages 51–60, New York, NY, USA,

2016. ACM.

[40] M. Odersky and the Dotty Team. Dotty – a research platform for new language concepts

and compiler technologies for Scala – http://dotty.epfl.ch. Source code available

from https://github.com/lampepfl/dotty, 2017.

[41] F. Pfenning and C. Schürmann. System description: Twelf – a meta-logical framework

for deductive systems. In H. Ganzinger, editor, Proceedings of the 16th International

Conference on Automated Deduction (CADE-16), Trento, Italy, July 7–10, 1999, volume

1632 of LNCS, pages 202–206, Berlin, Heidelberg, 1999. Springer.

[42] B. Pierce and M. Steffen. Higher-order subtyping. Theoretical Computer Science, 176(1–

2):235–282, 1997.

[43] B. C. Pierce. Types and programming languages. MIT Press, Cambridge, MA, USA, 2002.

[44] T. Rompf and N. Amin. From F to DOT: Type soundness proofs with definitional inter-

preters. Technical report, Purdue University, 2015. http://arxiv.org/abs/1510.05216.

[45] T. Rompf and N. Amin. Type soundness for dependent object types (DOT). In Proceedings

of the 2016 ACM SIGPLAN International Conference on Object-Oriented Programming,

Systems, Languages, and Applications (OOPSLA 2016), Amsterdam, Netherlands, pages

624–641, New York, NY, USA, 2016. ACM.

124

Bibliography

[46] G. Scherer and D. Rémy. Full reduction in the face of absurdity. In J. Vitek, editor, Pro-

ceedings of the 24th European Symposium on Programming on Programming Languages

and Systems (ESOP 2015), Held as Part of the European Joint Conferences on Theory and

Practice of Software (ETAPS 2015), London, UK, April 11–18, 2015, volume 9032 of LNCS,

pages 685–709, Berlin, Heidelberg, 2015. Springer.

[47] M. Steffen. Polarized Higher-Order Subtyping. PhD thesis, Technische Fakultät, Univer-

sität Erlangen, 1998.

[48] C. A. Stone. Type definitions. In B. C. Pierce, editor, Advanced Topics in Types and

Programming Languages, chapter 9, pages 347–400. MIT Press, Cambridge, MA, USA,

2004.

[49] C. A. Stone and R. Harper. Deciding type equivalence in a language with singleton

kinds. In Proceedings of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages (POPL 2000), Boston, MA, USA, pages 214–227, New York, NY,

USA, 2000. ACM.

[50] S. Stucki. f-omega-int-agda – Fω with interval kinds mechanized in Agda. Source code

available from https://github.com/sstucki/f-omega-int-agda, 2017.

[51] F. Wang and T. Rompf. Towards strong normalization for dependent object types (DOT).

In P. Müller, editor, 31st European Conference on Object-Oriented Programming (ECOOP

2017), Barcelona, Spain, June 18–23, 2017, volume 74 of LIPIcs, pages 27:1–27:25, Dagstuhl,

Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[52] K. Watkins, I. Cervesato, F. Pfenning, and D. Walker. A concurrent logical framework: The

propositional fragment. In S. Berardi, M. Coppo, and F. Damiani, editors, International

Workshop on Types for Proofs and Programs (TYPES 2003), Torino, Italy, April 30–May 4,

2003, Revised Selected Papers, volume 3085 of LNCS, pages 355–377, Berlin, Heidelberg,

2004. Springer.

[53] A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Information and

Computation, 115(1):38–94, Nov. 1994.

[54] J. Zwanenburg. Pure type systems with subtyping. In J.-Y. Girard, editor, Proceedings of

the 4th International Conference on Typed Lambda Calculi and Applications (TLCA 1999),

L’Aquila, Italy, April 7–9, 1999, volume 1581 of LNCS, pages 381–396. Springer, Berlin,

Heidelberg, 1999.

125

CURRICULUM VITAE

Sandro Stucki

E-MAIL sandro.stucki@epfl.ch

WEB https://sstucki.github.io/

PHONE +41 77 429 5407

ADDRESS Avenue de Beaumont 1
1012 Lausanne
Switzerland

Research interests

- Programming languages.

- Type systems and theory.

- Semantics and implementation of domain-specific languages.

- Formal methods for scientific modeling.

Education

SEPT 2012 – TODAY PhD Computer Science at École Polytechnique Fédérale de Lausanne
(EPFL), Switzerland (ongoing)

PhD thesis at the Programming Methods Laboratory (LAMP) under the
supervision of Prof. Martin Odersky.

My main research revolves around the formalization of Scala’s core type
system. Other research topics include the design of domain-specific
languages for modeling probabilistic and stochastic systems, especially
biochemical systems. I also supervise MSc student projects and TA both
undergraduate and graduate classes.

SEPT 2011 – SEPT 2012 MSc Computer Science at Université Paris Diderot, France

Parisian Master of Research in Computer Science (MPRI)

Master’s thesis in collaboration with the Center for Synthetic and Systems
Biology (SynthSys) at the University of Edinburgh, UK and the Proofs,
Programs and Systems (PPS) laboratory at Université Paris Diderot.

The curriculum consisted mainly of courses in theoretical computer
science, including advanced algorithms and complexity, functional
programming and type systems, as well as computational biology.

OCT 2002 – FEB 2008 MSc Computer Science at EPFL, Switzerland

Master of Science in Computer Science, specialized in Computer Engineering

127

Master’s thesis in collaboration with Mitrionics AB, Lund, Sweden and
the Processor Architecture Laboratory (LAP) at EPFL.

The curriculum included advanced courses in computer architecture,
digital design, embedded systems and compiler construction as well as
courses in computational modeling of biological systems.

AUG 2004 – JUN 2005 Exchange year at Linköpings University (LiU), Sweden

Courses from the computer science curriculum.

Teaching experience

CS-452 – FALL 2016 As an assistant TA of the graduate course on Foundations of Software
(CS-452 – FOS), I supervised weakly exercise sessions, lead tutorial
sessions and helped in the design and grading of exams.

CS-171 – 2013–2016 As the head TA of the undergraduate course on Logic Systems (CS-171), I
supervised weakly exercise sessions and helped in the grading of exams
and term projects.

STUDENT SUPERVISION I supervised 3 MSc thesis projects on topics in the areas of type systems
and domain-specific languages.

Selected publications

WADLERFEST’16 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro
Stucki. The Essence of Dependent Object Types. In A List of Successes That
Can Change the World: Essays Dedicated to Philip Wadler on the Occasion of
His 60th Birthday, 2016.

SCALA’15 Manohar Jonnalagedda and Sandro Stucki. Fold-Based Fusion as a Library:
a Generative Programming Pearl. In Proc. ACM SIGPLAN Symposium on
Scala, 2015.

ICFEM’14 Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer, and Sandro
Stucki. Approximations for Stochastic Graph Rewriting. In Proc. Formal
Methods and Software Engineering, 2014.

OOPSLA’14 Manohar Jonnalagedda, Thierry Coppey, Sandro Stucki, Tiark Rompf, and
Martin Odersky. Staged Parser Combinators for Efficient Data Processing.
In Proc. Object Oriented Programming Systems Languages & Applications,
2014.

GPCE’14 Vojin Jovanovic, Amir Shaikhha, Sandro Stucki, Vladimir Nikolaev,
Christoph Koch, and Martin Odersky. Yin-yang: Concealing the Deep
Embedding of DSLs. In Proc. International Conference on Generative
Programming: Concepts and Experiences, 2014.

128

SCALA’13 Sandro Stucki, Nada Amin, Manohar Jonnalagedda, and Tiark Rompf.
What are the Odds? Probabilistic programming in Scala. In Proc. Workshop
on Scala, 2013.

Industry experience

JUL 2014 – SEP 2014 Research intern at Oracle Labs, Geneva, Switzerland

Development of graph database algorithms based on graph rewriting.

MAR 2010 – JULY 2011 Systems developer at ResQU AB, Lund, Sweden

- Software development of low-level software components of a GSM-based
search and rescue system (Hepkie) in C/C++

MAR 2008 – FEB 2010 Applications developer at Mitrionics AB, Lund, Sweden

- Application development of FPGA-accelerated applications (mostly for
bioinformatics and text processing) in C/C++ and Mitrion-C

- Product development of the Mitrion SDK (Mitrion-C compiler, hardware
abstraction layer “Mithal”) in Java and C/C++

APR 2006 – SEPT 2006 Internship at Thomson’s Corporate Research Lab, Hanover, Germany

Development of tools for GPU-accelerated image processing of
high-definition video frames in C/C++, OpenGL, GLSL.

Language skills

GERMAN Mother tongue.

ENGLISH Fluent speaker, very good writing skills (CAE certificate)

FRENCH Fluent speaker, good writing skills.

SWEDISH Fluent speaker, good writing skills (TISUS certificate).

129

