
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. M. Odersky, président du jury
Prof. V. Kuncak, directeur de thèse

Prof. R. Majumdar, rapporteur
Dr G. Ramalingam, rapporteur

Prof. J. Larus, rapporteur

Algorithmic Resource Verification

THÈSE NO 7885 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 9 NOVEMBRE 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE D'ANALYSE ET DE RAISONNEMENT AUTOMATISÉS
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Ravichandhran KANDHADAI MADHAVAN

This thesis is dedicated to my maternal grandmother. Observing her I learnt what it means to

work hard and be devoted.

Acknowledgements
As I reflect upon my journey through my PhD I feel a sense of elation but at the same time

an overwhelming sense of gratitude to many people who made me realize this dream. I take

this opportunity to thank them all. First and foremost, I thank my advisor Professor Viktor

Kuncak for the very many ways in which he has helped me during the course of my PhD. It

is impossible for me to imagine a person who would have more faith and confidence in me

than my advisor. His presence felt like having a companion with immense knowledge and

experience who is working side-by-side with me towards my PhD. Besides his help with the

technical aspects of the research, he was a great source of moral support. He shared my elation

and pride when I was going through a high phase, my disappointment and dejection during

paper rejections, and my effort, nervousness and excitement while working on numerous

submission deadlines. I also thank him for all the big responsibilities that he had trusted

me with: mentoring interns, managing several aspects of teaching like setting up questions,

leading teaching assistants and giving substitute lectures. These were great experiences that I,

retrospectively, think I am very fortunate to have had. I am very grateful to him that he had

overlooked many of my blunders and mistakes in discharging my responsibilities and have

always been very kind and supportive. Since it is impossible to elucidate all ways in which

he has helped me, I would conclude by saying that I would always be proud to be called his

advisee and I hope that I can live up to the trust and confidence he has in me in the future as

well.

I thank Dr. G. Ramalingam for being a constant source of inspiration and guidance all through

my research career. He has helped me in my career in numerous ways: first as a great teacher,

later as a great mentor and always as a great, supportive friend. I developed and honed much

of my research skills by observing him. What I find amazing and contagious is his rational and

deep reasoning not just about research problems but also about issues in life. I hope to have

absorbed a bit of that skill having been in close acquaintance with him for these many years. I

thank him for motivating me to pursue a PhD, to join EPFL and to work with my advisor. This

thesis would not have been possible without his advise and motivation. I am very happy and

proud that this dissertation is reviewed by him.

I thank Professor Martin Odersky for being an excellent teacher and a source of inspiration. I

greatly enjoyed the conversations we had and enjoyed working with him as a teaching assistant.

I am very grateful to him for being very supportive about my research, and for presiding over

the defense jury. I thank other members of the defense committee: Professor Jim Larus and

Professor Rupak Majumdar for reviewing my dissertation and providing me very valuable

i

Acknowledgements

comments and feedback on the research, despite their very busy schedules. I greatly enjoyed

discussing my research with them.

I thank Pratik Fegade and Sumith Kulal who in the course of their internships helped with im-

proving the system and the approach described in this dissertation. Particularly, I thank Pratik

Fegade for contributions to the development of the techniques detailed in section 3.8 of this

dissertation, and Sumith Kulal for helping carry out many experiments detailed in section 5. I

thank my current and past lab mates Mikaël Mayer, Jad Hamza, Manos Koukoutos, Nicolas

Voirol, Etienne Kneuss, Tihomir Gvero, Regis Blanc, Eva Darulova, Manohar Jonalagedda, Ivan

Kuraj, Hossein Hojjat, Phillipe Suter, Andrew Reynolds, Mukund Raghothaman, Georg Schimd,

Marco Antognini, Romain Edelmann, and also many other friends and colleagues. I enjoyed

the numerous discussions I had with them in the lab, over meals, during outing and in every

other place we were caught up in. In their company I felt like a truly important person. In

particular, I thank Mikaël Mayer for being an amazing friend and collaborator all through my

PhD life – with him I could freely share my successes as well as my frustrations. I thank Fabien

Salvi for providing great computing infrastructure and for accommodating each and every

request of mine no matter how urgent and time constrained they were. I thank Sylvie Jankow

for her kindness and help with administrative tasks.

Furthermore, I thank Professor K.V. Raghavan for being an excellent advisor of my master’s

thesis and for being a constant source of encouragement. I thank him for persuading me to

continue with a research career and eventually pursue PhD. I am also thankful to him and

Professor Deepak D’Souza for introducing me to the area of program analysis. I fell in love

with this amazing field at that very instant, and it feels like the rest of my research path was a

foregone conclusion. I thank Dr. Sriram Rajamani for being a great source of inspiration and

support in my research career.

Last but not the least, I thank my amazing family for their never ending love, support and

sacrifices. I thank my parents for, well, everything I am today. I thank my sister, my grand-

mother and my brother-in-law for their limitless love and support. I thank my nieces Abi and

Apoorva for showing me that life outside research can also be awesome. It is funny that they

were born, grew and went to school while I was still pursuing my PhD. And, of course, I thank

my wife Nikhila for her love and encouragement and, more importantly, for tolerating all my

quirks. I thank numerous other friends, colleagues and relatives who I, unfortunately, could

not mention but have made my PhD years the best phase in my life so far.

Lausanne, August 2017 Ravichandhran Kandhadai Madhavan

ii

Preface
Is the program I have written efficient? This is a question we face from the very moment

we discover what programming is all about. The improvements in absolute performance of

hardware systems have made this question more important than ever, because analytical

behavior becomes more pronounced with large sizes of the data that today’s applications

manipulate.

Despite the importance of this question, there are surprisingly few techniques and tools

that can help the developer answer such questions. Program verification is an active area

of research, yet most approaches for software focus on safety verification of the values that

the program computes. For performance, one often relies on testing, which is not only very

incomplete, but provides little help in capturing the reasons for the behavior of the program.

This thesis presents a system that can automatically verify efficiency of programs. The verified

bounds are guaranteed to hold for all program inputs. The prototypical examples of resources

are time (for example, the number of operations performed), or notions related to memory

usage (for example, the number of allocation steps performed). These bounds are properties

of the algorithms, not of the unerlying hardware implementation.

The presented system is remarkable in that it suffices for the developers to provide only

sketches of the bounds that are expected to hold (corresponding to expected asymptotic

complexity). The system can infer the concrete coefficients automatically and confirm the

resource bounds.

The paradigm supported by the approach in this thesis is purely functional, making it feasible

to consider verification of very sophisticated data structures. Indeed, a “by product” of this

thesis is that the author verified a version of rather non-trivial Conc Trees data structure

that was introduced by Dr. Aleksandar Prokopec, and that play an important role in parallel

collections framework of Scala.

The thesis deals with subtleties of verifying performance of programs in the presence of

higher-order functions. What is more, the thesis supports efficient functional programming in

practice through treatment of the construct inspired by imperative behavior: memoization

(caching). Memoization, and it special case, lazy evaluation, are known to improve efficiency

of functional programs both in practice and in asymptotic terms, so they make functional

programming languages more practical. Yet, reasoning about the performance in the presence

of these constructs introduces substantial aspects of state into the model. The thesis shows

how to make specification and verification feasible even under this challanging scenario.

iii

Preface

Verification of program correctness has been a long road, and we are starting to see practical

solutions that are cost-effective, especially for functional programs. With each step along this

road, the gap in reasoning ability between developers and tools is narrowing. The work in this

thesis makes a big step along an under-explored dimension of program meaning—reasoning

about performance bounds. Given the extent to which program development is driven by

performance considerations, closing this gap is likely to have not only great benefits for

verifying programs, but will also open up new applications that leverage reliable performance

information to improve and adapt software systems.

The tools are waking up to the notion of verified performance as program metric, and this will

make them even more profoundly important for software development.

Lausanne, Summer 2017 Viktor Kunčak

iv

Abstract
Static estimation of resource utilization of programs is a challenging and important problem

with numerous applications. In this thesis, I present new algorithms that enable users to

specify and verify their desired bounds on resource usage of functional programs. The re-

sources considered are algorithmic resources such as the number of steps needed to evaluate

a program (steps) and the number of objects allocated in the memory (alloc). These resources

are agnostic to the runtimes and platforms on which the programs are executed yet provide

a concrete estimate of the resource usage of an implementation. Our system is designed to

handle sophisticated functional programs that use recursive functions, datatypes, closures,

memoization and lazy evaluation.

In our approach, users can specify in the contracts of functions an upper bound they expect to

hold on the resource usages of the functions. The upper bounds can be expressed as templates

with numerical holes. For example, a bound steps ≤ ?*size(inp) + ? denotes that the number

of evaluation steps is linear in the size of the input inp. The templates can be seamlessly

combined with correctness invariants or preconditions necessary for establishing the bounds.

Furthermore, the resource templates and invariants are allowed to use recursive and first-class

functions as well as other features supported by the language. Our approach for verifying

such resource templates operates in two phases. It first reduces the problem of resource

inference to invariant inference by synthesizing an instrumented first-order program that

accurately models the resource usage of the program components, the higher-order control

flow and the effects of memoization, using algebraic datatypes, sets and mutual recursion.

The approach solves the synthesized first-order program by producing verification conditions

of the form ∃∀ using a modular assume/guarantee reasoning. The ∃∀ formulas are solved

using a novel counterexample-driven algorithm capable of discovering strongest resource

bounds belonging to the given template.

I present the results of using our system to verify upper bounds on the usage of algorithmic

resources that correspond to sequential and parallel execution times, as well as heap and

stack memory usage. The system was evaluated on several benchmarks that include advanced

functional data structures and algorithms such as balanced trees, meldable heaps, Okasaki’s

lazy data structures, streams, sorting algorithms, dynamic programming algorithms, and

also compiler phases like optimizers and parsers. The evaluations show that the system is

able to infer hard, nonlinear resource bounds that are beyond the capability of the existing

approaches. Furthermore, the evaluations presented in this dissertation show that, when

averaged over many benchmarks, the resource consumption measured at runtime is 80% of

v

Preface

the value inferred by the system statically when estimating the number of evaluation steps

and is 88% when estimating the number of heap allocations.

Key words: verification, static analysis, complexity, resource usage, decision procedures

vi

Résumé
L’analyse statique de la consommation en resources des programmes est un problème impor-

tant avec de nombreuses applications possibles. Dans cette thèse, je présente de nouveaux

algorithmes pour vérifier la consommation en ressources des programmes fonctionnels, algo-

rithmes qui permettent aux utilisateurs de spécifier à leur guise des limites en resources, et de

les vérifier. Les ressources considérées sont des ressources dites algorithmiques, comme par

exemple le nombre d’étapes nécessaires pour évaluer un programme (steps) ou le nombre total

d’objets qu’il crée en mémoire (alloc). Ces resources sont indépendantes de la plate-forme,

bien qu’elles fournissent une mesure concrète de la consommation des implémentations

d’algorithmes. Notre système peut analyser des programmes fonctionnels sophistiqués qui

comportent des fonctions récursives, des données typées, des fonctions ayant capturé des

variables (fermetures), des mises en cache (mémoïsations) ou des évaluations paresseuses.

Grâce à notre approche, les utilisateurs peuvent, dans les contrats de fonctions, spécifier une

limite supérieure à l’utilisation de ressources sous la forme de modèles à trous numériques,

par exemple steps ≤ ?*size(l) + ?. Les limites en ressources peuvent être combinées avec des

invariants ou des spécifications nécessaires à l’établissement de ces limites. Les limites en

ressources et les invariants peuvent également utiliser des fonctions récursives et les fonctions

elles-mêmes comme des valeurs, ainsi que d’autres fonctionnalités prises en charge par le

langage que nous avons développé. L’approche visant à vérifier les modèles à trous comporte

deux phases. La première phase réduit d’abord le problème de l’inférence des ressources

en inférence d’invariant, en convertissant le programme en un programme instrumenté

et du premier niveau (sans les fonctions comme valeurs). Ce programme modélise avec

précision l’utilisation des ressources, le flux de contrôle de plus haut niveau et les effets

de la mémoïsation, en utilisant des types de données algébriques, des ensembles et de la

récursion mutuelle. La deuxième phase vérifie ce programme en produisant des conditions de

vérification de la forme ∃∀ et en utilisant un raisonnement modulaire. Les formules ∃∀ sont

résolues à l’aide d’un nouvel algorithme. Cet algorithme tire profit de contre-exemples pour

découvrir les limites en ressources les plus précises pour le modèle donné.

Je présente les résultats de l’utilisation de notre système, lorsque celui-ci vérifie le plus préci-

sément possible les limites en les ressources algorithmiques qui correspondent aux temps

d’exécution séquentiels et parallèles, ainsi qu’à l’utilisation de la mémoire du tas et de la

pile. Nos tests, huit mille lignes de code en Scala, contiennent des arbres équilibrés comme

les arbres bicolores, des tas fusionnables, l’analyse statique de la propagation de constantes,

des algorithmes de tri paresseux comme le tri fusion paresseux, des structures de données

vii

Résumé

paresseuses comme les queues de temps constant d’Okasaki, des listes paresseuses cycliques,

des parseurs et des algorithmes de programmation dynamique comme le problème du sac à

dos. Les évaluations montrent que notre système est capable d’inférer de difficiles limites en

ressources non linéaires, surpassant ainsi les approches existantes. Moyennés sur l’ensemble

des tests, les résultats indiquent que, lors de l’exécution, la consommation en ressources est

de 80 % de la valeur inférée par notre système lors de l’estimation de steps, et de 88 % lors de

l’estimation de alloc.

Mots clefs : vérification, analyse statique, complexité, utilisation des ressources, procédures

de décision

viii

Contents
Acknowledgements i

Preface iii

Abstract v

List of figures xiii

1 Introduction 1

1.1 Overview of the Specification Approach . 6

1.1.1 Prime Stream Example . 7

1.2 Summary of Contributions . 11

1.3 Outline of the Thesis . 12

2 Semantics of Programs, Resources and Contracts 13

2.1 Syntax of the Core Language . 14

2.2 Notation and Terminology . 16

2.3 Resource-Annotated Operational Semantics . 18

2.3.1 Semantic Domains . 18

2.3.2 Resource Parametrization . 19

2.3.3 Structural Equivalence and Simulation . 20

2.3.4 Semantic Rules . 22

2.4 Reachability Relation . 23

2.5 Contract and Resource Verification Problem . 24

2.5.1 Valid Environments . 24

2.5.2 Properties of Undefined Evaluations . 25

2.5.3 Problem Definition . 27

2.6 Proof Strategies . 27

2.7 Properties of the Semantics . 28

2.7.1 Encapsulated Calls . 30

3 Solving Resource Templates with Recursion and Datatypes 31

3.1 Resource Instrumentation . 32

3.1.1 Instrumentation for Depth . 34

3.2 Modular, Assume-Guarantee Reasoning . 37

ix

Contents

3.2.1 Function-Level Modular Reasoning . 37

3.2.2 Function-level Modular Reasoning with Templates 42

3.3 Template Solving Algorithm . 42

3.3.1 Verification Condition Generation . 44

3.3.2 Successive Function Approximation by Unfolding 47

3.3.3 Logic Notations and Terminology . 48

3.3.4 The solveUNSAT procedure . 49

3.4 Completeness of Template Solving Algorithm . 55

3.4.1 Completeness of solveUNSAT Procedure 55

3.5 Solving Nonlinear Formulas with Holes . 62

3.6 Finding Strongest Bounds . 63

3.7 Analysis Strategies and Optimizations . 64

3.8 Divide-and-Conquer Reasoning for Steps Bounds 65

3.9 Amortized Analysis . 68

4 Supporting Higher-Order Functions and Memoization 71

4.1 Semantics with Memoization and Specification Constructs 72

4.1.1 Semantic Rules . 74

4.2 Referential Transparency and Cache Monotonicity 77

4.3 Proof of Referential Transparency . 78

4.4 Generating Model Programs . 81

4.4.1 Model Transformation . 82

4.5 Soundness and Completeness of the Model Programs 89

4.5.1 Correctness of Model Transformation . 92

4.5.2 Completeness of Model Transformation 96

4.6 Model Verification and Inference . 97

4.6.1 Creation-Dispatch Reasoning . 99

4.7 Correctness of Creation-Dispatch Reasoning . 100

4.7.1 Partial Correctness of Creation-Dispatch Obligations 101

4.8 Encoding Runtime Invariants and Optimizations 107

5 Empirical Evaluation and Studies 111

5.1 First-Order Functional Programs and Data Structures 112

5.1.1 Benchmark Descriptions . 112

5.1.2 Analysis Results . 115

5.1.3 Comparison with CEGIS and CEGAR . 118

5.2 Higher-Order and Lazy Data Structures . 120

5.2.1 Measuring Accuracy of the Inferred Bounds 121

5.2.2 Scheduling-based Lazy Data Structures . 123

5.2.3 Other Lazy Benchmarks . 129

5.3 Memoized Algortihms . 130

x

Contents

6 Related Work 135

6.1 Resource Analyses . 135

6.2 Higher-Order Program Verification . 137

6.3 Software Verification . 138

7 Conclusion and Future Work 141

Bibliography 154

Curriculum Vitae 155

xi

List of Figures
1.1 Relationship between number of steps and wall-clock execution time for a lazy

selection sort implementation . 2

1.2 Illustration of verifying resource bounds using contracts 6

1.3 Prime numbers until n using an infinite stream. 8

1.4 Specifying properties dependent on memoization state. 9

2.1 Syntax of types, expressions, functions, and programs 15

2.2 Resource-annotated operational semantics of the core language 17

2.3 Definition of the reachability relation . 24

3.1 Resource instrumentation for first-order programs. 33

3.2 Illustration of instrumentation. 33

3.3 Example illustrating the depth of an expression. 34

3.4 Illustration of depth instrumentation. 35

3.5 Instrumentation for the depth resource. 36

3.6 Definition of the path condition for an expression belonging to a program P . . 39

3.7 Counter-example guided inference for numerical holes. 43

3.8 The solveUNSAT procedure . 50

4.1 Operational semantics of higher-order specifications and memoization. 73

4.2 Syntax and semantics of the set operations used by the model programs 82

4.3 A constant-time, lazy take operation . 83

4.4 Illustration of the translation on lazy take example 84

4.5 Representation of closure and cache keys . 84

4.6 Translation of types in a program P with a set of type declarations Tdef P 85

4.7 Resource and cache-state instrumentation of source expressions 87

5.1 Benchmarks implemented as first-order functional Scala programs 113

5.2 Results of running ORB on the first-order benchmarks 115

5.3 Results of inferring bounds on depths of benchmarks 117

5.4 Results of inferring bounds on the number of heap-allocated objects 117

5.5 Results of inferring bounds on the call-stack usage 118

5.6 Higher-order, lazy benchmarks comprising 4.5K lines of Scala code 120

5.7 Steps and Alloc bounds inferred by ORB for higher-order, lazy benchmarks . . . 120

xiii

List of Figures

5.8 Comparison of the resource usage bounds inferred statically against runtime

resource usage . 121

5.9 Rotate function of the Real-time queue data structure 124

5.10 Definition of Okasaki’s Real-time queue data structure 125

5.11 Queue operations of Okasaki’s Real-time queue data structure 126

5.12 Invariants of conqueue data structure [Prokopec and Odersky, 2015] 128

5.13 Comparison of the inferred bound (shown as grids) and the dynamic resource

usage (shown as dots) for lazy merge sort . 130

5.14 Memoized algorithms verified by ORB . 131

5.15 Accuracy of bounds inferred for memozied programs 131

5.16 Comparison of the inferred bound (shown as grids) and the dynamic resource

usage (shown as dots) for Levenshtein distance algorithm 132

5.17 Comparison of the inferred bound (shown as grids) and the dynamic resource

usage (shown as dots) for ks . 132

xiv

1 Introduction

How fast can a computer program solve this problem? Answering this question is at the very

heart of computer science. It wouldn’t be an exaggeration to say that the word fast in the

above question primarily distinguishes computer science from conventional mathematics.

Developing computer programs that solves a problem faster or with reduced resource usage is

a subject of enormous practical value which has obsessed practitioners and theoreticians alike.

This quest for better performance has led to remarkable algorithms and theoretical results,

which are routinely implemented and deployed at large scales and thus profoundly influencing

our modern civilization by driving scientific discoveries, commerce and social interaction.

However, a question that developers are often faced with is whether an implementation of an

algorithm conforms to the performance expected out of it. The techniques presented in this

dissertation are aimed at addressing this challenge.

Unfortunately, statically determining the resource usage of a program has proven to be very

challenging. This is not only because the space of possible inputs of realistic programs is huge

(if not infinite), but also because of the sophistication in the modern runtimes, like virtual-

ization, on which the programs are executed. On the one hand this complexity poses serious

impediment to developing automated tools that can help with reasoning about performance,

on the other it has increased the need for developing such tools since programmers are also

faced with similar (if not more) difficulties in analyzing the resource usage of programs. These

challenges have resulted in wide ranging techniques for static estimation of resource usage of

programs that model the resource usage at various levels of abstraction.

Algorithmic Resources Approaches such as those described by Wilhelm et al. [2008] and

Carbonneaux et al. [2014] aim at estimating resource usage of programs in terms of concrete

physical quantities (e.g. seconds, bytes etc.) under controlled environments, like embedded

systems, for restricted class of programs where the number of loop iterations is a constant

or is independent of the inputs. On the other extreme there are the static analysis tools that

derive asymptotic upper bounds on the resource usage of general-purpose programs [Albert

et al., 2012, Gulwani et al., 2009, Nipkow, 2015]. Using concrete physical quantities to measure

1

Chapter 1. Introduction

Figure 1.1 – Relationship between number of steps and wall-clock execution time for a lazy
selection sort implementation

resource usage has the disadvantage that they are specific to a runtime and hardware, and

applicable to only restricted programs and runtimes. However, the alternative of using asymp-

totic complexities results in overly general estimates for reasoning about implementations,

especially for applications like compiler optimizations or for comparing multiple implementa-

tions. For instance, a program executing ten operations on each input and another executing

a million operations on every input have the same asymptotic complexity of O(1). For these

reasons, recent techniques such as Resource Aware ML [Hoffmann et al., 2012, 2017] have

resorted to more algorithmic measures of resource usage, such as the number of steps in

the evaluation of an expression (commonly referred to as steps) or the number of memory

allocations (alloc). These resources have the advantage that they are fairly independent of the

runtime, but at the same time provide more concrete information about the implementations.

This dissertation, which is a culmination of the prior research works: [Madhavan and Kuncak,

2014, Madhavan et al., 2017], further advances the static estimation of such algorithmic mea-

sures of resource usage to functional programs with recursive functions, recursive datatypes,

first-class functions, lazy evaluation and memoization.

Although the objective of our approach is not to compute bounds on physical time, our

initial experiments do indicate a strong correlation between the number of steps performed at

runtime and the actual wall-clock execution time for our benchmarks. Figure 1.1 shows a plot

of the wall-clock execution time and the number of steps executed by a function that computes

the kth minimum of an unsorted list using a lazy selection sort implementation. The figure

shows a strong correlation between one step performed at runtime and one nanosecond. (The

bounds inferred by our tool in this case almost accurately matched the runtime steps usage

for this benchmark as discussed in section 5.) Furthermore, for a lazy, bottom-up merge sort

implementation [Apfelmus, 2009] one step of evaluation at runtime corresponded to 2.35

nanoseconds (ns) on average with an absolute deviation of 0.01 ns, and for a real-time queue

2

data structure implementation [Okasaki, 1998] it corresponded to 12.25 ns with an absolute

deviation of 0.03 ns. These results further add to the importance of establishing resource

bounds even if they are with respect to the algorithmic resource metrics.

Contracts for Resources Most existing approaches for analyzing resource usage of programs

aim for complete automation but trade off expressive power and the ability to interact with

users. Many of these techniques offer little provision for users to specify the bounds they are

interested in, or to provide invariants needed to prove bounds of complex computation. For

instance, establishing precise resource usage of operations on balanced trees requires the

height or weight invariants that ensure balance. As a result, most existing approaches are

limited in the programs and resources that they can verify. This is somewhat surprising since

resource usage is as hard and as important as proving correctness properties, and the latter is

being accomplished with increasing frequency on large-scale, real-world applications such

as operating systems and compilers, by using user specifications [Harrison, 2009, Hawblitzel,

2009, Kaufmann et al., 2000, Klein et al., 2009, Leroy, 2009]. This dissertation demonstrates

that user-provided contracts are an effective means to make resource verification feasible on

complex resources and programs that are well outside the reach of automated techniques.

Moreover, it also demonstrates that the advances in SMT-driven verification technology,

traditionally restricted to correctness verification, can be fully leveraged to verify resource

usage of complex programs.

Specifying Resource Bounds Specifying resources using contracts comes with a set of chal-

lenges. Firstly, the resources consumed by the programs are not program entities that pro-

grammers can refer to. Secondly, the bounds on resources generally involve constants that

depend on the implementations, and hence are difficult to estimate by the users. Further-

more, the bounds, and invariants needed to establish the bound, often contain invocations of

user-defined recursive functions specific to the program being verified, such as size or height

functions on a tree structure.

Our system provides language-level support for a predefined set of algorithmic resources.

These resources are exposed to the users through special keywords like steps or alloc. Further-

more, it allows users to specify a desired bound on the predefined resources as templates

with numerical holes e.g. as steps ≤ ?*size(l) + ? in the contracts of functions along with other

invariants necessary for proving the bounds. The templates and invariants are allowed to

contain user-defined recursive functions. The goal of the system is to automatically infer

values for the holes that will make the bound hold for all executions of the function. (Section 2

formally describes the syntax and semantics of the input language.)

Verifying Resource Specifications In order to verify such resource templates along with

correctness specifications, I developed an algorithm for inferring an assignment for the holes

3

Chapter 1. Introduction

that will yield a valid resource bound. Moreover, under certain restrictions (such as absence

of nonlinearity) the algorithm infers the strongest possible values for the holes and infers

the strongest bound feasible for a given template. Specifically, the following are the three

main contributions of the inference algorithm. (a) It provides a decision procedure for a

fragment of ∃∀ formulas with nonlinearity, uninterpreted functions and algebraic datatypes.

(b) It scales to complex formulas whose solutions involved large, unpredicatable constants.

(c) It handles highly disjunctive programs with multiple paths and recursive functions. The

system was used to verify the worst-case resource usage of purely functional implementations

of many complex algorithms including balanced trees and meldable heap data structures.

For instance, it was able to establish that the number of steps involved in inserting into a

red-black tree implementation provided to the system is bounded by 132�log(size(t)+1))�+66.

The inference algorithm and the initial results appeared in the publication [Madhavan and

Kuncak, 2014], and is detailed in Section 3.

Memoization and Lazy Evaluation Another challenging feature supported by our system

are first-class functions that rely on (built-in) memoization and lazy evaluation. (Memoization

refers to caching of outputs of a function for each distinct input encountered during an exe-

cution, and lazy evaluation means the usual combination of call-by-name and memoization

supported by languages like Haskell and Scala.) These features are quite important. From a

theoretical perspective, it was shown by Bird et al. [1997] that these features make the language

strictly more efficient, in asymptotic terms, than eager evaluation. From a practical perspec-

tive, they improve the running time (as well as other resource usage) of functional programs

sometimes by orders of magnitude. For instance, the entire class of dynamic programming

algorithms is built around the notion of memoizing recursive functions. These features have

been exploited to design some of most practically efficient, functional data structures known

[Okasaki, 1998], and often find built-in support in language runtimes or libraries in various

forms e.g. Scala’s lazy vals and stream library, C#’s LINQ library.

However, in many cases, it has been notoriously difficult to make precise theoretical analysis

of the running time of programs that uses lazy evaluation or memoization. In fact, precise

running time bounds remain open in some cases (e.g. lazy pairing heaps described in page

79 of Okasaki [1998]). Some examples illustrative of this complexity are the Conqueue data

structure [Prokopec and Odersky, 2015] used to implement Scala’s data parallel operations,

and Okasaki’s persistent queues [Okasaki, 1998] that run in worst-case constant time. The chal-

lenge that arises with these features is that reasoning about resources like running time and

memory usage becomes state-dependent and more complex than correctness. Nonetheless,

they preserve the functional model (referential transparency) for the purpose of reasoning

about the result of the computation making them more attractive and amenable to functional

verification in comparison to imperative programming models.

4

Resource Verification with Memoization In this dissertation, I also show that the user-

driven, contract-based approach can be effective in verifying complex resource bounds in this

challenging domain: higher-order functional programs that rely on memoization and lazy

evaluation. From a technical perspective, verifying resource usage with these features present

unique challenges that are outside the purview of existing verifiers. For instance, consider a

function take that returns the first n elements of a stream. If accessing the tail of the stream

takes O(n) time then accessing n elements would take O(n2) time. However, invoking the

function take twice or more on the same list would make every call except the first run in

O(n) time due to the memoization of the tail of the stream. (Figure 1.3 presents a concrete

example.)

Verifying such programs require invariants that depend on the state of the memoization table.

Also in some cases, it is necessary to reason about aliasing of references to higher-order func-

tions. This dissertation presents new specification constructs that allow users to specify such

properties succinctly. It presents a multi-staged approach for verifying the specifications that

gradually encodes the input program and specifications into ∃∀ formulas (VCs) that use only

theories efficiently decidable by state-of-the-art SMT solvers. The resulting formulas i.e, VCs

are solved using the inference algorithm discussed in the previous paragraph. The encoding

was carefully designed so that it does not introduce any abstraction by itself. This meant that

users can help the system with more specifications until the desired bounds are established,

which adheres with the philosophy of verification. The main technical contributions of this

approach are: (a) development of novel specification constructs that allow users to express

properties on the state of the memoization table in the contracts and also specify the behavior

of first-class functions passed as parameters, (b) design of a new modular, assume-guarantee

reasoning for verifying state-dependent contracts in the presence of higher-order functions.

This approach and related results appeared in a prior publication: [Madhavan et al., 2017],

and is detailed Section 4.

Evaluation and Results The approach presented in this dissertation is implemented within

the open-source LEON verification and synthesis framework [Blanc et al., 2013]. The imple-

mentation is free and open source and available at https://github.com/epfl-lara/leon. The

implementation was used to infer precise resource usage of complex functional data structures

– balanced trees, heaps and lazy queues, as well as program transformations, static analyses,

parsers and dynamic programming algorithms. Some of these benchmarks have never been

formally verified before even with interactive theorem provers.

Furthermore, through rigorous empirical evaluation, the precision of the constants inferred by

our tool was compared to those obtained by running the benchmarks on concrete inputs (for

the resources steps and alloc). Our results confirmed that the bounds inferred by the tool were

sound over-approximations of the runtime resource usage, and showed that the worst-case

resource usage was, on average, at least 80% of the value inferred by the tool when estimating

the number of evaluation steps, and is 88% for the number of heap-allocated objects. For

5

Chapter 1. Introduction

1 import leon.instrumentation._
2 import leon.invariant._
3 object ListOperations {
4 sealed abstract class List
5 case class Cons(head: BigInt, tail: List) extends List
6 case class Nil() extends List
7

8 def size(l: List): BigInt = l match {
9 case Nil() ⇒ 0

10 case Cons(_, t) ⇒ 1 + size(t)
11 }
12

13 def append(l1: List, l2: List): List = (l1 match {
14 case Nil() ⇒ l2
15 case Cons(x, xs) ⇒ Cons(x, append(xs, l2))
16

17 }) ensuring (res ⇒ size(res) == size(l1) + size(l2) && steps ≤ ? ∗size(l1) + ?)
18

19 def reverse(l: List): List = {
20 l match {
21 case Nil() ⇒ l
22 case Cons(hd, tl) ⇒ append(reverse(tl), Cons(hd, Nil()))
23 }
24 } ensuring (res ⇒ size(res) == size(l) && steps ≤ ? ∗(size(l)∗size(l)) + ?)
25 }

Figure 1.2 – Illustration of verifying resource bounds using contracts

instance, our system was able to infer that the number of steps spent in accessing the kth

element of an unsorted list l using a lazy, bottom-up merge sort algorithm [Apfelmus, 2009] is

bounded by 36(k · �log(l .si ze)�)+53l .si ze+22. The number of steps used by this program at

runtime was compared against the bound inferred by our tool by varying the size of the list

l from 10 to 10K and k from 1 to 100. The results showed that the inferred values were 90%

accurate for this example. To the best of my knowledge, our tool is the first available system

that can establish such complex resource bounds with this degree of automation.

1.1 Overview of the Specification Approach

In this section, I provide a brief overview of how to express programs and specifications in our

system using pedagogical examples, and summarize the verification approach. This section

is aimed at highlighting the challenges involved in verifying the resource usage of programs

that are considered in this dissertation. It also provides an overview of a few specification

constructs supported by our system, which will be formally introduced in the later chapters.

Consider the Scala program shown in Figure 1.2 that defines a list as a recursive datatype

and defines three operations on it. This example is aimed at highlighting the deep inter-

6

1.1. Overview of the Specification Approach

relationships between verifying correctness properties and resource bounds. The function

size computes the size of the list, the function append concatenates a list l2 to a list l1, and

the function reverse reverses the list by invoking append and itself recursively. Consider the

function reverse. The resource template shown in the postcondition of reverse specifies that

the number of steps performed by this function is quadratic in the size of the list. The goal is to

infer a bound that satisfies this template.

Intuitively, the reason for this quadratic complexity is because the call to append that happens

at every recursive step of reverse takes time linear in the size of the argument passed to it: tl
(which equals l.tail). To establish this we need two facts: (a) the function append takes time

that is linear in the size of its first formal parameter. (b) The size of the list returned by reverse
is equal to the size of the input list, since append is invoked on the list returned by the recursive

call to reverse. Therefore, we have the predicate: size(res)== size(l) in the postcondition of

reverse. However, in order to establish this, we also need to know the size of the list returned by

append in terms of the sizes of its inputs. This necessitates a postcondition for append which

asserts that the size of the list returned by append is equal to sum of the sizes of the input lists.

Thus, to verify the steps bound, one requires all the invariants specified in the program. This

example also illustrates the need for an expressive contract language, since even for this small

program we need all the invariants shown in the figure to verify its resource bounds.

A major feature offered by our system is that it allows seamless combination of such user-

defined invariants with resource templates. The invariants are utilized during the verification

of resource bounds to verify the bound and also infer precise values for the constants. The

system inferred the bound 11size(l)2+2 for the function reverse.

1.1.1 Prime Stream Example

In this section, I illustrate specification and verification of programs with higher-order fea-

tures and lazy evaluation using the pedagogical example shown in Figure 1.3 that creates an

infinite stream of prime numbers. The example also illustrates some of the novel specification

constructs that are supported by our system for proving precise bounds of such programs.

The class SCons shown in Figure 1.3 defines a stream that stores a pair of unbounded integer

(BigInt) and boolean, and has a generator for the tail: tfun which is a function from Unit to

SCons. The lazy field tail of SCons evaluates tfun() when accessed the first time and caches

the result for reuse. The program defines a stream primes that lazily computes for all natural

numbers starting from 1 its primality Notice that the second argument of the SCons assigned

to primes is a lambda term (anonymous function) that calls nextElem(2), which when invoked

creates a new stream that applies nextElem to the next natural number and so on. The function

isPrimeNum(n) tests the primality of n by checking if any number greater than 1 and smaller

than n divides n using an inner function rec. The number of steps it takes is linear in n.

The function primesUntil returns all prime numbers until the parameter n using a helper

7

Chapter 1. Introduction

1 private case class SCons(x: (BigInt,Bool), tfun:() ⇒ SCons) {
2 lazy val tail = tfun()
3 }
4 private val primes = SCons((1, true), () ⇒ nextElem(2))
5

6 def nextElem(i: BigInt): SCons = {
7 require(i ≥ 2)
8 val x = (i, isPrimeNum(i))
9 val y = i + 1

10 SCons(x, () ⇒ nextElem(y))
11 } ensuring(r ⇒ steps ≤ ? ∗ i + ?)
12

13 def isPrimeNum(n: BigInt): Bool = {
14 def rec(i: BigInt): Bool = {
15 require(i ≥ 1 && i < n)
16 if (i == 1)
17 true
18 else
19 (n % i != 0) && rec(i − 1)
20 } ensuring (r ⇒ steps ≤ ? ∗ i + ?)
21 rec(n − 1)
22 } ensuring(r ⇒ steps ≤ ? ∗ n + ?)
23

24 def isPrimeStream(s: SCons, i: BigInt): Bool = {
25 require(i ≥ 2)
26 s.tfun ≈ (() ⇒ nextElem(i))
27 }
28

29 def takePrimes(i: BigInt, n: BigInt, s: SCons): List = {
30 require(0 ≤ i && i ≤ n && isPrimeStream(s, i+2))
31 if(i < n) {
32 val t = takePrimes(i+1, n, s.tail)
33 if(s.x._2)
34 Cons(s.x._1, t)
35 else
36 t
37 } else Nil()
38 } ensuring(r ⇒ steps ≤ ? ∗ (n(n−i)) + ?)
39

40 def primesUntil(n: BigInt): List = {
41 require(n ≥ 2)
42 takePrimes(0, n−2, primes)
43 } ensuring(r ⇒ steps ≤ ? ∗ n2 + ?)

Figure 1.3 – Prime numbers until n using an infinite stream.

function takePrimes, which recursively calls itself as long as i < n on the tail of the input

stream (line 32), incrementing the index i . Consider now the running time of this function. If

takePrimes is given an arbitrary stream s, its running time cannot be bounded since accessing

the field tail at line 32 could take any amount of time. Therefore, we need to know the resource

8

1.1. Overview of the Specification Approach

1 def concrUntil(s: SCons, i: BigInt): Bool =
2 if(i > 0)
3 cached(s.tail) && concrUntil(s.tail, i−1)
4 else true
5

6 def primesUntil(n: BigInt): List = {
7

8 // see Figure 1.3 for the code of the body
9

10 } ensuring{r ⇒ concrUntil(primes, n−2) &&
11 (if(concrUntil(primes, n−2) in inSt)
12 steps ≤ ? ∗ n + ?
13 else steps ≤ ? ∗ n2 + ?) }

Figure 1.4 – Specifying properties dependent on memoization state.

usage of the closures accessed by takePrimes, namely s.(tail)∗.tfun. However, we expect that

the stream s passed to takePrimes is a suffix of the primes stream, which means that tfun is a

closure of nextElem. To allow expressing such properties our system reintroduces the notion of

intensional or structural equivalence, denoted ≈, between closures [Appel, 1996].

Structural Equality as a means of Specification In our system, closures are allowed to be

compared structurally. Two closures are structurally equal iff their abstract syntax trees

are identical without unfolding named functions. This equivalence is formally defined in

section 2.3. For example, the comparison at line 27 of Figure 1.3 returns true iff the tfun
parameter of s is a closure that invokes nextElem on an argument that is equal to i. This equality

is found to be an effective and low-overhead means of specification for the following reasons.

(a) Many interesting data structures based on lazy evaluation use aliased references to closures

(e.g. Okasaki’s scheduling-based data structures [Okasaki, 1998, Prokopec and Odersky, 2015]

discussed in section 5.2). Expressing invariants of such data structures requires equating clo-

sures. While reference equality is too restrictive for convenient specification (and also breaks

referential transparency), semantic or extensional equality between closures is undecidable,

and hence introduces high specification/verification burden. Structural equality is well suited

in this case.

(b) Our approach is aimed at (but not restricted to) callee-closed programs where the targets of

all indirect calls are available at analysis time. (Section 2.3 formally describes such programs.)

In such cases, it is often convenient and desirable to state that a closure has the same behavior

as a function in the program, as was required in Figure 1.3.

(c) Structural equality also allows modeling reference equality of closures by augmenting

closures with unique identifiers as they are created in the program.

While structural equality is a well-studied notion [Appel, 1996], to my knowledge, no prior

9

Chapter 1. Introduction

work uses it as a means of specification. Using structural equality, it can be specifed that the

stream passed as input to takePrimes is an SCons whose tfun parameter invokes nextElem(i+2)
(see function isPrimeStream and the precondition of takePrimes). This allows the system to

bound the steps, which denotes the number of primitive evaluation steps, of the function

takePrimes to O(n(n− i)) and that of primesUntil to O(n2). For primesUntil, our tool inferred that

steps ≤ 16n2+28.

Properties Dependent on Memoization State. The quadratic bound of primesUntil is precise

only when the function is called for the first time. If primesUntil(n) is called twice, the time

taken by the second call would be linear in n, since every access to tail within takePrimes will

take constant time as it has been cached during the previous call to takePrimes. The time

behavior of the function depends on the state of the memoization table (or cache) making the

reasoning about resources imperative.

To specify such properties the system supports a built-in operation cached(f(x)) that can query

the state of the cache. This predicate holds if the function f is a memoized function and is

cached for the value x. Note that it does not invoke f(x). The function concrUntil(s, i) shown in

Figure 1.4 uses this predicate to state a property that holds iff the first i calls to the tail field of

the stream s have been cached. (Accessing the lazy field s.tail is similar to calling a memoized

function tail(s).) This property holds for primes stream at the end of a call to primesUntil(n), and

hence is stated in the postcondition of primesUntil(n) (line 10 of Figure 1.4). Moreover, if this

property holds in the state of the cache at the beginning of the function, the number of steps

executed by the function would be linear in n. This is expressed using a disjunctive resource

bound (line 11).

Observe that in the postcondition of the function, one need to refer to the state of the cache

at the beginning of the function, as it changes during the execution of the function. For this

purpose, our system supports a built-in construct “inSt" that can be used in the postcondition

to refer to the state at the beginning of the function, and an “in" construct which can be used

to evaluate an expression in the given state. These expressions are meant only for use in

contracts. These constructs are required since the cache is implicit and cannot be directly

accessed by the programmers to specify properties on it. On the upside, the knowledge that

the state behaves like a cache is exploited by the system to reason functionally about the result

of the functions, which results in fewer contracts and more efficient verification.

Verification Strategy. Our approach, through a series of transformations, reduces the prob-

lem of resource bound inference for programs like the one shown in Figure 1.3 to invariant

inference for a strict, functional first-order program. It solves it by applying an inductive,

assume-guarantee reasoning. The inductive reasoning exploits and uses the monotonic evo-

lution of cache, and the properties that are monotonic with respect to the changes to the

cache.

10

1.2. Summary of Contributions

The inductive reasoning works on the assumption that the expressions in the input program

terminate, which is verified independently using an existing termination checker. Our system

uses the Leon termination checker for this purpose [Nicolas Voirol and Kuncak, 2017], but

other termination algorithms for higher-order programs [Giesl et al., 2011, Jones and Bohr,

2004, Sereni, 2006] are also equally applicable. Note that memoization only affects resource

usage and not termination, and lazy suspensions are in fact lambdas with unit parameters.

This strategy of decoupling termination checks from resource verification enables checking

termination using simpler reasoning, and then use proven well-founded relations during

resource analysis. This allows us to use recursive functions for expressing resource bounds

and invariants, and enables modular, assume-guarantee reasoning that relies on induction

over recursive calls (previously used in correctness verification) to establish resource bounds.

This aspect is discussed in more detail in section 3.2.

1.2 Summary of Contributions

In summary, the following are the major contributions of this dissertation:

I. I propose a specification approach for expressing resource bounds of programs and the

necessary invariants in the presence of recursive functions, recursive datatypes, first-class

functions, memoization and lazy evaluation.

• The approach allows specifying bounds as templates with numerical holes in the post-

conditions of functions, which are automatically solved by the system (section 2).

• The specifications can use structural-equality-based constructs for specifying properties

of higher-order functions (section 2).

• The specification can assert properties on the state of the memoization table (section 3).

II. I present a system for verifying the contracts of programs expressed in our language by

designing new algorithms and extending existing techniques from contract-based correctness

verification.

• I present a novel inference algorithm for solving ∃∀ formulas with recursive functions,

inductive datatypes and nonlinearity such as multiplication of two unknown variables. I

prove that the algorithm is sound, always terminates, and also is complete under certain

restrictions (section 3.3).

• I present an encoding of higher-order functions with memoization as first-order pro-

grams with recursive functions, dataypes and sets, and establish its soundness and

completeness (section 4.4).

• I present an assume-guarantee reasoning for higher-order functions with memoization,

11

Chapter 1. Introduction

which exploits properties that monotonically evolve with respect to the changes in the

cache. I establish the soundness of this reasoning (section 4.6).

III. I present the results of using the system to establish precise resource bounds of 50 bench-

marks, comprising 8K lines of functional Scala code, implementing complex data structures

and algorithms that are outside the reach of existing approaches. The experimental evalua-

tions show that while the inferred values are over-estimated by the runtime values, the runtime

values are 80% of the value inferred by the tool when averaged over all benchmarks (section 5).

1.3 Outline of the Thesis

The rest of the dissertation is organized as follows:

• Chapter 2 describes the core syntax and semantics of the input language and specifica-

tions. It formalizes the semantics of the resources supported by our system. It defines

the problem of resource and contract verification, and formally establishes several

properties of the core language.

• Chapter 3 describes the algorithm for inferring resource bounds for first-order programs

without higher-order features and memoization. It details the resource instrumentation

performed by our system, the modular assume-guarantee reasoning used by system,

and the inference algorithm for inferring holes.

• Chapter 4 describes the extensions to the algorithm for inferring resource bounds

of programs with first-class functions and memoization. It formally describes the

semantics of memoization and related specification constructs. It formally presents and

proves the verification approach that can handle programs with these features.

• Chapter 5 presents the results of evaluation of the system on the benchmarks using

summary statistics and graphical plots. It also presents the fully verified implementation

of the real-time queue data structure.

• Chapter 6 discusses the works related to the topic of this dissertation.

12

2 Semantics of Programs, Resources
and Contracts

The purpose of abstraction is not to be vague, but

to create a new semantic level in which one

can be absolutely precise.

— Edsger W. Dijkstra

In this chapter, I formally present and discuss the core syntax and semantics of the programs

accepted by our system and eventually define the problem of resource verification. As a first

step, I introduce a core language that captures the relevant syntactic aspects of the input

programs. Specifically, the core language supports recursive functions, recursive datatypes,

contracts and resource templates. For the sake of succinctness and reducing notational over-

head, for certain constructs of the core language I adopt the syntax of lambda calculus instead

of following the the syntax of Scala. For instance, anonymous functions are denoted as λ terms

and variable declarations are replaced by “let" binders. Nonetheless, the constructs of the

language have a straightforward translation to Scala. The syntax description of the language

also includes higher-order constructs, lazy evaluation and memoization, and specification

constructs meant for use with these features. However since these features are quite involved

and are orthogonal to the definition of the problem, in this chapter I will focus mostly on

first-order constructs and defer the discussion of the semantics of other constructs to later

chapters.

The semantics I present here is a big-step, operational semantics that has two unorthodox

features. Firstly, the semantics not only characterizes the state changes induced by the lan-

guage constructs but also characterizes their resource usage. To succinctly formalize usage

of multiple resources supported by our system, the semantics is parameterized by “cost"

functions. These cost functions capture resource-specific parameters and are independently

(re)defined for each resource that is of interest. I also present the definition of these cost

functions for the important resources supported by our system: steps, alloc, stack and depth.

The second unorthodox feature of the semantics is that it assigns an operational meaning to

contracts and specification constructs. Thus contracts in our system are expressions of the

13

Chapter 2. Semantics of Programs, Resources and Contracts

language and, in principle, are executable on an appropriate runtime that can implement their

semantics. This naturally allows contracts to use and manipulate the same entities used by

the rest of the program. For instance, the variables, data structures and functions declared in

the program are automatically available to the predicates in the contracts without restriction.

In the final sections of this chapter, I define the problem of contract and resource verification

for open programs (or libraries) and define notions like encapsulation using the operational

semantics of the constructs of the language. These definitions are used to establish the

soundness of our system in the later chapters (Chapters 3 and 4).

2.1 Syntax of the Core Language

Figure 2.1 show the syntax of the core functional language describing the syntax of the input

programs. Esrc shows the syntax of the expressions that can be used in the implementation.

They consists of variables Vars, constants Cst, primitive operations on integers and booleans

Prim, a structural equality operator eq, let expressions, match expressions, lambda terms,

direct calls to named functions: f x, and indirect calls or lambda applications: x y . The rule

Blockα is parameterized by the subscript α and defines the let, match and if-then-else combi-

nators that operate over a base expression eα. The integers in our language are unbounded

big integers. They correspond to the BigInts of Scala. Tdef shows the syntax of user-defined

recursive datatypes and Fdef shows the syntax of function definitions. The functions are

classified into source functions Fdefsrc, which are considered as implementations, and specifi-

cation functions Fdefspec, which can be used only in the specifications (explained shortly). As

a syntactic sugar, tuples are considered as a special datatype. Tuple constructions are denoted

using (x1, · · · , xn), and selecting the i th element of a tuple is denoted using x.i .

For ease of formalization, the language incorporates the following syntactic restrictions with-

out reducing generality. Most expressions except lambda terms are expressed in A-normal

form i.e, the arguments of the operations performed by the expressions are variables. The

conditional expressions such as if-then-else and match constructs are an exception, since the

expressions along the branches need to be executed only when the corresponding guards are

true. All lambdas are of the form: λx. f (x, y) where f is a named function whose argument

is a pair (a two element tuple) and y is a captured variable. Note that this lifting of bodies of

lambda terms to named functions is a simple syntactic refactoring which does not limit the

expressiveness of the language.

Every expression belonging to our language has a static label belonging to Labels (not shown

in Figure 2.1). For instance, the label of an expression e could a combination of the name

of the source file that contains the expression e and the position of e in the source file. Let

e� denotes an expression with its label. To reduce clutter, the labels are omitted if it is not

relevant to the context. A program P is a set of functions definitions in which every function

identifier is unique, every direct call invokes a function defined in the program, and the labels

of all expressions are unique.

14

2.1. Syntax of the Core Language

x, y ∈Vars (Variables)

c ∈Cst (Variables & Constants)

f ∈ Fids (Function Identifiers)

d ∈Dids (Datatype identifiers)

Ci ∈Cids, i ∈N (Constructor Identifiers)

a ∈ TVars (Template Variables)

x̄ ∈Vars∗ (Sequence of Variables)

τ̄ ∈Vars∗ (Sequence of Types)

Tdef ::= type d := (C1 τ̄, · · · ,Cn τ̄)

τ ∈ Type ::= Unit | Int | Bool | τ⇒ τ | d

Blockα ::= let x := eα in eα | x match{(C x̄⇒ eα;)+} | if (x) eα else eα

pr ∈ Prim ::= + | − | ∗ | · · · | ∧ | ¬
es ∈ Esrc ::= x | c | pr x | x eq y | f x | C x̄ | eλ | x y | Blocks

eλ ∈ Lam ::= λx. f (x, y)

ep ∈ Espec ::= es | Blockp | (fp x) | res | resource ≤ ub | Emem

| x fmatch {(eλ⇒ ep ;)+}

Emem ::= cached(f x) | inSt | outSt | in(ep , x) | ep
�

resource ::= steps | alloc | stack | depth

ub ∈Bound ::= ep | et

et ∈ Etmp ::= a · x+et | a

Fdefsrc ::= (@memoize)? def fs x := {ep} es {ep}

Fdefspec ::= def fp x := {ep} ep {ep}

Fdef ::= Fdefsrc ∪ Fdefspec

Program ::= 2(Tdef∪Fdef)

Figure 2.1 – Syntax of types, expressions, functions, and programs

The annotation @memoize serves to mark functions that have to be memoized. Such functions

are evaluated exactly once for each distinct input passed to them at run time. Notice that

only source functions are allowed to be memoized. The language as such uses call-by-value

evaluation strategy. But this annotation allows the language to simulate call-by-need or lazy

evaluation strategy. This feature is discussed in detail in section 4.

Expressions that are bodies of functions can have contracts (also called specifications). Such

expressions have the form {e1} e {e2} where e1 and e2 are the pre-and post-conditions of e re-

spectively. These conditions can use constructs that are not available to the source expressions.

In other words, their syntax given by Espec permits more constructs than Esrc. In particular,

the postcondition of an expression e can refer to the result of e using the variable res, and can

15

Chapter 2. Semantics of Programs, Resources and Contracts

refer to the resource usage of e using the keywords steps, alloc or depth. Users can specify upper

bounds on resources as templates with holes as defined by et ∈ Etmp. The holes always appear

as coefficients of variables defined or visible in the postconditions. The variables could be

bound to more complex expressions through let binders. We enforce that the holes are distinct

across function definitions. The specification constructs fmatch and those given by Emem are

meant for specifying the behavior of first-class functions and the behavior of expressions

under memoization, respectively. I will not focus on these constructs here and will explain

them in detail in Chapter 4. Before I discuss the formal semantics of the language, I present a

few basic notation and terminology used in the rest of the sections.

2.2 Notation and Terminology

Partial Functions Given a domain A, ā ∈ A∗ denotes a sequence of elements in A, and

ai refers to the i th element. Note that this is different from tuple selector x.i , which is an

expression of the language. The notation A �→B denotes a partial function from A to B . Given

a partial function h, ĥ(x̄) denotes the function that applies h point-wise on each element of

x̄. h[a �→ b] denotes the function that maps a to b and every other value x in the domain of

h to h(x). The notation h[ā �→ b̄] denotes h[a1 �→ b1] · · · [an �→ bn]. The function h is omitted

in the above notation if it is an empty function. Let h1 �h2 be defined as (h1 �h2)(x) =
if (x ∈ dom(h2)) h2(x) else h1(x). Let h1 � h2 iff the function h2 includes all binding of h1 i.e,

∀a ∈ dom(h1).h1(a)= h2(a). A closed integer interval from a to b is denoted using [a,b].

Expression Operations Let labelsP denote the set of labels of all expressions in a program P .

Let typeP(e) denote the type of an expression e in a program P . Given an expression e, let FV (e)

denote the set of free variables of e. Expressions without free variables are referred to as closed

expressions. Given a lambda term λx. f (x, y), y is called the captured variable of the lambda

term. Note that FV (eλ) is a singleton set containing the captured variable. target(eλ) denotes

the function called in the body of the lambda. (Recall that the body of every lambda term is

call to a named function.) The operation e[e ′/x] denotes the syntactic replacement of the free

occurrences of x in e by e ′. This operation replaces expressions along with their static labels

and also performs alpha-renaming of bound variables, if necessary, to avoid variable capturing.

A substitution ς : Vars �→ Expr is a partial function from variables to expressions. Let e ς denote

e[ς(x1)/x1] · · · [ς(xn)/xn], where dom(ς)= {x1, · · ·xn}. Given a substitution ι : TVars �→Z, let e ι

represent the substitution of the holes by the values given by the assignment. Similarly, let P ι

denote the program obtained by replacing the every hole a in the bodies of functions in P by

ι(a). This notation is also extended to formulas later. Programs and expressions without holes

as referred to as concrete programs and expressions. Let bodyP (f) and paramP (f) denote the

body and parameter of a function f defined in a program P

16

2.2. Notation and Terminology

CST

c ∈Cst

Γ� c ⇓
ccst

c,Γ

VAR

x ∈Vars

Γ : (H ,σ)� x ⇓
cvar

σ(x),Γ

PRIM

pr ∈ Prim

Γ� pr x ⇓
cpr

pr(σ(x)),Γ

EQUAL

v =σ(x)≈
H
σ(y)

Γ : (H ,σ)� x eq y ⇓
ceq

v,Γ

LET

Γ� e1 ⇓p v1, (H ′,σ′) (H ′,σ[x �→ v1])� e2 ⇓q v2, (H ′′,σ′′)

Γ : (H ,σ)� let x := e1 in e2 ⇓
clet⊕p⊕q

v2, (H ′′,σ)

LAMBDA

a = fresh(H) clo= (λx. f (x, y), [y �→σ(y)])

Γ : (H ,σ)�λx.f (x,y) ⇓
Cλ

a, (H[a �→ clo],σ)

CONS

a = fresh(H) H ′ =H[a �→ (cons σ̂(x̄))]

(H ,σ)� cons x̄ ⇓
ccons

a, (H ′,σ)

MATCH

H(σ(x))=Ci v̄ (H ,σ[x̄i �→ v̄])� ei ⇓q v, (H ′,σ′)

Γ : (H ,σ)� x match {Ci x̄i⇒ ei)}n
i=1 ⇓

cmatch(i)⊕q
v, (H ′,σ)

IF

Γ� ei ⇓q v,Γ′

Γ� if (x) e1 else e2 ⇓
cif⊕q

v,Γ′
where i =

{
1 σ(x)= true

0 σ(x)= false

CONCRETECALL

(H ,σ[paramP(f) �→ u])� bodyP(f) ⇓p v, (H ′,σ′)

Γ : (H ,σ)� f u ⇓p v, (H ′,σ)

DIRECTCALL

f ∈ Fids Γ� (f σ(x)) ⇓p v,Γ′

Γ� f x ⇓
ccall⊕p

v,Γ′

APP

H(σ(x))= (λz.e,σ′) (H , (σ�σ′)[z �→σ(y)])� e ⇓p v, (H ′,σ′)

Γ : (H ,σ)� x y ⇓
capp⊕p

v, (H ′,σ)

CONTRACT

Γ� pre ⇓p true,Γ1 Γ� e ⇓q v,Γ2 : (H2,σ2) (H2,σ2[R �→ q,res �→ v])� post ⇓r true,Γ3

Γ� {pre} e {post} ⇓q v,Γ2

where R ∈ {steps,alloc,stack,depth}

Cost function definition for steps:

cmatch(i) = i+1
cvar = clet = 0

cop = 1 for every other operation op
⊕=+

Cost function definition for alloc:
ccons = cλ = 1

cop = 0 for every other operation op
⊕=+

Figure 2.2 – Resource-annotated operational semantics of the core language
17

Chapter 2. Semantics of Programs, Resources and Contracts

2.3 Resource-Annotated Operational Semantics

Figure 2.2 defines the operational semantics for the core language that also captures the

resource consumption of expressions of the language. The semantics is defined only for

concrete expressions without holes. (Expressions with holes are not executable.) The se-

mantics is big-step which is well suited for formalizing a compositional approach such as

ours. Unfortunately, big-step semantics is not convenient for reasoning about termination or

reachability of states at a specific expression (or program point), both of which are necessary

for our purposes. Therefore, I define a reachability relation on top of the big-step semantics,

similar to the calls relation of Sereni, Jones and Bohr [Jones and Bohr, 2004, Sereni, 2006]. This

reachability relation acts similar (but not identical) to a small-step semantics.

2.3.1 Semantic Domains

The semantics rules presented in Figure 2.2 operate over the semantics domain described be-

low. Let Adr denote the addresses of heap-allocated structures namely closures and datatypes.

Let DVal denote the set of datatype instances, Clo the set of closures. Let H be a partial func-

tion from addresses to datatypes instances or lambdas and a store σ a partial function from

variables to values. The state of an interpreter evaluating expressions of our language, referred

to as the evaluation environment Γ, is a triple consisting a heap H , a store σ, and a program,

which is a set of function definitions. Formally,

u, v ∈Val=Z∪Bool∪Adr

DVal=Cids×Val∗

Clo= Lam×Store

H ∈Heap=Adr �→ (DVal∪Clo)

σ ∈ Store=V ar s �→Val

Γ ∈ Env⊆Heap×Store×Program

Every environment should also satisfy the following domain invariants, which are certain

sanity conditions that are ensured by the operation semantics.

Def 1 (Domain Invariants). A triple (H ,σ,P) is an environment iff the following properties

hold.
(a) (range(σ)∩Adr)⊆ dom(H)

(b) x ∈ dom(σ) implies that σ(x) inhabits typeP(x)

(c) a ∈ dom(H) implies that H(a) inhabits typeP(a)

(d) H is a acyclic heap

(e) For all closures (λx. f (x, y),σ′) ∈ range(H), f is defined in P and y ∈ dom(σ′)

In the above definition the type of an address is the same as the type of the constructor or

lambda term that it refers to. The invariant (d) requiring the heap to be acyclic is defined more

18

2.3. Resource-Annotated Operational Semantics

formally in section 2.7. Let fresh(H) be a function that picks an address that is not bound in the

heap H . That is fresh(H) ∈ (Adr \ dom(H)). Such a function can be defined deterministically

by fixing a well-ordering on the elements of Adr and requiring that fresh(H) always returns the

smallest address not bound in the heap H . That is, fresh(H)=min(Adr \ dom(H)).

Judgements Let Γ� e ⇓p v,Γ′ be a semantic judgement denoting that under an environment

Γ ∈ Env, an expression e evaluates to a value v ∈Val and results in a new environment Γ′ ∈ Env,

while consuming p ∈Z units of a resource. When necessary Γ is expanded as Γ : (H ,σ,P) to

highlight the individual components of the environment. Any component of the judgement

that is not relevant to the discussion is omitted when there is no ambiguity. In Figure 2.2,

the program component is omitted from the environment as it does not change during the

evaluation.

2.3.2 Resource Parametrization

The operational semantics is parameterized in a way that it can be instantiated on multiple

resources using the following two cost functions:

(a) A cost function cop that returns the resource requirement of an operation op such as

cons or app. The operation cop may possibly have parameters. In particular, cmatch(i) is

used to denote the cost of a match operation when the i th case is taken, which should

include the cost of failing all the previous cases.

(b) A resource combinator ⊕ : Z∗ →Z that computes the resource usage of an expression by

combining the resource usages of the sub-expressions. Typically, ⊕ is either + or max.

The Figure 2.2 shows the definition of the cost functions for resources: (a) the number of

steps in the evaluation of an expression denoted steps, and (b) the number of heap-allocated

objects created by an expression (viz. a closure or datatype) denoted alloc. For both resources,

the resource combinator ⊕ is defined as addition (+). In the case of steps, clet and cvar are

zero as the operations are normally optimized away or subsumed by a machine instruction.

The cost of every other operation is 1 except for cmatch(i). The cost of the match operation

(cmatch(i)) is defined proportional to i as the cost of failing all the i −1 match cases has to be

included. Datatype constructions and primitive operations on integers (which are unbounded

big integers in our language) are considered as unitary steps. In the case of alloc, cop is 1 for

datatype and closure creations as they involve heap allocations. It is zero for every other

operation.

Another resource supported by our tool is the number of (call) stack locations required for

holding the local variables and results of function calls during the evaluation of an expression,

denoted stack. This resource can also be expressed using the cost functions. A somewhat

simplified definition is shown below.

19

Chapter 2. Semantics of Programs, Resources and Contracts

Cost function definition for stack:

⊕=max

ccall = capp = 1 + # of local variables of the callee

cop = 0 for every other operation op

In the above definition, the number of local variables of the callee is |FV (body(f))| for a direct

call f x or an application applying a lambda λx. f (x, y). Note that when the above definition

of ⊕ is plugged into the semantics, the stack usage of a let expression: let x := e1 in e2 would

be computed as the maximum of the stack usages of e1 and e2. This is the expected semantics

as the stack space utilized by the calls made during e1 could be reclaimed and reused during

the evaluation of e2. The above definition is a much simplified version that hides many

complexities. For instance, the number of arguments passed to call and applications are

assumed to be one as, in our core language, every function take only one argument – two or

more arguments have to be passed (by reference) via a tuple, which is allocated in the heap.

Secondly, the actual parameter passing mechanism of a runtime may reserve more space in

the call stack more than required for allocating local variables of a function. However, these

constant factors (if they are precisely known) can be captured by the cost functions quite

easily.

In addition to the above resource, our system also supports a resource depth, which is a

measure of algorithmic parallel execution time. However, defining the resource is slightly more

involved. The discussion of this resource is deferred to section 3, where the instrumented

procedure is described. Our tool also supports a resource rec that counts the number of

recursions that appear in the evaluation and is useful for bounding the asymptotic complexity.

2.3.3 Structural Equivalence and Simulation

As shown in Figure 2.1 our language supports a equality operator eq for comparing expressions

of the language. The semantics shown in Figure 2.2 defines this operation using a structural

equivalence relation ≈
H

defined on the values Val with respect to a H ∈Heap (see rule EQUALS).

This equivalence is explained and defined below.

Two addresses are structurally equivalent iff they are bounded to structurally equivalent values

in the heap. Two datatypes are structurally equivalent iff they use the same constructor and

their fields are equivalent. Structural equivalence of closures is similar to syntactic equality

of lambdas modulo alpha renaming (but extended to captured variables). Two closures are

structurally equivalent iff their lambdas are of the form λx. f (x, y) and λw. f (w, z) and the

captured variables y and z are bound to structurally equivalent values. Formally, ≈
H

is defined

as the least fix point of the following equations. (The subscript ≈
H

is omitted below for clarity).

20

2.3. Resource-Annotated Operational Semantics

∀a ∈Z∪Bool . a ≈ a

∀{a,b}⊆ Adr. a ≈ b iff H(a)≈H(b)

∀ f ∈ Fids, {a,b}⊆Val. (f a)≈ (f b) iff a ≈ b

∀c ∈Cids, {ā, b̄}⊆Valn. (c ā)≈ (c b̄) iff ∀i ∈ [1,n].ai ≈ bi

∀{e1,e2}⊆ Lam. ∀{σ1,σ2}⊆ Store. (e1,σ1)≈ (e2,σ2) iff target(e1)= target(e2)

∧σ1(FV (e1))≈σ2(FV (e2))

For datatypes, this equivalence is similar to value equality supported by languages like Scala

and ML, and for closures this equivalence is similar to the traditional notion of intensional

equality. Although not supported by modern languages since Lisp 1.5, intensional equality

proved to be quite a powerful and handy tool in specifying resource usage behavior of first-

class functions. One of the contributions made by this dissertation is that constructs based

on intensional equality of closures offer a referentially transparent yet decidable notion of

equality between closures (as opposed to reference or extensional equality) and hence provide

great value from the perspective of specifications, especially for proving implementation-

dependent properties like resource consumption. These aspects are considered in more detail

in Chapter 4.

Structural Simulation Relation While the above described structural equivalence serves

to compared two values under the same H , it is often required in the formalism to compare

values under different heaps that arise during independent evaluations. For instance, to

show a program transformation is equivalent to the original program, one needs to show that

they agree on all values, which could be addresses defined under multiple heaps. For these

purposes, I define a structural simulation relation ≈
H1,H2

with respect to two heaps as shown

below. This relation is primarily used in the proofs of soundness and completeness of the

algorithms. (The subscripts H1,H2 are omitted in the following definitions for clarity.)

∀a ∈Z∪Bool . a ≈ a

∀{a,b}⊆ Adr. a ≈ b iff H1(a)≈H2(b)

∀ f ∈ Fids, {a,b}⊆Val. (f a)≈ (f b) iff a ≈ b

∀c ∈Cids, {ā, b̄}⊆Valn. (c ā)≈ (c b̄) iff ∀i ∈ [1,n].ai ≈ bi

∀{e1,e2}⊆ Lam.∀{σ1,σ2}⊆ Store. (e1,σ1)≈ (e2,σ2) iff target(e1)= target(e2)

∧σ1(FV (e1))≈σ2(FV (e2))

Notice that the only change compared to the definition of structural equivalence (≈
H

) is the rule

for addresses which now uses different heaps. The following are some properties of structural

simulation. (The proof of the following properties are omitted as they are straightforward to

derive from the definitions.)

21

Chapter 2. Semantics of Programs, Resources and Contracts

(i) If H1 �H2, ≈
H1,H2

is equivalent to ≈
H2

(ii) x ≈
H1,H2

y implies y ≈
H2,H1

x (Symmetry)

(iii) x ≈
H1,H2

y and y ≈
H2,H3

z implies x ≈
H1,H3

y (Transitivity)

Note that the first property above implies relexivity. The definition of structural equivalence

between values can be lifted to stores and environments in a natural way as shown below.

∀{σ1,σ2}⊆ Store. σ1 ≈
H1,H2

σ2 iff dom(σ1)= dom(σ2)∧∀x ∈ dom(σ1).σ1(x) ≈
H1,H2

σ2(x)

∀Γ1 : (H1,σ1,P),Γ2 : (H2,σ2,P). Γ1 ≈ Γ2 iff σ1 ≈
H1,H2

σ2

Structural equivalence as defined above is a congruence relation with respect to the operational

semantics. That is, evaluation of an expression e under structurally equivalent environments

produces structurally equivalent environment and result values, and also has identical re-

source usage.

Lemma 1. For all {Γ1,Γ2}⊆ Env such that Γ1 ≈ Γ2, for all expression e,

Γ1 � e ⇓p u,Γ1
′ =⇒ ∃v, q,Γ2

′. Γ2 � e ⇓q v,Γ2
′ ∧Γ1

′ ≈ Γ2
′ ∧u ≈

H ′1,H ′2
v ∧p = q

Proof. The claim directly follows by structural induction over the operation semantic rules

shown in Fig. 2.2. This structural induction strategy is discussed in detail in section 2.6 later in

this chapter.

2.3.4 Semantic Rules

Consider now the semantics rules shown in Figure 2.2. Most rules are straightforward now

that the cost functions and structural equivalence relations have been introduced. Below I

describe some of the complex rules. The rule LAMBDA creates a closure for a lambda term t ,

which is a pair consisting of t , and a (singleton) assignment for the variable captured from the

enclosing context, which is given by FV (t).

The rule CONCRETECALL defines the semantics of a call whose arguments have been evaluated

to concrete values (in Val). It models the call-by-value parameter passing mechanism: it binds

the parameters to argument values, and evaluates the body (an expression with contracts)

under the new binding. A call evaluates to a value only if the contracts of the callee are satisfied

as given by the rule CONTRACT (discussed shortly). This rule is used by the rule DIRECTCALL

which evaluates direct call expressions of the language. The handling of direct calls is separated

from that of concrete calls whose arguments are values to make the semantics amenable to

extensions for incorporating memoization (discussed in chapter 4). Concrete calls serve as

the keys of the memoization table, which can be evaluated independently.

22

2.4. Reachability Relation

The rule APP handles applications of the form: x y . It first evaluates x to a closure (λz.e,σ′),

and then evaluates e under the environment Γ : (H , (σ�σ′)[z �→σ(y)]), where the store (σ�σ′)
includes the assignment for the captured variables. Note that the assignment in σ′ takes

precedence over σ for the captured variables, implying that the values of captured variables

are frozen at the time of creation of the closure.

The rule CONTRACT defines the semantics of an expression ẽ of the form {pre} e {post} that

has contracts. Though contracts are expressions of the language, they are considered to be

different from implementation. They are treated as specifications that describe the expected

behavior of the implementation rather than being a part of the implementation. They are

expected to be statically proven and not checked at runtime (at least under normal scenarios).

The expression ẽ evaluates to a value v only if pre holds in the input environment and post

holds in the environment resulting after evaluating e. Observe that the value, heap effects,

and resource usage of ẽ are equal to that of e. In other words, the resource usage and heap

effects of evaluating the contracts are ignored. Also note that the resource variables (like steps)

are bound to the resource consumption of e before evaluating the postcondition.

2.4 Reachability Relation

One of the disadvantages of the big-step semantics is that when an evaluation of an expression

under an environment is undefined, it could means two things: (a) either its evaluation

diverges i.e, it does not terminate, or (b) its evaluation is stuck e.g. due a runtime exception or

contract failure. In order to distinguish between these two situations, I define a relation�
called reachability relation inspired by the calls relation of Sereni [2006] and Jones and Bohr

[2004] defined for a similar purpose. Intuitively, 〈Γ,e〉�〈Γ′,e ′〉 iff the big-step reduction of e

under Γ requires reduction of e ′ under Γ′. It is formally defined as follows.

For every semantic rule shown in Figure 2.2 with n antecedents: A1 · · ·AmB1 · · ·Bn , where

A1 · · ·An are not big-step reductions, and each Bi , i ∈ [1,n], is a big-step reduction of the

form: Γi � ei ⇓pi vi,Γi
′, the reachability relation has n rules for each 1 ≤ i ≤ n of the form:

A1 · · ·Am B1 · · ·Bi−1

〈Γ,e〉�〈Γi ,ei 〉
. Figure 2.3 presents the complete definition of this relation.

Note that the reach relation is quite different from a small-step operational semantics. Let�∗
represent the reflexive, transitive closure of�. An environment Γ′ is said to reach e ′ during

the evaluation of e under Γ iff 〈Γ,e〉�∗〈Γ′,e ′〉.

Termination of Big-step Evaluation The evaluation of e under Γ is said to diverge or non-

terminate iff there exists an infinite sequence 〈Γ,e〉�〈Γ1,e1〉� · · · . An expression e (or a

function f) terminates iff there does not exist a Γ ∈ Env under which e (or body(f)) diverges

[Sereni, 2006]. Since the evaluation of an expression under the big-step operational semantics

proceeds as a derivation tree that is finitely branching, for a terminating evaluation, there is a

23

Chapter 2. Semantics of Programs, Resources and Contracts

LET1

〈Γ, let x := e1 in e2〉�〈Γ,e1〉
LET2

Γ� e1 ⇓ v1, (H ′,σ′)

〈Γ, let x := e1 in e2〉�〈(H ′,σ′[x �→ v1]),e2〉
IF1

σ(x)= true

〈Γ, if (x) e1 else e2〉�〈Γ,e1〉

IF2
σ(x)= false

〈Γ, if (x) e1 else e2〉�〈Γ,e2〉
MATCH

H(σ(x))=Ci v̄

〈Γ : (H ,σ), x match {Ci x̄i ⇒ ei)}n
i=1〉�〈(H ,σ[x̄i �→ v̄]),ei 〉

CONCRETECALL

〈Γ : (H ,σ), f u〉�〈(H ,σ[param(f) �→ u]),body(f)〉
DIRECTCALL

f ∈ Fids

〈Γ, f x〉�〈Γ, f σ(x)〉
APP

H(σ(x))= (λz.e,σ′)

〈Γ : (H ,σ), x y〉�〈(H , (σ�σ′)[z �→σ(y)]),e〉
PRE

〈Γ, {pre} e {post}〉�〈Γ, pr e〉

BODY

Γ� pre ⇓ true

〈Γ, {pre} e {post}〉�〈Γ,e〉

POST

Γ� pre ⇓ true Γ� e ⇓q v,Γ2 : (H2,σ2)

〈Γ, {pre} e {post}〉�〈(H2,σ2[R �→ q,res �→ v]), post〉

Figure 2.3 – Definition of the reachability relation

natural number n such that the length of every sequence of the form 〈Γ,e〉�〈Γ1,e1〉� · · · is

upper bounded by n. That is, ∃n ∈N.¬(∃k >n,e,Γ′.〈Γ,e〉�k〈Γ′,e〉) iff e terminates under Γ.

2.5 Contract and Resource Verification Problem

2.5.1 Valid Environments

While the semantics rules shown in Figure 2.2 may be applicable to arbitrary environments, in

reality, the environments under which an expression is evaluated satisfies several invariants

which are ensured either by the runtime (e.g. that every free variable in an expression is bound

in the environment), or by the program under execution (e.g. that a value of a variable is

always positive). As in prior works on data structure verification [Kapur et al., 2006], it is

only reasonable to define the problem of contract/resource verification with respect to such

valid environments under which an expression can be evaluated, instead of under arbitrary

environments. For this purpose, I first define a notion of valid environments.

Let Pc = P ′||P denote a closed program obtained by composing a client P ′ with an open

program P . Note that Pc has to satisfy the requirements of the program namely that the labels

24

2.5. Contract and Resource Verification Problem

of all expressions are unique, the function identifiers are unique etc. The evaluation of a

closed program Pc starts from a distinguished entry expression eentry such as a call to the

main function under an initial environment ΓPc : (�,�,�,Pc). The valid environments of an

expression e belonging to an open program P , denoted Enve,P, are the environments that

reach e during some closed evaluation P ′||P . That is,

Enve,P =
{
Γ | ∃P ′.〈ΓP ′||P ,eentry〉�∗〈Γ,e〉}

The valid environments reaching an expression may satisfy many properties beyond those

ensured by the domain invariants. Though some of which could be program specific, some

of them are ensured by the semantics itself. For instance, the following lemma states that in

all valid environments reaching an expression e, every free variable of e would be bound to a

value.

Lemma 2. Let e be an expression in a program P and Γ : (H,σ,P) ∈ Enve,P. FV (e)⊆ dom(σ).

The proof of the above lemma is easy to establish from the definition of Enve,P by inducting

on the number of steps to reach 〈Γ,e〉 from a closed program 〈ΓP ′||P ,eentry〉.

2.5.2 Properties of Undefined Evaluations

This section establishes an important property about the semantics presented in Figure 2.2.

Under the assumption that all primitive operations are total, when an expression belonging to

a type correct program is evaluated under a valid environment, there are only two reasons why

its evaluation may be undefined as per the operational semantics: (a) the evaluation diverges,

or (b) there is a contract violation during the evaluation. This property is very important since

the definition of contract verification presented shortly relies on this property. Before formally

establishing this property I state and prove a few important notions and lemmas.

Def 2 (Contract Violation). Given an expression ẽ with contract: ẽ = {p} e {s}. The contract of ẽ

is said to have been violated under Γ iff Γ� p ⇓ false∨∃Γ′.(〈Γ, ẽ〉�〈Γ′, s〉∧Γ′ � s ⇓ false).

The following lemma states that whenever an evaluation of an expression is undefined under

an environment then either the expression has a contract and is violated, or the evaluation of

some (immediate) sub-expression of e is undefined.

Lemma 3. Let e be an expression in a type-correct program P. Let Γ : (H,σ,P) ∈ Env be such

that FV (e)⊆ dom(σ). If ¬∃v.Γ� e ⇓ v then either e has a contract and is violated under Γ, or

∃Γ′,e ′.〈Γ,e〉�〈Γ′,e ′〉 and ¬∃v.Γ′ � e′ ⇓ v.

Proof. This property can be proved by exhaustively checking each of the semantic rules shown

Fig. 2.2. Consider the rules CST, VAR, EQUAL, LAMBDA, CONS. Each of these rule do not have a

big-step reduction in the antecedent. Every value required by the rule are either the output of

25

Chapter 2. Semantics of Programs, Resources and Contracts

a total function like fresh which is always defined, or σ(x) or σ(H(x)), where x is a free variable

in e ′, and σ and H are the store and heap components of Γ′. By definition, FV (e)⊆ dom(σ),

and Γ satisfies all the domain invariants. Thus, both σ(x) and σ(H(x)) are defined. Hence, the

rules must be defined whenever the expression e matches the consequent.

Now consider the rule APP, CONCRETECALL, DIRECTCALL, MATCH, IF, PRIM or LET. In addition

to requiring that σ(x) or σ(H(x)) are defined, these rule require more properties on shape (or

type) of σ(x) in order to be defined for an expression matching the consequent. In the case of

INDIRECTCALL, σ(H(x)) is required to be a closure. In the case of MATCH, σ(H(x)) is required

to be a datatype with the constructors that match the patterns in the MATCH construct. In

the case of PRIM, σ(x) should have the type of the argument of the primitive operation pr .

(Recall that every primitive operation is total.) In the case of IF the condition should evaluate

to a boolean. In the case of CONCRETECALL the function identifier must have a definition in

the program P . All of these are properties guaranteed by the type checker. Since Γ satisfies

all the domain invariants, σ(x) should inhabit the typeP(x). Since it is given that the program

P type checks, typeP(x) will satisfy the above requirements in each of the rules. Hence, every

value required by these rules that are not big-step reductions will be defined. If every big-step

reduction Γ′ � e′ ⇓ v in the antecedent of these rules produce a value, then clearly ∃v.Γ� e ⇓ v

(see Fig. 2.2), because every other antecedent will be satisfied as explained above. Therefore,

for evaluation of e to be undefined ∃Γ′,e ′.〈Γ,e〉�〈Γ′,e ′〉 and ¬∃v.Γ′ � e′ ⇓ v.

Now consider the rule CONTRACT. Let e be an expression with contracts i.e, {p} e′ {s}. First, if

the pre-or post-condition of e evaluates to false, the contract of e is violated and hence the

claim holds. If e ′ evaluates to any value and p or s evaluate to true then e evaluates to a value.

Therefore, for evaluation of e to be undefined e ′ or p or s does not evaluate to a value. Hence

the claim.

Now it is easy to show that if an evaluation of an expression is undefined in a valid environment

then either it has a contract violation or its evaluation diverges.

Lemma 4. Let e be an expression in a type-correct program P. LetΓ : (H,σ,P) ∈ Env be such that

FV (e)⊆ dom(σ). If¬∃v.Γ� e ⇓ v then (a) there exists an infinite sequence 〈Γ,e〉�s1�s2� · · · ,or

(b) ∃Γ′ ∈ Env and an expression with contract ẽ such that 〈Γ,e〉�∗〈Γ′, ẽ〉 and the contract of ẽ is

violated under Γ′.

Proof. Say ¬∃v.Γ� e ⇓ v. Say there is no infinite sequence starting from 〈Γ,e〉, otherwise the

claim trivially holds. Assume that there exists a e ′ and Γ′ such that 〈Γ,e〉�k〈Γ′,e ′〉 and e ′ is

undefined under Γ′. By Lemma 3 either e ′ and hence e has a contract violation or there exists

a e ′′ reachable from e in k+1 steps whose evaluation is undefined. By induction this holds for

all k. Since the evaluation of e is terminating, there exists a k such that there is no expression

and environment pair reachable from e in k steps. Thus, e must have a contract violation.

26

2.6. Proof Strategies

2.5.3 Problem Definition

Contract Verification Problem Given a program P without templates. The contract verifica-

tion problem is to decide for every function defined in the program P of the form def f x := ẽ,

where ẽ= {pre} e {post}, whether in every valid environment that reaches ẽ in which pre does

not evaluate to false, e evaluates to a value. That is, for every def f x := ẽ ∈ P ,

∀Γ : (H,σ,P) ∈ Envẽ,P. ∃v. (Γ� pre ⇓ false)∨Γ� ẽ ⇓ v

For conciseness, the quantification on v is omitted when there is no ambiguity. Note that

since contracts in our programs can specify bounds on resources, the above definition also

guarantees that the properties on resources hold. The above condition also mandates that

whenever the precondition of ẽ holds, ẽ evaluates to value, which implies that it terminates.

Thus, the above definition corresponds to total correctness.

Resource Inference Problem Recall that the resource bounds of functions are allowed to

be templates. In this case, the problem is to find an assignment ι for the holes such that in

the program obtained by substituting the holes with their assignment, the contracts of all

functions are verified. This is formally stated below. Let P ι denote the program obtained

by substituting every hole a in the expressions of P by ι(a). The resource bound inference

problem for a program P with holes is to find an assignment ι such that for every function

def f x := {pre} e {post} in P ι, ∀Γ ∈ Enve,P.∃v. (Γ� pre ⇓ false)∨Γ� {pre} e {post} ⇓ v. Note that

the assignment ι is global across the entire program. But because of the syntactic restriction

that the holes cannot be shared across functions, ι can be seen as a union of assignments one

for each function in the program.

2.6 Proof Strategies

In this section, I outline the proof strategies used in this article for proving properties about

the operation semantics and relations such as structural equivalence which are recursively

defined on the semantic domains.

Structural Induction over Big-step Semantic Rules One of the primary ways to establish a

property ρ(Γ,e, v,Γ′, p) for a terminating evaluation Γ� e ⇓p v,Γ′ is to use induction over the

depth of the evaluation. Given a property ρ, one establish by induction on n ∈N that ∀n ∈N.

¬(∃k >n,e,Γ′′.〈Γ,e〉�k〈Γ′′,e〉) ⇒ ρ(Γ,e, v,Γ′, p). This gives rise to the following structural

induction. For every semantics rule RULE, one can assume that the property holds for the

big-step reductions in the antecedent and establish that it holds in the consequent. The base

cases of the induction are the rules: CST, VAR, PRIM, EQUAL, CONS, LAMBDA, which do not

have any big-step reductions in the antecedents. Every other rule is an inductive step. This is

referred to as structural induction over the big-step semantic rules. Many of the theorems that

27

Chapter 2. Semantics of Programs, Resources and Contracts

follow are established using this form of structural induction.

Structural Induction over Semantic Domain Relations Recall that the relations such as

structural equivalence and simulation (≈) are defined recursively on the semantic domains.

(More such relations are introduced in the later sections). As is usual, these relations are

defined using least fixed points, which is naturally provides an induction strategy explained

below. Let R ⊆ An be a relation defined by a recursive equation R = h(R) where h is some

function, generally defined piece-wise like ≈. The solution for the above equation is the least

fixed point of h. Since relations are sets of pairs, there exists a natural partial order on the

relations namely ⊆. The ordered set (2An
,⊆) is a complete lattice, which implies that there

exists a unique least fixed point for every monotonic function (by Knaster-Tarski theorem).

Also, the least fixed point can be computed using Kleene iteration. Let R0 =� and Ri = h(Ri−1).

The least fixed point of h, and hence the solution to R, is
⋃

i≥0
Ri . This definition of R naturally

lends itself to an inductive reasoning: to prove a property on R , one needs to establish that (a)

the property holds for �, and (b) that whenever it holds for Ri−1 it holds for Ri . In the context

of the relation ≈, assuming that the property holds for Ri−1 means that the relation can be

assumed to hold in the right-hand sides of the iff relation (see section 2.3). I refer to this as

structural induction over R.

2.7 Properties of the Semantics

The following theorems establish interesting properties about the semantics, which are nec-

essary for the soundness proofs presented later, and also serve to illustrate the use of these

structural induction techniques.

Acyclic Heaps Recall that the heaps of the environments are required to acyclic. A heap

H ∈ Heap is acyclic iff there exists a well-founded, irreflexive (i.e, strict) partial order < on

dom(H) such that for every (a, v) ∈Heap one of the following properties hold:

(a) v ∈Z∪Bool , (or)

(b) v = cons ū and ∀i ∈ [1, |ū|]. ui ∈Adr⇒ ui < a, (or)

(c) v = (eλ,σ′) and ∀a′ ∈ (range(σ′)∩Adr). a′ < a

Lemma 5. Let H be an acyclic heap. The structural equivalence relation ≈
H

is indeed an equiva-

lence i.e, it is reflexive, transitive and symmetric:

(a) x ≈
H

y ∧ y ≈
H

z⇒ x ≈
H

z

(b) x ≈
H

y⇒ y ≈
H

x

(c) x ≈
H

x

Proof. The transitivity and symmetry properties follow by structural induction over the rela-

28

2.7. Properties of the Semantics

tion≈
H

. For instance, consider the symmetry property and say x and y are constructor instances

of the form c ā and c b̄. By hypothesis, ∀i .ai ≈
H

bi implies ∀i .bi ≈
H

ai . Hence, c ā ≈
H

c b̄ implies

c b̄ ≈
H

c ā. Similarly other cases can be established.

The reflexivity property trivially holds for integers and booleans. To prove the property for

addresses, we can induct over the well-founded relation < on Adr. The base case consists

of addresses in the heap that are mapped to values that do not use other addresses. The

reflexivity property clearly holds in this case. The inductive case consists of addresses that

are mapped to values, namely constructor or closure values. However, by hypothesis, every

address they use satisfy the reflexivity property. Given this, the claim holds, since for two

closure/constructor values to be structurally equal they have to invoke the same function or

use the same constructor.

The following lemma establishes that the acyclic heap property is preserved by the seman-

tic rules and hence is a domain invariant. Similarly, other domain invariants can also be

established.

Lemma 6. Let (H,σ,P) be such that H is acyclic. If (H,σ,P)� e ⇓p u, (H ′,σ′,P) or 〈(H,σ,P),e〉
�〈(H ′,σ′,P),e ′〉, the heap H ′ is also acyclic.

Proof. It suffices to prove the claim for the case where (H,σ,P)� e ⇓p u, (H ′,σ′,P) the other

part immediately follows by the definition of the reachability relation shown in Figure 2.3. For

every base rule other than CONS and LAMBDA, H and H ′ are identical and hence the claim

holds trivially. For CONS and LAMBDA rules, the acyclicity property holds since every address

used by the value bound to the newly created address belongs to the heap H and hence is

acyclic. Consider a inductive rule like LET i.e, e is of the form let x := e1 in e2. By hypothesis,

the heap after the evaluation of e1 and hence the one after the evaluation of e2 are acyclic.

Hence the claim holds. Other cases can be similarly proven.

Immutability of Heaps The semantic rules ensure that the heaps are used in an immutable

way i.e, during any evaluation only new entries are added to the heap and existing entries

remain unchanged. The following two lemmas establish the immutable nature of the heap

using structural induction on the operational semantic rules.

Lemma 7. Let Γ : (H,σ,P), Γ′ : (H ′,σ′,P) and e be an expression. If 〈Γ,e〉�〈Γ,e ′〉 or Γ� e ⇓ v,Γ′

then H �H ′.

Proof. This directly follows from the semantic rules shown in Fig. 2.2. Every time an address is

added to the heap, it is chosen to be a fresh address that is not already bound in the heap.

29

Chapter 2. Semantics of Programs, Resources and Contracts

Referential Transparency The following lemma establishes that the evaluation of an expres-

sion produces equivalent values when evaluated under different heaps arising during the

evaluation (and hence related by the containment ordering). This property can be thought

of as a form of referential transparency that only concerns heaps that arise during a single

evaluation. Lemma 1 provides a stronger form of referential transparency for equivalent

environments arising during possibly different evaluations.

Lemma 8. Let Γ : (H,σ,P) ∈ Env and e be an expression. Let Γ′ = (H ′,σ,P) and H � H ′. If

Γ� e ⇓p u,Γo then Γ′ � e ⇓p v,Γ′o and u ≈
Ho ,H ′o

v. That is, adding more entries to the heap preserves

the result of the evaluation with respect to the structural simulation relation ≈.

Proof. This immediately follow from Lemma 1 since Γ≈ Γ′ by definition of≈ for environments.

2.7.1 Encapsulated Calls

Our approach is primarily aimed at programs where the targets of all indirect calls that may

be executed are available at the time of the analysis. This includes whole programs that take

only primitive valued inputs/parameters, and also data structures that use closures internally

but whose public interfaces do not permit arbitrary closures to be passed in by their clients.

Such data structures are quite ubiquitous and include numerous sophisticated functional

data structures. Some examples include lazy data structures proposed by Okasaki [1998] and

the Conqueue data structure of Scala’s data-parallel library [Prokopec and Odersky, 2015]

(discussed in section 5). I would like to remark that proving resource bounds of programs

where the full implementation is not available at the time of the analysis is quite challenging

and is orthogonal to the work presented in this dissertation. The Related Works chapter

(Chapter 6) discusses a plausible future direction for proving such programs. Below, I provide a

formal description of the kind of encapsulated programs which are supported by our approach.

An indirect call c= x y belonging to a program P is an encapsulated call iff in every environment

Γ : (H,σ,P) ∈ Envc,P that reaches the call, whenever H(σ(x)) is a closure :(eλ
�,σ′), l ∈ labelsP.

Here, labelsP denotes the set of labels of expressions in the program P . A program P is call

encapsulated iff every indirect call in P is encapsulated. Languages like Scala and C� support

access modifiers like private that permit creation of such encapsulated calls. Though the core

language presented in this section does not support access modifiers, our implementation

whose inputs are Scala programs does leverage access modifiers to identify encapsulated calls.

30

3 Solving Resource Templates with Re-
cursion and Datatypes

There can be no doubt that the knowledge of logic is of

considerable practical importance for everyone who

desires to think and to infer correctly.

— Alfred Tarski

The input to our system is a functional Scala program where the resource bounds of functions

are specified as expressions with numerical holes in their postconditions. Such expressions

are referred to as resource templates. The syntax of the resource templates were presented in

the previous chapter in Figure 2.1. The holes in the templates may appear as coefficients of

variables in scope, which themselves could be bound to arbitrary expressions of the program

through let-binders. The goal of our system is to infer values for the holes in the template that

will yield an upper bound on the resource usage of the function under all possible executions,

as stated by the resource verification problem (see section 2.5). The programs inputted to

our system can have arithmetic/boolean operations, recursive functions, datatypes, closures

and memoization, as described by the core language syntax shown in Figure 2.1. Our system

therefore incorporates techniques that can solve resource templates in the presence of these

language features. In this chapter I described an analysis that can infer resource template

for programs having three of the five features listed above: arithmetic/boolean operations,

recursive functions and datatypes. The subsequent chapters discuss major extensions to the

analysis for supporting higher-order functions and memoization.

The program fragment considered in this chapter is quite expressive. It supports user-defined

recursive functions and hence is Turing complete. (Nevertheless our termination checker

generates warnings in presence of potential non-termination.) It also supports recursive data

types which allows expressing many immutable data structures such as abstract syntax trees

and heaps in a natural way. It further supports linear and non-linear arithmetic and hence

enables expressing precise resource bounds. For instance, the algorithms presented in this

chapter can show that a function converting a propositional formula into negation-normal

form takes no more than 43 · size(f)−17 steps, where size(f) is the number of nodes in the

31

Chapter 3. Solving Resource Templates with Recursion and Datatypes

abstract syntax tree of the formula f . It also proves that the depth of the computation graph

(time in an infinitely parallel implementation) is bounded by 5 ·h(f)−2, where h(f)≥ 1 is the

height of the formula tree. As another example, it shows that in the worst case the number

of steps required for inserting into a red-black tree is given by 132 · log(1+ size(t))+77, and

that the number of heap-allocations (alloc) performed during the insert operation is bounded

by 9 · log(1+ size(t))+8. Our evaluations have shown that the algorithm can scale to even

more complicated data structures like binomial heaps, and can establish amortized resource

bounds given suitable drivers that simulate most-general clients. (Section 5 discusses the

benchmarks and the results in more detail.)

Our approach for the verifying such programs operates in two phases. In the first phase, it

generates an instrumented program that accurately tracks the resource usage of expressions

(described in section 3.1). The resource bounds of the input program become invariants of

the instrumented program. In the second phase, using an assume-guarantee reasoning, the

algorithm generates a ∃∀ formula called verification condition (VC) such that any satisfying

assignment to the formula yields a solution for the holes (described in section 3.2). The

coefficients in the templates that are holes become existentially quantified variables of the VC.

A novel decision procedure described in section 3.3 is used to infer values for the existentially

quantified variables of the VC.

The coefficients in practice tend to be sufficiently large and numerous that simply trying

out small values does not scale. The decision procedure therefore employs one of the most

powerful techniques for finding unknown coefficients in invariants: Farkas’ lemma. This

method converts a ∃∀ problem on parametric linear constraints into a purely existential

problem over non-linear constraints. A major challenge addressed by the algorithm is that

it provides a practical technique that makes such expensive non-linear reasoning work on

formulas that contain many disjunctions, invocations of user-defined recursive functions and

recursive data types (such as trees and DAGs). Our algorithm handles these difficulties through

an incremental and counterexample-driven algorithm which soundly encodes datatypes and

recursive functions, and fully leverages the ability of an SMT solver to handle disjunctions

efficiently.

3.1 Resource Instrumentation

Our approach decouples the encoding of the semantics of resources from their analysis. This

is accomplished by an exact instrumentation of programs with their resource usage that

does not approximate conditionals or recursive invocations. The instrumentation severs two

main purposes: (a) it makes the rest of the approach agnostic to the resource being verified

thus aiding portability across multiple resources, and (b) it eliminates any precision loss in

the encoding of the resource and restricts the incompleteness to a single source, namely the

verification algorithm. The latter aspect is very important since it allows the users to help the

verification algorithms with more specifications until the desired bounds are established.

32

3.1. Resource Instrumentation

�x� = (x,cvar)

�pr x� = (pr x,cpr) if pr ∈ Prim

�x eq y� = (x eq y,ceq)

�C x̄� = (C x̄,ccons) if C ∈Cids

�let x := e1 in e2� = let u := �e1� in

let w := �e2[u.1/x]� in

(w.1,cl et ⊕u.2⊕w.2)

�if x e1 else e2� = if x let u := �e1� in (u.1,cif ⊕u.2)

else let u := �e2� in (u.1,cif ⊕u.2)

�x match{Ci x̄i ⇒ ei }n
i=1� = x match

{(
Ci x̄i ⇒ let u := �ei � in (u.1,cmatch(i)⊕u.2)

)n
i=1

}
� f x� = let w := f (x) in (w.1,ccal l ⊕w.2)

�{pre} e {post}� = {(�pre�).1}

�e�

{let y = �post[res.1/res][res.2/R]� in y.1}

�def f x := e� = def f x := �e�

Figure 3.1 – Resource instrumentation for first-order programs.

def revRec(l1:List, l2:List) : List = {
l1 match {

case Nil() ⇒ l2
case Cons(x,xs) ⇒

revRec(xs, Cons(x, l2))
}

} ensuring(res ⇒ steps ≤ ?∗size(l1) + ?)

(a)

def revRec(l1:List,l2:List):(List,Int) = {
l1 match {
case Nil() ⇒ (l2, 2)
case Cons(x,xs) ⇒

val r = revRec(xs, Cons(x,l2))
(r._1, 7 + r._2)

}
} ensuring(res ⇒ res._2 ≤ ?∗size(l1) + ?)

(b)

Figure 3.2 – Illustration of instrumentation.

Figure 3.1 formally presents the instrumentation as a program transformation �·� that is

parameterized by the cost functions ⊕ and cop. The function �·� accepts an expression and

returns a pair (i.e, a two element tuple) of expressions where the first component is the results

of the input expression and the second component tracks the resource usage of the input

expression. As in the semantics shown in Figure 2.3, the resource consumed by an expression

e is computed as a function of the resources consumed by its sub-expressions using the

cost functions described in section 2.2. However, note that here the cost combinator ⊕ is

applied over integer-valued expressions (instead of natural numbers). The resource usage of a

procedure is exposed to its callers by augmenting the return value of the procedure with its

resource usage. The resource consumption of a function call is determined as the sum of the

resources consumed by the called function (which is exposed through its augmented return

value) plus the cost of invoking the function.

33

Chapter 3. Solving Resource Templates with Recursion and Datatypes

1 def traverse(t: Tree) = {
2 if(t == Leaf())
3 1
4 else
5 {
6 val vl = traverse(t.left)
7 val vr = traverse(t.right)
8 val v = vl + vr
9 v ∗ 2

10 }
11 } ensuring(res ⇒ depth ≤ ?∗height(t) + ?) t.left t.right

76

8

93

res

t != Leaf()
t == Leaf()

Figure 3.3 – Example illustrating the depth of an expression.

Fig. 3.2 illustrates the instrumentation on a simple Scala program that reverses a list l1 and

appends a list l2 to it. The recursive function size counts the length of its list argument (omitted

for brevity). Fig. 3.2(b) shows the instrumented program that would be generated by our

system. The integer constants in the program are obtained after accumulating the constants

along the corresponding static paths in the program.

3.1.1 Instrumentation for Depth

Depth [Blelloch and Maggs, 1996] is a measure of degree of parallelism in an expression and,

intuitively, corresponds to the longest chain of data dependencies between the operations of

an expression. It can be viewed as an estimate of parallel execution time when infinite parallel

computation power is available and can be exploited without any overheads. Furthermore,

it has been shown by Blelloch and Maggs [1996] that depth can be combined with steps to

derive a good approximation of the parallel running time on a specific parallel architecture.

From our perspective, this resource is interesting as it is measure of parallelism inherent to

an implementation, and is independent of the runtime. Moreover, in principle, a similar

instrumentation strategy can be used to measure evaluation steps in the presence structured

parallelism constructs like fork-join parallelism.

To explain this resource, I will use a Scala function that traverses a tree shown in Figure 3.3(a).

(Note that val¸ s in Scala are similar to let-binders.) The data dependence graph for the procedure

is shown at the right side of Fig. 3.3. The nodes of the graph correspond to the expression at

the line number given by the label. The depth of a node n in the tree, denoted as d(n), is the

maximum of the depth of its children plus the cost of the operation performed at the node.

For instance, d(8) is equal to max
(
d(6)+d(7)

)
plus the cost of the operation + (which is 1 for

every primitive operation).

The depth of if-else and match expressions are guarded by the branch conditions. For instance,

34

3.1. Resource Instrumentation

def traverse(t: Tree):(Tree,Int)= {
if(t == Leaf())

(1, 2)
else {

val lr = traverse(t.left)
val rr = traverse(t.right)
val v = lr._1 + rr._1
(v ∗ 2, lr._2 + rr._2 + 9)

}
} ensuring(res ⇒ res._2 ≤ ?∗height(t) + ?)

Figure 3.4 – Illustration of depth instrumentation.

d(res) is max
(
d(cond),d(3)

)+cif if the condition t=Leaf() is true, and is max
(
d(cond),d(4)

)+cif

otherwise. d(cond) is the depth of computing the branch condition. This instrumentation is

based on the assumption that the testing of the branch condition can be performed in parallel

with the evaluation of the bodies of the then and else branches.

The depth of a function is the depth of its result, which is the root of the data dependence

graph. The most interesting nodes of the graph are the nodes 6 and 7 that correspond to

recursive invocations of the procedure traverse. The depth of a function call is the depth of its

callee, which is exposed by its second return value, plus the depth of its argument and the cost

of a function call. In essence, the depth of the root of the graph (which is the depth of traverse
(t)) is a constant k1 if t == Leaf(), otherwise is max(d(traverse(t.left)),d(traverse(t.right)))+k2

if t != Leaf(). Note that this quantity is propositional to the height of the input tree t (unlike

the resource steps which is proportional to the size of the tree). Therefore, the depth of the

function is specified as a template linear in the height of the tree. For this example, our system

inferred the solution as depth≤ 9∗height(t)+2. Figure 3.4 shows the instrumented program

generated by our tool for the traverse function.

It is difficult to express the semantics of this resource only using the cost functions presented in

section 2.3, partly because the depth instrumentation for expressions naturally proceeds top-

down as opposed to other resources. Therefore, I separately formalize the instrumentation

for the depth resource in Figure 3.5. The transformation function �·� is extended in this

case to accept a partial function d that maps variables to the depth of the computation

that produces their values. At the start of a function, the depths of the parameters of the

function are initialized to zero (see �def f x := e�), as they are already computed by the callers

of the function. The main aspect that distinguishes depth from steps is the handling of the

let-expression: let x := e1 in e2. The let-binder x is bound to the depth of the expression it

is assigned to: e1. But, the depth of e1 does not immediately contribute to the depth of the

enclosing let-expression. It does so only when the binder x is used in e2. This ensures that

the depth of the expression e2 depends only on the depth of the free variables used by the

expression and not on all let-bindings that precede it in the program order. Another aspect

35

Chapter 3. Solving Resource Templates with Recursion and Datatypes

�x� d = (x,d(x))

�pr x� d = (pr x,cpr +d(x)) if pr ∈ Prim

�x eq y� d = (x eq y,ceq +max(d(x),d(y)))

�C x̄� d = (C x̄,ccons + max
1≤i≤|x̄|

xi) if C ∈Cids

�let x := e1 in e2� d = let u := �e1� d in

let w := �e2[u.1/x]� d [x �→ u.2] in

(w.1,clet +max(u.2, w.2))

�if x e1 else e2� d = if x let u := �e1� d in (u.1,cif +max(d(x),u.2))

else let u := �e2� d in (u.1,cif +max(d(x),u.2))

�x match{Ci x̄i ⇒ ei }n
i=1� d = x match

{(
Ci x̄i ⇒

let u := �ei � d in (u.1,cmatch(i)+max(d(x),u.2))
)n

i=1

}
� f x� d = let w := f (x) in (w.1,ccal l +d(x)+w.2))

�{pre} e {post}� d = {(�pre� d).1}

�e� d

{let y = �post[res.1/res][res.2/R]� d in y.1}

�def f x := e� = def f x := �e� [x �→ 0]

Figure 3.5 – Instrumentation for the depth resource.

that may concern the readers is that the depth of a variable x is (re)accounted for at every

point of its use instead of only at the point of first use. But this does not make a difference to

depth calculation due to the combinator max. In essence, the instrumentation presented here

ends up computing the maximum of the depth of the variable x over all its uses, which is same

as accounting for the depth of x once.

Simultaneously Instrumenting for Multiple Resources The instrumentation described in

this section can be extended to track multiple resources simultaneously. Instrumenting an

expression e for n resources would result in an expression that computes an n + 1-tuple

where the first element of the tuple computes the result of e and the remaining n elements

track the usage of the n resources by the expression e. The i th element of the tuple (where

i ≥ 2) is updated using the corresponding i th component of the instrumentation of the

subexpressions of e and the cost functions defining the i th resource. This ability of the system

to simultaneous track multiple resources is particularly essential for the divide-and-conquer

reasoning described later in section 3.8.

From Resource Bounds to Invariants After the instrumentation phase, the resource bounds

of functions become invariants of the return value of the function that tracks its resource usage:

the variable res._2 in the above examples. Every inductive invariant for the instrumented

function obtained by solving for the holes is a valid bound for the resource consumed by the

36

3.2. Modular, Assume-Guarantee Reasoning

original function. Moreover, the strongest invariant (formalized later) is also the strongest

bound on the resource. Notice that the instrumentation increases the program sizes, in-

troduces numerous tuples and, in the case of depth instrumentation, creates many max

operations that involve disjunctions. In the following sections I discuss a template-based

invariant inference technique that can handle these features effectively.

3.2 Modular, Assume-Guarantee Reasoning

This section discusses the reasoning that our system uses to reduce the problem of checking

contracts of a (first-order) function to that of proving validity of predicates (i.e, boolean-valued

expressions). The constraints generated by this reasoning are solved by translation to formulas

in a suitable logic and by applying customized decision procedures, which is the subject of

the next section. The aim of this section is to separate the principle underlying reduction

of contract checking to constraint solving from the encoding of the constraints into logic

and its decision procedure. This separation simplifies the understanding of the soundness

and completeness of the system, and also allows enhancing or adapting one aspect while

reusing the other. In particular, in Chapter 4, I describe an extension to the assume-guarantee

reasoning that enables a more effective and less-overhead contract verification for higher-

order functions with memoization.

3.2.1 Function-Level Modular Reasoning

Under this reasoning, to establish that the contract of a function f is valid, one can assume (or

hypothesize) that the pre-and post-condition of the functions called by f (including itself)

hold at the call sites within the function f , and guarantee that the postcondition of f holds

for every valid environment that satisfy the precondition of f . Also, the precondition of each

function has to be guaranteed at its call sites. This assume-guarantee reasoning relies on

induction over the number of calls made by the function f , which is finite and well-founded if

the function f is terminating. In essence, this reasoning provides a sound way of checking

partial correctness of contracts. As mentioned in the Introduction, our system verifies the

termination of functions independently using termination checker of the underlying LEON

verifier [Nicolas Voirol and Kuncak, 2017]. Thus it ensures that all functions terminate on all

valid environments and hence their contracts hold for all valid environments.

I would like to remark that while this reasoning is a widely employed technique in correctness

verification, it has hitherto not been used in resource verification primarily because of the

need for an independent termination checking algorithm different from the resource analysis.

In this dissertation, I demonstrate that decoupling resource verification from termination

makes the former tangible on complex programs where the resource bounds and invariants

themselves rely on recursive functions (which is almost always the case with our benchmarks).

In such cases, establishing a meaningful time (or resource) bound on functions meant for

use in specifications is unnecessary and also sometimes infeasible without changing the

37

Chapter 3. Solving Resource Templates with Recursion and Datatypes

implementation. For instance, in the program shown in Figure 3.5, it is meaningless to prove a

time bound for the function height. On the other hand, proving termination requires much

simpler reasoning and effort, but when established it permits a powerful inductive reasoning

such as the one described here for proving other properties including resource bounds. As

we proceed to a language with support for lazy evaluation and memoization (Chapter 4) this

decoupling becomes all the more important.

In the sequel, I formalize the assume-guarantee reasoning and subsequently show the sound-

ness of this reasoning for contract and resource verification (see section 2.5 for their definition).

Semantic Implication. Let e1 and e2 be two predicates i.e, boolean-valued expressions. Let

e1→ e2 denote that for every environment that has a binding for the free variables of e1 and e2,

whenever e1 does not evaluate to false, e2 evaluates to true i.e,

e1→ e2 iff ∀Γ ∈ {(H,σ,P) ∈ Env | FV (e1)∪FV (e2)⊆ dom(σ)} .Γ� e1 ⇓ false∨Γ� e2 ⇓ true

The operation→ can be considered as an implication with respect to the operational semantics

of the language. Let |=P e1→ e2 denote that under the assumption that all functions invoked by

e1 and e2 terminate in all environments that reaches them, and their pre-and post-conditions

hold, e1→ e2 is guaranteed. That is,

|=P e1→ e2 iff ∀Γ ∈ {(H,σ,P) ∈ Env | FV (e1)∪FV (e2)⊆ dom(σ)} .

¬A (Γ,e1)∨¬A (Γ,e2)∨Γ� e1 ⇓ false∨Γ� e2 ⇓ true

Where A (Γ,e) denotes an assumption defined by:
∧{∃v.Γ′ � (f x) ⇓ v | (Γ′, (f x)) ∈Calls(Γ,e)

}
and Calls(Γ,e)= {(Γ′, (f x)) | 〈Γ,e〉�∗〈Γ′, (f x)〉}

That is, Calls(Γ,e) denotes a set of environment, call pairs that are reachable during the

evaluation of e under Γ, and the assumption A (Γ,e) assumes that the calls terminate and all

their contracts hold. The function-level, modular reasoning described above corresponds

to establishing the following constraints, which are also referred to as assume-guarantee

obligations:

Obligations of Function-level modular reasoning:

For each function definition def f x := {pre} e {post} in a program P ,
(2.I) |=P pre→ post[e/res]

(2.II) For each call site (f y)� in P , |=P path((f y)�)→ pre(f y)

Recall that the variable res refers to the result of the function in its postcondition. Let pre(f y)

denote the precondition of f after parameter translation i.e, p[y/x] if def f x := {p} e {s} ∈ P . The

path condition path((f y)�) denotes the static path, possibly with disjunctions and function

calls, to the expression labeled � from the entry point of the function containing the label �.

For instance, for the instrumented program shown in Figure 3.2(b) the path condition of the

38

3.2. Modular, Assume-Guarantee Reasoning

C ∈ PathContext = [] | let x := e1 in C | let x := C in e2 | if x C else e2

| if x e1 else C | x match {C1 x̄⇒C } | {C } e {s}
| {p} C {s} | {p} e {C }

path([]) = true
path(let x := e1 in C) = x = e1∧path(C)
path(let x := C in e2) = path(C)

path(if x C else e2) = x∧path(C)
path(if x e1 else C) = ¬x∧path(C)

path(x match {C1 ȳ⇒C }) = (x =C1 ȳ)∧path(C)
path({C } e {s}) = path(C)
path({p} C {s}) = p∧path(C)
path({p} e {C }) = p∧ res= e∧path(C)

path(e�) = path(C), if ∃ def f x := C [e�] ∈ P

Figure 3.6 – Definition of the path condition for an expression belonging to a program P

recursive call revRec is l1 = Cons(x,xs). Figure 3.6 formally defines how the path conditions are

constructed by our system. (It is assumed in the definition that the names of the variables

are unique.) The path conditions are generated by traversing the syntax tree of the body of

the function containing the expression with label �. Let a context C denote an expression

with a hole, where the hole appears at the position of the expression with label � whose path

condition has to be determined. The function path is therefore defined on all such context

which is given by PathContext. For brevity, path condition is defined for match construct

with only one case. It is straightforward to generalize this to arbitrary cases. Note that if the

expression e� is in the body or postcondition of a function, the precondition of the function is

a conjunct of the path condition. The path condition for an expression e� thus generated has

the property that every environment that reaches the expression makes the path condition

true, as stated by the following lemma.

Lemma 9. For any expression C [e�], ∀Γ ∈ Env. 〈Γ,C [e�]〉�∗〈Γ′,e�〉⇒ Γ′ � path(C) ⇓ true

Proof. The proof follows by induction on the structure of the context C ∈ PathContext.

Observe that this modular reasoning requires that the assume/guarantee constraints hold for

all environments in which the parameters are bound to a (type-correct) value (by the definition

of →). However, as per the definition of contract verification presented in section 2.5 it suffices

to consider only valid environments that reach the function bodies. This means that pre-and

post-conditions of functions should capture all necessary invariants needed for the verification

of contracts. That is, every other global program invariant that is known to hold for a function

(e.g. discovered through an independent static analysis) have to be encoded using the pre-and

post-conditions if they have to be used by this reasoning.

Below I present the proof of soundness of this assume-guarantee reasoning for the contract

39

Chapter 3. Solving Resource Templates with Recursion and Datatypes

verification problem. I start with a lemma that establishes that for any function and environ-

ment that has a binding for the parameter of the function, for any natural number n either

the evaluation of function terminates and satisfies its contracts or there exists a function call

reachable from the body of the function in more than n steps with respect to the� relation.

Lemma 10. If the function-level, assume/guarantee constraints given by constraints (2.I) and

(2.II) hold for a program P, the following property holds for all n ∈N.

∀(def f x := ẽ) ∈ P s.t. ẽ = {p} e {s}.∀Γ ∈ {(H,σ,P) ∈ Env | x ∈ dom(σ)}.(
∃k > n,h ∈ Fids, y ∈Vars,Γ′.〈Γ, ẽ〉�k〈Γ′, (h y)〉

)
∨ (∃v.Γ� p ⇓ false∨Γ� ẽ ⇓ v

)
Proof. We prove this using induction on n. Intuitively, n imposes a limit on the number of

direct function calls we need to consider while proving that the contract of the function f holds.

The base case are evaluations that make zero direct calls. For every function def f x := ẽ ∈ P

where ẽ = {p} e {s}, we need to prove that

∀Γ ∈ {(H,σ,P) ∈ Env | x ∈ dom(σ)}.
(
∃k > 0,h ∈ Fids, y ∈Vars.〈Γ, ẽ〉�k〈Γ′, (h y)〉

)
∨(∃v.Γ� p ⇓ false∨Γ� ẽ ⇓ v

)
Consider a Γ such that ¬(∃k > 0,h, y.〈Γ, ẽ〉�k〈Γ′, (h y)〉). Otherwise the claim trivially holds.

This essentially means that we do not encounter a direct call either during the evaluation of p

or ẽ under Γ. Therefore,

Calls(Γ, p)∪Calls(Γ, ẽ)=� (3.1)

⇒A (Γ, p)∧A (Γ, ẽ), by the def. of A (3.2)

⇒ p→ s[e/res] under Γ, since |=P p→ s[e/res] (3.3)

⇒ Γ� p ⇓ false∨Γ� s[e/res] ⇓ true (3.4)

By the operational semantics of contract expressions Fig. 2.2,

⇒∃v.Γ� p ⇓ false∨Γ� {true} e {s} ⇓ v (3.5)

Since every call-free evaluation terminates in our language

and by Lemma 4,

Γ� p ⇓ false∨Γ� p ⇓ true (3.6)

By 3.5 and 3.6, ∃v.Γ� p ⇓ false∨Γ� {p} e {s} ⇓ v (3.7)

Hence the claim holds in the base case.

Inductive step: Assume that the claim holds for all evaluations with m calls. We now show that

the claim holds for all evaluations with m+1 calls. That is, we need to prove that

∀Γ ∈ {(H,σ,P) ∈ Env | x ∈ dom(σ)}.
(
∃k >m+1,h ∈ Fids, y ∈Vars,Γ′.〈Γ, ẽ〉�k〈Γ′, (h y)〉

)
∨ (∃v.Γ� p ⇓ false∨Γ� ẽ ⇓ v

)
40

3.2. Modular, Assume-Guarantee Reasoning

As before, let us consider a Γ such that ¬(∃k >m+1,h, y,Γ′.〈Γ, ẽ〉�k〈Γ′, (h y)〉). Otherwise

the claim trivially holds. That is, all direct calls made by ẽ under Γ have depth at most m+1.

Let S denote the top-level calls made by ẽ. These are all calls that appear in the syntax tree of e.

Formally,

S = {(Γ′, (g x)) | ∃i ∈N.〈Γ, ẽ〉�i 〈Γ′, (g x)〉∧¬∃ j < i ,h.(〈Γ, ẽ〉� j 〈Γ′′, (h x)〉)} (3.8)

Note that by the definition of�, every call transitively made during the evaluation of ẽ should

be reachable (w.r.t�) from the body of a callee in S in ≤m depth (otherwise ẽ would invoke a

call at a depth >m+1 violating the assumption). That is,

∀(Γ′, (g y)) ∈ S s.t. def h x := ẽ ∈ P.¬
(
∃i >m.〈Γ′[x �→σ′(y)], ẽ〉�i 〈Γ′′, (g x)〉

)

By induction hypothesis the above implies that

∀(Γ′, (g y)) ∈ S s.t. def h x := {preh} eh {posth} ∈ P.

∃v.Γ′[x �→σ′(y)]� preh ⇓ false∨Γ′[x �→σ′(y)]� {preh} eh {posth} ⇓ v

Based on the operational semantics and the definition of pr e, the above can be rewritten as

∀(Γ′, (g y)) ∈ S.∃v.Γ′ � pre(g y) ⇓ false∨Γ′ � (g y) ⇓ v (3.9)

As a consequence of the above fact we also know that every call invoked inside pre(g y)

terminates and results in a value. That is,

∀(Γ′, (g y)) ∈ S. A (Γ′,pre(g y)) (3.10)

Now consider the definition of the path condition path of a call (g y)� with label � contained

in the body ẽ of a function f . By Lemma 9,

∀Γ ∈ Env.〈Γ, ẽ〉�∗〈Γ′, (g y)�〉⇒ Γ′ � path((g y)�) ⇓ true (3.11)

⇒∀(Γ′, (g y)) ∈ S. Γ′ � path(g y) ⇓ true (3.12)

⇒∀(Γ′, (g y)) ∈ S. A (Γ′,path(g y)) (3.13)

That is, every environment that reaches (g y) will satisfy the path condition of (g y). We are

41

Chapter 3. Solving Resource Templates with Recursion and Datatypes

given that the following assertion holds:

∀ call-site c in P . |=P path(c)→ pre(c) (3.14)

⇒∀(Γ′, (g y)) ∈ S. ¬A (Γ′,path(g y))∨¬A (Γ′,pre(g y))

∨Γ′ � path(g y) ⇓ false∨Γ′ � pre(g y) ⇓ true (3.15)

⇒∀(Γ′, (g y)) ∈ S. Γ′ � pre(g y) ⇓ true, by 3.10, 3.12, 3.13 (3.16)

⇒∀(Γ′, (g y)) ∈ S.∃v. Γ′ � (g y) ⇓ v, by 3.9 (3.17)

⇒∀(Γ′, (g y)) ∈Calls(Γ, ẽ).∃v. Γ′ � (g y) ⇓ v, by the def. of Calls (3.18)

⇒A (Γ, ẽ)∧A (Γ, p) (3.19)

Also, 3.18 implies that evaluations of p and ẽ terminates.

As in the base case, the above fact, 3.19 and |=P p→ s[e/res] imply that

∃v.Γ� p ⇓ false∨Γ� {p} e {s} ⇓ v (3.20)

Theorem 11 (Partial correctness of function-level, modular reasoning). Let def f x := ẽ where

ẽ= {p} e {s} be a function definition in P. If the function-level, assume/guarantee obligations

given by constraints (2.I) and (2.II) hold for a program P, ∀Γ ∈ Envẽ,P such that there exists no

infinite sequence 〈Γ, ẽ〉�〈Γ′,e ′〉� · · · , ∃u. Γ� p ⇓ false∨Γ� ẽ ⇓ u.

Proof. Let Γ ∈ Envẽ,P. If there exists no infinite sequence 〈Γ, ẽ〉�〈Γ′,e ′〉� · · · , then there exists

a n ∈ N such that ¬(∃k >n,e,Γ′.〈Γ, ẽ〉�k〈Γ′,e〉). We know that Γ ∈ Envẽ,P implies that x ∈
dom(σ) (Lemma 2). Hence, by Lemma 10, ∃u. Γ� p ⇓ false∨Γ� ẽ ⇓ u.

3.2.2 Function-level Modular Reasoning with Templates

The function-level assume-guarantee reasoning presented above can be extended to programs

where the contracts of functions have templates. In this case, the goal is to find an assignment

ι for holes such that the program obtained by substituting the holes with its image in ι satisfy

the assume-guarantee constraints (2.I) and (2.II). Let P ι be program in which every hole a in

the expressions of the program is replaced by ι(a). The assume-guarantee obligations for a

program P with templates is given by:

∃ι : TVars �→N such that for each function definition def f x := {pre} e {post} in the program P ι,

the constraints (2.I) and (2.II) hold.

3.3 Template Solving Algorithm

In this section, I describe the algorithm for inferring values for the holes that will make the

modular assume-guarantee obligations hold. Figure 3.7 pictorially depicts the algorithm in the

42

3.3. Template Solving Algorithm

Figure 3.7 – Counter-example guided inference for numerical holes.

form of a block diagram. As a first step, a verification condition is generated from the assume-

guarantee obligations (described in section 3.3.1), which is a formula of the form ∃.∀.ψ or

equivalently ∃.∀.¬φ, where φ≡¬ψ. The verification conditions are such that their validity

implies that the assume-guarantee obligation holds. In the next step, using a counterexample

driven procedure solveUNSAT (section 3.3.4), the existence of an assignment ι : TVars �→N that

will make φ ι unsatisfiable is checked. If the procedure solveUNSAT fails to infer a value for the

holes, the VCs are refined by unfolding functions as described in section 3.3.2, and the process

is repeated until a solution is found or a timeout is reached.

Given a formula φ(ā, x̄), where ā ∈ TVars, the procedure solveUNSAT discovers a solution for

ā that will make φ unsatisfiable using an iterative but terminating algorithm that progresses

in two phases: an existential solving phase (phase I), and a universal solving phase (phase

II). Phase I discovers candidate assignments ι for the free variables ā. It initially starts with

an arbitrary guess, and subsequently refines it based on the counterexamples produced by

Phase II. Phase II checks if the candidate assignment ι makes φ unsatisfiable. That is, if φ ι is

unsatisfiable. If not, it chooses a disjunct d(x̄, ā) satisfiable under ι. The disjunct is converted

to a weaker disjunct that has only numerical variables by axiomatizing uninterpreted functions

and algebraic datatypes in a complete way. This numerical disjunct is then given back to

phase I. Phase I generates and solves a quantifier-free nonlinear constraint C (ā), based on

Farkas’ Lemma [Colón et al., 2003], to obtain the next candidate assignment for ā that will

make d(x̄, ā) and other disjuncts previously seen unsatisfiable. Each phase invokes the Z3

[de Moura and Bjørner, 2008] and CVC4 [Barrett et al., 2011] SMT solvers in portfolio mode on

quantifier-free formulas.

The procedure solveUNSAT is sound and complete if the formula φ belongs to the combined

theory of uninterpreted functions, algebraic datatypes, sets and real arithmetic, and if φ is a

linear parametric formula. These are formulas in which every nonlinear term is of the form

a ·x for some a ∈ TVars and x ∉ TVars. The detailed proof of soundness and completeness of

the solveUNSAT is discussed in section 3.4. Any non-linearity in the VC between variables not

43

Chapter 3. Solving Resource Templates with Recursion and Datatypes

in TVars is eliminated before providing it to the solveUNSAT algorithm. This is represented by

the block Nonlinearity axiom instantiation in Figure 3.7 and described in section 3.5. With

this overview I now explain the individual components of the algorithm in detail.

3.3.1 Verification Condition Generation

This section discusses the translation of the assume-guarantee obligations to a logical formula

called verification condition (VC) that uses only a restricted set of theories typically supported

by SMT solvers, and can be handled by the solveUNSAT procedure detailed in section 3.3.4.

The key ideas of the encoding presented here is based on the algorithm used by the LEON

verifier [Blanc et al., 2013, Suter, 2012]. However, an important difference is that the VC in our

case has holes, which become existentially quantified variables of the VC. Below I present an

overview of the VC generation algorithm using the list-reversal example shown in Figure 3.2.

At a high-level, the logical encoding of a predicate belonging to a first-order fragment of our

language is straightforward for most constructs except function calls, since most (first-order)

operations in our language have a direct mapping to a suitable theory operation supported by

SMT solvers. For instance, primitives types such as Int and Bool map to the integer and boolean

sorts. User-defined datatypes map to algebraic datatypes. If-else and Match expressions

correspond to disjunctions, and let expressions to equalities. However, there are two non-

trivial aspects to VC generation algorithm used by our system: (a) Clausification of predicates

using control literals, and (b) encoding of recursive functions as uninterpreted functions

through unfolding. The former aspect is used to efficiently obtain a satisfiable disjunct from

the VC given a satisfying assignment for the variables of the VC, which is used by the algorithm

for inferring holes (section 3.3). The latter aspect enables using abstractions of recursive

functions which can be refined (i.e, made more precise) on demand.

Consider the instrumented list reversal program presented in Figure 3.2(b). It is shown below

in the syntax of the core language. (The variables a and b are template variables in TVars and

correspond to the ? in the Scala programs.)

def revRec(l1,l2) =

{ true }
l1 match {
case Nil() ⇒ (l2, 2);
case Cons(x,xs) ⇒

let nl := Cons(x,l2) in
let r := revRec(xs, nl) in

let u := 7 + r.2
(r.1, u);

}
{ res ⇒ let w := size(l1) in res.2 ≤ a∗u + b}

Consider the assume-guarantee obligations that would have to be established for this function:

44

3.3. Template Solving Algorithm

|=P true→ post(revRec)[body(revRec)/res]. Note that since the precondition is true there is no

obligation generated for the precondition. For now, consider the holes a and b as some

constants. Expanding the body and postcondition of the function, the assume-guarantee

obligation reduces to |=P epost , where epost is defined as follows:

epost � (l1 match {

case Nil()⇒ (l2, 2);
case Cons(x,xs)⇒

let nl := Cons(x,l2) in let r := revRec(xs, nl) in
let u := 7+ r.2 in (r.1,u)

}).2 ≤ (let w := size(l1) in a ·w +b)

The predicate epost is converted to a predicate enorm that in a normal form wherein match

constructs are reduced to disjunctions and let expressions to equalities. This is accomplished

by a transformation that introduces new boolean variables called control literals, denoted

bi , at the points of disjunctions in the expressions. Each control literal corresponds to a

disjunction-free segment of the expression. For instance, the normal form for the predicate

epost is shown below.

enorm� b1 =⇒ l1=Nil()∧ t = (l2, 2)
∧(b2 =⇒ l1=Cons(x,xs)∧nl=Cons(x,l2)∧ r = revRec(xs, nl)∧u = 7+ r.2∧ t = (r.1,u)

∧(b3 =⇒ w = size(l1))

∧(b4 =⇒ t .2 ≤ a ·w +b)

∧(b1∨b2)∧b3 =⇒ b4

For any given values of the holes a and b, the predicates enorm and epost are equivalid i.e, when-

ever one of the predicates is true for all environments (that have a binding for all free variables

excluding holes), the other predicate is also true for all of its corresponding environments.

In other words, |=P epost is equivalent to |=P enorm. (Notice that all let binders, irrespective of

whether they appear in postcondition or in the body, become a part of the antecedent e.g.

notice that the control literal b3 is a part of the antecedent.)

The above transformation is closely related to the linear-time conversion to conjunctive

normal form (CNF) commonly referred to as clausification or Tseitin encoding [Tseitin, 1968].

But, there the goal is to generate an equisatisfiable formula whereas here it suffices to preserve

validity of formulas. In fact, the formula enorm is almost in CNF where each clause in the

formula bi =⇒ A1∧·· ·∧An corresponds to n CNF clauses (¬bi ∨A1)∧·· ·∧(¬bi ∨An). Notice

that a path exercised during an evaluation of enorm under an environment Γ will have the

control literals corresponding to the disjuncts of the path evaluate to true.

By the definition of |=P (see section 3.2) , the contracts of the function calls in the assume-

guarantee predicates can be assumed to hold for the environments under which they are

invoked. This implies that the postconditions of the recursive call revRec(xs, nl) can be as-

sumed in the assume-guarantee obligation |=P enorm. Therefore, we have |=P enorm ≡ |=P ψ

45

Chapter 3. Solving Resource Templates with Recursion and Datatypes

where

ψ� enorm∧b2 =⇒ z = size(xs)∧ r.2 ≤ a · z+b

Note that the clause conjoined with the predicate enorm corresponds to the postcondition of

the recursive call revRec(xs, nl). The clause is guarded by the same control literal b2 under

which the recursive call is invoked. This ensures that the contract is assumed only along the

path in which the recursive call happens.

While the predicate enorm does not have match or let constructs, it still has recursive functions

such as size and recRec. Say we treat the functions in the predicate ψ as uninterpreted i.e,

they can return any value as long as they return equal values for equal arguments. Under this

interpretation, the predicate ψ (as well as enorm) can be interpreted as a logical formula in

the theory T of uninterpreted functions, algebraic datatypes and integer arithmetic. Every

environment Γ that has a binding for the free variables of the predicate can be seen as an

assignment σΓ of ground terms belonging to the theory T to the free variables of the formula

ψ. The predicate will evaluate to true under an environment Γ iff it is satisfiable under the

assignment σΓ. Therefore, if the predicate ψ is T -valid then it implies that |=P ψ holds. (The

converse does not hold due the approximation of functions as uninterpreted.)

From Validity to Unsatisfiability The formula ψ presented above needs to be checked for

validity. However typically SMT solvers are well tuned for establishing satisfiability and unsat-

isfiability of formulas. Therefore, we phrase the above problems as checking unsatisfiability

by negating the formula ψ. This negation can be performed without destroying the normal

form by preserving the clauses that define control literals, since these clauses appear in the

antecedent of an implication. For instance, the negated formula φ=¬ψ is shown below:

φ� b1 =⇒ l1=Nil()∧ t = (l2, 2)
∧(b2 =⇒ l1=Cons(x,xs)∧nl=Cons(x,l2)∧ r = revRec(xs, nl)∧u = 7+ r.2∧ t = (r.1,u)

∧(b2 =⇒ z = size(xs)∧ r.2 ≤ a · z+b)

∧(b3 =⇒ w = size(l1))

∧(b4 =⇒ t .2 > a ·w +b)

∧(b1∨b2)∧b3∧b4

Notice the change of ≤ in clause guarded by b4 to > and that b4 is now cojoined in the root

clause. Though this may seem somewhat magical, the reason why most of the formula remain

intact is because of the simple fact that negation of an implication A =⇒ B is A∧¬B . It

requires no change to A, which forms the bulk of the formula ψ. It is easy to see that |=P ψ

is equivalent to |=P ¬φ. Actually, in our implementation, the initial expression epost itself is

negated before it is converted to the normal form.

46

3.3. Template Solving Algorithm

Parametric Unsatisfiability Consider now the holes in the predicate ψ, which were so far

treated as some constants. The above reasoning shows that a substitution for the holes that will

make the formula ψ valid (or equivalently φ unsatisfiable), will also make the postconditions

of functions satisfy the assume-guarantee obligations. Therefore, such an assignment is a valid

solution for the resource inference problem (see section 3.2.2), given that the holes cannot be

shared across function definitions. Thus, the actual goal is to find an assignment ι : TVars �→N

for the holes such that φ ι is unsatisfiable. This can be seen as deciding the formula ∃ā.∀x̄.¬φ
under a theory T , where the universal quantified variables x̄ consist of variables and function

symbols in φ, and the existentially quantified variables consist of integer valued holes. Such a

formula is referred to as the verification condition (VC).

Note that since φ treats functions as uninterpreted, the unsatisfiability of φ ι is a stronger

condition than what is required for verifying the assume-guarantee obligation, where the

functions are defined by the semantics of their bodies. In the sequel, I discuss how the

verification condition can be refined to create better approximations of the recursive functions.

3.3.2 Successive Function Approximation by Unfolding

In our approach, VCs are constructed incrementally wherein each increment makes the

VC more precise by unfolding the function calls that have not been unfolded in the earlier

increments. This process is referred to as VC refinement. The functions in the VCs at any given

step are treated as uninterpreted functions. Hence, every VC created is a sufficient but not

necessary condition for the corresponding assume-guarantee obligation to hold.

The VC refinements happen on demand if the current VC cannot be solved by the inference

algorithm (discussed in section 3.3). For instance, consider the formula φ presented above

and say there does not exist an ι : TVars �→N such that φ ι is T -unsatisfiable. Now the next VC

refinement will create a formula φ′ by unfolding the calls to functions size and revRec in φ. For

instance, unfolding the call size(l1) in φ would conjoin the following predicates to φ.

(b3 =⇒ (b4∨b5))

∧(b4 =⇒ l1=Nil()∧w = 0)

∧(b5 =⇒ l1=Cons(x,xs)∧p = size(xs)∧w = 1+p

As before, the assume-guarantee reasoning permits assuming the contracts of any function

call that is introduced by the unfolding of a call in the VC, e.g. the function size(xs) in the

above clauses, provided the assume-guarantee obligations of the callee are also verified. This

in essence provides a K -inductive reasoning for a function that is unfolded K times. The

refinement process stops if and once a VC is solved. While the unfolding of VC enhances the

capabilities of the verification technique, it quite evidently introduces a major performance

bottleneck because of the potential blow-up that may result due to unfolding. In the later

sections, I describe several optimizations that are used to control this blow up. The most

important optimization is model-driven unfolding which only unfolds along specific disjuncts

47

Chapter 3. Solving Resource Templates with Recursion and Datatypes

that could not be solved in the earlier iterations.

3.3.3 Logic Notations and Terminology

Before I present the solveUNSAT procedure I introduce a few notations and helper functions

for manipulating logical formulas.

Many Sorted First-order Theory Let Σ be a signature consisting of a set of sorts S, constants

C , function symbols F and predicate symbols P . Let Ids denote the set of logical variables or

identifiers. Each constant or variable has an associated sort. The set of constants or variables

with a sort σ is denoted as Cσ and Idsσ respectively. Each function and predicate symbol has

an associated arity σ1×·· ·×σn→σ and σ1×·· ·×σn respectively.

The set of Σ-terms of sort σ is the smallest set constructed as follows: (a) Every variable and

constant of sort σ belong to Σ-terms with sort σ, (b) If f is a function symbol in Σ of arity

σ1× ·· ·×σn → σ and, for all i = 1, · · · ,n, ti is a Σ-term of sort σi , then f (t1, · · · , tn) belongs

to Σ-terms of sort σ. A Σ-atom (also called as a literal) is a term of the form p(t1, · · · , tn) or

¬p(t1, · · · , tn), where p is a predicate symbol of arity σ1×·· ·×σn and each ti is a Σ-term of

sort σi . A Σ-formula φ is a first-order formula constructed using the Σ-atom and the usual

logical operators: ∧, ∨ and ¬ (and also derived operations =⇒ ,⇐⇒), and quantifiers ∀ and ∃.

Let FV (φ) denote the set of free variables in a formula φ, and FVσ(φ) denote the free variables

of sort σ.

A many sorted, first-order theory T = (Σ,A) is a pair of signature Σ and axioms A , where

A is a set of closed Σ-formulas that do not have any free variables. The axioms A assign a

meaning for the function and predicate symbols in T . One theory of particular interest here

is the combined theory of real arithmetic, uninterpreted functions and algebraic datatypes

(ADTs) [Barrett et al., 2007, Zhang et al., 2004]. A T -interpretation is a map that maps each

sort σ to a non-empty domain Aσ, variables and constants of sort σ to elements of Aσ, and

function and predicate symbols of Σ of arity σ1× ·· ·×σn → σ to functions and predicates

over Aσ1 × ·· · × Aσn → Aσ, such that the assignment satisfies the axioms of the theory: A .

A Σ-formula φ is satisfiable iff there exists a T -interpretation I of variables, function and

predicate symbols under which φ evaluates to true under the usual semantics for ∧, ∨ and ¬.

This is denoted by I |=φ. A formula φ is T -valid, denoted |=T φ iff every T -interpretation

satisfies the formula φ. A formula φ is T -unsatisfiable, denoted �|=φ iff φ is not satisfiable or,

equivalently, ¬φ is T -valid. The prefix T - and Σ- are omitted in the above nomenclature if

the theory under consideration is clear from the context.

A Σ-term is ground if it is quantifier-free and closed i.e, does not have free variables. Not

all ground terms belonging to a signature need to be allowed by a theory. A set of canonical

ground terms belonging to a theory T is a subset of ground terms belonging to the signa-

ture of the theory that satisfy the axioms of the theory. Let ValT denote the set of ground

48

3.3. Template Solving Algorithm

terms of a theory T . For instance, for the theory of real arithmetic, uninterpreted functions

and algebraic datatypes (ADTs), the canonical ground terms consist of real numbers and

constructor symbols applied over other ground terms. That is, ValT =R∪ cons(Val∗T) where

cons denotes a constructor symbol. A substitution α : (Ids∪F) �→ (ValT ∪ (ValT → ValT))

is a map from variables (and function symbols) to canonical ground terms (and functions

over canonical ground terms) such that each variable of sort σ is bound to a term of sort σ.

Typically, the assignments provided by SMT solvers for a satisfiable formula bind the variables

in the formula to these canonical ground terms defined by the underlying theory.

Given a substitution α, let φ α denote the formula obtained by replacing every variable

x ∈ dom(α) by α(x), and function term f (t1, · · · , tn) by α(f)(α(t1), · · · ,α(tn)). Given a sequence

of variables x̄ : (x1, · · · , xn), let α̂(x̄) denote the point wise application of α on the elements of

the sequence i.e, (α(x1), · · · ,α(xn)). A substitution α is a satisfying assignment of a formula φ

with respect to a theory T iff φα is ground and satisfiable under T . A satisfying assignment is

isomorphic to an interpretation that satisfies φ. Thus, a satisfying assignment is also referred

to as a model. The overloaded representation α |= φ is used to denote that α is a satisfying

assignment of φ.

Conjunctive Normal Form and Disjuncts A formula φ is in conjunctive normal form (CNF)

if it is of the form φ=∧m
j=1 C j and C j :

∨n j

i=1 ai j , where ai j is an atom. (Note that an atom is

either a predicate or its negation.) Let the term disjunct refer to a conjunction of atoms and

the term clause to refer to a disjunction of atoms. Given a formula φ in CNF, we say that d is

a disjunct of φ if d is a disjunct and for every clause in the formula φ, d contains one atom

belonging the clause. That is, d is of the form ai11∧ai22∧·· ·∧aim m for some i1, i2, · · · , im . Let

d ∈ disjunct(φ) denote that d is a disjunct of φ.

For convenience, disjuncts are treated as sets of atoms. Given disjuncts R and S, x ∈R denotes

that x is an atom of R, R ⊆ S denotes that every atom of R is present in S, R ∪S denotes the

conjunction of atoms in R and S, and (R \ S) denotes the disjunct obtained by dropping the

atoms in S from R. Note that these operations are syntactic operations on disjuncts.

In the sequel, it is assumed that all formulas are in CNF form. Let [m..n] denote a closed

integer interval from m to n.

3.3.4 The solveUNSAT procedure

Figure 3.8 presents our algorithm for solving an alternating satisfiability problem. Given a

formula φ whose free variables are a superset of holes, the goal is to find an substitution ι for

holes such that replacing holes according to ι results in unsatisfiable formula. This algorithm

relates to the block diagram shown in Figure 3.7 as follows. The lines 3, 4, and 15 – 21 corre-

spond to the Phase I: ∃-solver that finds a candidate assignment for the holes. The lines 6–14

correspond to the Phase II: ∀-solver that constructs a numerical counterexample disjunct for

49

Chapter 3. Solving Resource Templates with Recursion and Datatypes

input: A formula φ and a set of variables holes⊆ FV (φ)
output: A substitution for holes such that (φ holes) is unsatisfiable

or � if no such substitution can be found

1 def solveUNSAT(holes, φ) {
2 purify φ

3 construct an arbitrary initial mapping ι : holes �→ R

4 var C = true
5 while(true) {
6 let φi nst be obtained from φ by replacing every t ∈ holes by ι(t)
7 if (φi nst is unsatisfiable) return ι

8 else {
9 choose α such that α |=φi nst

10 let α′ be ι�α
11 choose a disjunct d of φ such that α′ |= d
12 let δ be elimFunctions(d)
13 choose a disjunct d ′ of δ such that α′ |= d ′
14 let dnum be elim(d ′)
15 let Cd be unsatConstraints(dnum)
16 C =C ∧Cd

17 if (C is unsatisfiable) return �
18 else {
19 choose m such that m |=C
20 let ι be the projection of m onto holes
21 }
22 }
23 }
24 }

Figure 3.8 – The solveUNSAT procedure

the candidate assignment to the holes. The while loop corresponds to repeating the phases

until the algorithm finds a solution or fails. I now explain the algorithm in detail by illustrating

it on the formula φ presented in the earlier section.

Purification The algorithm first purifies the formula φ which expresses every atom referring

to uninterpreted functions or ADTs in the form r = f (v1, v2, . . . , vn) or r = cons(v1, v2, . . . , vn)

where f is a function symbol, cons is the constructor of an ADT and r, v1, . . . , vn are variables.

(Due to the normalization that is performed during VC generation, every function and con-

structor application in the formula φ is already in this form.) The atoms with ADT selectors in

the formula such as t .2 > a ·w +b are converted to constructor applications by introducing

free variables e.g. t = cons(s1, s2)∧ s2 > a ·w +b. Note that the introduction of free variables

preserves the unsatisfiability of the formula. Hence, the purified formula is unsatisfiable iff

the original formula is.

50

3.3. Template Solving Algorithm

Choosing a Satisfiable Disjunct Initially, the algorithm starts with some arbitrary assign-

ment ι for the holes a and b (line 3 of the algorithm). Say ι(a) = ι(b) = 0 initially. Next, it

computes the formula φ ι by replacing a and b by 0 (line 6), which results in a formula with-

out holes. In particular, in φ ι the clause guarded by b4 and b2 would become b2 =⇒ z =
size(xs)∧ r = (r1,r2)∧ r2 ≤ 0 and b4 =⇒ t = (t1, t2)∧ t2 > 0. Here, r = (r1,r2) and t = (t1, t2) are

introduced by purification. (Recall that tuples are also ADTs.)

If the formula becomes unsatisfiable because of the substitution then a solution has been

found, so the algorithm returns. Otherwise, a satisfying assignment α is constructed for the

instantiated formula as shown in line 9. In the next step, we combine the substitutions ι and

α and construct α′. Note that ι is a substitution for holes and α is a substitution for other

variables. Hence α′ is a satisfying assignment for φ. Using the assignment α′ the algorithm

chooses a disjunct of the formula φ that is satisfied by α′. For the example, the disjunct chosen

could be

dex : b1∧ l1=Nil()∧ t = (l2,2)∧w = size(l1)∧ t = (t1, t2)∧ t2 > a ·w +b

This operation of choosing a disjunct that is true under a satisfying assignment can be per-

formed efficiently in time linear in the size of the formula by using the values of the control

literals in the assignment α′. The algorithm then invokes the function elimFunctions on the

disjunct d (line 12), which eliminates the function symbols and ADT constructors from the

disjunct d , as explained below.

Eliminating Function Symbols and ADT Operations Let d be a disjunct with holes holes
defined over a set of variables and function symbols. This is reduced to a formula δ that does

not have any uninterpreted functions and ADT constructors using the axioms of uninterpreted

functions and ADTs as described below. Let F and T be the set of atoms with function

applications and constructor applications in the purified formula. The eliminated formula δ

is defined as follows:

δ�

let δ1 =∧{
(

n∧
i=1

vi = ui)⇒ (r = r ′) | {r = f (v1, . . . , vn),r ′ = f (u1, . . . ,un)}⊆ F

}
in

let δ2 =∧{
(

n∧
i=1

vi = ui)⇔ (r = r ′) | {r = cons(v1, . . . , vn),r ′ = cons(u1, . . . ,un)}⊆ T

}
in

(d \ (F ∪T))∧δ1∧δ2

The notation δ \ (F ∪T) denotes a formula obtained by removing i.e, substituting with true

every atomic predicate in F or T . Notice that the above elimination procedure uses only the

fact that the ADT constructors are injective, while the theory of ADTs satisfy more axioms of

ADT. Due to this it may appear that this process introduces incompleteness in our approach.

But somewhat counter-intuitively this is complete. In section 3.4, I establish this non-trivial

completeness property of the approach.

Applying the above reduction to the disjunct dex shown above results in a constraint of the

51

Chapter 3. Solving Resource Templates with Recursion and Datatypes

form sketched below. (Note that tuples are ADTs.)

δex = b1∧ t2 > a ·w +b∧ ((l2= t1∧ t2 = 2)⇔ t = t))

The formula δ obtained by eliminating uninterpreted function symbols and ADTs typically

has several disjunctions. In fact, if there are n function symbols and ADT constructors in d

then δ could potentially have O(n2) disjunctions and O(2n2
) disjuncts. However, the algorithm

only explores the disjuncts of this formula on demand as explained in the sequel.

Choosing a Disjunct from elimFunctions(d) Having constructed a formula δ, the algorithm

then chooses a disjunct d ′ of δ that is true under the satisfying assignmentα′. There has to exist

such a disjunct since δ′ is weaker than d . The following constructive approach described below

shows how the disjunct is chosen by our algorithm. This is important from the perspective of

proving completeness. Let d be a disjunct and ρ |= d . Define an operation chooseEF(d ,ρ) that

chooses a disjunct d ′ of elimFunctions(d) such that ρ |= d ′. By definition, elimFunctions(d) has

three parts: (d \ (F ∪T))∧δ1∧δ2. Let dn denote (d \ (F ∪T)). All atoms in dn are added to d ′,
i.e, dn ⊆ d ′.

Let r = f (v1, · · · ,vn) and r′ = f (u1, · · · ,un) be two atoms in d and let ψ denote (
n∧

i=1
vi = ui)⇒

(r = r ′). ψ is a clause i.e, a disjunction of atoms. An atom of ψ that is satisfied by ρ is chosen as

follows. (a) If ∃i . ρ(vi) �= ρ(ui), choose vi =ui . (b) Otherwise, if ∀i . ρ(vi)= ρ(ui), the following

must hold ρ(r)= ρ(r ′) since ρ |= d . Therefore, choose r = r ′.

For every clause ψ in δ1 or δ2, choose an atom of ψ as described above and add it to d ′. By

construction, ρ |= d ′. d ′ is a disjunct of elimFunctions(d) as we have chosen an atom from every

clause of elimFunctions(d).

For the running example, chooseEF(d ,α′) will return the disjunct

d ′ex : b1∧ l2= t1∧ t2 = 2∧ t = t ∧ t2 > a ·w +b

Eliminating Non-numerical Predicates from a Disjunct (elim) The disjunct d ′ may contain

numerical operations like t2 = 2, boolean predicates such as b1 and also equalities or dise-

qualities between variables of ADT sort like l2= t1. The operation elim at line 14, produces a

disjunct that has only numerical operations. Let dt denote the atoms consists of variables of

non-numeric sort. Let dn denote the atoms that do not contain any holes and only contain

variables of numerical sort, and let dp denote the remaining (numerical) atoms that has holes

and numerical variables.

For the example disjunct d ′ex , dt is l2= t1, dn is t2 = 2 and dp is t2 > a ·w +b. The disjunct dt

can be dropped as dt cannot be falsified by any instantiation of the holes. This is because

dp and dt will have no common variables. The remaining disjunct dn ∧dp is completely

52

3.3. Template Solving Algorithm

numerical. However, dn ∧dp is simplified further as explained below. Our algorithm con-

structs a formula d ′n by eliminating variables in dn that do not appear in dp by applying the

quantifier elimination rules of Presburger arithmetic on dn [Oppen, 1973]. In particular, the

algorithm applies the one-point rule that uses equalities to eliminate variables and the rule

that eliminates relations over variables for which only upper or lower bounds exist. dn ∧dp is

unsatisfiable iff d ′n ∧dp is unsatisfiable.

Typically, dn has several variables that do not appear in dp . This elimination helps reduce the

sizes of the disjuncts and in turn the sizes of the nonlinear constraints generated from the

disjunct. Our experiments indicate that the sizes of the disjuncts are reduced by 70% or more

by this step.

Solving Numerical Disjunct with Holes Finally, the disjunct dnum obtained at line 14 of the

algorithm is a purely numerical disjunct but it has holes. The goal is to find a assignment for the

holes that will falsify the disjunct. For this purpose, the algorithm uses a well know approach

for solving templates in numerical programs which is based on Farkas’ Lemma [Colón et al.,

2003, Cousot, 2005b, Gulwani et al., 2008]. This approach reduces the problem for finding a

value of the holes in dnum to that of satisfying a quantifier-free nonlinear constraint (Farkas’

constraint). This reduction is sketched below.

The approach is based on the fact that a conjunction of linear inequalities is unsatisfiable

if one can derive a contradiction 1 ≤ 0 by performing the following three operations: (a)

multiplying the inequalities by non-negative values, (b) subtracting the smaller terms in the

inequalities by non-negative values and (c) adding the coefficients in the inequalities. E.g,

ax+by + c ≤ 0∧ x−1≤ 0 is unsatisfiable if there exist non-negative real numbers μ0,μ1,μ2

such that μ1 ·(ax+by+c)+μ2 ·(x−1)−μ0 ≤ 0 reduces to 1≤ 0. Hence, the coefficients of x and

y should become 0 and the constant term should become 1. This yields a nonlinear constraint

μ1a+μ2 = 0∧μ1b = 0∧μ1c −μ2−μ0 = 1∧μ0 ≥ 0∧μ1 ≥ 0∧μ2 ≥ 0. The values of a and b in

every satisfying assignment for this nonlinear constraint will make the original inequalities

unsatisfiable.

There are two important points to note about this approach. Firstly, handling strict inequalities

in the presence of real valued variables requires an extension based on Motzkin’s transposition

theorem as explained by Rybalchenko and Sofronie-Stokkermans [2007]. This extension is

needed in our case since the holes in the VCs are encoded as real-valued variables and the

VCs involve strict and non-strict inequalities. Moreover, in this setting, it is not possible to

reduce strict inequalities to non-strict inequalities using an integer reasoning. For instance,

consider a parametric VC: (res = 0∨ (res = r +1∧ar +b ≤ 0))∧ares+b > 0 with parameters

a and b. The assignment a =−1,b = 0 will make the VC false and hence is a valid solution,

whereas the assignment a = −1,b = 1/2 is not a valid solution. However, converting the

strict inequality in the VC to a non-strict inequality using an integer reasoning to a formula:

(res= 0∨ (res= r +1∧ar +b ≤ 0))∧ares+b−1≥ 0 is unsound since a =−1,b = 1/2 falsifies

53

Chapter 3. Solving Resource Templates with Recursion and Datatypes

the new formula and hence is a valid solution to the new formula. Therefore, it is necessary to

preserve the non-strict inequality in the formula and use Motzkin’s transposition theorem.

Another important aspect of using this Farkas’-lemma-based approach is that it is complete

only for linear real formulas but not for linear integer formulas. However, the incompleteness

did not manifest in any of our evaluations of the system on practical benchmarks. More

precisely, there wasn’t a benchmark used in the experiments for which the inference algorithm

failed to discover a valid assignment for the holes due to the incompleteness in applying

Farkas’ Lemma. Similar observation has also been documented in the previous works such as

by Gulwani et al. [2008]. However, it is not known if the incompleteness in applying Farkas’

Lemma prevented the algorithm from discovering minimum solutions, since evaluating the

minimality of the inferred constants is quite difficult. Nevertheless, as described in section 5,

the minimality of the inferred constants are evaluated empirically.

Computing the Next Candidate Assignment The inference algorithm constructs the nonlin-

ear Farkas’ constraints (line 15) for falsifying the disjunct dnum. The nonlinear constraints are

conjoined with previously generated constraints if any (lines 15,16). A satisfying assignment

to the new constraint will falsify every disjunct explored thus far. In our implementation,

such a satisfying assignment is obtained using the Z3 SMT solver with the NLSAT extension

[de Moura and Bjørner, 2008].

The satisfying assignment is chosen to be the next candidate substitution ι for the parameters

and the above process is repeated. If the nonlinear constraint C is unsatisfiable at any given

step then the algorithm concludes that there exists no solution that would makeφunsatisfiable.

In this case, the VC is refined by unrolling the functions calls as explained in section 3.3.1 and

the entire solveUNSAT procedure is reapplied on the refined VC.

Form Reals to Integer values for Holes Notice that the procedure solveUNSAT only provides

a real number assignment for the holes. The algorithm is also complete only for formulas that

use real arithmetic operations. The is due to the use of Farkas Lemma for solving numerical

disjuncts with holes (dnum). However, as noted by previous works as well [Gulwani et al.,

2008], the incompleteness in applying Farkas Lemma for solving integer constraints seldom

manifests in practice, because of the nature of the integer operations used by the input

programs in practice. Moreover, if the numerical disjuncts belong to linear integer arithmetic

(i.e, if there is no term in the disjunct that multiplies two variables e.g. a hole with another

variable), one could use a linear constraint solver to infer values of the holes and hence retain

completeness.

To obtain integer solutions for the holes from the assignment ι returned by the procedure

solveUNSAT, the system uses the ceil of the values assigned to the holes in ι. This strategy

is sound since it is known that the holes appear as coefficients of the upper bounds of the

resource usage. (If instead they appeared as lower bounds one may have to compute the floor.)

54

3.4. Completeness of Template Solving Algorithm

3.4 Completeness of Template Solving Algorithm

In this section, I establish the completeness of the template solving algorithm (Figure 3.7).

The correctness the algorithm is obvious from the design of the algorithm solveUNSAT. The

procedure solveUNSAT returns a model ι iff ι makes the formula φ unsatisfiable. The termi-

nation of the algorithm follows from the termination of solveUNSAT, since the unfolding of

functions in the VC happens only a bounded number of times (or upto a timeout). The proce-

dure solveUNSAT terminates since, in every iteration of the solveUNSAT algorithm, at least one

satisfiable disjunct of elimFunctions(d) is made unsatisfiable, where d is a disjunct of φ. The

number of disjuncts that can be falsified by the solveUNSAT procedure is bounded by O(2n2
),

where n is the number of atoms in φ. Note that, in practice, our tool explores a very small

fraction of the disjuncts (see section 5). However, the completeness of the algorithm is quite

non-trivial, which is the subject of this section. First, let us consider the completeness of the

solveUNSAT procedure.

3.4.1 Completeness of solveUNSAT Procedure

The procedure solveUNSAT is complete for a class of formulas referred to as parametric linear

formulas with ADTs and uninterpreted functions. Below I describe this logic fragment and

prove completeness of the algorithm for this logic fragment. The key property that ensures

completeness is that the operation elimFunctions is applied only on a satisfiable disjunct d . This

guarantees that the predicates in d involving ADT variables do not have any inconsistencies.

Since the parameters can only influence the values of numerical variables, axioms that check

for inconsistencies among the ADT predicates can be omitted. This property enables us use

only the axioms that restricts the values of the numerical variables. This is the key idea behind

the proof presented below..

Let T = (Σ,A) be the combined theory of real arithmetic, uninterpreted functions and ADTs

with equality. Let Σ= (S,C ,F,P). The sorts S consists of reals, booleans and ADT sorts. The

constants include real numbers and boolean values. The function symbols include arbitrary

function identifiers Fids, constructor symbols Cids, and arithmetic operations +, − and ·.
The predicate symbols include =, ≤ and <. The axioms of the theory include the axioms of

addition, subtraction and multiplication, arithmetic comparison operations, axioms of the

theory of algebraic datatypes, which consists of three axioms [Zhang et al., 2004]: (a) Injectivity:

C (x1, · · · , xn)=C (y1, · · · , yn)⇐⇒∧
i≤i≤n xi = yi , (b) Disjointness: C1(x1, · · · , xn) �=C2(y1, · · · , yn)

if C1 and C2 are distinct constructors, and (c) Acyclicity: t(x) �= x, if t is built solely by

constructors and t properly contains x. (We ignore the axioms related to selectors which

express selectors using constructors. This is already taken care of by purification.)

A Σ-formula is parametric linear iff every nonlinear term a · x, where a and x are variables,

a ∈ TVars and x ∉ TVars. Let F denote the set of parametric linear formulas.

Lemma 12. If d ∈F is a disjunct and ρ |= d then ρ |= chooseEF(d ,ρ) and ρ |= elimFunctions(d)

55

Chapter 3. Solving Resource Templates with Recursion and Datatypes

Proof. The lemma follows by the construction of chooseEF(d ,ρ) and elimFunctions(d).

Lemma 13 (Soundness of elimFunctions). Let d ∈ F be a satisfiable disjunct. Let ι be a

substitution for holes and dom(ι)= FV (d)∩TVars. If �|= (elimFunctions(d) ι) then �|= d ι

Proof. We prove the contrapositive form of the lemma: if d ι is satisfiable then elimFunctions(d) ι

is satisfiable. Let α |= d ι. I now show that α |= elimFunctions(d) ι.

Consider the assignment α′ : α� ι defined as follows:

α′ =
⎧⎨⎩α(x) x ∈ dom(α)

ι(x) x ∈ dom(ι)

Clearly, α′ is a model of d . By Lemma 12, α′ |= elimFunctions(d), which implies that α |=
elimFunctions(d) ι

The converse of the above theorem does not hold i.e, whenever d is unsatisfiable it does not

imply elimFunctions(d) is unsatisfiable, since it is a weaker formula. However, interestingly if d

is a satisfiable disjunct then the following property holds, which suffices for the completeness

of the solveUNSAT procedure.

Lemma 14 ((Completeness of elimFunctions)). Let d ∈F and ρ |= d. Let d ′ = chooseEF(d ,ρ).

Let ι ∈ Subst be a substitution for holes i.e, dom(ι)= FV (d)∩TVars. If �|= d ι then �|= d ′ ι.

Proof. I prove the contrapositive form of the lemma: if d ′ ι is satisfiable then d ι is satisfiable.

Let α′ |= d ′ ι. Let d ι= dnum∧duf ∧dadt where dnum is a conjunction of atoms containing only

numerical variables Varsn , duf is a conjunction of atoms of the form r = f (x1, · · · , xn) for some

function f ∈ Fids, and dadt is a conjunction of atoms of the form r = cons(x1, · · · , xn) or u �= v

or u = v , for some constructor cons ∈Cids and ADT variables {u, v}⊆Varst .

A model α of d ι is constructed as follows. Initially, I start with an initial assignment αinit

that binds the numerical variables Varsn in d ι to concrete values. Each atom a of d ι is

incrementally considered and the initial assignment is extended by introducing bindings for

previously unseen identifiers in a in such a way that a is satisfied. The assignment obtained

after processing every atom of d ι models d ι.

Let the initial assignmentαinit be the projection ofα′ on to variables in Varsn . That is, αinit (x)=
α′(x) if x is a numerical variable.

Part-I: Proof of αinit |= dnum

dnum is a part of d ′ ι i.e, dnum ⊆ d ′ ι. This follows from the definition of elimFunctions(d).

Therefore, α′ |= dnum. By definition, dnum has only numerical variables in Varsn . Therefore,

αinit |= dnum.

56

3.4. Completeness of Template Solving Algorithm

Part-II: Extending αinit to variables in dadt

I introduce a few definitions and operations that will be useful in the rest of the proof. Say that

a substitution α embeds (�) in a substitution ρ iff the following conditions hold:

1. dom(α)⊆ dom(ρ)

2. α preserves all equalities and disequalities between ADT variables Varst implied by ρ.

∀{x, y}⊆ dom(α)∩Varst . ρ(x)= ρ(y)⇐⇒α(x)=α(y)

3. For every variable x ∈ dom(α)∩Varst , ρ(x) and α(x) are shape isomorphic. That is, ρ(x) and

α(x) may differ only in the numerical values.

Say that an assignment α is a S-model for some set S of atoms iff α is a satisfying assignment

of every atom in S. Given a S-model α, an assignment ρ such that α � ρ and a variable

x ∈ dom(ρ) \ dom(α), we define α�ρ x as an assignment that extends α by introducing a

mapping for x such that (α�ρ x)� ρ and α�ρ x is a S-model.

(α�ρ x)(u)=
⎧⎨⎩α(v) ∃v ∈ dom(α). ρ(v)= ρ(u)

freshenα(ρ(u)) otherwise

where freshenα(v) return a fresh numeral that does not occur in α if v is a numeral. If v is an

ground ADT term, it replaces every numeral in v by a fresh numeral that does not occur in α.

It is easy to see that (α�ρ x)� ρ as all the three properties of embedding are preserved by the

above definition. It is also obvious that α�ρ x is a S-model as x does not appear in S since

x ∉ dom(α) and α is a S-model. With these definitions, we now proceed to the proof.

Let dadt = dcons∧dcomp, where dcons is a conjunction of atoms of the form r = cons(x1, · · · , xn)

and dcomp is a conjunction of atoms of the form u �= v or u = v . Let the atoms in dcons be

ordered as a1 : r1 = cons1(X1), · · · , an : rn = consn(Xn) such that for each ri , the size of the

ground ADT term ρ(ri) is larger than or equal to the size of every ρ(r j), j ∈ [1..i]. The size of a

ground ADT term is the number of constructors used by the term. This ordering ensures that

ρ(ri) cannot have as sub-structures {ρ(r j) | j > i }. Given a set of ground ADT terms such an

ordering is always possible as the ADTs are acyclic.

I construct, as explained below, a sequence of assignments α0, · · · ,αn , where α0 =αinit such

that each αi satisfies the following properties: (a) αi |=∧i
j=1 ai and (b) αi � ρ. Note that α0,

which equals αinit , satisfies the above properties. Given an assignment αi−1 that satisfies

the above properties, we now show how to construct an assignment αi satisfying the above

properties.

Let the atom ai be r = cons(x1, · · · , xm). Let S = {a j | j ∈ [1..i]}. By definition of S, αi−1 is a

S-model. Let W ⊆ {x1, · · · , xm} be the set of variables that do not belong to dom(αi−1). Let

57

Chapter 3. Solving Resource Templates with Recursion and Datatypes

W = {w1, · · · , wk }. Define αext as

αext = (· · · ((αi−1 �ρ w1)�ρ w2) · · ·)�ρ wk

By the definition of � , αext is a S-model and αext � ρ. αext has a mapping for all x1, · · · , xm .

Let t denote the ground ADT term cons(α̂ext(x1, · · · , xm)). Define αi as αext[r �→ t].

Property 1. If r ′ ∈ dom(αext) and ρ(r ′)= ρ(r) then, αext(r ′)= t

Proof. Since r ′ ∈ dom(αext) it should either be an argument passed to the constructor cons

(say xi) or should belong to dom(αi−1). If r ′ = xi then, ρ(r) must contain itself, as ρ |= ai : r =
cons(· · · , xi , · · ·) and ρ(r ′)= ρ(r). This is not possible as ρ(r) is acyclic. Therefore, r ′ cannot be

an argument xi . Therefore, say r ′ ∈ dom(αi−1). There are two scenarios in which r ′ could have

been assigned a mapping in αi−1: (a) there exists a j : z = cons′(y1, · · · , ym), j < i and r ′ = yi for

some i ∈ [1..m] or (b) there exists a j : r ′ = cons′(y1, · · · , ym), j < i .

Consider case (a). Say r ′ is an argument yi of cons′. Clearly, yi is a sub-structure of z. Since, ρ

is a model of a j , ρ(yi) is a sub-structure of ρ(z). By our choice of ordering of the atoms, ρ(r) is

at least as large as ρ(z) as a j precedes ai in the ordering. Therefore, ρ(yi) is strictly smaller

than ρ(r). Since αext � ρ, by property 3.4.1, ρ(r) and αext(r) have the same size, and ρ(yi) and

αext(yi) have the same size. Therefore, αext(yi) is strictly smaller than αext(r). Since, r ′ = yi ,

αext(r ′) is strictly smaller than αext(r). Which contradicts our premise that αext(r ′)=αext(r).

Therefore, this case is not possible.

Consider case (b). If cons′ and cons are different constructors then ρ(r)= ρ(r ′) is not possible.

Therefore, assume that cons and cons′ are equal. In the rest of the proof, I use cons instead of

cons′.

Recall that d ′ = chooseEF(d ,ρ). Since ρ(r)= ρ(r ′) the atom r = r ′ would belong to d ′. Similarly,∧m
i=1(xi = yi)⊆ d ′ as for all i , ρ(xi)= ρ(yi). If, for some i , {xi , yi }⊆Varsn then αext |= (xi = yi).

This is because (xi = yi) ∈ d ′, α′ |= d ′, αinit is a projection of α′ on to Varsn and αinit ⊆ αext .

Therefore, say {xi , yi } ⊆ Varst . Since ρ(xi) = ρ(yi) and αext � ρ, αext(xi) = αext(yi). Hence,

αext(xi)=αext(yi), for all i ∈ [1..m]. Hence, αext(r ′)= t .

Property 2. If r ′ ∈ dom(αext) and ρ(r ′) �= ρ(r) then, αext(r ′) �= t .

Proof. r ′ ∈ dom(αext) implies that r ′ ∈W or r ′ ∈ dom(αi−1), where W is the set of constructor

arguments that do not belong to dom(αi−1). Clearly, if r ′ ∈W then, αext(r ′) �= t by the definition

of t . Hence, the claim holds. Say r ′ ∈ dom(αi−1). There are two scenarios in which r ′ could

have been assigned a mapping in αi−1: (a) there exists a j : z = cons′(y1, · · · , ym), j < i and

r ′ = yi for some i ∈ [1..m] or (b) there exists a j : r ′ = cons′(y1, · · · , ym), j < i .

Consider case (a). As explained in the proof of the above claim, αext(r ′) is strictly smaller than

αext(r) in this case. Therefore, αext(r ′) �= t holds. Hence, the claim holds.

58

3.4. Completeness of Template Solving Algorithm

Consider case (b). If cons and cons′ are different constructors then αext(r ′) �= t and hence the

claim holds. Hence, consider the case where cons and cons′ are the same constructor.

Given ρ(r) �= ρ(r ′). Therefore, the values of atleast one of the constructor arguments should

be different in ρ. Recall that d ′ = chooseEF(d ,ρ). By definition of chooseEF, an atom of the

form xi �= yi , for some i , wherein ρ(xi) �= ρ(yi) will belong to d ′. If {xi , yi }⊆Varsn (numerical

variables) then αext |= xi �= yi . This is because (xi �= yi) ∈ d ′, α′ |= d ′, αinit is a projection of

α′ on to Varsn and αinit ⊆αext . Consider the case where {xi , yi }⊆Varst . xi �= yi belongs to d ′

only because ρ(xi) �= ρ(yi). Since αext � ρ, αext(xi) �=αext(yi) (property 3.4.1 of� definition).

Hence, αext(r ′) �= t .

Property 3. t is shape isomorphic to ρ(r). That is, t and ρ(r) differ only in numerical values.

Proof. By definition, t = cons(α̂ext(x1, · · · , xm)). For each xi ∈Varst , αext(xi) is either αi−1(xi)

or is obtained by applying an extension operation α�ρ xi for some α � ρ. In the former

case, αext(xi) and ρ(xi) are shape isomorphic by hypothesis. In the latter case, they are

shape isomorphic by the definition of � . Since, ρ satisfies ai : r = cons(x1, · · · , xm), ρ(r) =
cons(ρ̂(x1, · · · , xn)). The fact that, for all i ∈ [1..m], ρ(xi) is shape isomorphic to αext(xi) implies

the claim.

By the above three properties, αi � ρ. By definition of t , (r �→ t) |= ai . Therefore, αi models

(S∪ {ai }). By induction the claims hold for all αi ,0≤ i ≤ n. Therefore, αn |= dcons and αn � ρ.

Let x1, · · · , xm be the set of variables in dom(ρ)∩Varst that do not have a mapping in αn .

Define an assignment αad t = (· · · ((αn �ρ v1)�ρ v2) · · ·)�ρ vm). By definition of � , αad t |= dcons

and αad t � ρ. Furthermore, αad t has a mapping for all ADT variables in d .

Now it is almost trivial to prove that dcomp is satisfied by αad t . Since αad t implies all equalities

and disequalities implied by ρ (property 3.4.1 of� relation), and since ρ satisfies dcomp, αad t

also satisfies dcomp.

Part-III: Extending αad t to uninterpreted functions in duf

Here I show how the assignment αad t can be extended to uninterpreted functions in the

disjunct d . Let duf =∧n
i=1 ai . Similar to Part-II, a sequence of assignments α0,α1, · · · ,αn is

created, where α0 = αad t , such that each αi is a satisfying assignment of all atoms a1 to ai .

For convenience, the assignments are allowed to track partial maps for function symbols.

α0 trivially satisfies the claim. Assume that αi−1 satisfies all atoms up to ai−1. Construct

a αi as described below that satisfies all atoms up to ai . Let ai : r = f (u1, · · · ,un). Let E =�αi−1(u1, · · · ,un).

Define αi as αi−1 if f is defined for E at αi−1. Otherwise, let αi be (αi−1∪{ f �→ (E �→αi−1(r))}),

where the ∪ operation combines the partial definitions of f given by the left and the right

operands. Note that αi−1 should be defined at r since r is either of numerical sort or ADT sort

59

Chapter 3. Solving Resource Templates with Recursion and Datatypes

and hence should be defined in αadt . Now to show that αi |= ai , we only need to show the

following property, which completes the proof.

Property 4. If f is defined for E at αi−1 then (αi−1(f))(E)=αi−1(r)

Proof. Since f is defined for E in α, it should have been added to some α j , j < i . Which

implies that a j : r ′ = f (v1, · · · , vm), �α j−1(v1, · · · , vm)= E and α j (f)(E)=α j−1(r ′). I now show

that α j−1(r ′) (which equals αi−1(r ′)) and αi−1(r) are equal. There are two cases to consider:

(a) ρ(r)= ρ(r ′) and (b) ρ(r) �= ρ(r ′).

Consider case (a). If {r,r ′}⊆Varst then αi−1(r)=αi−1(r ′) as αi−1� ρ. Hence, the claim holds.

Say {r,r ′}⊆Varsn . Since ρ(r)= ρ(r ′), by the choice of the disjunct d ′, r = r ′ belongs to d ′. This

implies that αinit (r) (which is⊆αi−1(r)) models r = r ′ as α′ |= (r = r ′) and αinit is projection of

α′ on to Varsn . Therefore, the claim holds.

Consider case (b): ρ(r) �= ρ(r ′). In this case, by the choice of d ′, a predicate ui �= vi , for some

i ∈ [1..m], wherein ρ(ui) �= ρ(vi) will belong to d ′. By an argument similar to the previous

cases, it can be shown that in this case, αi−1(ui) �= αi−1(vi) irrespective of whether ui , vi

belong to Varsn or Varst . Therefore, �αi−1(v1, · · · , vn) �= E and hence, �α j−1(v1, · · · , vn) �= E (since

α j−1 ⊆ αi−1). This implies that the entry for E is not added by the atom a j contrary to our

assumption. Hence, this case is not possible.

Theorem 15 (Completeness of solveUNSAT). Let φ ∈F be a quantifier-free parametric linear

formula with holes: holes. Let ι = solveUNSAT(φ,holes).

1. The procedure solveUNSAT is correct. That is, if ι �= � then φ ι is unsatisfiable.

2. The procedure solveUNSAT is complete. That is, if ι=� then there does not exist an assignment

for params that will falsify φ.

3. The procedure solveUNSAT terminates.

Proof. The solveUNSAT algorithm shown in Figure 3.8 returns a non-empty model ι only at

line 7. This line will be reached only when φi nst =φ ι is unsatisfiable. Hence, solveUNSAT is

correct.

The solveUNSAT algorithm returns � only at line 17. When line 17 is reached the following

properties hold. (a) α′ |= d , where d ∈ disjunct(φ), (b) d ′ = chooseEF(d ,α′), and (c) there exists

no assignment ι for holes such that d ′ ι is unsatisfiable. The property (c) follows from the

completeness of Farkas’ Lemma for linear real arithmetic. By Lemma 14, and properties (a),(b)

and (c) imply that there does not exist an assignment for holes that will falsify d and hence, φ.

Therefore, the procedure is complete.

Let d be a disjunct of φ. Let {d1, · · · ,dm} be the disjuncts of elimFunctions(d). d can be chosen

at line 9 of the algorithm at most m times. This is because, every time d is chosen, at least one

di , i ∈ [1..m] that was satisfiable in the earlier iterations will be falsified by the new assignment

computed at line 20. Once all disjuncts di , i ∈ [1..m] are falsified by an assignment ι for holes,

60

3.4. Completeness of Template Solving Algorithm

elimFunctions(d) ι will be unsatisfiable. By Lemma 13, �|= elimFunctions(d) ι implies �|= d ι. Hence,

d will be falsified when all the disjuncts of elimFunctions(d) are falsified. Therefore, d can be

chosen at line 9 of the algorithm at most m times. Since there are only a finite number of

disjuncts in φ, the number of iterations of the algorithm is bounded.

In each iteration, the algorithm solves for the non-linear constraints C . Since C is a quantifier-

free real arithmetic formula it has a decision procedure. Therefore, the algorithm terminates.

I now extend the Theorem 15 to also include the theory of sets. Though the core language

described until now does not have built-in support for sets, our implementation provides

built-in support for sets, since they have decidable logic fragments and are supported by

off-the-shelf SMT solvers. Sets are also quite essential for the transformation for handling

memoization described later in section 4.

Theorem 16. Given a quantifier-free parametric linear formula φ with free variables x̄ and

ā ∈ TVars∗, belonging to a theory T that is a combination of theories of uninterpreted functions,

algebraic datatypes, sets and real arithmetic, finding an assignment ι such that dom(ι)= |ā|
and (φ ι) is T -unsatisfiable is decidable.

Proof. Express the problem as trying to decide the validity of a formula of the form: ∃ā ∈
TVars∗.∀x̄ ′.

(∀ f̄ . φ′
)∧ (∀s̄. φset

)
, where, f̄ are the uninterpreted function symbols in φ, s̄ are

the variables of set sort, x̄ ′ are variables of other sorts, FV (φ′)⊆ ā∪ x̄ ′, FV (φset)⊆ s̄∪ x̄ ′, and

φset is a formula in Tset that has only set operations: set construction, union, intersection

and complement. This is possible because the existentially quantified variables ā are only

numerical variables and appear only as coefficients of numerical valued expression. They

do not appear in functions or relations that involve sets. Since the theory of sets admit

decidable quantifier elimination [Kuncak et al., 2006], the above formula could be reduced

to an equivalent formula of the form ∃ā.∀x̄ ′, f̄ .φ′′, where FV (φ′′) = ā∪ x̄ ′, that do not have

any variables of set sort. This formula can be decided using the solveUNSAT algorithm by

Theorem 15.

I now present the main theorem of this Chapter that establishes the completeness of the

inference algorithm for a program fragment with recursive functions and recursive datatype,

albeit when the arithmetic operations are interpreted as real arithmetic operations. The

theorem is based on the fact that for a certain class of functions manipulating ADTs called

sufficiently surjective functions [Suter et al., 2010, 2011], it suffices to unfold them a finite

number of times to decide any formula involving these functions.

Theorem 17 (Completeness of Inference Algorithm). Let P be a program with contracts that

may have holes in the post-conditions, recursive functions, real-valued variables and algebraic

datatypes, where every arithmetic operation is parametric linear, and every recursive function

in the program is sufficiently surjective. The inference algorithm depicted by Figure 3.7 is a

61

Chapter 3. Solving Resource Templates with Recursion and Datatypes

decision procedure for inferring values for the holes that when substituted in the postconditions

makes all contracts in the functions in P valid.

Proof. Follows from the completeness of solveUNSAT procedure for parametric linear formulas

with uninterpreted functions and ADTs (Theorem 15), and the completeness of unfolding

of functions for modeling the behavior of sufficiently surjective functions [Suter et al., 2010,

2011]

3.5 Solving Nonlinear Formulas with Holes

Nonlinearity is common in resource bounds. In this section, I discuss the approach for

handling nonlinear formulas with holes like φex : w z < x y ∧ x <w −1∧ y < z−1∧ax+b ≤
0∧ay +b ≤ 0 where a,b are holes. The goal here is to find an assignment for a and b that will

make the formula φex unsatisfiable. Notice that the formula has terms like w z that multiply

two variables that are not holes. The algorithm solveUNSAT is aimed at solving only parametric

linear formula where all nonlinear terms are of the form ay , where a ∈ TVars and y ∉ TVars. I

now present the approach used by the system to eliminate such nonlinearity from the VC by

axiomatizing the nonlinear operations. This component is represented by the block Nonlinear

axiom instantiation in Figure 3.7.

Our approach encodes multiplication as an uninterpreted operation that is axiomatized by

axioms such as: ∀x, y. x y = (x − 1)y + y , ∀x, y. x y = x(y − 1)+ x, monotonicity properties

like (x ≥ 0∧ y ≥ 0∧w ≥ x ∧ z ≥ y)⇒ x y ≤ w z, associativity and distributivity over +. The

exponential and logarithmic function are defined using recursive functions in the standard

library, along with some of their oft-required properties. For instance, the exponential function

2x is defined as def tpow x := {(x≥ 0)} if (x= 0) 1 else 2 · tpow(x−1) {true}, which corresponds

to the axiom: 2x = 2 · 2x−1, for x ≥ 1, and 0 otherwise. A �log� function often used by our

benchmarks in defined by the function log shown below in Scala syntax:

def log(x: BigInt): BigInt = {
require(x >= 1)
if (x ≤ 1) 0
else 1 + log(x/2)

} ensuring(res ⇒ res ≥ 0)

def logMono(x, y): Boolean = {
require(x >= y && y >= 1)
(if(y <= 1) true else logMono(x/2, y/2)) &&

(log(x) >= log(y))
} holds

The properties such as monotonicity of log and 2x are also expressed and verified in the library.

For instance, the function logMono shown above establishes the monotonicity property of log.

(The recursive call logMono(x/2, y/2) encodes an induction strategy for proving this property

by exploiting the assume-guarantee reasoning described in section 3.2.) These axioms can be

incorporated into the verification conditions by recursive instantiation as explained below.

62

3.6. Finding Strongest Bounds

Axioms such as x y = (x−1)y + y that are recursively defined are instantiated similar to unfold-

ing a recursive function during VC refinements. For example, in each VC refinement, for every

atomic predicate r = x y that occurs in the VC, a new predicate r = (x−1)y+y is added if it does

not exist (syntactically) . A binary axiom such as monotonicity is instantiated on every pair of

terms in the VC on which it is applicable. For instance, if r = f (x), r ′ = f (x ′) are two atoms in

the VC and if f has a monotonicity axiom, the predicate (x ≤ x ′ ⇒ r ≤ r ′)∧ (x ′ ≤ x⇒ r ′ ≤ r) is

conjoined to the VC. This approach can be extended to N-ary axioms. Every other user-defined

axiom should be manually instantiated by the user by asserting it on appropriate arguments

in the pre-or post-condition of the function whose verification requires the axiom.

Consider the example formula φex shown above. Instantiating the multiplication axioms a

few times will produce the following formula (simplified for brevity):

w z < x y ∧x y = (x−1)(y −1)+x+ y −1∧ ((x ≥ 0∧ y ≥ 0∧x ≤w ∧ y ≤ z) =⇒ x y ≤w z)

∧x <w −1∧ y < z−1∧ax+b ≤ 0∧ay +b ≤ 0

This formula can be solved without interpreting multiplication i.e, treating it as uninterpreted.

For instance, a =−1,b = 0 is a solution for the holes that will make the formula unsatisfiable.

3.6 Finding Strongest Bounds

In this section, I describe the approach used by the system for computing strongest bounds

that satisfy a given template. We know that every hole in the template appears as a coefficient of

some expression. As a first step, the system approximates the rate of growth of an expression in

the template by counting the number of function invocations (including nonlinear operations)

performed by the expression. The holes are ordered in the descending order of the estimated

rate of growth of the associated expression, breaking ties arbitrarily. Let this ordering be

denoted by�.

For instance, given a template res≤ a · f (g (x, f (y))+c ·g (x)+a ·x+b, the holes in the template

are ordered as a � c � b. Define an order <∗ on the substitutions TVars �→R by extending <
lexicographically with respect to the ordering� as follows:

∀{ι,γ}⊆ (TVars �→R). ι≤∗ γ iff ∃a ∈ TVars. ι(a)< γ(a)∧∀b ∈ TVars. b � a =⇒ ι(b)= γ(b)

A locally minimum solution ιmi n for the holes is found with respect to≤∗ using a binary search

as explained below.

Let ι be the solution found by the solveUNSAT procedure. We know that ι is obtained by solving

a set of nonlinear constraints C (see line 15 of Figure 3.8). A minimum satisfying assignment

ιmi n for C with respect to the total order ≤∗ is computed by performing a binary search on

the solution space of C starting with the initial upper bound given by ι. The binary search

stops when, for each hole a, the difference between the values of a in the upper and lower

bounds is found to be ≤ 1. Note that the difference between the upper and lower bounds

63

Chapter 3. Solving Resource Templates with Recursion and Datatypes

needs to bounded from below (and cannot be required to be zero) since the values of holes

are real numbers. The minimal assignment ιmi n may not falsify φ although ι does. This is

because C only encodes the constraints for falsifying the disjuncts of φ explored until some

iteration. The algorithm uses ιmi n as the next candidate model and continues the iterations of

the solveUNSAT algorithm.

In general, the inferred bounds are not guaranteed to be the strongest as the verification

conditions generated are sufficient but not necessary conditions. However, it would be the

strongest solution if the functions in the program are sufficiently surjective [Suter et al., 2010,

2011], if the recursive functions are unfolded to sufficient depth, there are no nonlinear

operations and there is no loss of completeness due to applying Farkas’ Lemma on integer

formulas. Our system also supports finding a concrete counterexample, if one exists, for

the values smaller than those that are inferred, which is more pragmatic approach to testing

minimality of the inferred constants.

3.7 Analysis Strategies and Optimizations

Inference of Auxiliary Templates The system supports generation of templates for inferring

program invariants automatically for some functions. This is to alleviate the users from having

to specify simple properties such as that a result of a function is positive, which may be

necessary for establishing resource bounds. For every function f for which a template has not

been provided by the user, a default template is constructed which is a linear combination

of integer valued arguments and return values of f . For instance, for the function size(l) the

default template is a∗res+b≤0 (where, res is the return value of size). This allows the algorithm

to infer that res≥0 is a valid postcondition of the function size automatically. Note that this

property is necessary to verify the running example: revRec function shown in Figure 3.2

Inter-procedural Analysis When the input program has more than one function, our system

solves the resource bound templates for the functions modularly in a bottom-up fashion. In

our system, the resource bound templates of the callees are solved independent of the callers.

The bounds of the callees are then used while analysing the callers. This strategy enhances the

scalability of the system by allowing the inference algorithm to focus on one function at a time,

and also allows establishing resource bounds of open programs like data structure libraries.

However, as an exception, the auxiliary templates that are inferred automatically are solved

in the context of the callers in order to find non-trivial, context-specific invariants. This is

because, if an automatically generated template such as a∗res+b≤0 is solved independent of a

context then it difficult to prevent inference of trivial solutions such as a = 0, b = 0, which is

equivalent to saying that the postcondition is true.

64

3.8. Divide-and-Conquer Reasoning for Steps Bounds

Targeted Unfolding Recall that the inference algorithm unfolds functions in a VC if the VC

is not solvable by solveUNSAT (i.e, when the condition at line 17 is true). Our system uses a

demand-driven unfolding process in which only those functions encountered in the disjuncts

explored by the solveUNSAT procedure are unfolded. This avoids unfolding functions along

disjuncts that are already unsatisfiable in the VC. These include (but not restricted to) paths in

the program that are unsatisfiable within the depth of unfolding of functions in the VC.

Prioritizing Disjunct Exploration Typically, the VCs that are generated have a large number

of disjuncts some of which are easier to reduce to false compared to others. The algorithm is

directed towards choosing the easier disjuncts by using timeouts on the nonlinear constraints

solving process. Whenever a timeout happens while solving a nonlinear constraint, the dis-

junct that produced the nonlinear constraint in the VC is blocked so that it is not chosen again.

This can be accomplished by introducing a new predicate that denotes that the conjunction of

the control literals corresponding to the disjunct is false. Our system by default uses a timeout

of 20 seconds. However, a different timeout can be provided as a command line input to the

system. All our experiments were carried out using the default timeout. This strategy, though

conceptually simple, made the analysis converge faster on many benchmarks.

3.8 Divide-and-Conquer Reasoning for Steps Bounds

In this section, I describe an alternative reasoning supported by our system for establishing

steps bounds involving nonlinear multiplication (i.e, multiplication of two program variables

or terms). Often, the bounds on the number of evaluation steps involve nonlinear multi-

plication. In such cases, by default, our system relies on the inference algorithm to handle

multiplication using built-in axioms as described in section 3.5. However, the presence of

nonlinear multiplication makes the inference algorithm more incomplete and also much

slower since the instantiation of axioms of multiplication increases the sizes of the verification

conditions. In the sequel, I present a compositional, light-weight reasoning for proving non-

linear bounds when the reason for nonlinearity is the presence of nested computations. For

example, consider the implementation of an insertion sort algorithm shown below.

def sortedIns(e: BigInt, l: List): List = {
l match {

case Cons(x,xs) ⇒ if (x ≤ e) Cons(x,sortedIns(e, xs)) else Cons(e, l)
case _ ⇒ Cons(e,Nil())

}
} ensuring(res ⇒ size(res) == size(l) + 1 && steps ≤ ? ∗ size(l) + ?)

def sort(l: List): List = (l match {
case Cons(x,xs) ⇒ sortedIns(x, sort(xs))
case _ ⇒ Nil()

}) ensuring(res ⇒ size(res) == size(l) && steps ≤ ? ∗ (size(l)∗size(l)) + ?)

65

Chapter 3. Solving Resource Templates with Recursion and Datatypes

Intuitively, the number of steps taken by the sort function is quadratic in the size(l) , since it per-

forms O(size(l)) recursions each taking O(size(l)) number of steps (as they invoke the sortedIns
function). Our system provides built-in support for encoding this "divide-and-conquer" rea-

soning. For instance, one can guide our system to infer the steps bound for the sort function

using this divide-and-conquer reasoning as illustrated below:

@compose
def sort(l: List): List = (l match {

case Cons(x,xs) ⇒ sortedIns(x, sort(xs))
case _ ⇒ Nil()

}) ensuring(res ⇒ size(res) == size(l) &&
rec ≤ ? ∗ size(l) + ? &&
tpr ≤ ? ∗ size(l) + ? &&
steps ≤ ? ∗ (size(l)∗size(l)) + ?)

The keyword rec denotes the number of recursive calls invoked by a function. This resource

also counts calls to mutually recursive functions determined based on a static call graph. The

keyword tpr, which is stands for steps per recursive call, denotes the number of steps in the

evaluation of the body of the function excluding the steps taken by the recursive (or mutually

recursive) calls. The cost functions for these resources are formally defined below.

Cost function definition for rec:
⊕=+

ccall = capp =
⎧⎨⎩1 if the callee is mutually recursive with the caller

0 Otherwise

cop = 0 for every other operation op

Cost function definition for tpr:
⊕=+

ccall = capp =
⎧⎨⎩1 if the callee is not mutually recursive with the caller

0 Otherwise

cop is equivalent to cop for steps for every other operation op

Note that the definition of cost functions for rec and tpr requires knowing the function that

is under execution as well as the callee function that is invoked by a call expression. One

can assume that this information is additionally tracked by the operational semantics and

implicitly passed to the cost functions. Indeed, in our system, the phase that performs

instrumentation of these resources has access to a static call graph and hence can retrieve

these details.

Maximizing TPR over Recursive Calls A closer inspection of the definition of the cost func-

tion for tpr would reveal that tpr actually measures the number of steps in the evaluation of

66

3.8. Divide-and-Conquer Reasoning for Steps Bounds

the first call to the function (excluding steps taken by the recursive calls). However, what is

necessary for the divide-and-conquer reasoning is an upper bound on the value of tpr for

any call to the function (not necessarily the first). To infer such an upper bound, we addi-

tionally impose a constraint that the bound provided in the contracts (possibly with holes)

on the tpr resource monotonically decreases across the recursive calls made by the function.

This is achieved by conjoining the following obligation with the modular assume-guarantee

obligations generated for every function g that has a bound on the tpr resource.

(2.8.I) For each recursive call site (f y)� in g , |=P path((f y)�)→ tprlg ≥ tprlf [y/paramP(f)]

In the above condition, tprlα (α ∈ { f , g }) denotes the upper bound (possibly with holes)

provided in the postcondition of a function α for the tpr resource. The above obligation

ensures that the inferred tpr bound is maximum across all recursive calls. To understand why,

consider a recursive call 〈Env′, (f y)〉made by the function f under an input environment

Env. Let tprbndg be the bound inferred by the system for the function g by inferring values

for the holes that satisfy the assume-guarantee obligations. By the soundness of the inference

algorithm, the expression tprbnd f [y/paramP (f)] will evaluate to a value greater than the

value of the tpr for the call (f y) under the environment reaching the call site: Env′. By the

obligation 2.8.I, tprbndg ≥ tprbnd f [y/paramP (f)] holds for all environments satisfying the

path condition to the call site, and hence specifically for Env′. Thus, the value of tprbndg

under Env′ (and hence under Env) upper bound the value of tpr for the recursive call (f y)�

under Env′. By induction, it also upper bounds the value of tpr for every transitive recursive

call made by the function g under the input environment Env.

Upper Bounding Steps using TPR and Rec In the above obligation, tprtmpl denotes the

upper bound (with holes) provided by the user for the tpr resource. The annotation @compose
informs the system to use a divide-and-conquer reasoning for inferring the steps bound. In

this case, the system independently infers the tpr and rec bounds and infers the step bound

using the following assume-guarantee obligation:

(2.8.I) For each function f in P , |=P (steps� ≤ tprbndf · recbndf)→ steps� ≤ stepstmplf

In the above equation, steps� represents the instrumented term of function f corresponding

to the steps resource. tprbnd f and recbnd f represents the bounds of tpr and rec resources

inferred by the system for the function f based on the user-provided templates. stepstmpl f

denotes the template provided by the user for the steps usage of the function f . Note that

while the above assume-guarantee obligation involves nonlinear multiplication of tprbnd

and recbnd, the condition is typically much easier to solve since the terms (or monomials) in

stepstmpl will at least include the terms in the product of tprbnd and recbnd. It is to be noted

that this divide-and-conquer reasoning is useful in every scenario where the steps bound that

is needed to be established has a higher degree (counting only multiplication operations)

compared to the bounds of the tpr and rec resources.

67

Chapter 3. Solving Resource Templates with Recursion and Datatypes

I would like remark that in the evaluations that were carried out using the system every steps
bound that was established with this reasoning was also provable directly by the inference

algorithm. Nevertheless, I believe that on large real-world programs the reduction in the

instantiation of axioms of multiplication achieved by this divide-and-conquer reasoning

may provide significant speed ups. Furthermore, by breaking down the proof argument for

nonlinear steps bounds, this reasoning also offers a fine-grained control to the users of the

tool for establishing nonlinear bounds.

3.9 Amortized Analysis

In this section, I briefly describe how the techniques presented here can be used to verify

amortized bounds. Computing amortized bound does not require any additional machinery

or extensions to the algorithm. Instead, the potential functions necessary for establishing

amortized bounds can be directly expressed as invariants in the contracts. For instance,

consider an amortized data structure with a method def p x := ẽ. Let φ denote a potential

function from the state of the data structure to a value (e.g. an Int). If the method p has an

amortized steps count f (x) and if the potential function is chosen correctly then the worst-

case steps count of the method p is upper bounded by f (x)+ (φ(x)−φ(res)), where res is the

data structure that is returned by p. This worst-case steps bound can be specified in the

postcondition of the method p. Once this bound is established, a client that invokes the

method p n-times can easily be established to have a worst-case steps count of
n∑

i=1
f (xi),

where xi is the input of the i th iteration. Note that it suffices to specify a template for the

potential functions as well, since any constant factors involved in the potential functions can

be automatically inferred by tool.

For a concrete example consider a binary increment of an unbounded natural number shown

below. Here, BigNum represents the unbounded natural number and is implemented as a list

of zeros and ones. The function ones counts the number of ones in a BigNum.

def incr(l: BigNum) : BigNum = {
l match {

case Nil() ⇒ Cons(One(), l)
case Cons(Zero(), tail) ⇒ Cons(One(), tail)
case Cons(_, tail) ⇒

Cons(Zero(), incrtail))
}

} ensuring (res ⇒ steps ≤ ? ∗ ones(res) + ? ∗ ones(l) + ?)

def ones(l: BigNum) : Int = {
l match {

case Nil() ⇒ 0
case Cons(Zero(), tail) ⇒ ones(tail)
case Cons(_, tail) ⇒ 1 + ones(tail)

}

68

3.9. Amortized Analysis

}

The function ones is essentially a potential function, and the amortized steps count of incr is

a constant. The system infers the bound 10(ones(l)− ones(res))+18 for the incr method. To

formally prove the amortized constant running time of the method, one can define a (most-

general) client as shown below that invokes incr multiple times as given by a parameter nop.

The amortized constant steps count of incr would follow if it is established that the worst-case

steps count of the client is linear in nop (plus the initial potential).

def client(nop: BigInt, l: BigNum) : BigNum = {
if(nop == 0) l
else
client(nop−1, incr(l))

} ensuring (res ⇒ steps ≤ ? ∗ nop + ? ∗ ones(l) + ?)

For the above function, our system inferred the bound steps≤ 10ones(l)+23nop+2. If there

is more than one method in the data structure, the client function shown above could be

extended to accept an unconstrained parameter that specifies the method that needs to be

executed in each iteration. As readers may notice, synthesizing a client function is quite

mechanical when the methods of an amortized data structures are known precisely. Whether

such client functions can be synthesized completely automatically within the system is a

subject of future work.

69

4 Supporting Higher-Order Functions
and Memoization

There is no general complexity-preserving translation

of lazy programs into an eager functional language.

— R.Bird, G.Jones and O.de Moor

In this chapter, I extend the technique presented in the earlier chapters to programs that

use higher-order features and memoization. Recall that the core language syntax shown in

Figure 2.1 supported an annotation @memoize on functions. This annotation serves to mark

functions that have to be memoized. Such functions are evaluated exactly once for each

distinct input passed to them at run time. The main challenge that arises in the presence of

these features is that while the source programs use rich abstractions such as memoization

and higher-order functions, the SMT solvers support more basic logical theories like theory

of uninterpreted functions, algebraic datatypes, and arithmetics. Much like a compiler that

translates a high-level program down to machine instructions, the goal of the system is to

translate these programs to formulas efficiently decidable by SMT solvers. However, this has

to be accomplished without sacrificing completeness.

Realizing Lazy Evaluation Memoized named functions when combined with first-class

functions are more general than lazy suspensions [Dolstra, 2009]. Lazy suspensions can be

implemented using lambdas with unit parameter and a memoized function force defined

as: @memoize def force (f: Unit⇒T)= (f Unit). A closure λx.e, where x has unit type, creates a

suspension of e, and (force λx.e) evaluates e and memoizes the result for subsequent forces.

Note that memoization in our case uses structural equality to compare closures, which does

not model lazy evaluation accurately, since lazy evaluation stores the cached values with the

instances of closures. In other words, lazy evaluation memoizes closures using reference

equality. Though the language does not support reference equality but only structural equality,

the former can be encoded in the programs of our language by adding a unique identifier to the

datatypes that represent closures. Our implementation, however, allows the input programs

to use the lazy val keyword of Scala and performs this transformation to memoized functions

71

Chapter 4. Supporting Higher-Order Functions and Memoization

internally. I therefore do not explicitly formalize lazy evaluation in the core language.

Challenges in Incorporating Cache In this chapter, I extend the semantics presented in sec-

tion 2.3 with an built-in cache that memoizes the values of functions calls invoking memoized

functions. With this extension it becomes possible to define the semantics of the specification

constructs that are meant for expressing properties that depend on the memoization state.

The extended semantics is presented in section 4.1. However, the downside of these extension

is that the language is no longer referentially transparent with respect to the changes in the

cache, though it is with respect to the changes in the heap. This is somewhat expected since

the language allows constructs such as cached that query the cache. However, these constructs

are only restricted to the specification expressions and are not a part of the source expression.

Surprisingly, even the source language expressions loose full referential transparency with

these constructs. This is because of expressions with contracts. For instance, when a source

language expression invokes a function, the function returns a value only if the contracts

of the callee hold. If the callee uses contracts that are anti-monotonic with respect to the

cache e.g. !cached(f x), which may evaluate to true in a smaller cache but false in a larger

cache then a function that returned a value in a smaller cache may be undefined in a larger

cache. Despite this undesirable effect constructs like cached are indispensable for verifying

non-trivial benchmarks with memoization (as illustrated by the primetake example of 1.3). To

eliminate this undesirable effect and restore referential transparency of the source expressions,

I introduce the notion of cache monotonic properties (in section 4.2), which are properties

that evolve monotonically with the changes in the cache. Interestingly, in almost all cases the

properties that are needed to establish resource bounds are (or can be converted to) cache

monotonic properties. E.g. the concrUntil property of 1.3. Intuitively, this phenomenon seems

to result from anti-monotonicity of resource usage with respect to the increase in the cache

size. That is, the resource usage of an expression monotonically decreases as it is evaluated

under a cache that has more entries. Section 4.2 defines these properties formally and proves

the referential transparency of the source expressions.

I now formally describe the extended semantics and subsequently discuss our verification

approach.

4.1 Semantics with Memoization and Specification Constructs

In this section, I define the semantics of the higher-order specification constructs and memo-

ization constructs. The state of the evaluation is extended by a built-in cache that memoizes

the values of functions calls invoking memoized functios, which are functions with @memoize
annotation. Let MemP ⊆ Fids denote the set of memoized functions in a program P . The

semantic domains are extended with a cache as described below.

72

4.1. Semantics with Memoization and Specification Constructs

NONMEMOIZEDCALL

f ∈ Fids f ∉MemP Γ� (f σ(x)) ⇓p v,Γ′

Γ� f x ⇓
ccall⊕p

v,Γ′

MEMOCALLHIT

f ∈MemP ((f σ(x)), v) ∈H C

Γ : (C,H ,σ)� f x ⇓
chit

v,Γ

MEMOCALLMISS

f ∈MemP u =σ(x) ¬(
(f u) ∈H dom(C)

)
Γ� (f u) ⇓p v, (C′,H ′,σ′)

Γ : (C,H ,σ)� f x ⇓
cmiss⊕ccall⊕p

v,C′[(f u) �→ v],H ′,σ

CACHED

v ⇔ (
(f σ(x)) ∈H dom(C)

)
Γ : (C,H ,σ)� cached(f x) ⇓0 v,Γ

IN

C′ = extract(σ(x)) (C′,H ,σ)� e ⇓p v,Γ′

Γ : (C,H ,σ)� in(e,x) ⇓0 v,Γ′

STAR

Γ� e ⇓p v,Γ′ : (C′,H ′,σ′)

Γ� e� ⇓0 v, (C,H ′,σ′)

FMATCH

H(σ(x))= (λx. fi (x, y),σ1)) (C,H ,σ[yi �→σ1(y)])� ei ⇓p v, (C′,H ′,σ′)

Γ : (C,H ,σ)� x fmatch
{
λx1.fi (xi,yi)⇒ ei

}n
i=1 ⇓0 v, (C′,H ′,σ)

CONTRACT

Γ� pre ⇓p true,Γ1 Γ� e ⇓q v,Γ2 : (C2,H2,σ2)
(C2,H2,σ2[R �→ q,res �→ v, inSt �→ convert(C),outSt �→ convert(C2)])� post ⇓r true,Γ3

Γ : (C,H ,σ)� {pre} e {post} ⇓q v,Γ2

where R ∈ {steps,alloc,stack,depth}

Cost function definition for steps:
cmiss) = 2

chit = 1

Cost function definition for alloc:
cmiss = 1

chit = 0

Figure 4.1 – Operational semantics of higher-order specifications and memoization.

Semantic domains The state of an interpreter evaluating expressions of our language is now

a quadruple consisting of a cache C, a heap H , an assignment of variables to values σ, and a

set of function definitions. A cache is a partial function from function calls to their results. The

cache C of the environments has the property that every key of the cache, which is a concrete

function call in FVal, is mapped to the result of the call. This is captured by a domain invariant

presented shortly. I denote this new environment with a cache as Envc.

73

Chapter 4. Supporting Higher-Order Functions and Memoization

u, v ∈Val=Z∪Bool∪Adr

DVal=Cids×Val∗

Clo= Lam×Store

FVal= Fids×Val

H ∈Heap=Adr �→ (DVal∪Clo)

σ ∈ Store=V ar s �→Val

C ∈Cache= FVal �→Val

Γ ∈ Envc ⊆Cache×Heap×Store×Program

Def 3 (Domain Invariants). A quadruple (C,H ,σ,P) is an element of Envc iff the domain

invariants of Definition 1 hold for H and σ, and the following properties hold for the C.
(a) ¬∃{k,k ′}⊆ dom(C). k �= k ′ ∧k ≈

H
k ′

(b) ∀(k, v) ∈C.∃C′,C′′,H ′ s.t. C′ �C′′ �C∧H ′ �H ′′ �H

∧(C′,H ′,�,P)� k ⇓ v, (C′′,H ′′,�,P)

The first invariant ensures that every key in the cache is unique modulo structural equality.

The second invariant ensures the consistency of the cache values. For every key-value pair in

the cache, there is a cache and a heap: C′ and H ′ that is smaller than the current cache and

heap: C and H , respectively, in which the key evaluates to the value it is bound to. (The empty

set � denotes an empty store in the above definition.) This essentially means that the key and

the value was added to the cache during a previous evaluation consistent with the current

state. Later a couple of more derived domain invariants are established and proved using the

operational semantics.

4.1.1 Semantic Rules

Figure 4.1 shows the semantic rules for the constructs of the language that use memoization,

and new specification constructs that deal with higher-order and memoization features. There

are three types of direct calls rules: a call to function that is not memoized NONMEMOIZED-

CALL, which is same as a direct call, a call to memoized function that is a hit in the cache:

MEMOCALLHIT and that is a miss in the cache: MEMOCALLMISS. The MEMOCALLMISS is

the only rule that updates the cache. Every semantics rule presented in Figure 2.2 other than

rule CONTRACT remain unchanged, except that the input and the output environments now

also have a cache, so they omitted from the Figure 4.1. The reachability relation defined in

Figure 2.3 extends to the new semantic rules shown here in a straightforward way.

Memoized Call Semantics Calling a memoized function involves as a first step querying

the cache for the result of the call. In case the result is not found, the callee is invoked, and

the cache is updated once (and if) the callee returns a value. Querying the cache involves

comparing arguments of the call for equality. For this purpose, the semantics uses a lookup

74

4.1. Semantics with Memoization and Specification Constructs

relation ∈H that uses structural equivalence to lookup the cache defined as follows:

(f u) ∈H dom(C)=∃u′ ∈Val.(f u′) ∈ dom(C)∧u′ ≈
H

u

As with other operations, the resource usage of searching and updating the cache is parame-

terized by the cost functions chi t and cmi ss . To calculate the steps resource, lookup and update

are considered as unitary steps, and hence is defined as cmiss = 2 (as it involves a lookup and

an update operation) and chi t = 1. In general, cmi ss and chi t may be changed to depend on

the values of the arguments that are looked up.

I would like to remark that the cost of the lookup operation depends on several factors such as

the implementation of the cache, whether or not datatypes are hash-consed etc. and hence

may require multiple interpretations. This definition for cost parameters was chosen in the

implementation since, in the benchmarks we target, functions that memoize data structures

are often methods of the data structure that relied on lazy fields for memoization. The cost of

memoization in this case is a small constant. However, in principle, the definition of the cost

function could be changed to run the system on a different memory model.

Note that also using structural equality to lookup the cache is not a limitation as one can

emulate reference equality by associating unique identifiers with datatypes or closures.

Specification Constructs

I now discuss the semantics of the specification constructs. First, let us consider the constructs

that deal with the state of the cache. The cost of all the specification constructs described

below is zero since they are syntactically excluded from being part of the implementation of

functions (see the language syntax shown in Figure 2.1), which renders their resource usage

irrelevant. They only serve to specify properties about the implementation.

The construct cached(f x). evaluates to true in an environment Γ iff the call f is cached for the

value of x in Γ.

The construct in(e, x) evaluates an expression in a cache state given by x. Users of the system

may read the cache state at a program point through the constructs inSt and outSt (described

shortly). The function convert encodes a given cache as a value of the program and the func-

tion extract decodes the cache from the value of the program. (The actual representation is

not important, as these constructs are only meant for specification and would eventually be

handled by the verifier and are not meant to be executed at runtime.) This is a powerful speci-

fication construct as it allows specifying the value and resource usage of an expression under

different caches as necessary, and would essential for defining cache monotonic properties

(described shortly).

The construct e� computes the result of an expression e without caching the result of e for

reuse. This is a side-effect-free operation (even in terms of resource usage) that is to be used

75

Chapter 4. Supporting Higher-Order Functions and Memoization

in places where only the result of the expression is relevant (within specifications). This is

primarily meant to alleviate some verification overhead that would otherwise result by the use

of a expressions that updates the cache.

Now consider the modified CONTRACT rule. The two new entities here are inSt and outSt. The

construct inSt is used by expressions in the postcondition to refer to the state of the cache at the

beginning of the expression, and outSt to refer to the cache at the end of evaluating the body of

the triple. These constructs are bound to their respective value (after conversion to the domain

of values) in the postcondition. They can be passed as argument to the in construct described

earlier. Note that even though the construct in(e, x) allows evaluating an expression under

a cache given by x. The cache can only be obtained either through inSt or outSt expressions.

Essentially, in(e, x) is used to evaluate an expression under a cache encountered previously

during the evaluation. Notice that as in the case of heap, any changes to the state of the cache

introduced by the evaluation of pre-or post-condition is ignored by the rule CONTRACT.

Structural Matching on Closures Consider now the construct fmatch of the form x fmatch {

λxi . fi (xi , yi)⇒ ei }n
i=1. It performs structural matching on closures, i.e, matching based on

structural equality. For instance, this expression matches x to the first case if x evaluates to

a closure of the form: (λx. f1 (x, y), [y �→ u]). It binds the variable y in the match case to the

value u, and evaluates e1 using the new binding.

The structural matching construct may be seen as a sequence of if-then-else expressions

in which the guards are structural-equality comparisons where the captured variables are

existentially quantified. That is, the matching construct x fmatch { λxi . fi (xi , yi)⇒ ei }n
i=1 is

actually equivalent to

if (∃y1.x eq λx1.f1 (x1,y1)) e1 else if (∃y2.x eq λx2.f2 (x2,y2)) e2 else · · ·

Note that since our language does not support existential quantifiers the matching construct,

in fact, makes the specification language more expressive. This construct is useful for specify-

ing the requirements on the captured variables of the closures that are passed into a function.

For instance, the following code snippet, shown in the syntax of the core language, shows

a function foo that accepts a closure whose target is the function divide and whose captured

argument (which is the divisor) is a positive value. The specification function posArgs defined

using the fmatch construct returns true if and only if the parameter closure invokes the divide
function and its captured argument is positive.

def posArgs(cl: Int ⇒ Int): Boolean :=
cl fmatch {
λx. divide (x, y) ⇒ y ≥ 1
_ ⇒ false

}

76

4.2. Referential Transparency and Cache Monotonicity

def foo(cl: Int ⇒ Int, x: Int): Int :=
{ posArgs(cl) } cl(x) { true }

This fmatch construct was very useful in specifying the invariants of a lazy, bottom-up merge

sort algorithm (discussed in section 5), wherein a balanced tree of closures of the merge
function are created and forced on demand. It was also useful in expressing the invariants of

cyclic streams, such as fibonacci stream and hamming stream detailed in section 5, where it

was necessary to state that the arguments to the closures denoting the tail of a stream s, is the

stream s itself. The following code snippet shows this cyclic stream property for a fibonacci

stream defined using a zipWith function ([Vasconcelos et al., 2015], [Bird and Wadler, 1988]).

The definition of the recursive datatypeSCons is shown in Figure 1.3.

def cyclicStream(s: SCons): Boolean =
let first := s in
let second := first.tail in
let third := second.tail in
third.tfun fmatch {
λx. zipIWith (f, xs, ys) ⇒ (xs eq first) && (ys eq second)
_ ⇒ false

}

4.2 Referential Transparency and Cache Monotonicity

While the referential transparency or purely functional behavior of the first-order language

considered this far was quite evident. The introduction of cache and the specification con-

structs has made this property more trickier. The language allows expressions to query the

state of the cache e.g. using the construct cached. While this is indispensable for specifying

properties about the state of the cache, this also makes the expressions of the language not ref-

erentially transparent. However, as captured by the syntax shown in Fig. 2.1, these constructs

are restricted to the specifications.

The source expressions Esrc of our language only exhibit a weak form of referential transparency

with respect to the changes to the cache. The weak referential property guarantees that if a

source expression evaluates to a value u at some point in the evaluation, then if it evaluates to

a value v at a later point in the evaluation (for the same or equivalent argument values) then u

and v are equivalent i.e, structurally similar (see section 2.3.3). However, the evaluation at the

later point may be undefined due to a violation in the contracts. This is because the expression

may have a contract such as !cached(f x) which may hold in a smaller cache but not in a larger

cache. (Note that the size of the cache increases monotonically during an evaluation.) This

is problematic since it is important to preserve the referential transparency property of the

memoized expression to ensure that memoization does not influence the evaluation results.

For this purpose, the system relies on the notion of cache monotonicity.

77

Chapter 4. Supporting Higher-Order Functions and Memoization

Cache Monotonic Properties Informally, a boolean-valued expression pr ∈ Espec is a cache

monotonic iff whenever it holds in an environment with a cache C1, it also holds in all envi-

ronments where the cache has more entries than C1. These properties are interesting because

once established they can be assumed to hold at any subsequent point in the evaluation.

(These are similar to heap-monotonic type states introduced by Fähndrich and Leino [Fäh-

ndrich and Leino, 2003]). We find that in almost all cases the properties that are needed to

establish resource bounds are (or can be converted to) cache monotonic properties. E.g. the

concrUntil property. Intuitively, this phenomenon seems to result from anti-monotonicity of

resource usage with respect to the increase in the cache size. That is, the resource usage of

an expression monotonically decreases as it is evaluated under a cache that has more entries.

Formally, an expression e is cache monotonic iff ∀{Γ1,Γ2}⊆ Envc.

(Γ1 � Γ2∧Γ1 � e ⇓ true) =⇒ Γ2 � e ⇓ true

where (C1,H1,σ1,P)� (C2,H2,σ2,P)�C1 �C2∧H1 �H2∧σ1 �σ2.

Cache Monotonic Programs In order to guarantee full referential transparency of the source

expressions, we impose the restriction that the contracts of memoized functions in the all

acceptable input programs should be cache monotonic. This property is soundly enforced by

translation to a model program, which is discussed in section 4.4. The property guarantees

that if a source expression evaluates to a value u at a point in the evaluation, then it will

evaluate to a value v at a later point in the evaluation (for the same or equivalent argument

values) such that u and v are structurally similar. That is, memoization has absolutely no

effect on the result of source expressions. In the sequel I formally establish this property.

4.3 Proof of Referential Transparency

Structural Abstraction Relation Similar to structural simulation relation between two en-

vironments, let � denote a structural abstraction relation between two environments as

follows. Γ1 � Γ2 iff Γ2 has at least as much cache entries and σ entries as Γ1 modulo structural

equality.

(C1,H1,σ1,P) � (C2,H2,σ2,P)�C1 �
H1,H2

C2∧σ1 �
H1,H2

σ2

where, σ1 �
H1,H2

σ2 iff ∀x ∈ dom(σ1).σ1(x) ≈
H1,H2

σ2(x), and

C1 � C2 iff ∀k ∈ dom(C1). ∃k ′ ∈ dom(C2).k ≈
H1,H2

k ′ ∧C1(k) ≈
H1,H2

C2(k ′)

Note that � is a stronger relation than � . Furthermore, a cache monotonic property with

respect to � is also monotonic with respect to the relation � . Intuitively, this is because,

if Γ1 � Γ2, there exists a Γ3 such that Γ1 ≈ Γ2 and Γ1 � Γ2. Hence, a cache monotonic

property that evaluates to true under Γ1 will evaluate to true under Γ2, and hence also under

78

4.3. Proof of Referential Transparency

Γ3 (Lemma 1).

The following lemma establishes that a source expression evaluated under two environments

related by � should produce structurally similar values, if the evaluation produces any value

at all in the smaller environment. Note that the heaps and caches that may arise during an

execution are related by � (Lemma 7) and hence are also related by the weaker relation � .

Hence, the following property established referential transparency of the source expressions

of the language.

Lemma 18. Let P be a program where for all def f x := {p} b {s} in P, p and s are cache mono-

tonic properties. LetΓ1 : (C1,H1,σ1,P) in Envc. For all expression es ∈ (Esrc∪FVal), ifΓ1 � es ⇓ u,Γ1
′

then ∀Γ2 : (C2,H2,σ2,P) ∈ Envc such that Γ1
′ � Γ2, we have Γ2 � es ⇓ v,Γ2

′ ∧u ≈
H ′1,H ′2

v

Proof. I prove the lemma using structural induction on the evaluation Γ1 � es ⇓ u,Γ1
′. It

suffices to consider the rules corresponding to source expressions and ignore specification

expressions. Say the evaluation Γ1 � es ⇓ u,Γ1
′ uses one of the base cases, namely the rules CST,

VAR, PRIM, EQUAL, CONS, LAMBDA, MEMOCALLHIT. Note that the rule CACHED is not a part of

the source expressions (see Fig. 2.1) and thus can be excluded from the base cases. Firstly, we

know that Γ1 � Γ1
′. (The store components of Γ1 and Γ1

′ are identical.) Therefore, Γ1 � Γ2.

Every case other than MEMOCALLHIT uses only the heap and the store (and not the cache).

Since Γ1 � Γ2, the free variables in the expressions are bound to structurally similar values in

Γ1 and Γ2. It is easy to see that in each of the cases, the same rule that applied in Γ1 will also

apply in Γ2 and that the resulting values are also structurally similar. Now say the evaluation

Γ1 � es ⇓ u uses MEMOCALLHIT. Therefore, e is of the form (f x) and σ1(x) ≈
H1

k where k is a

key in the cache C1. Since Γ1 � Γ2, σ1(x) ≈
H1,H2

σ2(x) and there exists a k ′ ∈ dom(C2) such that

k ≈
H1,H2

k ′. By the properties of ≈, σ2(x) ≈
H2

k ′. Hence, the evaluation of Γ2 � es ⇓ u must also

use the rule MEMOCALLHIT. In both cases, the value of the expression is looked up from the

corresponding caches, and hence are structurally similar (by the definition of �).

Now say the evaluation Γ1 � es ⇓ u,Γ1
′ uses one of the following inductive cases: LET, MATCH,

CONCRETECALL, NONMEMOIZEDCALL. If Γ1 � es ⇓ u,Γ1
′ uses any of these rule RULE then

Γ2 � es ⇓ v,Γ2
′ will also have to use the same rule, which is determined by the syntax of the

expression (see Fig. 2.2). Say now 〈Γ1,es〉�〈Γ3,e ′〉 and 〈Γ2,es〉�〈Γ4,e ′〉. Firstly, the environ-

ment Γ3 and Γ4 are obtained from a prior big-step evaluation given by an antecedent of RULE,

after possible updations to the store component. Let Γ3 � e′ ⇓ _,Γ3
′. By Lemma 7 and the given

facts, C1 �C3 �C′3 �C′1 �
H ′1,H2

C2 �C4. Consider the store component of Γ3, which is identical

to Γ3
′, and Γ4 namely σ3 and σ4. Any new mappings added to the store components depend

on the prior big-step reductions in the antecedent of RULE, which satisfies the induction

hypothesis. Thus, the new entries added are structurally similar. Hence, σ′3 = σ3 �
H ′3,H4

σ4.

Therefore, Γ3
′ � Γ4. By induction hypothesis, e ′ evaluates to structurally similar values in

Γ3 and Γ4. Since this holds for every antecedent of RULE and since in all inductive cases the

79

Chapter 4. Supporting Higher-Order Functions and Memoization

result of the rule is obtained directly from the result of an antecedent evaluation involving a

source expression or function value (see Fig. 4.1, especially rule CONTRACT), both evaluations

Γ1 � es ⇓ u,Γ1
′ and Γ2 � es ⇓ v,Γ2

′ produce structurally similar results. That is, u ≈
H ′1,H ′2

v .

Now say the evaluation Γ1 � es ⇓ u,Γ1
′ uses the MEMOCALLMISS rule. In this case, since C2 has

more entries than C1, Γ2 � es ⇓ v,Γ2
′ will use the rule MEMOCALLHIT, as explained below. In

this case, we know that es = (f y) and ((f σ′1(y)),u) ∈C′1. (Recall that the rule MEMOCALLMISS

records the function value and the result of the evaluation in the cache.) Since C′1 �
H ′1,H1

C2,

there exists an entry (k, v) ∈ C2 such that ((f σ′1(y)) ≈
H ′1,H2

k and u ≈
H ′1,H2

v . Since σ′1 � σ2,

σ′1(y) ≈
H ′1,H2

σ2(y). Thus (f σ′1(y)) ≈
H ′1,H2

(f σ2(y)). By the property of ≈, (f σ2(y)) ≈
H2

k. By the

definition of MEMOCALLHIT, the result of the evaluation under Γ2 is v . Since H2 �H ′2, u ≈
H ′1,H ′2

v

which implies the claim.

Say the evaluation Γ1 � es ⇓ u,Γ1
′ uses the rule CONTRACT. In this case, es is of the form

{p} eb {s}. As per the language syntax, this means that es is the body of a function definition in

P . It is given that p is cache monotonic. By the definition of the rule CONTRACT, Γ1 � p ⇓ true.

Since Γ1 � Γ1
′ � Γ2, by the cache monotonicity property, Γ2 � p ⇓ true. Since eb ∈ Esrc, by

inductive hypothesis, Γ2 � eb ⇓ v,Γ2
′ and u ≈

H ′1,H ′2
v . Now Γ1

′ � Γ2 � Γ2
′. Since s is also

cache monotonic, Γ1
′ � s ⇓ true , which holds by the definition of CONTRACT, implies that

Γ2
′ � s ⇓ true. Hence, all antecedents of the rule CONTRACT are satisfied underΓ2 for expression

es . Hence Γ2 � es ⇓ v,Γ2
′ and u ≈

H ′1,H ′2
v . Hence the claim.

Strong Cache Correctness I now define a domain invariant that guarantees that for a pro-

gram P where function definitions have cache monotonic contracts, for every environment Γ,

every key in the cache of the environment will evaluate to a value that it is bound to under Γ.

This invariant, denoted CacheCorr, is formally defined below.

CacheCorr(Γ)�∀k ∈ dom(C).
(
Γ� k ⇓p v, (C′,H ′,σ′,F)

)∧ v ≈
H ′

C(k)

The following lemma establishes that CacheCorr is an domain invariant.

Lemma 19. Let P a program be such that for all def f x := {p} b {s} in P, p and s are cache

monotonic properties. For all expression e, for all Γ1 : (C1,H1,σ1,P) in Envc,

CacheCorr(Γ1) ∧ Γ1 � e ⇓ u,Γ1
′ =⇒ CacheCorr(Γ1

′)

Proof. This lemma will be proved using structural induction over the evaluation Γ1 � es ⇓ u,Γ1
′.

First consider the base cases: rules CST, VAR, PRIM, EQUAL, CONS, LAMBDA, MEMOCALLHIT

and CACHED. In each of these cases, either the input and output environments are identical,

or the output environment has one new binding in the heap. By Lemma 8, the claim holds in

80

4.4. Generating Model Programs

all the base cases.

Say the evaluation Γ1 � es ⇓ u,Γ1
′ uses one of the following inductive cases: LET, MATCH, CON-

CRETECALL, NONMEMOIZEDCALL, and CONTRACT. First, note that introducing new bindings

to the store σ does not affect the property CacheCorr, as the definition of CacheCorr does not

use σ. This together with the inductive hypothesis imply that all the environments used in the

antecedent of all the rules satisfy CacheCorr. In all the above listed rules the heap and cache

components of the output environment are obtained directly from an antecedent. Therefore

by inductive hypothesis the environment Γ1
′ satisfies the property CacheCorr.

I now use the Lemma 18 to establish that the CacheCorr property holds for the output envi-

ronment of the rule MEMOCALLMISS. Let k ∈ FVal∩dom(C1) be a key in the cache C1. By

the domain invariants, there exists a H0 � H1 and C0 � C1 such that Γ0 � k ⇓ u0,Γ0
′, where

u0 = C1(k), Γ0 = (C0,H0, {}), Γ0
′ = (C′0,H ′0, {}) and C′0 � C1. Since C′0 � C1 � C′1 and {} � σ′1,

Γ0
′ � Γ1

′. Therefore by Lemma 18,

Γ1
′ � k ⇓w,Γ4∧u0 ≈

H ′0,H4

w

=⇒ C1(k) ≈
H ′1,H4

w, since C1(k)=u0 and H ′0 �H1 �H ′1

=⇒ C1(k)=C′1(k) ≈
H4

w, since C1 �C′1 and H ′1 �H4

Therefore, CacheCorr(Γ1
′)

In the rest of the chapter, I assume that every environment in Envc satisfy the CacheCorr

invariant, and every expression in the language is referentially transparent.

4.4 Generating Model Programs

As in the case of first-order programs, our approach through a series of transformations,

reduces the problem of resource bound inference to invariant inference for a functional

first-order programs. However, due to the higher-order and memoization features this phase

is more involved than the instrumentation phases. This phase is referred to as the model

generation phase, as is the subject of discussion of this section. In the following section, I

described the generation of verification obligations for verifying the first-order program using

an extended assume-guarantee reasoning, which then solved using the inference algorithm

described in the earlier chapter in section 3.3.

The goal of the model generation phase is to generate a first-order program with recursion that

accurately models the resource usage of the input program without any abstraction, only using

the first-order features discussed in the previous chapter (Chapter 3) and sets. The output of

this phase is referred to as the model program. In particular, there are three reductions that

81

Chapter 4. Supporting Higher-Order Functions and Memoization

em ∈ E� ::= x | c | pr x | x eq y | f x | C x̄ | Blocks | {em} em {em}
| { x } | x∪ y | x ⊆ y | error

SETCONS

v = { σ(x) }

Γ : (H ,σ)� { x } ⇓ v,Γ

UNION

v =σ(x)∪σ(y)

Γ : (H ,σ)� x∪y ⇓ v,Γ

CONTAINS

v⇔
(
∃u′ ∈σ(y).σ(x)≈

H
u′

)
Γ : (H ,σ)� x ∈ y ⇓ v,Γ

SUBSET

v⇔
(
∀u ∈σ(x).∃u′ ∈σ(y).u ≈

H
u′

)
Γ : (H ,σ)� x⊆ y ⇓ v,Γ

Figure 4.2 – Syntax and semantics of the set operations used by the model programs

are handled by this phase: (a) Defunctionalization of higher-order functions to first-order

functions [Reynolds, 1998]. (b) Encoding of cache as an expression that changes during the

execution of the program, and (c) Instrumentation of expressions with their resource usage

while accounting for the effects of memoization. I formally establish the soundness and

completeness of the translation with respect to the operational semantics shown in Fig. 4.1 by

establishing a bisimulation between the input program and the model program (Theorem 26).

In the sequel, I start by discussing the syntax and semantics of the model programs.

Syntax and Semantics of Model Programs Figure 4.2 shows the syntax of the expressions

of the model programs. The model programs belong to the first-order language fragment

considered in Chapter 3, but it has two new features that were not a part of the core language:

(a) set values and set primitives such as union ∪ and inclusion ⊆, and (b) an error construct

that halts the evaluation. Figure 4.2 shows the semantics of the new set operations. The

values of the model language Val� includes the values of the core language Val, and also sets of

values of the core language (SetVal = 2Val). The stores of the model language is a map from

Vars to Val�, whereas the closures Clo, datatypes DVal and H are constructed as before (see

section 2.3) using elements of Val. The environments of the model language are triples of

the form (H,σ,P), which is same as Env (which does not have the cache component). The

resource usage of the set expressions are irrelevant as they are not a part of the source language

and hence omitted from the Figure 4.2.

4.4.1 Model Transformation

Illustrative Example I explain the construction of the model program by illustrating it on

the constant-time take operation on a stream shown in Fig. 4.3. Later in section 4.6 I use

this example to also illustrate the assume-guarantee obligations generated by our system.

Fig. 4.3 shows the take operation in the core language syntax In a real language, the function

tail would be implemented as a lazy field of the SCons constructor as shown in Figure 1.3

82

4.4. Generating Model Programs

1 type Stream := (SCons (BigInt, Unit ⇒ Stream), SNil)
2

3 @memoize
4 def tail s = s match {
5 SNil ⇒ SNil;
6 SCons (x, tfun) ⇒ (tfun Unit);
7 }
8

9 def take (n, s) =
10 { concrUntil(s, n) }
11 if (n ≤ 0) SNil
12 else {
13 s match {
14 SNil ⇒ SNil;
15 SCons (x, tfun) ⇒
16 let t := tail s in
17 let n1 := n − 1 in SCons(x, λa.take (n1, t));
18 }
19 }
20 { steps ≤ ? }
21

22 def concrUntil (s, i) = s match {
23 SNil ⇒ true;
24 SCons (x, tfun) ⇒
25 if (i ≤ 0) true
26 else
27 (Tail s) ∈ st ∧ concrUntil ((tail s).1, i−1))
28 }

Figure 4.3 – A constant-time, lazy take operation

of the introduction. But for the purpose of verification, we treat it as a memoized function

with a single argument as shown here. The function concrUntil is similar to the Scala function

shown in Figure 1.4 that checks if the tail function is memoized for the first n suffixes of a

stream. Observe that the lazy take operation (unlike takePrimes) returns a finite stream with the

first element and a suspension of take, which when accessed constructs the next element. It

requires that the input stream is memoized at least until n in order to achieve a constant time

bound. Otherwise, the call to tail at line 16 may result in a cascade of calls to take that were

suspended previously. The challenge here is to verify that such cascade of calls cannot happen.

The take operation with these contracts is in fact used by the Okasaki’s persistent Deque data

structure ([Okasaki, 1998] Page 111) that runs in worst-case constant time. Fig. 4.4 shows the

model program that would generated by our approach and is explained in this section.

Closure encoding Closures in the source program are represented using algebraic datatypes

in the model program in a way that preserves the structural equivalence of closures. This

representation is shown by Clo�
P in Figure 4.5 and is explained below. In Figure 4.5, typesP

83

Chapter 4. Supporting Higher-Order Functions and Memoization

1 type tStream := (Take (BigInt, Stream), Other BigInt)
2 type Stream := (SCons (BigInt, tStream), SNil)
3 type Dcache := (Tail Stream)
4

5 def tail� (s, st) = s match {
6 SNil ⇒ SNil;
7 SCons (x, tfun) ⇒ app (tfun, Unit, st);
8 }
9

10 def app (cl,x,st) = cl match{
11 Take (n1,s1) ⇒ take� (n1,s1,st);
12 }
13

14 def take� (n, s, st) =
15 { concrUntil� (s, n, st) }
16 if (n ≤ 0) (SNil, st, 3)
17 else {
18 s match {
19 SNil ⇒ (SNil, st, 5);
20 SCons (x, tfun) ⇒
21 let u := tail� (s, st) in
22 let nst := u.2 ∪ { (Tail s) } in
23 let ucost := if ((Tail s) ∈ st) 1 else u.3 + 3 in
24 let ns := (SCons (x, Take (n − 1, u.1)) in
25 (ns, nst, ucost + 10);
26 }
27 }
28 { res.3 ≤ ? }
29

30 def concrUntil� (s, i, st) = s match {
31 SNil ⇒ true;
32 SCons (x, tfun) ⇒
33 if (i ≤ 0) true
34 else
35 (Tail s) ∈ st ∧ concrUntil� ((tail (s, st)).1, i−1, st))
36 }

Figure 4.4 – Illustration of the translation on lazy take example

Clo�
P =

{
Clo�

P (τ) | τ ∈ typesP
}

Clo�
P (τ) = type dτ := (C�1 �τ1�P , · · · ,C�n �τn�P ,Cτ Int)

where,
{

e�1
1 , · · · ,e�n

n

}
= {

t/∼=,P | t ∈ LamP ∧ typeP(t)= τ
}

∀i ∈ [1,n]. τi = typeP(FV (ei))

FVal�P = type dcache := (C f1 �τ1�P , · · · ,C fn �τn�P),
where, ∀i ∈ [1,n]. fi has @memoize annotation in P ,

∀i ∈ [1,n]. τi = typeP(paramP (fi))

Figure 4.5 – Representation of closure and cache keys

84

4.4. Generating Model Programs

�τ�P = τ if τ ∈ {Unit, Int,Bool}
�τ⇒ τ�P = dτ⇒τ

�(τ1, · · · ,τn)�P = (�τ1�P , · · · ,�τn�P)
�type d := (C1 τ1, · · · ,Cn τn)�P = type d := (C1 �τ1�P , · · · ,Cn �τn�P)

Tdef �P =
{
�t�P | t ∈ Tdef P

}∪Clo�
P ∪

{
FVal�P

}
Figure 4.6 – Translation of types in a program P with a set of type declarations Tdef P

denotes the set of types used in the program P .

I will first define a syntactic notion of compatibility between lambda terms in a program.

Two lambdas eλ =λx.f (x,y) and eλ
′ =λx.f ′ (x,z) are compatible, denoted eλ ∼= eλ

′, iff they

invoke the same targets i.e, f = f ′. This relation is interesting because during any evaluation

two closures could be structurally equivalent iff their lambdas are compatible i.e, eλ ∼= eλ
′

iff ∃H ,σ,σ′ s.t. (eλ,σ) ≈
H

(eλ
′,σ′). In the generated model it is ensured that the closures of

lambdas that are compatible are represented using the same datatype. For each lambda eλ
(whether or not it belongs to a program), a representative denoted eλ/∼=,P of the equivalence

class with respect to ∼= is defined. The representative is required to be another lambda term

in the program P . It is undefined if P does not have a compatible lambda. For each function

type τ= A⇒B used in P , a datatype dτ is added to the model as explained below. Every use

of τ in the input program is replaced by the datatype dτ.

Let
{
eλi | i ∈ [1,n]

}
be the representatives (with respect to∼=) of the lambda terms in the program

P that are of type τ, and let {�i | i ∈ [1,n]} be their labels. The datatype dτ has n+1 constructors

denoted Cli , i ∈ [1,n] and Cτ. That is, dτ is of the form: type dτ := (C�1 �τ1�P , · · · ,C�n �τn�P ,Cτ Int).

The i th constructor C�i represents the closure of the i th lambda term: eλi . The parameter of

the constructor represents FV (eλi). The type �τi �P is obtained by recursively replacing the

function types by their corresponding closure datatypes in typeP(FV (eλi)), which is captured

by the type translation shown in Figure 4.6. The (n+1)th constructor Cτ of dτ is a stub for

a closure created outside the program under analysis and serves to handle an error case

(explained shortly).

In the running example shown in Fig. 4.4, the datatype tStream defined at line 1 represents

the closures of lambdas of type Unit⇒ Stream. The constructor Take of tStream represents the

closure of λa.take (n1, t) created at line 17. As shown at line 24, the lambda is replaced by an

instance of Take in the model program. The constructor Other represents the stub closure cτ.

Cache encoding The expressions of the input program are instrumented to explicitly track

the changes to the cache as the program undergoes evaluation. The instrumentation tracks

only the keys of the cache, which are elements of FVal, as it fully specifies the state of the cache

at every instance. (This is because of the referential transparency of the source expressions

established in section 4.2.) The keys of the cache (FVal) are represented in the model program

by a datatype Dcache defined in Figure 4.5. Below I describe this representation below.

85

Chapter 4. Supporting Higher-Order Functions and Memoization

For every memoized function in the program, FVal�P has a constructor C f with a field that holds

the parameter of the function f . Formally, type dcache := (C f1 �τ1�P , · · · ,C fn �τn�P), where fi ’s

are functions in the program annotated with @memoize, and �τi �P is the type of the parameter

of fi that is translated by replacing all closures by their representatives (shown in Figure 4.6). In

the running example shown in Fig. 4.3, the datatype Dcache with one constructor: (Tail Stream)

corresponds to this datatype.

Translation of expressions Fig. 4.7 formally defines the transformation �·�P that maps ex-

pressions of an input program P to a model program P �. For every expression e, �e�P takes a

state expression st representing the keys of the cache before the evaluation of e and returns

the translated expression denoted e�. The expression e� is a triple where the first element e�.1
corresponds to the value of e, the second element e�.2 corresponds to the keys of the cache

after evaluation of e, and the last element e�.3 corresponds to the resource usage of e. The

translation is explained in the sequel.

Cache-state Propagation The propagation of cache state proceeds top down in a store-

passing style following the control flow of the program. To every function definition in the

model, a fresh parameter st (of type Set[dcache]) is added. It represents the state of the cache

at the beginning of the function (see translation of function definitions). This parameter is

propagated through the bodies of the function recording all the calls that are memoized along

the way. (E.g. see the translation of let expression.) The state parameter is used at two places:

(a) by calls to memoized functions, and (b) by the cached construct to check whether the call

given as argument is memoized.

Consider the translation of a call to a memoized function shown in Fig. 4.7. It uses the input

state parameter st to check whether the call would be a cache hit by testing if st contains

(C f x) which represents the key (f x). The resource usage in the cache hit case is given by chi t ,

whereas in the miss case it is a combination of cmi ss , the cost of the call ccal l and the resource

usage of the callee w.3. Finally, (C f x) is added to the output state to record that the call is

memoized. Observe that the call always happens in the model regardless of whether or not it

was memoized before. This encodes the referential transparency of memoized functions i.e,

the value of the call that is a hit in the cache is equivalent to the result of the invoked function,

and avoids having to specify an invariant on the cache. (Recall that we are not interested in

the resource usage of the model.)

During the translation of contracts, the precondition is translated using the initial state st

and the postcondition using the state resulting after the translation of the body res.2, as in

the operational semantics (Figure 4.1). Any changes to the state caused by the contracts are

discarded at the end of the contracts. The uses of res in the postcondition is replaced by res.1,

and the uses of a resource R by res.3. The uses of inSt and outSt, representing the cache state

before and after the triple, is replaced by st and res.3 respectively. Note that the construct

86

4.4. Generating Model Programs

Expression Translation

�x�P st = (x,st,cvar)
�pr x�P st = (pr x,st,cpr) if pr ∈ Prim

�x eq y�P st = (x eq y,st,ceq)
�C x̄�P st = (C x̄,st,ccons) if C ∈Cids

�let x := e1 in e2�P st = let u := �e1�P st in
let w := �e2[u.1/x]�P u.2 in
(w.1, w.2,clet ⊕u.3⊕w.3)

�x match { Ci x̄i ⇒ ei }n
i=1�P st = x match

{ (
Ci x̄i ⇒ let u := �ei �P st in

(u.1,u.2,cmatch(i)⊕u.3)
)n

i=1

}
Call and Lambda Translation

� f x�P st = let w := f � (x,st) in (w.1, w.2,ccal l ⊕w.3) if f ∉MemP

� f x�P st = let w := f � (x,st) in if f ∈MemP

let xcost = if (Cf x) ∈ st chit else cmiss⊕ccall⊕w.3 in
(w.1, w.2∪ {(C f x)}, xcost)

�eλ�P st = (C� FV (eλ),st,cλ) if eλ/∼=,P has label �
�(x y)��P st = let w := App� (x, y, st) in (w.1, w.2,capp ⊕w.3)

Specification Construct Translation

�cached(f x)�P st = ((C f x) ∈ st,st,0)
�in(e, x)�P st = �e�P x

�e��P st = (�e�P st).1
�x fmatch { λxi . fi (xi , yi)⇒ ei }n

i=1�P st = x match
{
C�i yi ⇒ �ei �P st

}n
i=1

where �i is the label of λxi . fi (xi , yi)/∼=,P

Contract Translation
�{p} e {s}�P st =

{
(�p�P st).1

}
if R ∈ {steps,alloc}

�e�P st{
let y := �s[res.1/res][st/inSt][res.2/outSt][res.3/R]�P res.2

in y.1
}

Function Definition Translation
�def f x := e�P = def f � (x,st) := �e�P st

Dispatch Functions

For every indirect call (x y)� in P where typeP(x)= τ,
def App� (cl, w,st) := cl match{ C�1 y1⇒ �e ′1�P st; · · ·

C�n yn⇒ �e ′n�P st;
Cτ y⇒ error

}
where, ∀i ∈ [1,n]. C�i are constructors of dτ and e ′i = ei [yi /zi][w/ai] if (λai .ei)�i ∈ LamP

Figure 4.7 – Resource and cache-state instrumentation of source expressions
87

Chapter 4. Supporting Higher-Order Functions and Memoization

fmatch is translated into a usual match construct on the datatypes representing closures.

Fig. 4.4 illustrates the result of propagating the state through the body of take function as

outputted by our tool. Our tool eliminates propagation through expressions and functions

that are statically inferred as not affecting the state. For instance, concrUntil does not return a

state as it was statically determined to not have any effect on the state. (It is a specification

function that only queries the cache.) Observe that after the call tail� (s, st) at line 21, an

instance of (Tail s) is added to the output state to record that the call is memoized, and that

the computation of steps at line 23 depends on whether or not (Tail s) belongs to the input

state st.

Resource Instrumentation The expressions of the language are instrumented to track their

resource usage in a manner similar to instrumentation of first-order programs discussed in

section 3.1. It proceeds bottom-up, first instrumenting the sub-expressions of an expression e,

and then using the resource usages of the sub-expressions to instrument e. However, a call

to a memoized function is handled differently. Given a memoized function call f x, the state

reaching the call expression (propagated top down) is looked up to determine whether the key

corresponding to call: C f x belongs to the state. If so, it indicates a cache hit and hence the

cost of the operation is given by chi t . Otherwise, it miss a cache miss and hence the cost of

evaluating the function is factored into the resource calculation.

The example model program shown in Fig. 4.4 is obtained after a few straightforward static

simplifications performed by our tool. For instance, the constants such as 10 and 5 that appear

in the resource expressions are the result of adding up all the constants in the instrumented

expressions along the same branch (or match case) in the program.

Defunctionalization The model transformation translates an indirect call: x y to a guarded

disjunction of direct calls through a process known as defunctionalization [Reynolds, 1998].

Every indirect call x y with label � is replaced by a call to a dispatch function App� constructed

as follows. The parameters of the function are (a) a closure cl of type dτ where τ= typeP(x)

i.e, τ is the type of the closure that is invoked, (b) the argument of the call w , and (c) a state

parameter st denoting the state of the cache at the entry of the function. The dispatch function

matches the closure cl to each possible constructor and in each case C�i , where �i is the label

of the lambda λai .ei represented by the constructor, invokes the expression �e ′i �P st where e ′i
is the result of replacing in ei the parameter of the lambda ai with w and the free variable of

the lambda with the argument of C�i .

If the closure matches Cτ, the model halts with an error as this case corresponds to the scenario

where a function not defined within the program P is applied to an argument. Such a function,

being arbitrary, may either not terminate or can have a precondition that is violated by the

arguments it is applied to. (In fact, the precondition could even be false.) The model program

soundly flags this case as an error. We eliminate this case if we can statically infer (based

88

4.5. Soundness and Completeness of the Model Programs

on type encapsulation) that the targets of the closures are strictly within the program under

analysis. Observe that in example model program shown in Figure. 4.4 the call to tfun inside

the function tail is translated to a call to the dispatch function app. The case Other is omitted

in app as we assume that the call is encapsulated.

Importantly, note that even though the set of possible cases in the function Appl could be

large, many of those cases that are not feasible at runtime are not explored by the verification

algorithm as it uses targeted unfolding described in section 3.7. Recall that in this unfolding

strategy only the functions seen along the satisfiable disjuncts in a verification condition

that were explored by the inference algorithm (solveUNSAT) will be unfolded. Moreover, this

overhead can be further reduced through a static control-flow analysis [Midtgaard, 2012] that

narrows down the targets of the call, and through approaches such as DAG inlining [Lal and

Qadeer, 2015]

I would like to remark that in contrast to related works [Avanzini et al., 2015], which use

defunctionalization as a means to estimate the resource usage of input programs, here it is as

a means to precisely encode the control flow of the source program, which is obfuscated in

the presence of first-class functions. Also note that only values of the expressions of model

programs are of interest (and not resources).

4.5 Soundness and Completeness of the Model Programs

In this section, I establish the soundness of the model program for the contract verification

problem. That is, I establish that if the contract verification succeeds for the functions of the

model program then it will also succeed for the source program. I also establish a form of

completeness, which states that if the contract verification fails for a function in the model

program then there exists an environment in Envc such that the contract of the corresponding

function in the source program also fails. However, the environment need not be valid i.e, it

need not belong Envc
e,P. In other words, the completeness does not imply that the contract of

the source program will fail as per the definitions of section 2.5. However, it does imply that

the contracts of the functions in Envc are not strong enough to rule out certain environments

that could fail the contracts, even though a global program invariant prevents it from arising

at runtime. This completeness property despite being weak is nevertheless interesting if one

is interested in modular verification. In the sequel I formally detail the proof using simulation

relations and also establish several auxiliary lemmas that are necessary for the proof.

To start with I define a relation ∼
H ,H�,P

between the semantic domains of the source and the

model language as follows: (subscripts omitted below for clarity)

89

Chapter 4. Supporting Higher-Order Functions and Memoization

∀a ∈Z∪Bool . a ∼ a

∀c ∈Cids, {ā, b̄}⊆Valn . c ā ∼ c b̄ iff ∀i ∈ [1,n].ai ∼ bi

∀(eλ,σ) ∈Clo, v ∈Val,� ∈ labelsP. (eλ,σ)∼C� v iff σ(FV (eλ))∼ v

∧(eλ/∼=,P is defined and has label �)

∀(eλ,σ) ∈Clo, v ∈Val. (eλ,σ)∼ (CtypeP(eλ) hash((eλ,σ))) iff eλ/∼=,P is undefined

∀ f ∈ Fids defined in P, {a,b}⊆Val. f a ∼C f b iff a ∼ b

∀{a,b}⊆ Adr. a ∼ b iff H(a)∼H�(a)

∀C ∈Cache,S ∈ Set . C ∼ S iff |domP (C)| = |dom(S)|∧ (∀x ∈ domP (C).∃y ∈ S.x ∼ y
)

∀{σ,σ�}⊆ Store. σ∼σ� iff dom(σ)∪ {st }= dom(σ�)∧∀x ∈ dom(σ). σ(x)∼σ�(x)

The above definition uses the following helper functions. Define a function hashΓ : Lam �→N

that maps two closures in Clo (bound in the heap of the environment Γ) to the same natural

number iff they are structurally equivalent. That is,

∀{c1,c2}⊆Clo. c1 ≈
H

c2⇐⇒ hash(c1)= hash(c2)

Define domP (C) as the set of all keys in the cache C that refer to functions in the program P .

That is, domP (C)= {
(f u) ∈ dom(C) | f is defined in P

}
The relation ∼ formally captures that a cache is simulated by a set of instances of dcache, and

that a closure of type τ is simulated by an instance of the datatype dτ if the lambda of the

closure has a representative in the program P with respect to ∼=. Otherwise, it is simulated

by an instance of Cτ. The instance is chosen in such way that two structurally equivalent

closures map to equivalent Cτ instances. The relation ∼ behaves much like a simulation

relation between the evaluation of the source and the model programs. However, not all

evaluations can be simulated by the model program as will be highlighted later. I now de-

fine a simulation relation ∼P that relates an environment Γ : (C,H ,σ,P) ∈ Envc with a model

environment Γ� : (H�,σ�,P�) ∈ Env, where P � is the model program corresponding to P . But,

somewhat unique to our setting, Γ is simulated by a pair (Γ�,S) where S ∈ 2Val.

Γ∼P (Γ�,S) iff C ∼
H ,H�,P

S∧σ ∼
H ,H�,P

σ�∧P � = �P�

Before I establish some auxiliary properties of the relation ∼ necessary for the proof. In all the

formalism that follow if Γi (or Γi) is an environment then its individual components C are

denoted using Ci (or C i), respectively.

Lemma 20. Let H1,H2 be two heaps and let P be a program. The relation ∼
H ,H�,P

is monotonic

with respect to� on the heaps. That is, if x ∼
H ,H�,P

y, H �Ho and H� �H�
o then, x ∼

Ho ,H�
o ,P

y.

Proof. Follow by straightforward structural induction over the definition of ∼.

Lemma 21. Let P be a program. Let u, v be two values and H ,H� be two heaps. The simulation

90

4.5. Soundness and Completeness of the Model Programs

relation ∼
H ,H�,P

is preserved by the structural equality relations ≈
H

and ≈
H�

and vice versa. That is,

if u ∼
H ,H�,P

v then (u ∼
H ,H�,P

v ′ ⇐⇒ v ≈
H�

v ′) and (u′ ∼
H ,H�,P

v⇐⇒ u ≈
H

u′).

Proof. I omit the subscripts of ∼ and ≈ in the rest of the proof. I show the proof for one part: if

u ∼ v then (u′ ∼ v⇔ u ≈ u′). The proof of the other part is symmetric.

Say u ≈ u′. Now u′ ∼ v is shown using structural induction on ≈. If u is an integer or boolean,

the claim follows immediately as u′ = u. Say u is an address of (C w̄) i.e, H(u)= (C w̄). By the

definition of≈ and∼, u′ and v are also addresses of (C w̄ ′) and (C z̄) such that for all i ∈ [1, |u|],
wi ≈w ′i and wi ∼ zi , respectively. By inductive hypothesis, w ′i ∼ zi . Hence, the claim.

Now say u is an address of a closure (eλ,σ′). If eλ/∼=,P is defined and has label �, v = (C� t) and

σ′(FV (eλ))∼ t . Since u ≈u′, u′ = (eλ
′,σ′′), eλ

′/∼=,P = eλ/∼=,P (by the definition of the ∼= relation)

and σ′′(FV (eλ
′))≈σ′(FV (eλ)). By induction hypothesis, σ′′(FV (eλ))∼ t . Hence, u′ ∼ v .

If eλ/∼=,P is not defined, v = (CtypeP(eλ) hash((eλ,σ))). Since u ≈ u′, u′ = (eλ
′,_) and eλ

′/∼=,P is not

defined. By the definition of hash, hash(u)= hash(u′). Hence, u′ ∼ v .

Say u′ ∼ v . We now show that u ≈ u′ using structural induction on ∼. If u is an integer or

boolean the claim immediately follows as in that case u = v = v ′ ∈ N∪Bool . Say u is an

address of (C w̄) i.e, H(u)= (C w̄). By the definition of ≈ and ∼, u′ and v are also addresses

of (C w̄ ′) and (C z̄) such that for all i ∈ [1, |u|], wi ∼ zi and w ′i ∼ zi , respectively. By inductive

hypothesis, wi ≈ w ′i . Hence, the claim. The case where u is an address of a closure can be

similarly proven.

Lemma 22. Let P be a program. Let Γ ∈ Envc , Γ� ∈ Env and S ∈ 2Val be such that Γ∼ (Γ�,S).(∀x ∈ domP (C).∃y ∈ S. x ∼ y
)

and
(∀y ∈ S.∃x ∈ domP (C). x ∼ y

)
.

Proof. The first part of the claim follows by the definition of ∼. That is, ∀x ∈ domP (C).∃y ∈ S.

x ∼ y . By skolemization, the above implies that there exists a function g : domP (C)→ S.

We know that |domP (C)| = |dom(S)| by the definition of ∼. If g is injective, it should also be

bijective and hence the claim holds. If g is non-injective, there exists an element s ∈ S such that

x1 ∼ s and x2 ∼ s for some {x1, x2} ⊆ domP (C) ⊆ dom(C) and x1 �= x2. By Lemma 21, x1 ≈
H

x2.

But by the domain invariants, every key in the cache is unique with respect to structural

equality. Therefore, this case is not possible.

Lemma 23. Let P be a program. Let Γ ∈ Envc , Γ� ∈ Env and S ∈ 2Val be such that Γ∼ (Γ�,S).

Let x ∈ dom(σ) and f ∈ Fids be a function defined in P.
(
∃u.(f u) ∈ domP (C)∧u ≈

H
σ(x)

)
iff(

∃u′.(C f u′) ∈ S∧u′ ≈
H�

σ�(x)

)

Proof. Consider the only if direction. Say (f u) ∈ domP (C) and u ≈
H
σ(x). By the definition of

∼, ∃y ∈ S.(f u)∼ y . In other words, ∃u′.(C f u′) ∈ S∧u ∼ u′. We are given that σ(x)∼σ�(x) and

91

Chapter 4. Supporting Higher-Order Functions and Memoization

σ(x)≈
H

u. By Lemma 21, u ∼σ�(x). This together with the fact that u ∼u′ imply that u′ ≈
H
σ�(x).

Hence, the claim. The other direction is symmetric (by Lemma 22).

4.5.1 Correctness of Model Transformation

The following lemma establishes that if Γ∼ (Γ�,S), evaluating an expression e under Γ results

in fewer crashes than evaluating the translation of e under Γ�. That is, Γ progresses as long as

Γ� progresses on the translation of e.

Lemma 24. Let P be a program. Let st be an expression of the model language. Let Γ ∈ Envc and

Γ� ∈ Env be such that Γ� � st ⇓ S and Γ∼ (Γ�,S). Let e be any expression. If Γ� � (�e�P st) ⇓ u,Γ�
o

then ∃Γo ∈ Env, v ∈Val, p ∈N such that Γ� e ⇓p v,Γo and

• Γo ∼ (Γ�
o,u.2) • v ∼

Ho ,H�
o ,P

u.1 • p = u.3

Proof. Using structural induction on the evaluation Γ� � (�e�P st) ⇓ u,Γ�
o. However, instead of

considering the semantic rules one by one, I consider here the semantic rules for the model

expressions that correspond to the possible outermost operation in e. (Note that e is a source

expression and the induction is performed on the semantic rules of the model expressions.)

In the rest of the proof I omit the subscript P of ∼ relations that refers to the program. Let

e ′ = �e�P st.

Say the expression e belongs to one of the following cases: a constant c, a variable x, pr x,

x eq y , cons x̄, λx. f (x, y), cached(f x). The free variables of e ′ and e are identical, and by the

definition of ∼, FV (e)⊆ dom(σ�)= dom(σ)∪ {st}. Hence, there is a value defined for all free

variables in σ. Since Γ satisfies all the domain invariants, the antecedent of every base case

rule is defined. Therefore, Γ� e ⇓p v,Γo for some v , p and Γo.

In all these cases, the cost of the operation cop is a constant as per the semantics, and is exactly

same as u.3 as per the translation �·�P . Therefore, p =u.3 holds trivially.

Consider now the claim: Γo ∼ (Γ�
o,u.2). Recall that the relation ∼ is monotonic with respect to

the ordering� between the heaps. In all these base cases, the cache and store components

of the input and the output environments Γ and Γo are identical. The heaps of Γ and Γ�

are contained in the heaps of Γo and Γ
�
o. Moreover, as per the translation, st and u.2 are

also identical in the base cases. Therefore, by Lemmas 7 and 20, Γ∼ (Γ�,S) directly implies

Γo ∼ (Γ�
o,u.2).

Consider now the claim: v ∼
Ho ,H�

o

u.1. In the case of a constant it is easy to see that the values

returned by e are identical primitive values (in N∪Bool) in both evaluations under Γ and Γ�.

In the case of pr x, the arguments of the operations are integer or boolean. By the definition of

∼, the arguments are equal in both σ and σ�. Hence the output of PRIM is also equal under

both environments. (We allow only deterministic primitive operations.) Therefore, v ∼
Ho ,H�

o

u.1

92

4.5. Soundness and Completeness of the Model Programs

in both cases.

Consider the case of e being a variable. Say σ(x)= a and σ�(x)= a′. It is given that a ∼
H ,H�

a′.

By definition, v = a and u.1 = a′. Hence, the claim holds by Lemmas 7 and 20. In the case

of CONS, (a �→ cons σ̂(x̄)) is added to H and (a′ �→ cons σ̂�(x̄)) is added to H�, for some fresh

a and a′ that are not bounded in H and H�, respectively. It is given that σ ∼
H ,H�

σ�. Therefore,

a ∼
H ,H�

a′ by the definition of ∼, which by Lemma 20 implies a ∼
Ho ,H�

o

a′. Therefore, v ∼
Ho ,H�

o

u.1.

The LAMBDA case can be similarly proved.

Consider now the case where e is cached(f x) (for some f and x). We are given that σ(x) ∼
H ,H�

σ�(x). By the definition of ∼
H ,H�

, (f σ(x)) ∼
H ,H�

(C f σ�(x)), provided f is define in the program P ,

which holds because we require that every named function used in the program are defined

in the program. By Lemma 23, ∃u′.(C f u′) ∈ S ∧u′ ≈
H�

σ�(x), where Γ� � st ⇓ S, if and only if

∃u.(f u) ∈ dom(C)∧u ≈
H
σ(x). By the semantics of set inclusion shown in Fig. 4.2 and ∈H ,

(C f x) ∈ st evaluates to true under Γ� iff C(f x) evaluates to true under Γ.

Consider now the case where e is of the form x eq y . This evaluates to true under Γ iff

σ(x)≈
H
σ(y). It is given that σ(x) ∼

H ,H�
σ�(x) and σ(y) ∼

H ,H�
σ�(y). By Lemma 21, if σ(x)≈

H
σ(y)

is true then σ(y) ∼
H ,H�

σ�(x), which in turn by the same lemma implies that σ�(x) ≈
H�

σ�(y).

Similarly, if σ(x)≈
H
σ(y) is false then by Lemma 21, ¬(σ(y) ∼

H ,H�
σ�(x)) which in turn implies

that ¬(σ�(x) ≈
H�

σ�(y)). Hence, the claim.

Now consider the case where e is a direct call to a memoized function. There are two cases to

consider based on whether or not the evaluation of �e�P st goes through the cache hit branch

of the if-condition (see Figure 4.7). Say we have a cache hit. In this case p = u.3 = chi t . Also,

Γo ∼ (Γ�
o,u.2), since the output caches, state expressions and stores are identical to the input

in both evaluations Γ and Γ�, and the output heaps are only larger. Consider now the claim:

v ∼
Ho ,H�

o

u.1. Here, v is the result of looking up (f σ(x)) in the cache C, whereas u.1 is the result

of the evaluation (f σ�(x)) under Γ�. By inductive hypothesis, Γ� � (f σ�(x)) ⇓ u,Γ�
o implies that

Γ� (f σ(x)) ⇓w,Γ′ and w ∼
H ′,H�

o

u.1. By the property CacheCorr, v =C((f σ(x)) ≈
H ′

w . Therefore,

v ∼
H ′,H�

o

u.1 (by Lemma 21). Since v ∈ dom(H) and H �H ′, v ∼
H ,H�

o

u.1. But H and Ho are identical

for the MEMOCALLHIT rule. Hence, v ∼
Ho ,H�

o

u.1.

Now say we have a cache miss. Consider now the claim: v ∼
H ,H�

u.1. Here, v and u.1 are the

result of the evaluation (f σ(x)) and (f σ�(x)) under Γ and Γ�, respectively. Thus, by inductive

hypothesis, v ∼
Ho ,H�

o

u.1. Similarly, the fact that the resource usage of both evaluations are

identical follow from the hypothesis. Consider now Γo ∼ (Γ�
o,u.2). Clearly, σo ∼σ

�
o . However,

C�
o is added a new entry C f σ�(x) (by the semantics of set union). However, Co is also added a

93

Chapter 4. Supporting Higher-Order Functions and Memoization

new entry (f σ(x)) �→ v . Since (f σ(x))∼C f σ�(x) by definition, the claim that Γo ∼ (Γ�
o,u.2)

holds.

If the expression e is one of let expression, match expression, concrete call pr contract the

claim follows by inductive hypothesis. Consider now the case where e is an indirect call i.e,

e = (x y)�. The translated expression �e�P st invokes the function App� defined in Fig. 4.7. Let

σ(x)= (eλ,σ′).

Now say eλ/∼=,P is not defined. By definition of ∼, σ�(x)= (CtypeP(eλ) hash((eλ,σ′))). Therefore

App� with execute the error expression, and thus will crash. That is,¬∃Γ�
o,u.Γ� � (�e�P st) ⇓ u,Γ�

o.

Hence the claim trivially holds.

Now say eλ/∼=,P = (λx. f (x, z),σ′)�
′
, where dom(σ′) = {z}. By definition of ∼=, target(eλ) = f .

By the definition of ∼, σ�(x) = (C�′ t) where σ′(z) ∼ t . By the definition of App� (Fig. 4.7)

and the match construct, Γ� � (�e�P st) ⇓ u,Γ�
o reduces to Γ�′ � (�f (y,yi)�P st) ⇓ u,Γ�

o, where

Γ�′ = (H�,σ�� (yi �→ t)). Now consider Γ′ = (C,H ,σ�σ′). Clearly, Γ′ ∼ (Γ�′,σ�(st)). Therefore,

by induction hypothesis, Γ′ � f (y,z) ⇓p v,Γo, Γo ∼ (Γ�
o,S), p = u.3 and u ∼ v . (Note that the

variables yi and z can be renamed to a variable say r ∉ dom(σ) so that the calls are syntac-

tically identical and the induction hypothesis can be applied.) By the definition of the rule

INDIRECTCALL, the above implies that Γ� e ⇓p v,Γo and hence the claim holds.

The above lemma shows that if an expression �e�P st evaluates to a value in the model program

under an environment then e evaluates to a similar value in source program under a similar

environment. Below I show the converse. However, the converse holds only if the indirect

calls encountered during the evaluation of the source expression have their definition in P .

That is, they have to be encapsulated calls (section 2.7).

Lemma 25. Let P be a program. Let st be an expression of the model language. Let Γ ∈ Envc

and Γ� ∈ Env be such that Γ� � st ⇓ S and Γ∼ (Γ�,S). Let e be any expression such that if

〈Γ,e〉�∗〈Γ′, x y〉, H ′(σ′(x))= (eλ
�,σ′′) and � ∈ labelsP. If Γ� e ⇓p v,Γo then ∃Γ�

o ∈ Env,u ∈DVal

such that Γ� � (�e�P st) ⇓ u,Γ�
o and

• Γo ∼ (Γ�
o,u.2) • v ∼

Ho ,H�
o ,P

u.1 • p = u.3

Proof. The proof of this lemma is very similar to the proof of Lemma 24, expect for a minor

difference in the handling of the case where e is an indirect call. It is given that every indirect

call encountered during the evaluation of e is an encapsulated call. As a result, when the

expression e is an indirect call (x y)�
′

(the rule INDIRECTCALL), we are guaranteed that σ(x)=
(eλ

�,σ′) and eλ/∼=,P is defined, since eλ itself belongs to the program P . Thus, the evaluation

of (�e�P st) under Γ� cannot go through the error case of App�′ function, which implies that

Γ� � (�e�P st) ⇓ u,Γ�
o will be defined for the rule INDIRECTCALL. It is easy to see that it will

satisfy the properties of the claim as detailed in the proof of Lemma 24.

94

4.5. Soundness and Completeness of the Model Programs

Relevant Model Environments

Before I establish the sufficiency of the model programs for contract verification, I first define

a subset of the valid environments of the model programs that are of interest here. It suffices

to ensure validity of the contracts of the model programs with respect to this subset instead

of considering all valid environments. This property is exploited by the assume-guarantee

reasoning I will later present in section 4.6.

Let P � be a model program corresponding to a source program P . Recall that the valid

environments Γe,P� of an expression e are defined as the environments that reach e during the

evaluation of some closed program P ′||P � for some client P ′ of P �. However, since the cache in

the model program is an expression of the model program, considering all possible clients of

P � may include clients that do not update the expression denoting the cache in accordance

with the operational semantics of the input language. For instance, a client of the model

program may update the set denoting the cache state non-monotonically. In other words, all

environments Γe,P� do not have a corresponding image in Envc
e,P. Therefore, I define a subset of

a the valid environments of the model program referred to as the relevant model environments,

denoted Env�e,P � , that has a one-to-one correspondence with the valid environments of the

source program Envc
e,P. Let def f � (x,st) := ẽ ′ be a function definition in P � that is a translation

of the definition def f x := ẽ in P .

Env�ẽ ′,P � =
{
Γ� ∈ Env | ∃Γ ∈ Envẽ,P.Γ∼P (Γ�,σ�(st))

}

The relevant environments Env�e,P � are defined only for the body of the functions in the model.

The theorems that follow would need only these.

Theorem 26 (Model Soundness). Let P be a program and P � the model program. Let ẽ =
{p} e {s} and ẽ ′ = {p′} e′ {s′}. Let def f x := ẽ be a function definition in P, and let def f � (x, st) := ẽ ′

be the translation of f , where st is the state parameter added by the translation.

∀Γ� ∈ Env�ẽ ′,P � .∃u. Γ� � p′ ⇓ false∨Γ� � ẽ′ ⇓ u =⇒ ∀Γ ∈ Envẽ,P.∃v. Γ� p ⇓ false∨Γ� ẽ ⇓ v

Proof. By Lemma 24 if e ′ evaluates under Γ� to a value then it does evaluated to a similar

value under an environment Γ ∈ Envc that has is related to Γ� by ∼
P

. Therefore, the proof

directly follows from the Lemma 24 if for every Γ ∈ Envc
e,P there exists a Γ� ∈ Env�e,P such that

Γ∼
P

(Γ�,σ�(st)). Below I construct such an environment, which completes the proof. For every

Γ ∈ Envc
e,P construct a Γ� ∈ Env�e,P as follows:

(a) σ� =σ∪ (st �→ S), where S = {(C f u) | (f u) ∈ domP (C)}

(b) H� = {(a,map(v)) | (a, v) ∈H},

where map((eλ,σ′)) is (Cl σ′(FV (eλ))) if eλ/∼=,P is defined and has label �, map((eλ,σ′)) is

CtypeP(eλ) hash((eλ,σ′)) if eλ/∼=,P is not defined, and map(v)= v otherwise.

95

Chapter 4. Supporting Higher-Order Functions and Memoization

Note that the above theorem evidently implies that if the contracts of functions in the model

programs hold then the contracts of functions in the source program also hold, since Env�ẽ,P � ⊆
Envẽ,P� by definition. Below I discuss the completeness property of the model program.

4.5.2 Completeness of Model Transformation

A tricky aspect here is that for an expression with contracts ẽ belonging to a program P there

may exist valid environments of Γ ∈ Envc
ẽ,P that binds addresses to lambdas not in the scope

of the program P under which the expression ẽ evaluates to a value. (This may happen e.g.

if the expression invokes a closure passed as an argument to the function that contains the

expression.) Such environments correspond to environments in the model program that bind

the lambdas to the stub closure Cτ. The model program crashes unconditionally if such a

closure is invoked. Therefore, a general completeness guarantee does not hold . However

if such lambdas external to P are invoked by an expression belonging to P , the contracts

of ẽ do not hold for all environments in Envc as there exists an environment in Envc that

results in a contract violation in ẽ. However, such an environment may not belong to Envc
ẽ,P.

Below I formalize this weaker completeness property. (Notice that the universal quantification

over all environments of Envc that have a binding for the argument x and not on the valid

environments. This is why the completeness guarantee is weaker than ideal.)

Theorem 27 (Model Completeness). Let P be a program and P � the model program. Let ẽ =
{p} e {s} and ẽ ′ = {p′} e′ {s′}. Let def f x := ẽ be a function definition in P, and let def f � (x, st) := ẽ ′

be the translation of f , where st is the state parameter added by the translation.

∀Γ : (C,H,σ,P) ∈ Envc s.t. x ∈ dom(σ).∃v. Γ� p ⇓ false∨Γ� ẽ ⇓ v =⇒
∀Γ� ∈ Envẽ′,P� .∃u. Γ� � p′ ⇓ false∨Γ� � ẽ′ ⇓ u

Proof. There are two cases to consider here. In the first case say P has only encapsulated calls.

That is, for all Γ ∈ Envc , if 〈Γ,e〉�∗〈Γ′,c a〉 implies H ′(σ′(c)) = (eλ
�,σ′′)∧ l ∈ labelsP. In this

case the claim holes by Lemma 25 since every evaluation in the model program is bisimulated

by one evaluation in Γ ∈ Envc.

Therefore, say 〈Γ,e〉�n〈Γ′,c a〉, for some n ∈N, and H ′(σ′(x))= (eλ
�,σ′′)∧ l ∉ labelsP. That is,

the evaluation of e under Γ invokes a lambda created outside the program. Without loss of

generality assume that c a is the first such call. That is, every call reached before n steps is an

encapsulated call. Now, it is easy to see that H ′(σ′(c))=H(σ′(c)). This is because if σ′(c) is not

bound in the input heap, it has to be bound subsequently. But we know that every expression

that executes until encountering the call c a belongs to the program P since we assume that

c a is the first call back that executes code outside P . Thus, any closure created during the

evaluation of e until c a belongs to P . Therefore, σ′(c) should be bound in the input heap. Let

σ′(c)= a and H(a)= (λr.h (r, s),σ′′).

Now, consider a new environmentΓerr ∈ Envc defined as follows: Γerr = (C,H[a �→map(v)],σ,P∪

96

4.6. Model Verification and Inference

{def g t = {false} h t {true}}), where map((λr.h (r, s),σ′′)) = (λr.g (r, s),σ′′), for some r , s and

σ′′, and map(v) = v otherwise. That is, the new environment wraps the body of the lamb-

das compatible with H(a) by a contract whose precondition is false. By the totality of ∼,

∃Γ� ∈ Enve,Psharp such that Γ∼ (Γ�,σ�(st)). Note that firstly (a) λr.h (r, s)/∼=,P will not be defined

as it is external to the program P . Consider now the following definition of the hash function for

the newly introduced lambdas: define hash((λr.g (r, s),σ′′)) as equal to hash((λr.h (r, s),σ′′)).

Clearly, this hash function preserves structural equality, i.e, ∀{eλ,eλ
′} ⊆ range(Herr). eλ ≈

Herr

eλ
′ ⇐⇒ hash(eλ) = hash(eλ

′) and hence is well-defined. Therefore, it is easy to see that

Γerr ∼ (Γ�,σ�(st)) by our construction. Hence, 〈Γerr ,e〉�n〈Γ′err ,c a〉 and ∃S.Γ′ ∼ (Γ′err ,S). Clearly,

evaluating (c a) under Γ′err results in a contract violation as the precondition of g will not hold.

Hence, the contact of f cannot hold in all environments in Envc.

4.6 Model Verification and Inference

In this section, we discuss the approach for verifying contracts of the model programs gener-

ated as described in the previous chapter. In principle, since the model program uses only

first-order features the techniques described in Chapter 3 can be used to verify the model

program. However, as I will describe in this section, applying the function-level, modular

assume-guarantee reasoning will result in obligations which to be established require dra-

matically more specifications (which are provided by the user). In other words, the simple

function-level, modular reasoning increases the contact annotation overhead in the programs

dramatically. To address this difficulty I introduce an extension to the assume-guarantee

reasoning: creation-dispatch reasoning, which propagates cache-monotonic properties that

hold at creation point of closure to the invocation points.

I now explain this difficulty in applying the traditional, function-level modular reasoning for

verifying model programs using the example shown in Figure 4.4, which was generated for the

lazy take function shown in Figure 4.3.

Challenges in Modular Reasoning for Model Programs. As quick recap consider again the

function-level assumed guarantee obligations described in section 3.2.

For each function definition def f x := {pre} e {post} in a program P ,
(2.I) |=P pre→ post[e/res]

(2.II) For each call site (f y)� in P , |=P path((f y)�)→ pre(f y)

Here e1→ e2 denotes a semantic implication that in all environments having a binding for the

free variables of e1 and e2, whenever e1 does not evaluate to false, e2 evaluates to true. The

notation |=P e1→ e2 denotes that under the assumption that all functions invoked by e1 and

e2 terminate in all environments that reach them, and their pre-and post-conditions hold,

97

Chapter 4. Supporting Higher-Order Functions and Memoization

e1→ e2 is guaranteed. The path condition path(c) denotes the static path to c from the entry of

the function containing c and is defined in Figure 3.6. pre(c) denotes the precondition of f after

translation to the argument of the call c . As noted earlier, this modular reasoning requires that

the assume/guarantee assertions hold for all environments Γ ∈ Envc, even though for contract

verification it suffices to consider only valid environments that reach the function bodies. In

fact, in the case of model programs it suffices to consider the environments in Env�e,P defined

in section 4.5.1. This obligation dramatically increases the specification/verification overhead

when applied as such to the model programs.

For example, consider the call to take� (n1,s1,st) within app at line 11 in the program shown in

Fig. 4.4. The path condition to the call is cl = Take (n1,s1). Obviously, this is not strong enough

to imply the precondition of the call namely concrUntil� (s1,n1,st). To make this example verify,

it would in fact require concrUntil� to hold on the arguments of every instance of Take reachable

from the recursive datatype Stream, due to the mutual recursion between app, take� and tail�.
That is, the precondition of app would need a function pre (cl,st) defined as follows:

def pre (cl,st) = cl match{
Take (n1,s1) ⇒ concrUntil� (s1,n1,st) ∧

(s1 match {
SCons(x, t) ⇒ pre (t, st);
SNil ⇒ true

});
}

What complicates this further is that to ensure this precondition at the call to app at line 7,

the precondition of the function tail� and all its transitive callers (including take�) should be

modified similarly. This scenario happens very often when dealing with recursive, lazy data

structures [Okasaki, 1998]. Our initial attempts to synthesize a precondition such as the above

for App functions resulted in formulas too complicated for the state-of-the-art SMT solvers to

solve.

In the sequel, I discuss an approach to alleviate this specification overhead based on the

observation that the property concrUntil� actually holds at the points where the closure Take is

created and is monotonic with respect to the changes to the cache.

Asserting Cache Monotonic Properties Recall that the contracts of all functions in source

program are required to be cache monotonic (section 4.2). This ensures that the source

expressions of the language remain referentially transparent. To check if a property pr is cache

monotonic it suffices to check the following property on the translation of pr with respect to

�·�P defined in Figure 4.7:

st1 ⊆ st2∧ �pr�P st1)→ �pr�P st2

98

4.6. Model Verification and Inference

With this observation I now present the creation-dispatch reasoning for verifying model

programs.

4.6.1 Creation-Dispatch Reasoning

Let P be a program and P � be the model program generated for P . Recall that each indirect

call x y has a set of target lambdas that are estimated at the time of model construction based

on typeP(x). Let Λ = {ei | i ∈ [1,n]}, where ei = λx. fi (x, yi), be the lambdas in the program

that are the possible targets of encapsulated calls in the program P . (Recall the definition

of encapsulated calls defined in section 2.3.) Let CloCons= {Ci wi | i ∈ [1,n]} be the closure

constructions in the model program generated for P representing the lambdas Λ. In the model

program, the dispatch functions App� corresponding to the encapsulated calls invoke the

function f �
i (the translation of fi) in each case Ci wi (see Fig. 4.7 and the illustration Fig 4.4).

Let DispCalls= { f �
i (x, zi ,st) | i ∈ [1,n]} be the calls invoked by such dispatch functions App�.

Note that st is the state parameter added by the translation.

For instance, for the program shown in Figure 4.3 and its model shown in Fig. 4.4 the above

sets would be defined as follows:
Λ =

{
λa. takeLazy (n1,t)

}
CloCons = {TakeLazy (n1,r_.1)} constructed at line 24

DispCalls = {takeLazy (n1,s1,st)} called at line 11

Let Props= {
ρi | i ∈ [1,n]

}
be a set of boolean-valued expressions (predicates) in Espec defined

on the captured argument yi of the lambda ei ∈Λ (i.e, ρi has only yi as free variable).

The creation creation-dispatch reasoning allows augmenting the function-level assume/guar-

antee rules presented earlier with the following condition: if each property ρi is cache mono-

tonic (rule (3.III)), and hold at the point of creation of the lambda ei for the state of the cache

at that point (rule (3.IV)), then it can be assumed to hold at the point of dispatch (rule (3.V)).

Formally,

Obligations for creation-dispatch reasoning
(3.I) For each def f x := {pre} e {post} ∈ P �, |=P� pre→ post[e/res]

(3.II) For each call site c ∉DispCalls, |=P� path(c)→ pre(c)

(3.III) (Cache monotonicity) For each ρi ∈ Props

|=P� (st1 ⊆ st2∧ �ρi�P st1)→ �ρi�P st2

(3.IV) For each closure construction site c =Ci wi in CloCons

|=P� path(c)→ (�ρi�P st(c))

(3.V) For each call site c = f �
i (x, zi ,st) in DispCalls

|=P� (path(c)∧ �ρi[zi/yi]�P st)→ pre(c)

It may appear at first glance that the above reasoning in facts increases the number of proof

obligations. The main advantage of the above obligations is the rule (3.V) which permits

assuming the property ρi for establishing the preconditions of a call in DispCalls, which corre-

99

Chapter 4. Supporting Higher-Order Functions and Memoization

spond to indirect calls. In other words, verifying preconditions of indirect calls can assume

properties that hold at the point of creation of the invoked closure, provided the property

is cache monotonic. Note that, by the definition of |=P � , each obligation can assume that

function all functions invoked by the expressions being checked terminate in all environments

that reach them, and their pre-and post-conditions hold

In the above rules, st(c) denotes the cache-state expression propagated by the translation

function �·�P to an expression c in the model program. Note that there is exactly one cache-

state expression reaching every point in the model program by the definition of the translation

shown in Fig. 4.7. For instance, the state expression reaching the line 11 of Fig. 4.4 is st, whereas

the state expression reaching the line 24 is nst. This can be determined by a simple syntactic

analysis of the model programs.

While the above reasoning holds irrespective of the how the properties ρi are chosen for

each lambda ei , a particular strategy is implemented in our implementation. For each

ei =λx.fi (x,yi), ρi is chosen to be the disjuncts of the precondition of the call fi (x,yi) that only

refer to the captured variable yi . For example, for the model shown in Figure 4.4, our approach

would verify the following:

(a) concrUntil is a cache monotonic property: |=P� (st1 ⊆ st2∧ concrUntil(s, i,st1))→ concrUntil(s, i,st2)

(b) The property concrUntil(u.1,n−1,nst) is implied by the path condition at the point of creation

of the closure Take(n−1,u.1) at line 24. This is encoded by the following obligation (after a few

straightforward simplifications):

|=P �

(
concrUntil (s,n,st)∧ s= SCons (x,tfun)∧u= tail� (s,st)∧nst = u.2∪

{
(Tail s)

})→
concrUntil (u.1,n−1,nst)

The above obligation follow by the definition of the function concrUntil shown in Figure 4.4.

The property concrUntil (s1,n1,st) is assumed to hold while checking the precondition of call

to take� at line 11. With this extension we do not need any more preconditions than what is

stated in the program to verify the model program.

If the functions in the input program have holes then the assume-guarantee obligations

generated as above will also have holes. The problem then is infer values for the holes that will

make the creation-dispatch obligation hold. These creation-dispatch obligations are solved

using the inference algorithm presented in section 3.3. For the lazy take function shown in

Figure 4.3, our algorithm inferred that it completed in at most 10 steps.

4.7 Correctness of Creation-Dispatch Reasoning

Similar to Lemma 10 of section 3.2, I now establish that the above creation-dispatch rules are

essentially a part of an inductive reasoning. The induction order is the steps in the evaluation

of an expression, or equivalently the depth of the big-step evaluation tree. This order is well-

founded only for environments in which a function terminates and thus only entails partial

100

4.7. Correctness of Creation-Dispatch Reasoning

correctness. Our independently verifies the termination of programs using the termination

checker of the LEON verification system [Nicolas Voirol and Kuncak, 2017].

However, a difference compared to function-level, modular reasoning is that, under this

reasoning, soundness of verification of the contracts of one function say f may be incumbent

on the termination of other functions in the program, namely the ones that create the closures

invoked by f . This is somewhat obvious since the facts are propagated from the creators

to the dispatchers. For this reason, this creation-dispatch reasoning could be thought of as

module-level (or class-level) modular reasoning as opposed to function-level reasoning.

Encoding Model Language Extensions Recall that the model programs use an error con-

struct in the bodies of App� functions to handle (non-encapsulated) indirect calls. Let

def App� (cl , x, st) be one such function corresponding to an indirect call (y z). The error

construct will be encountered during the evaluation of App� if and only if cl=CtypeP(y). In this

case, the result of the evaluation is undefined. The same effect can be achieved if we add a

precondition to App� namely cl �=CtypeP(y). It is obvious that the App� with the precondition is

equivalent to the App� function with the error construct. For simplicity, in the rest of section,

we assume that the model programs are free of error constructs, which have been lifted to

the preconditions of App� functions. This provides us the property that the Lemma 4, which

states that undefined evaluation are possible only due to non-termination or contract failures,

applies to the model programs as well.

Also for the simplicity of the proof it is assumed that (�ρi �P st(c)) is invoked just before the

construction site c = (Ci wi), and that the result of ρi is ignored by model program. That is,

the closure construction (Ci wi) is replaced by let _ := (�ρi �P st(c)) in (Ci wi). It is obvious

that this transformation is semantics preserving. But the benefit from the perspective of the

proof is that it simplifies the statement of the following theorems, which now only have to

reason about functions defined in the program, and not an additional property not in the

program.

4.7.1 Partial Correctness of Creation-Dispatch Obligations

The following lemma establishes that whenever a model program P � corresponding to a input

program P satisfies the assume-guarantee obligations, then one of the following properties

hold for all natural number n, for all clients P ′ that close the program P and environment

Γ ∈ Envc: (a) either there exists a function f in the input program P such that the closed

evaluation under P ′||P reaches the body of the function with the environment Γ and the

evaluation of the model function f � under the evaluation corresponding environment Γ� takes

more than n-steps (with respect to� relation). (b) Otherwise, whenever the closed evaluation

under P ′||P reaches the body of the function with the environment Γ, the contracts of the

model function f � are satisfied under the corresponding environment Γ�.

101

Chapter 4. Supporting Higher-Order Functions and Memoization

I would like to remark that this intellectual complexity in the formulation of the lemma state-

ment is the result of the fact that the valid (or relevant) environments of the model programs

are constrained not by the clients of the model programs that closes it, but rather by clients

of the original program. This is because the clients of the model programs are more uncon-

strained than the clients of the source programs (see section 4.5.1). A more intuitive abstraction

of the following lemma would be that if the creation-dispatch obligations hold for the model

program then either (a) the contracts of all functions in the model program hold for all the

relevant environments, which are environments that that have an one-to-one correspondence

with the valid environments of the source programs as defined in section 4.5.1, or (b) at least

one function in the model program does not terminate under a relevant environment. Note

that as established by Theorem 26 it suffices to consider all relevant environments of the

model program to verify the contracts of the original program.

In the proof shown below I use the following convention. If Γ� ∈ Env is an environment of the

model program then I denote by Γ corresponding environment in Envc with respect to the

relation ∼ i.e, ∃S.Γ∼ (Γ�,S).

Lemma 28. Let P be a program and P � the model program. If every function defined in P �

satisfy the assume-guarantee obligations 3.(I) to 3.(V) defined above, the following property

holds for all n ∈N

∀ program P ′.∀Γ ∈ Envc.(∃(def f x := ẽ) ∈ P,Γ� ∈ Env� s.t. 〈ΓP′||P,eentry〉�∗〈Γ, ẽ〉∧Γ∼ (Γ�,σ�(st))∧
∃k >n,e ′,Γ′.〈Γ�,�ẽ�P st〉�k〈Γ′,e ′〉)∨
∀def f x := ẽ ∈ P, ẽ = {p} e {s},Γ� ∈ Env.

if
(〈ΓP′||P,eentry〉�∗〈Γ, ẽ〉)∧Γ∼ (Γ�,σ�(st)) then(
∃v.Γ� � �p�P st ⇓ false∨Γ� � �ẽ�P st ⇓ v

)
Proof. We prove this by induction on n. Intuitively, n limits the depth of evaluation of any

expression in the model program P � during a run starting from the entry expression eentry with

respect to a client P ′. The base case is when n = 1. Consider a function definition def f x := ẽ.

Let e ′ = �ẽ�P st , and let e ′ = {p′} b′ {s′}. Let 〈ΓP′||P,eentry〉�∗〈Γ, ẽ〉 and Γ∼ (Γ�,σ�(st)).

Now, if the evaluation of e ′ under Γ� has depth more than 1 then the claim trivially holds.

Therefore, say the evaluation of e ′ under Γ� has depth at most 1. Hence, it cannot make any

function calls. (Note that there are only direct calls in the model program.)

Calls(Γ�, p ′)∪Calls(Γ�,e ′)=�
By 3.1 – 3.7 discussed in section 3.2 ,∃v.Γ� p′ ⇓ false∨Γ� e′ ⇓ v

Hence the claim holds in the base case.

Now, consider the inductive case and say the claim holds upto some number m. Now, if the

102

4.7. Correctness of Creation-Dispatch Reasoning

evaluation of e ′ under Γ� has depth more than m then the claim trivially holds. Therefore, say

the evaluation of e ′ under Γ� has depth at most m+1.

(a) Say ¬∃c ∈DispCalls,Γ′.〈e ′,Γ�〉�∗〈c,Γ′〉. In this case, for all (c,_) ∈Calls(Γ�,e′),

|=P path(c)→ pre(c) holds. Hence, by the argument 3.8 – 3.20 of section 3.2 , ∃v.Γ� p′ ⇓ false∨
Γ� e′ ⇓ v.

(b) Now say there exists a c= g� (x,z,st) belonging to DispCalls and Γ
�
3 ∈ Env such that

〈e ′,Γ�〉�∗〈c,Γ�
3〉. Let w =σ

�
3(z). By the definition of DispCalls and the model translation,

〈e ′,Γ�〉�∗〈App� (y, a,st′),Γ�
1〉�∗〈c,Γ�

3〉

where σ
�
1(H�

1(y))= (Cg w). That is, Γ�
1 is the environment that reaches the App function. By

Lemma 24, 〈ẽ,Γ〉�∗〈(y q),Γ1〉 (for some q) and Γ1 ∼ (Γ�
1,σ�

1(st ′)). Therefore, there exists an

address a such that σ1(y)= a, H1(a) is a closure ((λx.g (x, p))�, [p �→ v]) and v ∼w .

By definition of DispCalls, the call (y q) is an encapsulated call. Therefore, (λx.g (x, p))�

belongs to the program P i.e, l ∈ labelsP. Let “def cr x = { eb }" be the function in P that

contains the lambda with label �. The closure ((λx.g (x,p))�, [p �→ v]) should have been created

at some point during the run starting from eentry. Therefore, there exists a sequence:

〈ΓP ′||P ,eentry〉�∗〈_,cr x〉�〈Γin,eb〉�∗〈Γ0,λx.g (x, p)〉 (4.1)

such that

Γ0 �λx.g (x,p) ⇓ a, (C0,H0[a �→ (λx.g (x,p), [p �→ v])],σ0)

where H0 �H1 and C0 �C1. Let Γ�
in be such that Γin ∼ (Γ�

in,σ�
in(st)) and let e′b = �eb�P st.

I now establish the following sub-property which shows that if there exists a environment Γin

under which 〈Γin,eb〉�k〈Γ′,e ′〉 in the source program, either (a) an evaluation starting form

〈Γ�
in,e ′b〉, where e ′b is the translation of eb , takes more than m+1 steps or (b) an environment

similar to Γ′ would reach the translation of e ′.

Property 5. For all k ∈N, for all Γin ∈ Env�eb ,P and for all Γ�
in such that Γin ∼ (Γ�

in,σ�
in(st)).

If 〈Γin,eb〉�k〈Γ′,e ′〉 then

(a) there exists an chain 〈Γ�
in,e ′b〉�r _ and r >m+1, or

(b) ∃s. 〈Γ�
in,e ′b〉�∗〈Γ�′,�e ′�P s〉 and Γ′ ∼ (Γ�′,S) and Γ�′ � s ⇓ S.

Proof. This property is proved by induction on k. The inductive and base cases are very similar

and so are proven together as shown below. Let is and e be expressions and let e ′ = (�e�P is) be

the translation of e with respect to is. Let Γ� be some expression such that 〈Γ�,e ′〉 is reachable

from 〈Γ�
in,e ′b〉 and Γ ∼ (Γ�,S) and Γ� � is ⇓ S. Say 〈Γ,e〉�〈Γo ,eo〉. I now establish that an

environment similar to Γo reaches the translation of eo , or the property (a) above holds. The

103

Chapter 4. Supporting Higher-Order Functions and Memoization

claim follows from this by induction.

In the� relations (shown in Fig. 2.3) introduced by all rules except LET and CONTRACT, the

environments Γ and Γo (the input and the output environments) differ only by the store

component. By the definition of the translation and the operational semantics it is easy to see

that there exists an Γ�
o such that 〈Γ�,e ′〉�〈Γ�

o ,�eo�P is〉 and Γo ∼ (Γ�
o ,S) and Γ�

o � is ⇓ S.

Consider now the rule LET. Let e = let x := e1 in e2. By the definition of the translation:

e ′ = let x := �e1�P is in �e2�P x.2. There are two� relations introduced by the rule. Consider

the first relation introduced by LET: 〈Γ,e〉�〈Γ,e1〉. A similar relation will be introduced in the

translated expression: 〈Γ�,e ′〉�〈Γ�,�e1�P is〉, which clearly satisfies the claim.

Consider the other relation introduced by the LET rule defined as follows: If Γ� e1 ⇓ u1,Γ1 then

〈Γ,e〉�〈Γo ,e2〉, where Γo = (C1,H1,σ1[x �→ u1]). We also have similar relation for the translated

expression. If Γ� � �e1�P st ⇓ v,Γ�
1 then 〈Γ�,e ′〉�〈Γ�

o ,�e2�P x.2〉, where Γ�
o = (H�

1,σ�
1[x �→ v1]).

Now there are two cases to consider

(a) There exists a chain 〈Γ�,�e1�P st〉�r _ and r > m. In this case, there exists an chain

〈Γ�
in,e ′b〉�r _ and r >m+1, since are given that 〈Γ�,e ′〉 is reachable from 〈Γ�

in,e ′b〉 (in one or

more steps). Hence the claim holds.

(b) There does not exist a chain 〈Γ�,�e1�P st〉�r _ and r >m.

I now claim that ∃v1. Γ� � �e1�P st ⇓ v1,Γ�
1. This is because, by Lemma 4, the evaluation could

be undefined only if either the evaluation does not terminate or because there is a contract

violation during the evaluation. The former case is not possible since there does not exist

a chain 〈Γ�,�e1�P st〉�r _ and r >m. The latter case is not possible because every call (h g)

reached during the evaluation (with an environment Γ�′′) cannot have a chain 〈Γ�′′, (h g)〉�r _

and r >m (otherwise 〈Γ�,�e1�P st〉�r _ and r >m, which contradicts the given fact). Therefore,

by the (outer) induction hypothesis the call should produce a value. That is, there can be no

contract violation.

It has now been shown thatΓ� � �e1�P st ⇓ v1,Γ�
1 is defined. Therefore, 〈Γ�,e ′〉�〈Γ�

o ,�e2�P x.2〉
is defined. By Lemma 24, Γ� e1 ⇓ u1,Γ1 is defined. Thus, 〈Γ,e〉�〈Γo ,e2〉 is also defined and

Γo ∼ (Γ�
o ,S′) and Γ�

o � x.2 ⇓ S. Hence, the claim holds. The rule contract can be similarly

proven.

With this above established claim let us again revisit the evaluation sequence given by (4.1).

Due to the above property, we know that one of the following cases hold: (a) either there exists

〈Γ�
in,e ′b〉�r _ and r >m+1. or (b) 〈Γ�

in,e ′b〉�∗〈Γ�
0, (C� p)〉 and ∃s.Γ0 ∼ (Γ�

0,S) and Γ�
0 � s ⇓ S.

In the former case the lemma holds as the first disjunct of the lemma is satisfied as Γ�
0 belongs

to Env�e ′,P � (which is the set of relevant environments reaching e ′ as defined in section 4.5.1).

Therefore consider the latter case.

Let cc= (C� p). By definition, st(cc) is the state expression reaching the construction site cc.

104

4.7. Correctness of Creation-Dispatch Reasoning

Therefore s = st(cc). By the definition of path, for any function definition def f x := e′b and

closure construction site cc in f .

∀Γ� ∈ Env�.〈Γ�,e ′b〉�∗〈Γ�′,cc〉⇒ Γ�′ � path(cc) ⇓ true (4.2)

Therefore, Γ�
0 � path(cc) ⇓ true (4.3)

⇒A (Γ�
0,path(cc)) (4.4)

The assumption A is defined in sectoin 3.2. Let ρ′ = (�ρi �P st(c)). We know that the FV (ρi)⊆
{p}, where p is argument of the constructor. Now, by the assume-guarantee reasoning obliga-

tion 3.(IV), we are given that

|=P path(cc)→ ρ′ (4.5)

⇒∀Γ�′.¬A (Γ�′,path(cc))∨Γ�′ � path(cc) ⇓ false

∨¬A (Γ�′,ρ′)∨Γ�′ � ρ′ ⇓ true (4.6)

⇒¬A (Γ�
0,ρ′)∨Γ�

0 � ρ′ ⇓ true, by 4.3, 4.4 (4.7)

Recall that we have assumed that ρ′ is invoked just before the closure construction cc. There-

fore, ∃Γ� � Γ�
0 such that ∃v.Γ� � ρ′ ⇓ v, since we are given that 〈Γ�

0,e ′b〉�∗〈Γ�
0,cc〉. Hence,

A (Γ�,ρ′) holds. It is easy to see that, Calls(Γ�,ρ′)=Calls(Γ�
0,ρ′) since Γ� � Γ�

0. (Note that the

model program does not have memoization and is purely functional.) Therefore, A (Γ�
0,ρ′)

also holds. Substituting this in 4.7 we get, Γ�
0
′ � ρ′ ⇓ true. By Lemma 24, Γ0 � ρi ⇓ true.

Now, we know that H0 �H1 and C0 �C1, where H0 and C0 are the environments at the creation

point of the closure (see the definition of (4.1)). It is also given by the assume-guarantee

obligation 3.(III) that

|=P st1 ⊆ st2∧ �ρi�P st1→ �ρi�P st2 (4.8)

⇒∀Γ� s.t. dom(σ�)⊆ FV (ρi)∪ {st1,st2}. ¬A (Γ�,�ρi �P st1)∨A (Γ�,�ρi �P st2)

∨Γ� � (st1 ⊆ st2) ⇓ false∨Γ� � �ρi�P st1 ⇓ false∨Γ� � �ρi�P st2 ⇓ true (4.9)

⇒∀Γ� s.t. Γ�
0 � Γ�∧ st2 ∈ dom(σ�). Γ� � (st(cc)⊆ st2) ⇓ false ∨

¬A (Γ�,ρ′)∨A (Γ�,�ρi �P st2)∨Γ� � ρ′ ⇓ false∨Γ� � �ρi�P st2 ⇓ true

By the definition of the model programs, the depths of the evaluations of the expressions of

the model program are independent of the state parameter. (This is because the translation

always invokes a function even if it a hit in the cache.) Recall that as shown by Fig. 4.4 the state

parameter only influences the value of the last element of the tuple, namely the resource usage

component. Therefore, Calls(Γ�,�ρi �P st2)=Calls(Γ�,ρ′), where ρ′ = (�ρi �P st(c)) as defined

before. We are given that A (Γ�
0,ρ′) holds. Therefore as Γ�

0 � Γ�, A (Γ�,ρ′) and A (Γ�,�ρi �P st2)

also holds. Substituting this and the fact that Γ0 � ρi ⇓ true in 4.10 we get,

∀Γ� s.t. Γ�
0 � Γ�∧ st2 ∈ dom(σ�). Γ� � (st(cc)⊆ st2) ⇓ false∨Γ� � �ρi�P st2 ⇓ true

105

Chapter 4. Supporting Higher-Order Functions and Memoization

By Lemma 24 that relates the state st(cc) in the model program to the cache reaching the

lambda corresponding to cc in the source program, and the totality of ∼ relation, the above

implies that

∀C1 ∈Cache. ¬(C0 �C1)∨ (C1,H0,σ0)� ρi ⇓ true (4.10)

⇒∀Γ′ ∈ Env.¬(Γ0 � Γ′)∨Γ′ � ρi ⇓ true (4.11)

Since we know C0 �C1 and H0 �H1 (see Definition 4.1). The above implies that

(C1,H1,σ0)� ρi ⇓ true (4.12)

(C1,H1, [p �→σ0(p)])� ρi ⇓ true, since FV (ρi)⊆ {p} (4.13)

We are given that σ0(p)= v , v ∼
H1,H�

3

w , σ�
3(z)=w , C1 ∼

H1,H�
1

σ
�
1(st′), σ�

1(st′)=σ
�
3(st) and H�

1 �H�
3.

The last three facts imply that C1 ∼
H1,H�

3

σ
�
3(st). Hence,

(C1,H1, [p �→σ0(p)]) ∼
H1,H�

3

((H�
3, [p �→σ

�
3(z)]),σ�

3(st))

Therefore, by Lemma 24 and 4.13,

(H�
3, [p �→σ

�
3(z)])� �ρi[z/p]�P st ⇓ true (4.14)

Γ�
3 � �ρi[z/p]�P st ⇓ true (4.15)

We are given that 〈e ′,Γ�〉�∗〈c,Γ�
3〉, where e ′ = �ẽ�P st. By the assume-guarantee obligation

3.(V),

|=P (path(c)∧ �ρi[zi/yi]�P st)→ pre(c) (4.16)

⇒ Γ�
3 � pre(c) ⇓ true, (4.17)

by the reasoning shown in 3.15 – 3.17 and 4.15

Therefore, for every (Γ�′,c) ∈Calls(Γ�,e ′) where c is an instance of DispCalls, Γ�′ � pre(c) ⇓ true.

By the reasoning shown in 3.17 and 4.15 of section 3.2, for every (Γ�′,c) ∈Calls(Γ�,e ′) where

c is not an instance of DispCalls, Γ�′ � pre(c) ⇓ true. Therefore, as shown by 3.18 – 3.20

of section 3.2, A (Γ�,e ′) and A (Γ�, p ′). Hence, by the assume-guarantee obligation 3.(I),

∃v.Γ� � �p�P st ⇓ false∨Γ� � �ẽ�P st ⇓ v.

Below I establish the main theorem of this section.

Theorem 29 (Partial-correctness of creation-dispatch reasoning). Let P be a program and

P � the model program. Let def f � x := ẽ where ẽ= {p} e {s} be a function definition in P �. If every

function defined in P terminate and the assume/guarantee assertions 3.(I) to 3.(V) defined above

106

4.8. Encoding Runtime Invariants and Optimizations

hold, the contracts of f � holds for all relevant environments Env�ẽ,P � i.e,

∀Γ� ∈ Env�ẽ,P � .∃u. Γ� � p ⇓ false∨Γ� � ẽ ⇓ u

Proof. Let def g� x := ẽ′ be a function definition in P �, where ẽ ′ = �e�P st. Let Γ� ∈ Env�ẽ ′,P � . By

definition, there exists a Γ ∈ Envc and a program P ′ such that
(〈ΓP′||P,eentry〉�∗〈Γ, ẽ〉)∧Γ ∼

(Γ�,σ�(st)). Now say there exists an infinite chain of the form 〈Γ�,�ẽ�P st〉�〈Γ�
1,�e1�P s1〉� · · · .

By Lemma 24 and the definition of� (Fig. 2.3), there exists an infinite chain: 〈Γ, ẽ〉�〈Γ1,e1〉� · · · ,
which is a contradiction to the given fact that every function defined in P is terminating. There-

fore, there cannot be any infinite chains of the form: 〈Γ�,�e�P st〉�〈Γ�
1,�e1�P s1〉� · · · . Hence,

the evaluation of 〈Γ�,�e�P st〉 is terminating

By the same argument, for every other function def h� x := �ẽh�P st ∈ P � there does not exist a

Γ�
h such that 〈ΓP′||P,eentry〉�∗〈Γh , ẽh〉 and Γh ∼ (Γ�

h ,σ�

h(st)) and 〈Γ�
h ,�ẽh�P st〉� · · · is infinite.

Thus, there exists a n ∈N such that

¬(∃def h x := ẽh ∈ P,Γ�
h ∈ Env� s.t. 〈ΓP′||P,eentry〉�∗〈Γh , ẽ〉∧Γ∼ (Γ�

h ,σ�

h(st))∧
∃k > n,e ′,Γ′.〈Γ�

h ,�ẽ�P st〉�k〈Γ′,e〉)
Hence, by Lemma 28, ∃u. Γ� � p ⇓ false∨Γ� � ẽ ⇓ u for every function definition in P �. Hence,

the contracts of the function f � holds.

4.8 Encoding Runtime Invariants and Optimizations

In this section, I discuss some of the optimizations and features supported by our system for

improving automation or performance in verifying programs with higher-order features and

memoization.

Encoding Referential Transparency Our system encodes certain invariants ensured by the

runtime (i.e, operational semantics) that are not explicit in the model either as contracts

or using assume constructs, which are treated by the verifier as facts that can be assumed

without verification. For instance, the referential transparency of the source functions of

the input program, namely that the result of the function is independent of the cache state,

is encoded in model program in the following way. In principle, this corresponds to the

axiom ∀x,st1,st2.(f � (x,st1)).1 = (f � (x,st2)).1 for every function f � in the model. However this

axiom is a binary axiom and instantiating it at the level of VCs may increase the sizes of the

VC quadratically. Instead, these can be encoded by adding a predicate res.1 =UFf (x) in the

postcondition of every non-specification function f � of the model program, where UFf is a

unique uninterpreted function for f �. This helps achieve a completely functional reasoning for

correctness properties that only rely on the result of the evaluation.

Encoding Cache Monotonicity Our system encodes the monotonic evolution of the cache by

adding the predicate: st ⊆ res.2 in the postcondition of every function f � in the model program.

107

Chapter 4. Supporting Higher-Order Functions and Memoization

These facts are assumed in the postcondition every time the functions in the model program

are unfolded.

Encoding Reference Equality Notice that thus far the core language only supports structural

equality. However, to be consistent with the semantics of Scala for equality of closures, our

system also supports reference equality for equating closures. This can be accomplished by

associating a unique identifier with the datatype constructors that represents closures in the

model program. The unique identifier is much like a global state which is passed through

expression in a store-passing style. This instrumentation in automatically performed by the

tool when this feature is enable through an option.

Verifying Programs with Unknown Implementation One of the main limitations of the tech-

nique presented here is that it is not possible to directly specify contracts and resource bounds

of first-class functions, without specifying their implementation. This limits the approach in

certifying open higher-order libraries that can accept arbitrary implementations. One way to

encode contracts of such first-class functions without known implementations is by creating

an uninterpreted named function in the program that could serve as a stub for the target of

the indirect call. Such uninterpreted function without bodies can be specified using the an

annotation @extern. These function can also take possible contracts, which are assumed while

verifying their callers.

The Trace-Induction Tactic It is often necessary to establish properties of recursive functions

automatically at various phases in the analysis. For instance, it is necessary to establish the

monotonicity of predicates like concrUntil shown in Figure 4.3 for creation-dispatch reason-

ing. To alleviate user specifications required for such tasks, our system provides an annota-

tion @traceInduct that implements an induction tactic. For instance, consider the function

concrUntilMono shown below (in Scala syntax) that asserts the monotonicity of concrUntil in the

model program. (Such a function is auto-generated by our tool to verify the monotonicity of

the concrUntil.)

/∗∗ A recursive function of the source program ∗∗/
def concrUntil(s: SCons, i: BigInt): Bool = {

if(i > 0) cached(s.tail) && concrUntil(s.tail, i−1)
else true

}

/∗∗
∗ Encoding of the monotonicity property
∗ in the model program using @traceInduct tactic
∗ (Auto−generated code snippet)

∗∗/
@traceInduct
def concrUntilMono(s: SCons, i: BigInt, st1: Set, st2: Set): Bool = {

(st1.subsetOf(st2) && concrUntil(s,i,st1)) ==> concrUntil(s,i,st2)
} holds

108

4.8. Encoding Runtime Invariants and Optimizations

/∗∗
∗ Expansion of the @traceInduct tactic
∗ (Auto−generated code snippet)

∗∗/
def concrUntilMonoTactic(s: SCons, i: BigInt, st1: Set, st2: Set): Bool = {

(st1.subsetOf(st2) && concrUntil(s,i,st1) ==> concrUntil(s,i,st2)) &&
concrUntilMonoTactic(s.tail, i−1, st1, st2)

} holds

The function concrUntilMonoTactic shows the translation that happens internally to realize

the trace induction tactic. Notice that a recursive call to concrUntilMonoTactic is introduced

with the same parameters as the recursive call in the definition of concrUntil. This essentially

encodes induction over the recursive calls of concrUntil, which would normally be employed for

verifying the postconditions of concrUntil (by the function-level assume-guarantee reasoning).

But here it is used to verify a property that uses the function.

109

5 Empirical Evaluation and Studies

It doesn’t matter how beautiful your theory is,

if it doesn’t agree with experiment, it’s wrong.

— Richard Feynman

The approach detailed in this dissertation is built into the open-source LEON verification and

synthesis framework [Blanc et al., 2013] available at the GitHub repository https://github.

com/epfl-lara/leon. The sub-system of LEON that performs verification of resource bounds

is named ORB. ORB extensively relies on LEON APIs, especially for front-end tasks such as

parsing Scala programs and constructing Abstract Syntax Trees, and also for communicating

with SMT solvers and cross-validating the results. However, the core components of ORB that

implements the phases described in this dissertation are independent of the rest of the code

base of LEON. These include the phases: resource instrumentation (section 3.1), model pro-

gram generation (section 4.4), assume-guarantee obligation generation (section 3.2 and 4.6),

verification condition generation (section 3.3.1) and inference of holes (section 3.3), which

together comprise approximately 16K lines of Scala code when computed through wc -l
(excluding benchmarks and test suites).

ORB is also integrated with the interactive online interface of LEON, accessible at http://

leondev.epfl.ch and has a usage documentation at http://leondev.epfl.ch/doc/resourcebounds.

html. Some of the benchmarks discussed in this section are available in the online interface.

All benchmarks discussed or listed in this section are available at https://github.com/epfl-lara/

leon/tree/inferInv/testcases.

ORB has been used to verify resource usage of many Scala programs implemented using the

core language features detail in Chapter 2, and has been evaluated over multiple resources

defined in the previous chapters. At the time of writing this dissertation the number of distinct

benchmarks verified by the tool was about 50. The benchmarks together comprised approx-

imately 8K lines of Scala code when computed through wc -l. Many of these benchmarks

are verified over multiple resources such as steps, alloc, stack and depth. To my knowledge, no

prior formal verification system, including interactive theorem provers [Bertot and Castéran,

111

Chapter 5. Empirical Evaluation and Studies

2004, Nipkow et al., 2002a] has demonstrated the ability to verify resource complexity of

some of the benchmarks verified by ORB (e.g. lazy data structures). ORB not only establishes

(precise) asymptotic complexity of these benchmarks but also infers concrete upper bounds

on algorithmic resources such as steps or alloc.

The following sections summarize the results of verifying benchmarks with ORB. The results

presented here summarize the evaluations over 30 important benchmarks representing three

classes of programs: (a) first-order functional programs comprising data structures like red-

black tree and binomial heap, (b) lazy data structures such as those described in Okasaki

[1998] and the Conqueue data structure of Scala’s data parallel library [Prokopec and Odersky,

2015], and (c) memoized algorithms such as dynamic programming algorithms. Each class of

benchmarks and their results are detailed in a separate section. The results presented here

are aimed at clarifying the following aspects of the system: (a) The ability to express complex

programs, their resource bounds and the specifications necessary for proving them, (b) the

performance of the verification algorithm, (c) the accuracy of the inferred bound compared

to their values obtainable at runtime and (d) the advantages of techniques presented here

over other approaches that are potentially applicable on similar problems. All evaluations

presented in this chapter were performed on a machine with a 4 core, 3.60 GHz, Intel Core i7

processor with 32GB RAM, running Ubuntu operating system.

5.1 First-Order Functional Programs and Data Structures

In this section, I summarize the results of using ORB to verify first-order functional programs.

The resource verification of these programs uses techniques described in section 3. Figure 5.1

lists the benchmarks belonging to this class of programs that were verified using ORB. The

figure lists the benchmarks and the lines of code in each benchmark in column Loc. The

column T shows the number of functions in each benchmark with a resource template and

the column S the number of specification functions in each benchmark. Specification func-

tions are not verified for resource usage. They are only proven to be terminating using the

termination checker of the LEON verification system [Nicolas Voirol and Kuncak, 2017]. The

figure also shows a sample template for the steps resource for one or more functions in the

benchmark. The benchmarks comprise approximately 1.8K lines of Scala code, 150 functions

and 82 resource templates (for each resource considered). Below I explain the benchmarks in

more detail.

5.1.1 Benchmark Descriptions

List and Queues The benchmark list implements a set of list manipulation operations like

append, reverse, remove, find and distinct which removes duplicates. The quadratic resource

template shown in the Figure 5.1 is for the function distinct. The benchmark cvars compares

two different strategies for concatenating lists. One strategy exhibits a cubic behavior on a

sequence of concatenation operations (templates shown in Figure 5.1) and the other exhibits

112

5.1. First-Order Functional Programs and Data Structures

Benchmark LOC T S Sample resource template steps ≤

List Operations (list) 60 7 1 ? · size(l)2+?
List Concatenations (cvar) 40 4 1

strategy 1 ? ·nm2+? ·nm+? ·n+? ·m+?
strategy 2 ? ·nm+? ·n+? ·m+?

Doubly ended queue (deq) 86 6 0 ? ·qsize(q)+?
Quciksort, Insertion sort (sort) 325 7 2 ? · size(l)2+?
Mergesort ? · size(l) logsize(l)+?
Binary search tree (bst) 91 5 3

addAll ? · lsize(l) · (height(t)+ lsize(l))+? · lsize(l)+?
removeAll ? · lsize(l) ·height(t)+? · lsize(l)+?

Binary Trie (trie) 119 4 2 ? · inpsize(inp)+?
Redblack tree (rbt) 109 7 2 ? · �log(size(t)+1))�+?
AVL tree (avl) 190 4 5 ? ·height(t)+?
Leftist heap (lheap) 197 9 10

merge ? · rheight(h1)+? · rheight(h2)+?
removeMax ? · log(size(h)+1)+?
sort ? · size(l) log(size(l)+1)+ size(l)+?

Binomial heap (bheap) 204 5 5
merge ? · treenum(h1)+? · treenum(h2)+?
deleteMin ? · treenum(h1)+? ·minchildren(h2)+?

Prop. logic transforms (prop) 63 4 1 ? · size(formula)+?
Loop transforms (loop) 102 5 5 ? · size(stmts)+?
Constant Propagation (cprop) 294 10 5

computeSummaries ? ·psize(p) · iter+? · iter+?
Speed benchmarks(speed) 107 5 3 ? · (k+1) · (len(sb1)+ len(sb2))+? · size(str1)+?
Fold operations (fold) 88 4 2

listfold ? ·k2+?
treefold ? · size(t)+?

Figure 5.1 – Benchmarks implemented as first-order functional Scala programs

a quadratic behavior. The benchmark deq is a doubly-ended queue with enqueue, dequeue,

pop and concat operations, implemented using two lists.

Sorting The benchmark sort contains the implementations of quick sort, insertion sort,

merge sort. The tool was able to establish the precise running time bound of these algorithms.

However, for quick sort and merge sort the bounds relied on non-trivial axioms of multiplica-

tion, which were manually provided as proofs hints to the system. In the case of quick sort,

the axioms were also verified using the system. In the case of merge sort, the axioms weren’t

provable within the system due to the incompleteness in the nonlinear integer reasoning of

the underlying SMT solvers. However, those axioms were verified independently using another

verification engine.

113

Chapter 5. Empirical Evaluation and Studies

Search Trees The benchmark bst implements a binary search tree with operations like insert,

remove, find, addall and removeall. The last two functions add or remove a sequence of

elements from the tree. The function lsize(l) used in the templates is the size of the sequence of

elements to be inserted/removed. The benchmark rbt is an implementation of red-black tree

with insert and find operations, and avl is an implementation of AVL tree with insert, delete

and find operations. Our system establishes a logarithmic time bound for the insert function

of the red-black tree. However for AVL tree the logarithmic time bound could not be expressed

as it requires reasoning about logarithms to the base of an irrational number (namely golden

ratio), which is outside the scope of the system. trie is an implementation of a binary trie with

operations: insert – that inserts a sequence of input bits into the tree, find – that look up if

the tree contains a sequence of bits, create –that creates a new tree from an input sequence

and delete–that deletes a sequence of input bits from the tree. The function inpSize used in the

template computes the size of the input list.

Heaps The benchmark lheap is a leftist heap data-structure implementation with merge,

insert and remove max operations. It also additionally implemented a sort function that

sorts an unsorted list using the heap sort algorithm. The time bounds in the benchmarks are

specified in terms of the function rheight that computes the height of the right most leaf of the

tree. However, the insert and removemax operations were specified a logarithmic bound on the

size of the heap as shown. The sort function has an n · logn time bound.

The benchmark bheap implements a binomial heap with merge, insert and deletemin opera-

tions. The functions treenum and minchildren (used in templates), compute the number of trees

in a binomial heap and the number of children of the tree containing the minimum element,

respectively. The logarithmic time bound is not established for this benchmark as it requires

reasoning about a power series. However, the established bounds are strong enough to imply

the logarithmic bound.

AST Manipulations The benchmark prop implements a set of propositional logic transfor-

mations like converting a formula to negation normal form and simplifying a formula. loop

implements simple loop transformations like converting a for-loop to a while-loop using the

abstract syntax tree of a program. The benchmark cprop implements a bottom-up summary-

based, interprocedural constant propagation. The function psize used in the resource template

of the function shown in Figure 5.1 denotes the size of a program, which is the sum of the

sizes of the ASTs of the bodies of all the functions. iter denotes an iteration counter that upper

bounds the number of iterations required for reaching the fixpoint and depends on the height

of the lattice.

Miscellaneous The benchmark speed is a functional translation of the code snippets pre-

sented in Figures 1,2 and 9 of the related work SPEED [Gulwani et al., 2009]. It also includes

114

5.1. First-Order Functional Programs and Data Structures

the code snippets on which it was mentioned that the tool failed (Page 138 of [Gulwani et al.,

2009]). Our tool succeeded on those code snippets when suitable resource templates were

provided manually. The benchmark fold is a collection of fold operations over trees and lists.

These were mainly included for evaluation of depth bounds.

5.1.2 Analysis Results

Sample bound inferred Time (s) Avg.VC disj. NL
steps≤ (min.time) size size

list 11size(l)2+3 7 (2) 79 58 29

cvar 7nm2−11nm+0∗n+0∗m+3 24 (14) 272 36 45
12nm+11m+n+3

deq 7qsize(q)+25 4 (0.5) 47 34 10

sort 11size(l)2+3, 99size(l) logsize(l)+7 10 (3) 70 66 26

bst 10(lsize(l) ·(height(t)+lsize(l))) 30 (11) 116 69 123
+2lsize(l)+2

29(lsize(l) ·height(t))+10lsize(l)+1

trie 35inpsize(inp)+8 5 (0.5) 43 35 16

rbt 132�log(size(t)+1))�+66 33 (7) 352 99 154

avl 161height(t)+137 85 (41) 181 68 58

lheap 35rheight(h1)+35rheight(h2)+2 46 (24) 292 90 104
70 log(size(h)+1)+7
169size(l) · log(size(l)+1)+9

bheap 40treenum(h1)+46treenum(h2)+2 23 (2) 277 67 70
81treenum(h1)+40minchildren(h2)+24

prop 43size(formula)−17 11 (0.5) 161 57 35

loop 16size(program)−8 36 (31) 93 38 34

cprop 30psize(p) · iter+16 · iter+2 29 (10) 157 107 54

speed 37((k+1) ·(len(sb1)+len(sb2))) 93 (64) 387 110 72
+15size(str1)+34

fold 13k2+3 10 (1) 40 66 27
14size(t)+3

Figure 5.2 – Results of running ORB on the first-order benchmarks

Figure 5.2 shows the results of running our tool on the benchmarks. The column bound shows

the steps bound inferred by the tool for the sample template shown in Figure 5.1. This may

provide some insights into the constants that were inferred. The column time shows the

total time taken for analysing a benchmark in seconds. In parentheses I show the time the

115

Chapter 5. Empirical Evaluation and Studies

tool spent in minimizing the bounds after finding a valid initial bound. Recall that the tool

performs a binary search over the space of possible solutions as described in section 3.6 to find

strongest bounds. The tool spent at most 100 seconds to infer the bounds on each benchmark.

Also, in case where it took more than 50 seconds to infer a bound about 50% of the time was

spent on finding the strongest bound, which implies that initial bound was found in less than

a minute on all benchmarks.

The subsequent columns provide more insights into the hole inference algorithm. The column

Avg. VC size shows the average size of the VCs generated by the benchmarks when averaged

over all VC refinements. The tool performed 11 to 42 VC refinements on the benchmarks.

The column disj. shows the total number of disjuncts falsified by solveUNSAT procedure

(section 3.3.4), and the column NL size shows the average size of the nonlinear constraints

solved in each iteration of the solveUNSAT procedure.

Our tool is able to solve all 82 templates. The results also show that our tool was able to

keep the average size of the VCs and the nonlinear Farkas’ constraints generated small (see

section 3.3), despite having to unfold the VCs several times. This is quite important since even

the state-of-the-art nonlinear constraint solvers do not scale well to large nonlinear constraints.

Furthermore, as shown by the column disj., the solveUNSAT algorithm only explores a fraction

of the total number of disjuncts in the VC (which is O(2n), where n is the VC size).

Testing Minimality of Constants using Counterexamples. In order to test the minimality

of the constants inferred, two kinds of experiments were performed. One experiment that

scaled to only simpler benchmarks is explained here. The other experiment based on runtime

evaluations is detailed in the context of higher-order, memoized benchmarks discussed in the

following section. In the first experiment, for each bound inferred by the tool, one coefficient

of the bound was decremented while keeping the others fixed. The system was used to check

if the bounds thus constructed were valid. Since these bounds do not have holes, the system,

in principle, is capable of discovering a counterexample, which is an input that violates the

bound, if the bounds are not valid. If a counterexample is found, it implies that there cannot

exist a valid bound where all constants are smaller than the inferred bound. In other words

the bound inferred is pareto optimal.

Our experiments showed that in many cases the bound inferred by the tool was pareto optimal.

For instance, this was the case with benchmarks list, deq and trie. Notably, in the case of trie,

the counterexample emitted by the tool had an input character sequence of size 50. However,

for more complex benchmarks like red-black tree, it was not possible to discover counterex-

amples statically, due to the complexity of the inputs that induce worst-case behavior, and

also due to the large constants in the bounds. To estimate the accuracy of the bound inferred

by the tool in such cases, runtime profiling of the benchmarks were performed over many

inputs that enforce the worst case behavior. These experiments are discussed in more detail

in the following section in the context of more complex higher-order, memoized benchmarks.

116

5.1. First-Order Functional Programs and Data Structures

Inferred depth bound: depth≤
msort* 45size(l)+1

qsort 7size(l)2+5size(l)+1

trie 8inpsize(inp)+1

rbt 22blackHeight(t)+19

avl 51height(t)+4

bheap 7treenum(h1)+7treenum(h2)+2

prop* 5nestingDepth(formula)−2

fold* 6k+1
5height(tree)+1

Figure 5.3 – Results of inferring bounds on depths of benchmarks

Inferred alloc bound: alloc≤
list size(l)2+1

bst 2(lsize(l) ·height(t))+ lsize(l)+1

trie 4inpsize(inp)

rbt 9�log(size(t)+1))�+8

bheap 2treenum(h1)+2treenum(h2)+1

prop 3size(formula)−3

Figure 5.4 – Results of inferring bounds on the number of heap-allocated objects

Specifically, for the red-black tree benchmark these experiments showed that the (worst-case)

runtime steps count was 86% of the value statically inferred by the tool.

Inference of Depth Bounds The tool was used to infer bounds on the depth usage of the

benchmarks (see section 3.1.1 for the definition of depth). In this case, the tool is able to solve

all the templates provided in the benchmarks including the merge sort and quick sort programs.

The constants in the depth bounds are much smaller for every benchmark compared to steps,

even if depth is not asymptotically smaller than steps. Figure 5.3 shows the inferred depth

bounds for selected benchmarks. The benchmarks where the depth bound is asymptotically

smaller than the corresponding steps bound are starred. Specifically, the tool is able to establish

that the depth of mergesort is linear in the size of its input, the depth of negation normal form

transformation is proportional to the nesting depth of its input formula, and also that the

depth of fold operations on trees is linear in the height of the tree.

117

Chapter 5. Empirical Evaluation and Studies

Inferred call-stack bound: stack≤
list* 17size(l)+18

cvar* 18nm+n+14∗m+19
nm+15m+17n+19

isort* 17size(l)+16
msort* 28size(l)+52
qsort* 26size(l)+29

bst* 21height(t)+39
38height(t)+ lsize(l)+56

rbt 54�log(size(t)+1))�+100

Figure 5.5 – Results of inferring bounds on the call-stack usage

Bounds on Heap-Allocated Objects Figure 5.4 shows the results of verifying the bounds

on the usage of the alloc resource on selected benchmarks. The alloc resource measures the

number of heap-allocated objects. Since our benchmarks are first order, the heap-allocated

objects comprises only datatype instance. As shown in the figure, the constants in this case

are rather small compared to steps bounds, and in many cases one. However, the alloc bound

asymptotically matches the steps bound in most cases. This is because the benchmarks

are mostly functional data structures, whose operations like insert or delete would have to

replicate the entire portion of the data structure that is traversed by the operation. Hence, the

heap-allocation is proportional to the work done i.e, steps.

Bounds on the Call-Stack Usage Figure 5.5 shows the results of verifying the call-stack usage

bounds on selected benchmarks. (This resource was explained in section 2.3). The call-stack

usage is measured in units of 64 bit words. The instrumentation for call-stack usage also takes

into account tail-call optimizations. It considers that the tail calls would be optimized away

and do not contribute to the stack space usage. This optimization is performed by default by

the Scala compiler.

The benchmarks that are starred in the Figure 5.5 indicate cases where the stack space usage

was asymptotically smaller than steps usage. Note that this is the case especially for functions

whose steps usage is quadratic or higher e.g. for qsort, the addAll function of bst, or the distinct

function of list. The only benchmark where stack space usage is quadratic is in the benchmark

cvar. Even here the complexity dropped from O(nm2) to O(nm) in one of the resource bounds.

5.1.3 Comparison with CEGIS and CEGAR

Here, I summarize the results of comparing the inference algorithm used in ORB with Coun-

terexample Guided Inductive Synthesis(CEGIS) [Solar-Lezama et al., 2006] which, to our knowl-

118

5.2. Higher-Order and Lazy Data Structures

edge, is the only existing approach that could potentially be used to solve a ∃∀ formula with

ADTs, recursive (or uninterpreted) functions and nonlinear operations. CEGIS is an iterative

algorithm that, given a formula φ with holes and other variables x̄, makes progress by finding

a solution for the holes that rules out at least one satisfying assignment for x̄ that was feasible

in the earlier iterations. This is in contrast to the solveUNSAT algorithm which makes progress

by finding a solution for the holes that falsifies disjuncts of φ that was satisfiable in the earlier

iterations. This can be seen as ruling out an infinite set of statisfying assignments to x̄ in each

iteration. Furthermore, our approach is guaranteed to terminate but CEGIS, in theory, may

diverge if the possible values for x̄ is infinite.

To compare our algorithm with CEGIS, CEGIS was implemented within our system, and

evaluated on the benchmarks described in this section. The results showed that CEGIS

diverges even on the simplest of the benchmarks. It follows an infinite ascending chain along

which the parameter corresponding to the constant term of the template increases indefinitely.

CEGIS was also evaluated by bounding the values of the parameters to be ≤ 200. In this case,

CEGIS worked on 5 small benchmarks (viz. list, bst, deq, trie and fold) but timed out on the

rest after 30min. For the benchmarks on which it worked, it was 2.5 times to 64 times slower

than ORB.

CEGAR Another closely related technique for inferring invariants for recursive functions

using user-provided templates is Counterexample Guided Abstraction Refinement (CEGAR).

CEGAR is also an iterative algorithm. In every iteration, CEGAR computes an abstraction of the

input program, and searches for a counterexample path in the abstract program that violates

the given property. If a counterexample is found, the abstraction is refined so that it (and also

other related counterexample paths) are not feasible in the refined abstraction. Typically, the

refinement is constructed by computing an interpolant that provides a succinct condition for

the infeasibilty of the concrete path that corresponds to the abstract counterexample path

in the original program. The concrete path represents a finite execution and typically goes

through recursive calls a finite number of times (unlike a static path). Tools such as HSF

[Beyene et al., 2013] can compute interpolants belonging to a given template. However, there

are not many off-the-shelf tools that can perform interpolation in the presence of ADTs, recur-

sive (or uninterpreted) functions and nonlinear operations. Nonetheless, interpolation also

suffers from similar issues as CEGIS, since for any finite execution, the resources consumed

by the execution is a constant. This suggest that, in theory, interpolation-based CEGAR can

always come up with increasing values for the constant term of a template, which would

provide a valid bound for the concrete paths explored until a particular point, but could never

provide a bound that holds for all paths (much like CEGIS).

119

Chapter 5. Empirical Evaluation and Studies

Benchmark LOC BC T S
Lazy Selection Sort (sel) 70 36kb 4 1
Prime Stream (prims) 95 51kb 7 2
Fibonacci Stream (fibs) [Bird and Wadler, 1988] 199 59kb 5 5
Hamming Stream (hams) [Bird and Wadler, 1988] 223 78kb 8 6
Stream library (slib) [Swierstra, 2015] 408 0.1mb 22 5
Lazy Mergesort (msort) [Apfelmus, 2009] 290 0.1mb 6 8
Real time queue (rtq) [Okasaki, 1995, 1998] 207 69kb 5 6
Deque (deq) [Okasaki, 1995, 1998] 426 0.1mb 16 7
Lazy Numerical Rep.(num)[Okasaki, 1998] 546 0.1mb 6 25
Conqueue (conq) [Prokopec and Odersky, 2015] 880 0.2mb 12 33

Figure 5.6 – Higher-order, lazy benchmarks comprising 4.5K lines of Scala code

Benchmark AT steps≤ Resource bounds alloc≤
sel 1m 15k · l.size+8k+13 2k · l.size+2k+2
prims 1m 16n2+28 6n−11
fibs 2m 45n+4 4n
hams 1m 129n+4 16n
slib 1m 25l.size+6 3l.size
msort 1m 36k�log l.size�+53l.size+22 6k�log l.size�+6l.size+3
rtq 1m 40 7
deq 5m 893 78
num 1m 106 15
conq 5m

pushLeftAndPay 124 23
concatNonEmpty 29|xs.lvl−ys.lvl|+8 2|xs.lvl−ys.lvl|+1

Figure 5.7 – Steps and Alloc bounds inferred by ORB for higher-order, lazy benchmarks

5.2 Higher-Order and Lazy Data Structures

In this section, I summarize the results of using ORB to verify resource usage of higher-order

programs and lazy data structures. Figure 5.6 shows selected benchmarks that were verified by

our approach. Each benchmark was implemented and specified in a purely functional subset

of Scala extended with the specification constructs detailed in section 4. The benchmarks were

carefully chosen from some of the most challenging benchmarks proposed in the literature of

lazy data-structures. For instance, the benchmark rtq has been mentioned as being outside the

reach of prior works (section Limitations of [Danielsson, 2008]). The benchmarks deq [Okasaki,

1995], conq [Prokopec, 2014] are much more complicated than rtq. For each benchmark, the

figure shows the total lines of Scala code and the size of the compiled JVM byte code in

columns LOC and BC. The benchmarks comprise a total of 4.5K lines of Scala code and 1.2MB

of bytecodes. The column T shows the number of functions with resource bound templates,

and the column S the number of specification functions. The benchmarks had a total of

123 resource templates each for steps and alloc resource. The system was able to solve all

120

5.2. Higher-Order and Lazy Data Structures

B I (dynamic/static) * 100 (optimal/static) * 100
steps alloc steps alloc

sel 10k 99 99 100 100
prims 1k 60 89 82 100
fibs 10k 99 99 100 100
hams 10k 86 83 98 100
slib 10k 65 75 85 88
rtq 220 93 83 97 87
msort 10k 90 91 96 97
deq 220 48 48 59 62
num 220 94 97 96 100
conq 220 72 54 82 72

Avg. 81 82 90 91

Figure 5.8 – Comparison of the resource usage bounds inferred statically against runtime
resource usage

the resource templates by inferring constants that yield valid upper bounds on the specified

resource.

Figure 5.7 shows the bounds inferred by ORB on these benchmarks. The column AT shows

the time taken by our system rounded off to minutes to verify the specifications and infer

the constants. As shown by the figure, all benchmarks were verified within a few minutes.

(These benchmarks take longer than first-order benchmarks presented earlier because of the

complexity in modeling the higher-order and lazy evaluation features accurately.) The column

Resource bounds shows a sample bound for steps and alloc resource. The constants in the bound

were automatically inferred by the tool. As shown in the figure, many bounds use recursive

functions, and almost 20 bounds have nonlinear operations. As explained in section 3.5,

nonlinear operations like �log� are expressed as a recursive function that uses integer division:

log(x)= if(x≥2)log(x/2)+ 1 else (base cases). Their properties like monotonicity are proven and

instantiated manually. A few bounds were disjunctive (like the bound shown in Figure 1.3,

and conq). However, the most challenging bounds to prove were the constant time bounds of

scheduling-based lazy data structures viz. rtq, deq, num, and conq due to their complexity.

Before I describe the results and benchmarks in detail, below I provide an overview of the

experiments that were performed to gauge the accuracy of the inferred bounds.

5.2.1 Measuring Accuracy of the Inferred Bounds

While the resource instrumentation in the case of first-order programs is quite straightforward,

this is not the case for higher-order programs with memoization. Recall that the model

generation phases perform numerous transformations to express the input programs in a

form that is amenable to verification. Furthermore, the inference algorithm itself could result

in loss of completeness, especially on the model programs due to their complexity. A natural

121

Chapter 5. Empirical Evaluation and Studies

question that arises in this case is whether the bounds inferred by the tool on programs that

use such high-level language features have any correspondence at all to their real resource

usage at runtime. In other words, will the constants provide any more information about

the execution apart from serving to establish an asympototic complexity? The experiments

described in this section were designed to answer these questions.

Each benchmark presented in Figure 5.6 were instrumented to track steps and alloc resources

as defined by the operational semantics. The benchmarks were then executed on concrete

inputs that were likely to expose their worst case behavior (but not necessarily since it is

difficult to determine the worst case input for some benchmarks). The sizes of the inputs

were varied in fixed intervals upto 10k for most benchmarks. However, for those benchmarks

with nonlinear behavior smaller inputs that scaled within a cutoff time of 5 min were used,

as tabulated in the column I of Figure 5.8. For scheduling based data structures (discussed

shortly) the input were varied in powers of two until 220, which results in their worst-case

behavior. Using large inputs has the advantage that it places large emphasis on the precision

of coefficient of the fastest growing terms.For every top-level (externally accessible) function

in a benchmark, the mean ratio between the runtime resource usage and the static resource

usage predicted by our tool was computed using the following formula:

Mean

(
resource consumed by the i th input

static estimate for i th input
×100

)

The column dynamic/static * 100 of Figure 5.8 shows this metric for each benchmark when

averaged over all top-level functions in the benchmark. This metric is a measure of the worst-

case runtime resource usage as a percentage of the static estimate. As shown in the figure,

when averaged across all benchmarks, the runtime resource usage is 81% of what was inferred

statically for steps, and is 82% for alloc. In all cases, the inferred bounds are sound upper

bounds for the runtime resource usage. I now discuss the reasons for some of the inaccuracy

in the inferred bounds.

In our system, there are two factors that influence the overall accuracy of the bound: (a) the

constants inferred by tool, and (b) the resource templates provided by the user. For instance,

in the prims benchmark shown in Figure 1.3 of the introduction, the function isPrimeNum(n)
has a worst-case steps count of 11i −7, which will be reached only if i is prime. (It varies

between O(
"

i) and O(i) otherwise.) Hence, for the function primesUntil(n), which transitively

invokes isPrimeNum function on all numbers until n, no solution for the template: ?∗n2+? can

accurately match its worst-case, runtime steps count. Another example is the O(k ·�log(l .si ze)�)
resource bound of msort benchmark. In any actual run, as k increases the size of the stream

that is accessed (which is initially l) decreases. Hence, �log(l .si ze)� term decreases in steps.

To provide more insights into the contribution of each of these factors to the inaccuracy, the

following experiment was performed. For each function, each constant in its resource bound

was reduced, keeping the other constants fixed, until the bound violated the resources usage

122

5.2. Higher-Order and Lazy Data Structures

of at least one dynamic run. I call such a bound as a pareto optimal bound with respect to

the dynamic runs. Note that if there are n constants in the resource bound of a function,

there would be n pareto optimal bounds for the function. To estimate the optimality of the

constants inferred by the tool, the pareto optimal bounds are used as the baseline, instead

of the runtime resource usage. The mean ratio between the resource usage predicted by the

pareto optimal bound and that predicted by the bound inferred by the tool was measured for

each benchmark.

The column optimal/static * 100 of Figure 5.8 shows this metric for each benchmark when

averaged over all pareto optimal bounds of all top-level functions in the benchmark. A high

percentage for this metric is an indication that any inaccuracy is due to imprecise templates,

whereas a low percentage indicates a possible incompleteness in the resource inference

algorithm, which is often due to nonlinearity or absence of sufficiently strong invariants.

As shown in Figure 5.8, the constants inferred by the tool were 91% accurate for steps and

94% accurate for alloc, when compared to the pareto optimal values that fits the runtime

data. Furthermore, the imprecision due to templates is a primary contributor for inaccuracy,

especially in benchmarks where the accuracy is lower than 80% (such Viterbi and prims). In

the sequel, I discuss the benchmarks and the results of their evaluation in more detail.

5.2.2 Scheduling-based Lazy Data Structures

One of the most challenging class of benchmarks considered in our evaluation are the

scheduling-based lazy data structures proposed by Okasaki [1998]. The benchmarks rtq,

deq, num, and conq belong to this class. These data structures use lazy evaluation to imple-

ment worst-case, constant time as well as persistent queues and deques using a strategy called

scheduling. These are one of the most efficient persistent data structures. For instance, the rtq

[Okasaki, 1995] benchmark takes a few nanoseconds to persistently enqueue an element into

a queue of size 230. The conq data structure [Prokopec and Odersky, 2015] is used to imple-

ment data-parallel operations provided by the standard Scala library. To my knowledge there

exists no prior approach that proves the resource bounds of these benchmarks. Moreover,

the verification of these benchmarks also led to the discovery and fixing of a missing corner

case of the rotateDrop function shown in Fig 8.4 of [Okasaki, 1998], which was unraveled by the

system.

Though the data structures differ significantly in their internal representation, invariants,

resource usage and the operations they support, fundamentally they consists of streams called

spines that track content, and a list of references to closures nested deep within the spines:

schedules. The schedules help materialize the data structure lazily as they are used by a client.

I now provide a brief overview of the kind of specifications that were required to verify the

resource bounds of these benchmarks using the example of real-time queue.

123

Chapter 5. Empirical Evaluation and Studies

1 object RealTimeQueue {
2 sealed abstract class Stream[T] {
3 def isEmpty: Boolean = this == SNil[T]()
4

5 lazy val tail: Stream[T] = {
6 require(!isEmpty)
7 this match {
8 case SCons(x, tailFun) ⇒ tailFun()
9 }

10 }
11

12 def size: BigInt = {
13 this match {
14 case SNil() ⇒ BigInt(0)
15 case c@SCons(_, _) ⇒ 1 + (c.tail∗).size
16 }
17 } ensuring (_ ≥ 0)
18 }
19 private case class SCons[T](x: T, tailFun: () ⇒ Stream[T]) extends Stream[T]
20 private case class SNil[T]() extends Stream[T]
21

22 /∗∗
23 ∗ A property that holds for stream where all elements have been memoized.
24 ∗/
25 def isConcrete[T](l: Stream[T]): Boolean = {
26 require(l.valid)
27 l match {
28 case c @ SCons(_, _) ⇒
29 cached(c.tail) && isConcrete(c.tail∗)
30 case _ ⇒ true
31 }
32 }
33

34 /∗∗
35 ∗ A function that lazily performs an operation equivalent to
36 ∗ ‘f ++ reverse(r) ++ a‘. Based on the implementation
37 ∗ in Pg.88 of Functional Data Structures by Okasaki [Okasaki, 1998].
38 ∗/
39 def rotate[T](f: Stream[T], r: List[T], a: Stream[T]): Stream[T] = {
40 require(r.size == f.size + 1 && isConcrete(f))
41 (f, r) match {
42 case (SNil(), Cons(y, _)) ⇒ SCons[T](y, lift(a))
43 case (c@SCons(x, _), Cons(y, r1)) ⇒
44 val newa = SCons[T](y, lift(a))
45 val ftail = c.tail
46 val rot = () ⇒ rotate(ftail, r1, newa)
47 SCons[T](x, rot)
48 }
49 } ensuring (res ⇒ res.size == f.size + r.size + a.size && res.!isEmpty && steps ≤ ?)

Figure 5.9 – Rotate function of the Real-time queue data structure

124

5.2. Higher-Order and Lazy Data Structures

72 /∗∗
73 ∗ Returns the first element of the stream whose tail is not memoized.
74 ∗/
75 def firstUnevaluated[T](l: Stream[T]): Stream[T] =
76 l match {
77 case c @ SCons(_, _) ⇒
78 if (cached(c.tail))
79 firstUnevaluated(c.tail∗)
80 else l
81 case _ ⇒ l
82 }
83 } ensuring (res ⇒
84 //(b) no lazy closures implies stream is concrete
85 (!res.isEmpty || isConcrete(l)) &&
86 //(c) after evaluating the firstUneval closure the next can be accessed
87 (res match {
88 case c @ SCons(_, _) ⇒ firstUneval(l) == firstUneval(c.tail)
89 case _ ⇒ true
90 }))
91

92 case class Queue[T](f: Stream[T], r: List[T], s: Stream[T]) {
93 def isEmpty = f.isEmpty
94 def valid = {
95 f.valid && s.valid &&
96 // invariant: firstUneval of ‘f‘ and ‘s‘ are the same.
97 (firstUneval(f) == firstUneval(s)) &&
98 s.size == f.size − r.size // invariant: |s| = |f| − |r|
99 }

100 }
101 /∗∗
102 ∗ A helper function for enqueue and dequeue methods that forces the schedule once
103 ∗/
104 @inline
105 def createQ[T](f: Stream[T], r: List[T], s: Stream[T]) = {
106 s match {
107 case c @ SCons(_, _) ⇒ Queue(f, r, c.tail) // force
108 case SNil() ⇒
109 val rotres = rotate(f, r, SNil[T]())
110 Queue(rotres, Nil(), rotres)
111 }
112 }

Figure 5.10 – Definition of Okasaki’s Real-time queue data structure

125

Chapter 5. Empirical Evaluation and Studies

142 /∗∗
143 ∗ Appends an element to the end of the queue
144 ∗/
145 def enqueue[T](x: T, q: Queue[T]): Queue[T] = {
146 require(q.valid)
147 createQ(q.f, Cons(x, q.r), q.s)
148 } ensuring { res ⇒
149 funeMonotone(q.f, q.s, inSt[T], outSt[T]) &&
150 res.valid && steps ≤ ?
151 }
152 /∗∗
153 ∗ Removes the element at the beginning of the queue
154 ∗/
155 def dequeue[T](q: Queue[T]): Queue[T] = {
156 require(!q.isEmpty && q.valid)
157 q.f match {
158 case c @ SCons(x, _) ⇒
159 createQ(c.tail, q.r, q.s)
160 }
161 } ensuring { res ⇒
162 funeMonotone(q.f, q.s, inSt[T], outSt[T]) && res.valid && steps ≤ ?
163 }
164

165 // Properties of ‘firstUneval‘.
166 /∗∗
167 ∗ st1.subsetOf(st2) ⇒ fune(l, st2) = fune(fune(l, st1), st2)
168 ∗/
169 @traceInduct
170 def funeCompose[T](l1: Stream[T], st1: Set[Fun[T]], st2: Set[Fun[T]]): Boolean = {
171 require(st1.subsetOf(st2) && l1.valid)
172 (firstUneval(l1) in st2) == (firstUneval(firstUneval(l1) in st1) in st2)
173 } holds
174

175 /∗∗
176 ∗ Monotonicity of ‘firstUneval‘ with respect to the cache state.
177 ∗/
178 def funeMonotone[T](l1: Stream[T], l2: Stream[T], st1: Set[Fun[T]], st2: Set[Fun[T]])

= {
179 require((firstUneval(l1) in st1) == (firstUneval(l2) in st1)
180 && st1.subsetOf(st2))
181 funeCompose(l1, st1, st2) && funeCompose(l2, st1, st2) &&
182 (firstUneval(l1) in st2) == (firstUneval(l2) in st2)
183 } holds
184 }

Figure 5.11 – Queue operations of Okasaki’s Real-time queue data structure

126

5.2. Higher-Order and Lazy Data Structures

Verifying Real-Time Queue Benchmark

Figures 5.9,5.10 and 5.11 shows a complete implementation of the Okasaki’s Real-time queue

data structure [Okasaki, 1995, 1998] in our syntax. It uses the datatype Stream and the top

of Figure 5.9 shows the definition of a lazy stream in our syntax. Akin to a list, the Stream
datatype is defined using two constructors SCons and SNil denoting non-empty and empty

streams, respectively. But, the second argument of SCons, denoting the tail of the stream, is a

lazy reference. Consider the function rotate in Figure 5.9. It reverses the list r and appends it

to the lazy stream f, using the stream a as a temporary storage, which is initially set to empty.

Essentially, rotate(f,r,a)= f ++ reverse(r)++ a. (f and r actually represent the front and rear

parts of the real-time queue data structure). However, the function performs its work lazily:

every call to rotate constructs the first element of the result, and returns a stream whose tail is

a suspended recursive call.

The specifications of rotate assert properties of the function that hold before and after the

execution. Consider the property on the sizes of the arguments. This property is independent

of the cache state i.e, it does not depend on whether the closures in the input list are forced or

not. In contrast, the property isConcrete is cache state dependent: it returns true if every node

of the argument stream has been forced, false otherwise. Notice that the postcondition also

asserts a constant time bound for the function rotate. The requirement that isConcrete(f) holds

at the beginning of the function is crucial for proving the time bound. Otherwise, forcing f at

line 45 may invoke a previously suspended call to rotate, thus resulting in a cascade of forces.

As shown in Figure 5.10, the real time queue data structure has three components: a lazy

stream f denoting the front of the queue, a list r denoting the rear of the queue, and a lazy

stream s denoting the schedule. We define the data structure invariants using the boolean-

valued function valid. Every public queue operation, namely enqueue and dequeue, require that

the valid property holds for the input queue, and also ensures that the property holds for the

output queue (see the definitions of the functions in Fig. 5.11).

Consider the property firstUneval(f)== firstUneval(s) that relates the schedule and the front

streams that is a part of the definition of valid. The definition of firstUneval is shown in Fig. 5.11.

It returns the first node in the stream that has not been forced. This property states that the

unevaluated nodes of f and s are equal. In addition to this, the data structure also maintains

the invariant that the size of the front is greater than the size rear, and that the size of the

schedule is equal to the difference between the sizes of the front and the rear. These are

succinctly captured by the second predicate of the function valid. The specification of the

firstUneval function asserts a few interesting properties of the function that are needed for

verification.

The data structure uses the same idea as a simple immutable queue that uses two lists, namely

front and rear, that has a constant, amortized running time for ephemeral (i.e., non-persistent)

usage. The elements are enqueued to the rear list and dequeued from the front list. Once in a

while, when there are very few or no elements in the front list, the dequeue operation would

127

Chapter 5. Empirical Evaluation and Studies

1 0 1 1 11 0 0

Nil()

Nil()inc(1,) inc(0,)
head

sched

Figure 5.12 – Invariants of conqueue data structure [Prokopec and Odersky, 2015]

reverse the rear and append it to the front. This is captured by the rotate function of Fig. 5.11.

The real time queue data structure uses a similar strategy, but it exploits lazy evaluation

to perform the costly rotate operation incrementally, alongside the enqueue and dequeue

operations. It thus achieves constant running time, in the worst case, for all operations even

under persistent usage. For this purpose, it augments the queue with a schedule which is a

reference to a closure that corresponds to the next step of an unfinished rotate operation. The

rotate operation itself is performed lazily: every call to rotate constructs the first element of

the result, and returns a stream whose tail is a suspended recursive call.

During every enqueue and dequeue operation, if the schedule is non-empty, the head of the

schedule is forced (line 106 of the function createQ). This corresponds to performing one step

of the rotate operation. On the other hand, if the schedule is empty, which implies that there

are no pending rotate operations, a new rotate operation is initiated (lines 108 to 109). Hence,

whenever a rotate operation is initiated every node of the argument f is forced. This is asserted

by the isConcrete(f) predicate used in the precondition of the rotate function, which is critical

for proving the O(1) time bound of rotate. Our system verifies the complete program shown in

Fig. 5.11.

Other Scheduling-based Data Structures Similar to rtq, other scheduling-based data struc-

tures also consist of a spine that store the content, which corresponds to the front and rear

streams in the case of rtq, and a schedule, which is a list of references to closures possibly

nested deep within the spine. (In the case of rtq the schedule is a single reference.) The

content of the spine can be other data structures. In the case of conq, the content is a AVL-like

balanced tree called ConcTree [Prokopec and Odersky, 2015]. The schedules correspond to

unfinished operations like enqueue initiated previously. Every operation on the data structure

is performed lazily in increments that complete in a constant number of steps. Whenever a new

operation is initiated, the schedules are forced so that an increment of a previous operation

is performed. A complex invariant ensures that the pending operations do not cascade to

result in non-constant time worst-case behavior. Figure 5.12 pictorially depicts the invariants

of the conqueue data structure. In the figure, 1 or 0 represents a conc-tree – 1 at a position i

represents a conc-tree of size 2i and 0 represents a conc-tree of size 1. The symbol inc denotes

a suspension of a pushLeft function that takes two arguments: a conc-tree and (a reference to)

another conqueue. If the suspension is forced it will prepend the conc-tree to the beginning of

the queue and adjusts the data structure if necessary. Notice that unlike rtq here the schedules

128

5.2. Higher-Order and Lazy Data Structures

are a list of references to closures.

Results of Verifying Scheduling-based Data Structures Figure 5.7 show the resource bounds

inferred by the system for these data structures for the resources step and alloc. Notice that for

the deq data structure the constants are as large as 893. Figure 5.8 shows the accuracy of the in-

ferred bound. As the results in Figure 5.8 show, the inferred bounds were at least 83% accurate

for rtq and num benchmarks, but have low accuracy for deq and conq benchmarks. On further

analysis of deq we found that the bounds inferred by our system for the inner functions of deq

were, in fact, 90% accurate in estimating the worst-case usage for the dynamic runs. But the

worst-case manifested only occasionally (about once in four calls) when invoked from the

top-level functions. The low accuracy seems to result from the lack of sufficient invariants for

the top-level functions that prohibit the calls to inner functions from consistently exhibiting

worst-case behavior. This seems to be due to a complex dependency between the functions,

which was not identified due to insufficient unfoldings and SMT solver timeouts.

5.2.3 Other Lazy Benchmarks

Cyclic Streams The benchmarks fibs and hams implement infinite fibonacci and hamming

sequences as cyclic streams using lazy zipWith and merge functions. Their implementations

are based on the related work of Vasconcelos et al. [2015]. In comparison to their work in

which the alloc bounds computed for hams were 64% accurate for inputs smaller than 10, ORB

was able to infer bounds that were 83% accurate for inputs up to 10K.

Stream Library The benchmark slib is a collection of operations over streams such as map,

scan, cycle etc. The operations were chosen from the Haskell stream library [Swierstra, 2015].

We excluded functions such as filter that can potentially diverge on infinite streams. The

bounds presented are for a specific client of the library.

Lazy Sorts The benchmarks msort and sel implement lazy sorted streams that allows ac-

cessing the kth minimum an assorted list without performing the entire sorting. sel uses a

selection sorting algorithm in which the minimum element is brought to the beginning of the

list. When performed lazily, to the access the kth minimum only k min operation would be

performed.

The benchmark msort performs a bottom-up merge sort algorithm lazily [Apfelmus, 2009]. It

creates a logical tree of closures of the merge function in steps linear in the size of the input

list. The tree is complete and balanced. The elements of the tree can be retrieved in sorted

order, and every access traverses a path from the root to the tree, and hence happens in steps

logarithmic in the size of the list. Thus, the steps count for accessing the kth element (which is

the kth minimum) is O(k�log l .si ze�). The bound inferred by the system as shown in Figure 5.7

129

Chapter 5. Empirical Evaluation and Studies

steps ≤ 36k�log l .si ze�+53l .si ze+22

Figure 5.13 – Comparison of the inferred bound (shown as grids) and the dynamic resource
usage (shown as dots) for lazy merge sort

is 36k�log l .si ze�+53l .si ze+22. Figure 5.8 shows the actual runtime resource usage is at least

90% of the value estimated by the inferred bounds and is close 96% accurate when comparing

against pareto optimal bounds. Figure 5.13 plots the relationship between the inferred bound

and the resource usage at runtime for the resource steps. The lines in the figure show how

the inferred bound changes as l .si ze and k is varied, and the dots show how the runtime

resource usage changes with l .si ze and k. The constants inferred are fairly accurate despite

the complexity of the resource template.

5.3 Memoized Algortihms

Our system was used to verify the resource bounds of dynamic programming algorithms

[Cormen et al., 2001, Dasgupta et al., 2008] shown in Figure 5.14 that were expressed as

memoized recursive functions. The benchmarks lcs and levd implement the algorithms for

finding the longest common subsequence and Levenshtein distance between two strings

(represented as integer arrays), respectively. The benchmark ks implements the knapsack

algorithm for packing a list of items, each of value vi and weight wi , into a knapsack of capacity

w in a way that maximizes the total value of the items in the knapsack. hs is a memoized

version of the hamming stream benchmark that computes a sorted list of numbers of the form

2i 3 j 5k .

The benchmark ws is a weighted scheduling algorithm that optimally schedules n jobs with

(overlapping) start and finish times so that the total value of the scheduled jobs is maximized.

130

5.3. Memoized Algortihms

Benchmark LOC T S AT Resource bounds
LCS (lcs) 121 4 4 1m steps≤ 30mn+30m+30n+28

alloc≤ 2mn+2m+2n+3

Levenshtein (levd) 110 4 4 1m steps≤ 36mn+36m+36n+34
Distance alloc≤ 2mn+2m+2+3

Hamming (hm) 105 3 3 3m steps≤ 66n+65
Numbers alloc≤ 3n+4

Weight Scheduling (ws) 133 3 5 1m steps≤ 20 j obi +19
alloc≤ 2 j obi +3

Knapsack (ks) 122 5 4 1m steps≤ 17(w · i .si ze)+18w +17i .si ze+18
alloc≤ 2w +3

Packrat Parsing (pp) 249 7 5 1m steps≤ 61n+58
[Ford, 2002] alloc≤ 10n+10

Viterbi (vit) 191 6 7 1m steps≤ 34k2t +34k2−6kt +14k+47t +26
[Viterbi, 1967] alloc≤ 2kt +2k+4t +5

Figure 5.14 – Memoized algorithms verified by ORB

The benchmark pp is a memoized implementation of a packrat parser presented by Ford

[2002] for the parsing expression grammar used in that work. vit is an implementation of the

Viterbi algorithm for finding the most likely sequence of hidden states in the hidden Markov

models. In the case of ws, pp, and vit, the inputs were represented as immutable arrays, which

were treated as uninterpreted functions with constant resource usage for random access.

As shown in Figure 5.15, the inferred bounds for steps are on average 90% accurate for the

dynamic programming algorithms except pp and vit, and is 100% accurate in the case of

alloc for all benchmarks except pp. This is graphically illustrated for two benchmarks ks and

levd in Figures 5.17 and 5.16. The figures plot the static and dynamic resource usages of the

benchmarks against the sizes of the inputs for the resource steps. Both these benchmarks have

B I (dynamic/static) * 100 (optimal/static) * 100
steps alloc steps alloc

lcs 1k 88 100 95 100
levd 1k 90 100 96 100
hmem 10k 79 100 92 100
ws 10k 99 100 100 100
ks 1k 94 100 99 100
pp 10k 77 70 88 84
vit 100 42 100 86 100

Avg. 81 98 94 98

Figure 5.15 – Accuracy of bounds inferred for memozied programs

131

Chapter 5. Empirical Evaluation and Studies

steps ≤ 36mn+36m+36n+34

Figure 5.16 – Comparison of the inferred bound (shown as grids) and the dynamic resource
usage (shown as dots) for Levenshtein distance algorithm

steps≤ 17(w · i .si ze)+18w +17i .si ze+18

Figure 5.17 – Comparison of the inferred bound (shown as grids) and the dynamic resource
usage (shown as dots) for ks

132

5.3. Memoized Algortihms

a multivariate, nonlinear resource bound. In the case of ks, the plot shows the curve along

which the values of l.size and w are identical.

In the case of benchmark vit, the low accuracy stems from the cubic template (shown in

Figure 5.14), as highlighted by the results of comparison with the pareto optimal bound shown

in Figure 5.8. In the case of pp, the evaluations were performed on random strings as it

was difficult to precisely deduce the worst-case input. Nevertheless, the bounds inferred

were 100% accurate for the inner functions: pAdd, pMul, and pPrim. However, the worst case

behavior of the inner functions rarely manifested when called from the outer functions – only

once for every 100 calls.

133

6 Related Work

6.1 Resource Analyses

Push-button Static Resource Analyses Automatic static inference of resource bounds of

programs has been an actively researched area. Most approaches in this space are push-

button tools that require little or no inputs from the user. These system use either abstract

interpretation, or are based on ranking function inference or type inference. Some examples

include [Albert et al., 2012, Alias et al., 2010, Avanzini et al., 2015, Brockschmidt et al., 2016,

Cook et al., 2009, Danielsson, 2008, Flores-Montoya and Hähnle, 2014, Gulwani et al., 2009,

Hoffmann et al., 2012, Jost et al., 2010, Le Métayer, 1988, Navas et al., 2007, Simões et al., 2012,

Sinn et al., 2014, Srikanth et al., 2017, Vasconcelos et al., 2015, Zuleger et al., 2011]. Being fully

automated, these approaches target simple programs and infer simple or weak bounds on

resource usage, due to the absence of knowledge about any complex invariants maintained by

the program.

One of the popular tools in this space is Resource-Aware ML [Hoffmann et al., 2012, Jost

et al., 2010]. The system automatically infers the resource usage of ML programs using a

resource-annotated type inference system, and has been demonstrated on many hand-written

functional programs.

Another popular system is SPEED, which was proposed by Gulwani et al. [2009]. They present

a technique for inferring symbolic bounds on loops of C programs that is based on instru-

menting programs with counters, inferring linear invariants on counters and combining the

linear invariants to establish a loop bound. This approach is orthogonal to ours where we

attempt to find solutions to user-defined templates. In our benchmarks, we included a few

code snippets on which it was mentioned that their tool did not work. Our approach was able

to handle them when the templates were provided manually.

The COSTA system [Albert et al., 2012] uses abstract interpretation to construct sound ab-

stractions of the input programs, and uses them to infer an over-approximate bound on the

resource usage. It can solve recurrence equations and infer nonlinear time bounds, however,

135

Chapter 6. Related Work

it does not appear to support algebraic data types nor user-defined functions within resource

bounds.

The work of Cook et al. [2009] is one of the few approaches that infers upper bounds on

heap usage for programs that manipulate mutable dynamically-allocated data structures such

as doubly-linked lists. This work is possibly closest to ours because it performs template-

based analysis of imperative programs for finding heap bounds and handles program paths

incrementally using the idea of path invariants from Beyer et al. [2007b]. The approach uses

a separate (static) shape analysis [Bogudlov et al., 2007] to infer how the sizes of the data

structures may change during a computation. Our approach is for functional programs. Our

approach handles a wide range of recursive functions over ADTs and is not restricted to size.

Our approach can verify resource usage of complex data-structure implementations with

first-class function and memoization. Our approach supports nonlinearity and is capable of

computing strongest bounds.

Push-button Analysis for Lazy Evaluation Danielsson [2008] present a lightweight type-

based analysis for verifying time complexity of lazy functional programs and applied it to

implicit queues. Its applicability to other benchmarks is not evaluated, and hence is unclear. As

noted in the paper, the approach is limited in handling aliasing of lazy references, which is cru-

cial for our benchmarks. Simões et al. [2012], Vasconcelos et al. [2015] present a typed-based

analysis for inferring bounds on memory allocations of Haskell programs. They evaluated their

system on cyclic hamming and fibonacci stream, which were included in our benchmarks,

and discussed in section 5. In contrast to the above works, our approach is targeted at verifying

user-specified bounds, and has been evaluated on more complex, real-world programs for

relatively large input sizes. It also support multiple resources. To our knowledge, these are the

only existing systems that directly support verification of resource bounds in the presence of

lazy evaluation.

Resource Verification via Interactive Theorem Proving Another well-studied line of work

in resource verification are semi-automatic formal frameworks that are amenable to deriving

machine-checked proofs of resource bounds [Benzinger, 2004, Danner et al., 2013, Sands,

1990a,b]. These approaches are complementary to the above push-button tools in that they

target very expressive bounds and complex programs that require inputs from the user. How-

ever, they are far from being fully automatic and use interactive proof assistants [Bertot and

Castéran, 2004, Nipkow et al., 2002b] that involve significant manual labor. In particular, Sands

[1990a,b] present one of the earliest formal frameworks for reasoning about resource usage

for functional programs in the presence of higher-order features and lazy evaluation. To my

knowledge, there does not exist machine-checked proofs for the resource bounds of the lazy

data structures considered in our study.

136

6.2. Higher-Order Program Verification

Resource Verification using Contracts More recently, a few approaches, apart from the re-

search presented in this dissertation, have started incorporating user specification in resource

verification. Carbonneaux et al. [2014] presented a system to verify stack space bounds of C

programs written for embedded systems using a quantitative Hoare logic. Previously, Alonso-

Blas and Genaim [2012] present an approach where resource bounds are specified by users as

templates with holes, which are inferred by the system automatically.

6.2 Higher-Order Program Verification

Coinductive Datatypes Leino and Moskal [2014] use coinduction to verify programs with

possibly infinite lazy data structures. They do not consider resource properties of such pro-

grams. Blanchette et al. [2015a,b] present a formal framework for soundly mixing recursion

and corecursion in the context of interactive theorem provers.

Higher-order Contract Verification Systems Though traditionally the notion of contracts

has been restricted to first-order programs, there has been significant work in extending

this notion to higher-order programs in order to make specification of properties on such

programs more convenient for the users. Some of the recent works in this space include

[Findler and Felleisen, 2002, Knowles and Flanagan, 2010, Kobayashi, 2009, Kobayashi et al.,

2011, Nanevski et al., 2008, Nguyen and Horn, 2015, Nguyen et al., 2014, Nicolas Voirol and

Kuncak, 2017, Tobin-Hochstadt and Horn, 2012, Vazou et al., 2014, Voirol et al., 2015, Vytiniotis

et al., 2013, Xu, 2012, Xu et al., 2009]. These works target purely functional programs with the

exception of [Nanevski et al., 2008], and typically use a dependent type system that allows

types to be refined by predicates (as in Liquid Types [Vazou et al., 2014]), or by even Hoare

triples [Nanevski et al., 2008]. Similar to traditional verifiers they also reduce the problem of

contract checking to theorem proving by constructing VCs. However, the presence of first-class

functions makes this process much trickier and more flexible, allowing for greater variation

and novelty among these techniques.

Many of these systems allow users to write contracts on function-valued parameters, or

refinement predicates on function types [Findler and Felleisen, 2002, Vazou et al., 2014]. To

my knowledge, there does not exist any contract-based verifiers for higher-order programs

that allow specifying resource properties, as in our approach. Our approach allows named

functions, with contracts and resource templates, to be used inside lambdas. However, it

disallows contracts on function-valued parameters and instead provides intensional-equality-

based constructs to specify their properties. Though this makes the contracts very specific

to the implementation, it has the advantage of reducing specification burden for closed or

encapsulated programs. Supporting contracts on function-valued parameters that can refer

to resource bounds would be an interesting future direction to explore.

137

Chapter 6. Related Work

6.3 Software Verification

Template-based Invariant Inference Beyer et al. [2007a] presents an approach for handling

uninterpreted functions in templates. Our approach handles disjunctions that arise because

of axiomatizing uninterpreted functions efficiently through our incremental algorithm that is

driven by counterexamples and are able to scale to VCs with hundreds of uninterpreted func-

tions. Our approach also supports algebraic data types and handles sophisticated templates

that involve user-defined functions. The idea of using Farkas’ lemma to solve linear templates

of numerical programs goes back at least to the work of Colón et al. [2003] and has been gener-

alized in different directions by Sankaranarayanan et al. [2004], Cousot [2005b], Gulwani et al.

[2008]. Cousot [2005b] and Sankaranarayanan et al. [2004] present systematic approaches

for solving nonlinear templates for numerical programs. Our approach is currently based

on light-weight axiomatization of nonlinear operations which is targeted towards practical

efficiency. It remains to be seen if we can integrate more complete non-linear reasoning into

our approach without sacrificing scalability.

Contract-based and Interactive Software Verification Contract-based software verification

has been a corner stone of program verification. These systems target verification of properties

expressed in the form of pre-and-postconditions (i.e contracts) on functions/methods, or as

assertions sprinkled within the program code. Some of the recent systems belonging to this

space include DAFNY [Leino, 2010], JSTAR [Distefano and Parkinson J, 2008], GRASSHOPPER

[Piskac et al., 2014], JAHOB [Zee et al., 2008], VERIFAST [Jacobs et al., 2011] and VIPER [Müller

et al., 2016]. These approaches typically encode the verification problem as a logical formula,

known as verification condition (VC), such that the validity of the VC entails the correctness of

the contracts. The VCs are generally decided using off-the-shelf theorem provers like [Barrett

et al., 2011, de Moura and Bjørner, 2008] but may also require custom decision procedures.

Often, these approaches rely on users to provide sufficiently strong specifications that can be

proven using a predefined set of proof strategies like mathematical induction. However, they

place very few restriction on the class of properties that can be verified, which is only limited

by the underlying theorem provers and the necessary manual effort.

These approaches and interactive theorem provers [Bertot and Castéran, 2004, Chlipala, 2011,

Nipkow et al., 2002a] have been used to verify complex, imperative programs. Automation in

our system appears above the one in interactive provers, and could be further improved using

quantifier instantiation, induction, and static analysis [Beyene et al., 2013, Gurfinkel et al.,

2015, Reynolds and Kuncak, 2015]. While most approaches for imperative programs target a

homogeneous, mutable heap, in this work we consider an almost immutable heap except for

the cache, and use a set representation to handle mutations to the cache efficiently. I believe

that similar separation of heap into mutable and immutable parts can benefit other forms

of restricted mutation like write-once fields [Arvind et al., 1989]. Using mutation directly to

model caches will dramatically increase the contract overhead in our benchmarks. In fact,

there are not many systems that can combine mutation with higher-order features.

138

6.3. Software Verification

Software Model Checking Automated approaches for software verification has been a sub-

ject of intense study. Some of the recent, popular tools include [Ball and Rajamani, 2002,

Beyene et al., 2013, Calcagno et al., 2009, Cousot, 2005a, Cousot et al., 2005, Henry et al., 2012,

Henzinger et al., 2002, 2004, Hoder and Bjørner, Itzhaky et al., 2014, Kobayashi et al., 2011,

Nori et al., 2009]. Compared to contract-based verifiers, these approaches – also referred

to as software model checkers or property checkers – are completely automated, and are

often specialized for verification of specific properties such as proving absence of memory

leaks, checking correctness of software API usage, or verifying absence of runtime errors.

However, in principle, they could be used to verify user-provided assertions and specifica-

tions [Henzinger et al., 2002, Nori et al., 2009], and thus are closely related to contract-based

software verification. However, being completely automated these approaches have only

been able to handle properties belonging to very restricted domains such as linear relations

between program variables. Nonetheless, decades of research in software model checking

has resulted in highly effective techniques for automatically reasoning about programs, e.g.

counterexample guided abstraction refinement (CEGAR) [Ball and Rajamani, 2002], abstract

interpretation and widening [Cousot and Cousot, 1979, Cousot et al., 2005], interpolation [Ball

and Rajamani, 2002, Henzinger et al., 2004], property-directed reachability (PDR) [Bradley,

2011, Hoder and Bjørner], constraint-solving-based invariant inference [Cousot, 2005a], bi-

abduction [Calcagno et al., 2009] and also data-driven approaches [Ernst et al., 2001, Sharma

et al., 2013]. While the techniques have traditionally been applicable to first-order programs,

recently they have been applied to verification of higher-order programs as well [Kobayashi

et al., 2011]. While some of these techniques have also been used to automate verification of

resource properties, there still remains a large pool of techniques which can be used to further

increase automation in resource verification and enable them scale to large applications.

139

7 Conclusion and Future Work

You insist that there is something a machine cannot do.

If you tell me precisely what it is a machine cannot do,

then I can always make a machine which will do just that.

— John von Neumann

Static analysis of resource usage behavior of programs is an important problem with numerous

applications. It has hence been a subject of intense study over the past several decades. How-

ever, many existing static resource analyses such as [Albert et al., 2012, Hoffmann et al., 2012]

infer best-effort upper bounds and hope that they match users’ expectations. This dissertation

presented a complementary approach aimed at verifying user-specified bounds on resource

utilization of programs. The approach requires users to specify high-level invariants and

preconditions in the form of function contracts, but automatically solves low-level constraints

that are within the scope of decidable SMT theories. Users can interact with the system by

providing hints and/or by fleshing out parts of the proof that are difficult to automatically

infer. These poof hints are typically properties of recursive functions or nonlinear operations.

Ideally, these hints are also established within the system. However, even if such hints cannot

be proven within the system either because their proofs are tedious or even impossible to

express within the proof system, we can still derive resource bounds that are sound modulo

the soundness of the (unproved) hints.

In the world of proving correctness properties, the advantages of such contract-based verifiers

over push-button techniques is broadly known and recognized. This dissertation demon-

strates that such contract-based techniques will also enable verification of resource bounds

of programs that are challenging for automatic as well as manual reasoning. While fully-

automated techniques offer great value and are highly desirable especially with regards to ease

of use, they are bound to be incomplete. No matter how sophisticated an automated analysis

is there will be programs that it cannot analyze precisely. As implied by the somewhat comical

quote by Von Neumann mentioned at the beginning of this section, program-specific knowl-

edge can go a long way in pushing automated systems to programs (or tasks) that existing

141

Chapter 7. Conclusion and Future Work

systems "cannot do".

The observation that user-annotations help resource analysis is not by itself surprising. (In

fact, user-annotations are likely to benefit almost every non-trivial static analysis of semantic

properties.) What this dissertation addresses is the "what" and "how" aspect of incorporating

user annotations in resource verification, i.e, it studies the kind of user-annotations that are

required, and how they can be expressed and effectively utilized in resource verification. In my

opinion, the high-level contributions of this dissertation are three fold. Firstly, this dissertation

demonstrates that to express and verify resource properties we can exploit the complete

verification machinery developed for establishing correctness properties e.g. function-level

contracts, template-based invariant inference, algorithms for translating contract checking

to logical formulas and decision produces for solving logical fragments. Secondly, it demon-

strates that viewing resource bounds as invariants of a program instrumented for resources

is practically viable and also beneficial. This view essentially provides a way to convert any

correctness verifier into a resource verifier. Finally, it identifies effective and minimal set of

primitives such as resource templates, isConcrete construct, structural equality and matching

of closures, that enable expression of complex properties needed to establish resource bounds

of programs written in a higher-order functional language with memoization. It also presents

algorithms for verifying such specifications. In the sequel, I discuss some of the interesting

enhancements that can be made to the approach presented in this dissertation with minor

extensions.

Improving Accuracy of the Cost Model While the steps resource presented here counted

every primitive operation once, it is possible to define new resources that count specific classes

of the primitive operations separately. For instance, it is quite straightforward to define a

resource that counts only the arithmetic/logical operations, and another resource that counts

only the memory operations (such as load/store). These resources can be more effectively

used to compare implementations at a fine-grained level. Similarly, it is possible to define

a fine-grained alloc resource that separately counts the number of objects of specific types

that are allocated in the heap. Furthermore, to more accurately measure heap memory usage,

it possible define the cost of each allocation proportional to the size of the object that is

allocated.

Modeling Resources that can be Freed The instrumentation presented here can be ex-

tended to support resources that could be freed or reclaimed at different points in the program,

either explicitly by the user or automatically. For instance, these include resources such as the

the peak memory usage with manual memory management, the number of locks held by a

program, and the number of open file handlers. Such resources can be modeled if the cost

of the constructs that free up such resources are assigned a value that is the negative of the

amount of resources that is freed up.

142

However, in the presence of automatic garbage collection, estimating the peak memory usage

becomes quite tricky. In such cases, one may have to conservatively approximate the behavior

of the garbage collector.

Memoization with Non-monotonic Caches The set abstraction of a cache presented in

Chapter 4 can be extended to non-monotonic caches, where certain entries can be explicitly

removed, and also to bounded caches, where entries cannot be added to the cache if it is

filled up to its maximum capacity. Recall that the cache is represented as a set of keys and

is propagated through the expressions of the program. Constructs that explicitly remove an

entry from a cache could be modeled by removing the corresponding cache key from the

abstract cache state reaching the program point at which the construct appears. To model

a bounded cache, one could use an additional counter that tracks the size of the cache at

every program point. The cache instrumentation should be modified so that every memoized

call adds an entry to the cache if and only if the size of the cache at that point is below the

maximum capacity of the cache.

A more involved but interesting extension is modeling bounded caches that allow entries to

be replaced using a predefined replacement policy e.g. first-come-first-serve (FCFS) policy. If

we can accurately model such caches, we can also use them to model the hardware (memory)

cache and compute a more precise estimate of the physical running time. A main challenge in

modeling such caches is precisely tracking all the entries in the cache. Whether such detailed

specifications can be expressed in a practical way and whether they can scale to complex

higher-order programs such as those considered in this dissertation is an interesting future

direction to explore. However, it is to be noted that there has been significant efforts ([Wilhelm

et al., 2008]) in developing execution time analyses for low-level programs that take into

account the effects of hardware caches.

This dissertation showed that statically verifying resource usage of complex programs is

feasible provided users/developers input sufficiently detailed specifications and proof hints.

However, a pragmatic and open-ended question that is not considered by this dissertation is

whether verifying abstract resource usage of software is worth the effort? There are two main

concerns that prevent this question from being answered affirmatively. The first concern is

the practical value added by the abstract resource bounds that are verified, especially when we

know that the highly intricate and tricky aspects of physical resource usage are not modeled

by the abstract resource usage. The second concern is that the performance of a program

for an average (or typical) execution scenario is of greater interest, and any deterioration in

performance for an input that appears rarely can be tolerated. I conclude this dissertation by

sharing my thoughts on both these aspects.

Firstly, it is a surprising fact that resource verification not only verifies performance but

indirectly also helps in verifying correctness of programs. The reason for this is that most

sophistication in data structures or programs is for achieving better (asymptotic) performance.

143

Chapter 7. Conclusion and Future Work

In many cases, the invariants maintained by programs for achieving the desired resource usage

are quite complex. For instance, think of the color and height invariants of the red-black data

structure. Their sole purpose is to make tree operations run in time logarithmic in the size of

the tree. Often these invariants are complex pieces of code. A real problem with these complex

specification is determining whether the specifications are correct. By verifying resource

bounds we establish the correctness of these specifications. In fact, even if the specifications

do not exactly match the user’s expectation, it is still does not matter as long as they entail the

desired resource usage. In other words, resource verification provides a way to ensure that the

sophistications built in to programs for better performance are indeed correct and produce

the desired effect.

Secondly, while it is true that abstract resource usage does not capture the tricky aspects of

physical resource usage, in the absence of the ability to precisely estimate the former, the next

best fall back is to reason about the latter. There are numerous application domains where

even abstract resource usage may prove to be very useful. For instance, they can be used by

compile-time or runtime optimizers to select an implementation that is likely to perform

better under a specific compile-time or runtime context. They can be used to measure the

changes in the memory usage of an application across different versions and hence identify

memory bloats. Furthermore, they can be used to establish infeasibility of security exploits

based on resource consumption of programs such as side-channel attacks. I believe that the

availability of a robust system that can establish resource bounds at the level of precision

described here will enable many novel applications in the time to come.

144

Bibliography

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of object-oriented

bytecode programs. Theor. Comput. Sci., 413(1):142–159, 2012. doi: 10.1016/j.tcs.2011.07.

009.

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, program termi-

nation, and complexity bounds of flowchart programs. In Static Analysis Symposium, SAS,

pages 117–133, 2010. URL http://dl.acm.org/citation.cfm?id=1882094.1882102.

D. E. Alonso-Blas and S. Genaim. On the limits of the classical approach to cost analysis. In

Static Analysis Symposium, SAS, pages 405–421, 2012. doi: 10.1007/978-3-642-33125-1_27.

H. Apfelmus. Quicksort and k-th smallest elements. 2009. URL http://apfelmus.nfshost.com/

articles/quicksearch.html.

A. W. Appel. Intensional equality ;=) for continuations. SIGPLAN Not., 31(2), Feb. 1996. doi:

10.1145/226060.226069.

Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures for parallel computing.

ACM Trans. Program. Lang. Syst., 11(4):598–632, Oct. 1989. doi: 10.1145/69558.69562.

M. Avanzini, U. D. Lago, and G. Moser. Analysing the complexity of functional programs:

higher-order meets first-order. In International Conference on Functional Programming,

ICFP, pages 152–164, 2015. doi: 10.1145/2784731.2784753.

T. Ball and S. K. Rajamani. The s lam project: debugging system software via static analysis. In

ACM SIGPLAN Notices, volume 37, pages 1–3. ACM, 2002.

C. Barrett, I. Shikanian, and C. Tinelli. An abstract decision procedure for a theory of inductive

data types. Journal on Satisfiability, Boolean Modeling and Computation, 3:21–46, 2007.

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and

C. Tinelli. CVC4. In Computer Aided Verification, CAV, pages 171–177, 2011.

R. Benzinger. Automated higher-order complexity analysis. Theoretical Computer Science, 318

(1):79 – 103, 2004. doi: http://dx.doi.org/10.1016/j.tcs.2003.10.022.

145

Bibliography

Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development - Coq’Art:

The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer,

2004. ISBN 978-3-642-05880-6. doi: 10.1007/978-3-662-07964-5.

T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified horn clauses. In

Computer Aided Verification, CAV, 2013. doi: 10.1007/978-3-642-39799-8_61.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Invariant synthesis for combined

theories. In VMCAI, 2007a. doi: 10.1007/978-3-540-69738-1_27.

D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path invariants. In PLDI, 2007b.

doi: 10.1145/1250734.1250769.

R. Bird and P. Wadler. An Introduction to Functional Programming. Prentice Hall International

(UK) Ltd., 1988. ISBN 0-13-484189-1.

R. Bird, G. Jones, and O. De Moor. More haste, less speed: lazy versus eager evaluation. Journal

of Functional Programming, 7(5):541–547, 1997.

R. W. Blanc, E. Kneuss, V. Kuncak, and P. Suter. An overview of the Leon verification system. In

Scala Workshop, 2013.

J. C. Blanchette, A. Popescu, and D. Traytel. Witnessing (co)datatypes. In European Symposium

on Programming, ESOP, pages 359–382, 2015a. doi: 10.1007/978-3-662-46669-8_15.

J. C. Blanchette, A. Popescu, and D. Traytel. Foundational extensible corecursion: a proof

assistant perspective. In International Conference on Functional Programming, ICFP, pages

192–204, 2015b. doi: 10.1145/2784731.2784732.

G. E. Blelloch and B. M. Maggs. Parallel algorithms. Communications of the ACM, 39:85–97,

1996.

I. Bogudlov, T. Lev-Ami, T. W. Reps, and M. Sagiv. Revamping TVLA: making parametric

shape analysis competitive. In Computer Aided Verification, CAV, pages 221–225, 2007. doi:

10.1007/978-3-540-73368-3_25.

A. R. Bradley. Sat-based model checking without unrolling. In Verification, Model Checking,

and Abstract Interpretation, pages 70–87. Springer Berlin Heidelberg, 2011.

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size

complexity of integer programs. ACM Trans. Program. Lang. Syst., pages 13:1–13:50, 2016.

doi: 10.1145/2866575.

C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional shape analysis by means of

bi-abduction. In ACM SIGPLAN Notices, volume 44, pages 289–300. ACM, 2009.

Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and Z. Shao. End-to-end verification of

stack-space bounds for C programs. In Programming Language Design and Implementation,

PLDI, 2014. doi: 10.1145/2594291.2594301.

146

Bibliography

A. Chlipala. Mostly-automated verification of low-level programs in computational separation

logic. In Programming Language Design and Implementation, PLDI, pages 234–245, 2011.

doi: 10.1145/1993498.1993526.

M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using non-linear

constraint solving. In Computer Aided Verification, CAV, 2003. doi: aba.

B. Cook, A. Gupta, S. Magill, A. Rybalchenko, J. Simsa, S. Singh, and V. Vafeiadis. Finding

heap-bounds for hardware synthesis. In FMCAD, 2009. doi: 10.1109/FMCAD.2009.5351120.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms (Second

Edition). MIT Press and McGraw-Hill, 2001.

P. Cousot. Proving program invariance and termination by parametric abstraction, la-

grangian relaxation and semidefinite programming. In VMCAI, 2005a. doi: 10.1007/

978-3-540-30579-8_1.

P. Cousot. Proving program invariance and termination by parametric abstraction, la-

grangian relaxation and semidefinite programming. In VMCAI, 2005b. doi: 10.1007/

978-3-540-30579-8_1.

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In POPL, 1979.

doi: 10.1145/567752.567778.

P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The astrée an-

alyzer. In European Symposium on Programming, pages 21–30. Springer Berlin Heidelberg,

2005.

N. A. Danielsson. Lightweight semiformal time complexity analysis for purely functional

data structures. In Principles of Programming Languages, POPL, pages 133–144, 2008. doi:

10.1145/1328438.1328457.

N. Danner, J. Paykin, and J. S. Royer. A static cost analysis for a higher-order language. In

Workshop on Programming languages meets program verification, PLPV, pages 25–34, 2013.

doi: 10.1145/2428116.2428123.

S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani. Algorithms. McGraw-Hill, 2008.

L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Tools and Algorithms for

the Construction and Analysis of Systems TACAS, pages 337–340, 2008. doi: 10.1007/

978-3-540-78800-3_24.

D. Distefano and M. J. Parkinson J. jStar: Towards practical verification for java. In Object-

oriented Programming Systems Languages and Applications, OOPSLA, pages 213–226, 2008.

doi: 10.1145/1449764.1449782.

147

Bibliography

E. Dolstra. Maximal laziness: An efficient interpretation technique for purely functional

{DSLs}. Electronic Notes in Theoretical Computer Science, 238(5):81 – 99, 2009. doi: http:

//dx.doi.org/10.1016/j.entcs.2009.09.042.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program

invariants to support program evolution. IEEE Transactions on Software Engineering, 27(2):

99–123, 2001.

M. Fähndrich and K. R. M. Leino. Heap monotonic typestates. In International Workshop on

Aliasing, Confinement and Ownership in Object-oriented Programming, IWACO, page 58,

2003.

R. B. Findler and M. Felleisen. Contracts for higher-order functions. In International Conference

on Functional Programming, ICFP, pages 48–59, 2002. doi: 10.1145/581478.581484.

A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs with cost equations.

In Programming Languages and Systems - 12th Asian Symposium, APLAS, pages 275–295,

2014. doi: 10.1007/978-3-319-12736-1_15.

B. Ford. Packrat parsing: Simple, powerful, lazy, linear time, functional pearl. In International

Conference on Functional Programming ICFP, pages 36–47, 2002. doi: 10.1145/581478.

581483.

J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Automated

termination proofs for haskell by term rewriting. ACM Trans. Program. Lang. Syst., 33(2):

7:1–7:39, Feb. 2011. doi: 10.1145/1890028.1890030.

S. Gulwani, S. Srivastava, and R. Venkatesan. Program analysis as constraint solving. In PLDI,

2008. doi: 10.1145/1375581.1375616. URL http://doi.acm.org/10.1145/1375581.1375616.

S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: precise and efficient static estimation of

program computational complexity. In Principles of Programming Languages, POPL, 2009.

doi: 10.1145/1480881.1480898.

A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn verification framework.

In Compuer Aided Verification, CAV, 2015.

J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge University

Press, 2009. ISBN 978-0-521-89957-4.

C. Hawblitzel. Automated verification of practical garbage collectors. In Symposium on

Principles of Programming Languages, January 2009.

J. Henry, D. Monniaux, and M. Moy. Pagai: A path sensitive static analyser. Electronic Notes in

Theoretical Computer Science, 289:15–25, 2012.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. ACM SIGPLAN Notices,

37(1):58–70, 2002.

148

Bibliography

T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from proofs. In ACM

SIGPLAN Notices, volume 39, pages 232–244. ACM, 2004.

K. Hoder and N. Bjørner. Generalized property directed reachability. Theory and Applications

of Satisfiability Testing–SAT 2012, page 157.

J. Hoffmann, K. Aehlig, and M. Hofmann. Resource Aware ML. In Computer Aided Verification,

CAV, pages 781–786, 2012.

J. Hoffmann, A. Das, and S.-C. Weng. Towards automatic resource bound analysis for ocaml.

In Proceedings of Principles of Programming Languages, pages 359–373. ACM, 2017.

S. Itzhaky, N. Bjørner, T. Reps, M. Sagiv, and A. Thakur. Property-directed shape analysis. In

International Conference on Computer Aided Verification, pages 35–51. Springer, 2014.

B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. VeriFast: A

powerful, sound, predictable, fast verifier for C and Java. In Proceedings of NASA Formal

Methods, NFM, pages 41–55, 2011.

N. D. Jones and N. Bohr. Termination analysis of the untyped lamba-calculus. In Rewriting

Techniques and Applications, RTA, pages 1–23, 2004. doi: 10.1007/978-3-540-25979-4_1.

URL http://dx.doi.org/10.1007/978-3-540-25979-4_1.

S. Jost, K. Hammond, H. Loidl, and M. Hofmann. Static determination of quantitative resource

usage for higher-order programs. In Principles of Programming Languages, POPL, pages

223–236, 2010. doi: 10.1145/1706299.1706327.

D. Kapur, R. Majumdar, and C. G. Zarba. Interpolation for data structures. In Foundations

of Software Engineering, FSE, pages 105–116, 2006. doi: 10.1145/1181775.1181789. URL

http://doi.acm.org/10.1145/1181775.1181789.

M. Kaufmann, J. S. Moore, and P. Manolios. Computer-Aided Reasoning: An Approach. Kluwer

Academic Publishers, Norwell, MA, USA, 2000. ISBN 0792377443.

G. Klein, P. Derrin, and K. Elphinstone. Experience report: Sel4: Formally verifying a high-

performance microkernel. In International Conference on Functional Programming, ICFP,

pages 91–96, 2009. doi: 10.1145/1596550.1596566.

K. Knowles and C. Flanagan. Hybrid type checking. ACM Trans. Program. Lang. Syst., 32(2):

6:1–6:34, Feb. 2010. doi: 10.1145/1667048.1667051.

N. Kobayashi. Types and higher-order recursion schemes for verification of higher-order

programs. In Principles of Programming Languages, POPL, pages 416–428, 2009. doi:

10.1145/1480881.1480933.

N. Kobayashi, R. Sato, and H. Unno. Predicate abstraction and CEGAR for higher-order model

checking. In Programming Language Design and Implementation, PLDI, pages 222–233,

2011. doi: 10.1145/1993498.1993525.

149

Bibliography

V. Kuncak, H. H. Nguyen, and M. Rinard. Deciding Boolean Algebra with Presburger Arith-

metic. Journal of Automated Reasoning, 36(3), 2006. URL http://dx.doi.org/10.1007/

s10817-006-9042-1.

A. Lal and S. Qadeer. Dag inlining: A decision procedure for reachability-modulo-theories in

hierarchical programs. In Programming Language Design and Implementation, PLDI, 2015.

doi: 10.1145/2737924.2737987. URL http://doi.acm.org/10.1145/2737924.2737987.

D. Le Métayer. Ace: An automatic complexity evaluator. ACM Trans. Program. Lang. Syst., 10

(2):248–266, Apr. 1988. doi: 10.1145/42190.42347.

K. R. M. Leino. Dafny: An automatic program verifier for functional correctness. In Logic for

Programming, Artificial Intelligence, and Reasoning, pages 348–370, 2010. doi: 10.1007/

978-3-642-17511-4_20.

K. R. M. Leino and M. Moskal. Co-induction simply - automatic co-inductive proofs

in a program verifier. In Formal Methods, FM, pages 382–398, 2014. doi: 10.1007/

978-3-319-06410-9_27.

X. Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, July 2009.

ISSN 0001-0782. doi: 10.1145/1538788.1538814.

R. Madhavan and V. Kuncak. Symbolic resource bound inference for functional programs. In

Computer Aided Verification, CAV, pages 762–778, 2014. doi: 10.1007/978-3-319-08867-9_

51.

R. Madhavan, S. Kulal, and V. Kuncak. Contract-based resource verification for higher-order

functions with memoization. In Proceedings of Principles of Programming Languages, pages

330–343. ACM, 2017.

J. Midtgaard. Control-flow analysis of functional programs. ACM Comput. Surv., 44(3):10:1–

10:33, June 2012. doi: 10.1145/2187671.2187672.

P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for permission-

based reasoning. In B. Jobstmann and K. R. M. Leino, editors, Verification, Model Checking,

and Abstract Interpretation (VMCAI), volume 9583 of LNCS, pages 41–62. Springer-Verlag,

2016.

A. Nanevski, G. Morrisett, and L. Birkedal. Hoare type theory, polymorphism and separation1.

J. Funct. Program., 18(5-6):865–911, Sept. 2008. ISSN 0956-7968.

J. A. Navas, E. Mera, P. López-García, and M. V. Hermenegildo. User-definable resource bounds

analysis for logic programs. In International Conference on Logic Programming, ICLP, pages

348–363, 2007. doi: 10.1007/978-3-540-74610-2_24.

P. C. Nguyen and D. V. Horn. Relatively complete counterexamples for higher-order programs.

In Programming Language Design and Implementation, PLDI, pages 446–456, 2015. doi:

10.1145/2737924.2737971.

150

Bibliography

P. C. Nguyen, S. Tobin-Hochstadt, and D. V. Horn. Soft contract verification. In international

conference on Functional programming, ICFP, pages 139–152, 2014. doi: 10.1145/2628136.

2628156.

R. M. Nicolas Voirol and V. Kuncak. Termination of open higher-order programs, EPFL-

REPORT-229918. Technical report, EPFL, 2017.

T. Nipkow. Amortized complexity verified. In Interactive Theorem Proving (ITP 2015), volume

9236, pages 310–324, 2015.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant for Higher-Order Logic,

volume 2283 of Lecture Notes in Computer Science. Springer, 2002a. ISBN 3-540-43376-7.

doi: 10.1007/3-540-45949-9.

T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for Higher-Order Logic,

volume 2283 of LNCS. Springer-Verlag, 2002b.

A. V. Nori, S. K. Rajamani, S. Tetali, and A. V. Thakur. The yogi project: Software property

checking via static analysis and testing. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 178–181. Springer, 2009.

C. Okasaki. Simple and efficient purely functional queues and deques. Journal of Functional

Programming, 5:583–592, 10 1995. ISSN 1469-7653. doi: 10.1017/S0956796800001489. URL

http://journals.cambridge.org/article_S0956796800001489.

C. Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

D. C. Oppen. Elementary bounds for presburger arithmetic. In Proceedings of the fifth annual

ACM symposium on Theory of computing, 1973.

R. Piskac, T. Wies, and D. Zufferey. Grasshopper - complete heap verification with mixed

specifications. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS,

pages 124–139, 2014. doi: 10.1007/978-3-642-54862-8_9.

A. Prokopec. Data Structures and Algorithms for Data-Parallel Computing in a Managed

Runtime. PhD thesis, EPFL, 2014.

A. Prokopec and M. Odersky. Conc-trees for functional and parallel programming. In

Languages and Compilers for Parallel Computing, LCPC, pages 254–268, 2015. doi:

10.1007/978-3-319-29778-1_16.

A. Reynolds and V. Kuncak. Induction for SMT solvers. In Verification, Model Checking, and

Abstract Interpretation, VMCAI, pages 80–98, 2015. doi: 10.1007/978-3-662-46081-8_5.

J. C. Reynolds. Definitional interpreters for higher-order programming languages. Higher-

Order and Symbolic Computation, 11(4):363–397, 1998. doi: 10.1023/A:1010027404223.

151

Bibliography

A. Rybalchenko and V. Sofronie-Stokkermans. Constraint solving for interpolation. In VMCAI,

2007.

D. Sands. Complexity analysis for a lazy higher-order language. In European Symposium on

Programming, ESOP, pages 361–376, 1990a. doi: 10.1007/3-540-52592-0_74.

D. Sands. Calculi for Time Anlaysis of Functional Programs. PhD thesis, Imperial College,

University of London, 1990b. URL http://www.cse.chalmers.se/~dave/papers/PhDthesis.

ps.

S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Non-linear loop invariant generation using

gröbner bases. In POPL, 2004. URL http://doi.acm.org/10.1145/964001.964028.

D. Sereni. Termination analysis of higher-order functional programs. PhD thesis, University of

Oxford, UK, 2006. URL http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437001.

R. Sharma, S. Gupta, B. Hariharan, A. Aiken, P. Liang, and A. V. Nori. A data driven approach

for algebraic loop invariants. In European Symposium on Programming, pages 574–592.

Springer, 2013.

H. R. Simões, P. B. Vasconcelos, M. Florido, S. Jost, and K. Hammond. Automatic amortised

analysis of dynamic memory allocation for lazy functional programs. In International

Conference on Functional Programming, ICFP, pages 165–176, 2012. doi: 10.1145/2364527.

2364575.

M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound analysis and

amortized complexity analysis. In Computer Aided Verification CAV, pages 745–761, 2014.

doi: 10.1007/978-3-319-08867-9_50.

A. Solar-Lezama, L. Tancau, R. Bodík, S. A. Seshia, and V. A. Saraswat. Combinatorial sketching

for finite programs. In ASPLOS, 2006. doi: 10.1145/1168857.1168907.

A. Srikanth, B. Sahin, and W. R. Harris. Complexity verification using guided theorem enumer-

ation. In Principles of Programming Languages, pages 639–652. ACM, 2017.

P. Suter. Programming with Specifications. PhD thesis, EPFL, Switzerland, 2012.

P. Suter, M. Dotta, and V. Kuncak. Decision procedures for algebraic data types with abstrac-

tions. In POPL, 2010. doi: 10.1145/1706299.1706325. URL http://doi.acm.org/10.1145/

1706299.1706325.

P. Suter, A. S. Köksal, and V. Kuncak. Satisfiability modulo recursive programs. In Symposium

on Static Analysis SAS, 2011. doi: 10.1007/978-3-642-23702-7_23.

W. Swierstra. Stream: A library for manipulating infinite lists. https://hackage.haskell.org/

package/Stream-0.4.7.2/docs/Data-Stream.html. 2015.

152

Bibliography

S. Tobin-Hochstadt and D. V. Horn. Higher-order symbolic execution via contracts. In Object-

Oriented Programming, Systems, Languages, and Applications, OOPSLA, pages 537–554,

2012. doi: 10.1145/2384616.2384655.

G. S. Tseitin. On the complexity of derivation in propositional calculus. Zapiski Nauchnykh

Seminarov LOMI, 8:234–259, 1968.

P. B. Vasconcelos, S. Jost, M. Florido, and K. Hammond. Type-based allocation analysis for

co-recursion in lazy functional languages. In European Symposium on Programming, ESOP,

2015. doi: 10.1007/978-3-662-46669-8_32.

N. Vazou, E. L. Seidel, R. Jhala, D. Vytiniotis, and S. Peyton-Jones. Refinement types for haskell.

In International Conference on Functional Programming, ICFP, pages 269–282, 2014. doi:

10.1145/2628136.2628161.

A. Viterbi. Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. IEEE Transactions on Information Theory, 13(2):260–269, April 1967. ISSN

0018-9448. doi: 10.1109/TIT.1967.1054010.

N. Voirol, E. Kneuss, and V. Kuncak. Counter-example complete verification for higher-order

functions. In Symposium on Scala, pages 18–29, 2015. doi: 10.1145/2774975.2774978.

D. Vytiniotis, S. Peyton Jones, K. Claessen, and D. Rosén. HALO: Haskell to logic through

denotational semantics. In Principles of Programming Languages, POPL, pages 431–442,

2013. doi: 10.1145/2429069.2429121.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,

R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström. The

worst-case execution-time problem—overview of methods and survey of tools. ACM Trans.

Embed. Comput. Syst., 7(3):36:1–36:53, May 2008. ISSN 1539-9087. doi: 10.1145/1347375.

1347389.

D. N. Xu. Hybrid contract checking via symbolic simplification. In Workshop on Partial

Evaluation and Program Manipulation, PEPM, pages 107–116, 2012. doi: 10.1145/2103746.

2103767.

D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking for haskell. In Principles of

Programming Languages, POPL, pages 41–52, 2009. doi: 10.1145/1480881.1480889.

K. Zee, V. Kuncak, and M. C. Rinard. Full functional verification of linked data structures. In

Programming Language Design and Implementation, PLDI, 2008. doi: 10.1145/1375581.

1375624.

T. Zhang, H. B. Sipma, and Z. Manna. Decision procedures for recursive data structures

with integer constraints. In International Joint Conference on Automated Reasoning, pages

152–167. Springer, 2004.

153

Bibliography

F. Zuleger, S. Gulwani, M. Sinn, and H. Veith. Bound analysis of imperative programs with

the size-change abstraction. In Static Analysis Symposium, SAS, pages 280–297, 2011. doi:

10.1007/978-3-642-23702-7_22.

154

Ravichandhran Kandhadai Madhavan

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

BC 355, Station 14
CH-1015 Lausanne, Switzerland

Phone: +41 21 69 31243
Email: ravi.kandhadai@epfl.ch

Website: http://lara.epfl.ch/~kandhada
Google Scholar: http://bit.ly/2lF1W3p

ACM author profile: http://bit.ly/2lDulEQ

Research Interests

Programming Languages, Software Analysis, Verification, Formal Methods, Computer Science Education

Education

EPFL (École Polytechnique Fédérale de Lausanne) Sep 2012 – Aug 2017 (expected)
Ph.D. candidate in Computer Science
Advisor: Prof. Viktor Kuncak
PhD Dissertation: Resource bounds verification for functional programs

IISc (Indian Institute of Science), Bangalore Aug 2008 – Jul 2010
Master of Engineering in Computer Science
Cumulative GPA 7/8. Awarded distinction
Advisor: Prof. Raghavan Komondoor
Masters Thesis: Demand-driven null dereference verification for Java

College of Engineering, Guindy Aug 2004 – Jul 2008
Bachelors of Engineering in Computer Science
Cumulative GPA 9.1/10. Awarded distinction and rank certificate

Employment

Research Assistant, Microsoft Research India Jul 2010 – Aug 2012
Rigorous Software Engineering group
Collaborators: G. Ramalingam, K. Vaswani
Developed a scalable, modular heap analysis technique

Research Intern, Microsoft Research India Summer 2013

Teaching Experience

Teaching Assistant, EPFL, Switzerland 2013 – 2016
Participated in preparing and grading assignments and exams, conducted
exercise sessions, and occasionally gave lectures for the following courses:

• Basic Computer Programming I Spring 2013
• Advanced Compiler Construction Spring 2014
• Head TA for Computer Language Programming & Compilers Fall 2014, 2015, 2016

Developed and used an online tutoring system for context-free grammars
• Parallel and Reactive Programming in Scala Spring 2015
• Head TA for Parallel and Concurrent Programming in Scala Spring 2016

Developed and used a unit test engine for evaluating
student assignments on concurrent programming

Teaching Assistant, IISc, Bangalore
• Program Analysis and Verification Spring 2010

1

155

Reviewing Activities

• Served in the External Review Committee (ERC) of PLDI 2017 conference (http://bit.ly/2lkxzMK)
• Served as additional reviewer for POPL 2014 (http://bit.ly/2lahlF3),
SAS 2014 (http://bit.ly/2mhyLVs) and IJCAR 2014 (http://bit.ly/2lPElx2) conferences

Fellowships & Awards

• Awarded ACM SIGPLAN PAC grant for attending SPLASH 2015
• EPFL PhD fellowship (2012-2013)
• Ministry of Human Resource Development India scholarship for master studies (2008-2010)
• All India rank 27 (among ∼17K students) in CS Graduate Aptitude Test in Engineering (2008)
• Awarded university rank 6 in B.E. computer science (2008)
• Ranked 180th (among ∼150K students) in the state engineering entrance examinations TNPCEE (2004)

Conference Presentations & Invited Talks

• “Contract-based resource verification for higher-order functions with memoization”, POPL 2017, Paris
• “Testing student assignments on concurrent programming”, SCALA 2016, Amsterdam
• “Automating grammar comparison”, OOPSLA, SPLASH 2015, Pittsburgh
• “Symbolic resource bounds inference”, CAV 2014, Vienna
• “Modular heap analysis for higher-order programs”, SAS 2012, Deauville
• “Purity analysis: abstract interpretation formulation”, SAS 2011, Venice
• Presented invited talks at MSR India, IIT Madras, IISc Bangalore, MPI SWS

Conference Publications

(Every publication listed below is a full research paper and is not a short/tool paper.)

1. Contract-based resource verification for higher-order functions with memoization.
Ravichandhran Madhavan, Sumith Kulal, Viktor Kuncak.
Principles of Programming Languages (POPL), 2017.

2. A scala library for testing student assignments on concurrent programming.
Mikaël Mayer, Ravichandhran Madhavan.
Scala Symposium (SCALA), 2016.

3. Automating grammar comparison.
Ravichandhran Madhavan, Mikaël Mayer, Sumit Gulwani, and Viktor Kuncak.
In Object Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2015.

4. Symbolic resource bound inference for functional programs.
Ravichandhran Madhavan, and Viktor Kuncak.
In Computer Aided Verification (CAV), 2014.

5. Modular heap analysis for higher-order programs.
Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani.
In Symposium on Static Analysis (SAS), 2012.

6. Null dereference verification via over-approximated weakest precondition analysis.
Ravichandhran Madhavan, and Raghavan Komondoor.
In Object Oriented Programming, Systems, Languages, and Applications (OOPSLA), 2011.

7. Purity analysis: an abstract interpretation formulation.
Ravichandhran Madhavan, G. Ramalingam, and Kapil Vaswani.
In Symposium on Static Analysis (SAS), 2011.

Journal Publications

8. A framework for efficient modular heap analysis.
Ravichandhran Madhavan, G. Ramalingam and Kapil Vaswani.
In Foundations and Trends In Programming Languages (FnTPL), Volume 1, Issue 4, 2015.

2

156

