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Abstract—In this paper, we consider the problem of maxi-
mizing a monotone submodular function subject to a cardinality
constraint, with two added twists: The computation is distributed
across a number of machines, and we require the solution to be
robust against adversarial removals. We provide two versions
of a partitioned robust algorithm for this problem, with the
difference amounting to whether or not the centralized machine
is informed (only in the final stage of the algorithm) which
elements will be removed. In both of these cases, we provide
a novel constant-factor approximation guarantee with respect
to the optimal algorithm. Finally, we validate our algorithms
via numerical experiments on real-world data sets in influence
maximization and data summarization.

I. INTRODUCTION

Discrete optimization problems arise frequently in machine
learning, and are often NP-hard even to approximate. For set
functions exhibiting submodularity, one can efficiently perform
cardinality-constrained maximization with a

(
1 − 1

e

)
-factor

approximation guarantee. Applications of submodular function
maximization include influence maximization [1], document
summarization [2], sensor placement [3], active learning [4]
and Bayesian optimization [5], just to name a few.

In this paper, we combine two important aspects of
submodular maximization that have recently gained attention:
distributed computation [6], [7] and robustness [8], [9], [10].
Distributed algorithms are of interest in large data sets where the
data does not fit on a single machine, or where processing all
of the data on a single machine is computationally prohibitive.
Robustness is important in applications where some of the
returned elements may “fail” (e.g., users refusing to spread the
word in influence maximization), and one wishes to ensure that
this degrades the objective function as little as possible.

The algorithm proposed in this paper combines our robust-
ness techniques from [10] and the distributed techniques from
[6] in a non-trivial manner. We provide a rigorous constant-
factor approximation guarantee on the final solution returned,
being the first such result for the robust distributed setting. In
addition, we experimentally validate the performance of our
algorithm on real-world data sets in influence maximization
and data summarization.

A. Problem Statement

We proceed by formally specifying the problem statement.
Let V be a ground set with cardinality |V | = n, and let
f : 2V → R≥0 be a set function defined on V . The function f
is said to be submodular if for any sets X ⊆ Y ⊆ V and any

element e ∈ V \ Y , it holds that

f(X ∪ {e})− f(X) ≥ f(Y ∪ {e})− f(Y ).

We use the following notation to denote the marginal gain in
f due to adding the elements of a set Y to the set X:

f(Y |X) := f(X ∪ Y )− f(X).

If Y is a singleton of the form {e}, we adopt the shorthand
f(e|X). We say that f is monotone if for any sets X ⊆ Y ⊆ V
we have f(X) ≤ f(Y ), and normalized if f(∅) = 0.

Our goal is to output a set W of a given cardinality k in a
robust manner. Specifically, we assume that there exists a set
E of cardinality at most τ whose elements are removed from
the output W (if they were included in the first place). We
seek to design W in a manner such that f(W\E) is as high
as possible, rather than considering f(W ) alone.

We give a distributed solution to this problem, in which each
element from the ground set V is sent to one of m machines
uniformly at random. This results in a random partition of
V into V1, . . . , Vm. We then proceed in two stages. In the
first stage, each machine i = 1, . . . ,m returns a set Si ⊆ Vi
of cardinality k to the central machine. In the second stage,
the central machine processes S1, . . . , Sm to produce the final
output W , and we consider two variants:

• (E is given) The set E is given to the central machine
in the second stage only, and hence W is a function
of both S1, . . . , Sm and E.

• (E is unknown) The set E remains unknown, and W
can only be a function of S1, . . . , Sm.

The case that E is given might be of interest, for example,
when we wish to summarize a set of images, and we can
receive feedback from the user on which images they wish to
remove from S1, . . . , Sm before forming the final set W , but
cannot re-process the initial large data set.

Our distributed algorithm for both variants is given in
Section II, and Section III gives their theoretical guarantees.

B. Related Work

The two most related works in the literature are the
distributed submodular maximization framework of [6], and the
robust framework of [10]. The technique of [10] built on the
recent work [9], which in turn studied the robust formulation
originally proposed in [8]. Other works related to the distributed
setting include [11], [7], but these are less directly relevant to
the present paper.
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II. D-PRO ALGORITHM

Our distributed algorithm, which we refer to as D-PRO,
makes use of the Partitioned Robust (PRO) algorithm recently
proposed in [10], shown in Algorithm 1. Here GREEDY(k, V )
denotes the size-k output the greedy algorithm applied to the
set V ; while alternative subroutines were also considered in
[10], in this paper we focus on the greedy subroutine. Note that
η is an integer parameter that increases with k in the theoretical
guarantees, but can be set to one in practice.

PRO was shown in [10] to provide rigorous robustness
guarantees. However, its computational complexity may be
prohibitive for large ground sets, or the ground set may even be
too large to store on a single machine. The distributed approach
provides a powerful means to circumvent these limitations.

The first stage of D-PRO (performed across the m machines)
is shown in Algorithm 2. Following [6], each machine takes the
random subset Vi ⊆ V and runs the PRO subroutine. Provided
that m is sufficiently large, this is considerably more tractable
than running PRO on the entire ground set.

The second stage of D-PRO (done on the central machine)
is shown in Algorithm 3. We again use the PRO subroutine,
this time restricted to the subset ∪mi=1Si, and denote the output
by T . If the set E is unknown then we simply return T ,
whereas if E is known then we return the best set among
(S1 \ E, . . . , Sm \ E, T \ E).

Algorithm 1 Partitioned Robust Submodular optimization
algorithm (PRO)

Input: Set V , parameters k, τ , η ∈ N+

Output: Set S ⊆ V such that |S| ≤ k
1: S0, S1 ← ∅
2: for i← 0 to dlog τe do
3: for j ← 1 to dτ/2ie do
4: Bj ← GREEDY(2iη, V \ S0)
5: S0 ← S0 ∪Bj
6: S1 ← GREEDY(k − |S0|, V \ S0)
7: S ← S0 ∪ S1

8: return S

Algorithm 2 First stage of the distributed algorithm D-PRO

Input: Set V , parameters k, τ , η, m ∈ N+

1: Partition V randomly into {Vi}mi=1
2: for i← 1 to m in parallel do
3: Si ← PRO(Vi, k, τ, η)

return (S1, . . . , Sm)

Algorithm 3 Second stage of D-PRO on the central machine

Input: Sets (S1, · · · , Sm), parameters k, τ , η ∈ N+

Output: Set W ⊆ ∪mi=1Si such that |W | ≤ k
1: T ← PRO(∪mi=1Si, k, τ, η)
2: Z = {S1, · · · , Sm, T}
3: if E is known then
4: W ← argmaxS∈Z f(S \ E)
5: else
6: W ← T
7: return W

Remark 2.1: In the case that E is unknown, an alternative
approach would be to return the best set among (S1, . . . , Sm, T )
after the worst-case removal of τ elements. Such an approach
would in fact improve the theoretical guarantees (cf., Section
III) for this case. However, finding such a worst-case set is an
instance of a constrained submodular minimization algorithm,
which is NP hard in general. We thus focus on the simpler
tractable algorithm that immediately returns T .

III. THEORETICAL GUARANTEES

In this section, we formally state the robustness guarantees
of D-PRO (cf., Algorithms 2 and 3). We note that all of our
results are stated and proved only for arbitrary sets E (of
cardinality at most τ ) that are fixed in advance, and do not
depend on the randomness in producing V1, . . . , Vm (e.g., this
would be the case if E was a function of W ). However, we
have observed in the numerical experiments that our algorithm
still works well in such cases (cf., Section IV).

A. Preliminaries

PRO guarantees. Fix E ⊆ V with |E| ≤ τ , and let

OPT(k − τ, V \ E) = argmax
S⊆V \E,|S|=k−τ

f(S).

With this definition, the main theoretical result from [10]
can be restated as follows.1

Theorem 3.1: For a given budget k and parameters 2 ≤
τ ≤ k

5η(log k+2) and η ≥ 4(log k + 1), PRO in Algorithm 1
returns a set S of size k such that

f(S \ E) ≥ αf(OPT (k − τ, V \ E)),

where E ⊆ V is any set such that |E| ≤ τ , and

α =

η
5dlog τe+η

(
1− e−

k−|S0|
k−τ

)
1 + η

5dlog τe+η

(
1− e−

k−|S0|
k−τ

) . (1)

In addition, if τ = o
(

k
η log k

)
and η ≥ log2 k, then we have the

following as k →∞:

f(S \ E) ≥ (0.387 + o(1))f(OPT (k − τ, V \ E).

Lovász extension. The Lovász extension fL : [0, 1]V →
R≥0 of f is given by

fL(x) = Eλ∈U(0,1)[f({i | xi ≥ λ})],

where U(0, 1) denotes the uniform distribution on [0, 1]. Due
to the submodularity of f , the Lovász extension fL(x) satisfies
the following two properties [6]:

1) fL is convex, and fL(cx) ≥ cfL(x) for c ∈ [0, 1];
2) For all S ⊆ V , fL(1S) = f(S), where 1S is a vector

of size |V | equaling one at all entries i such that
vi ∈ S, and zero at all other entries.

1This result is slightly stronger than that stated in [10], but the proof therein
can be viewed as first deriving this stronger result and then weakening it.



B. Auxiliary lemmas

Let E ⊆ V be any fixed set such that |E| ≤ τ , and let
OPT(k − τ, V \ E) denote the optimal set of size k − τ on
the ground set V \E. Recall that each item is sent to a single
machine i chosen uniformly from {1, . . . ,m}, and that Vi
denotes the resulting random subset of V for machine i. We
define pv to be the probability that an item v ∈ OPT(k −
τ, V \ E) is selected by PRO if it is added to the set Vi (by
symmetry, i can be any value in {1, . . . ,m} here):

pv = Pr
(
v ∈ PRO(Vi ∪ {v})

)
. (2)

Moreover, let p denote a vector of size |V | equaling pv and
the entries corresponding to v ∈ OPT(k− τ, V \E), and zero
at all other entries.

The following two lemmas are key to our analysis,
lower bounding the expectations E[f(Si \ E)] (for every
i ∈ {1, . . . ,m}) and E[f(T \ E)] respectively.

Lemma 3.2: E[f(Si \ E)] ≥ αfL(1OPT(k−τ,V \E) − p).

Proof: Let

Oi = {v ∈ OPT(k − η, V \ E) : v /∈ PRO(Vi ∪ {v})},

be the set of omitted items for machine i. We claim that

PRO(Vi) = PRO(Vi ∪Oi), (3)

and that more generally, if several elements remain unchosen
by PRO when individually added to the ground set, then adding
all such elements to the ground set does not affect the output.
This property is inherited directly from the analogous property
of GREEDY, as used in [6]. We remark that it may not hold
for variations of PRO that use a non-greedy subroutine [10].

Using the above, we write

f(Si \ E) ≥ αf(OPT(k − τ, (Vi ∪Oi) \ E))

≥ αf(OPT(k − τ,Oi \ E))

= αf(OPT(k − τ,Oi))
= αf(Oi), (4)

where the first line follows from Theorem 3.1 and (3), the
second line uses monotonicity, the third line follows since Oi
contains no items from E by definition, and the last line from
the fact that |Oi| ≤ k − τ .

For each element v ∈ OPT(k− τ, V \E), we have Pr[v ∈
Oi] = 1− pv , and hence

E[1Oi ] = 1OPT(k−τ,V \E) − p. (5)

Finally, we weaken (4) as follows:

E[f(Si \ E)] ≥ αE[f(Oi)]
= αE[fL(1Oi)]
≥ αfL(E[1Oi ])
= αfL(1OPT(k−τ,V \E) − p), (6)

where the second line follows from the second property of
Lovász extension, the third line follows from Jensen’s inequality,
and the last line follows from (5).

Lemma 3.3: E [f (T \ E))] ≥ αfL(p).

Proof: Let D = ∪mi=1Si. From Theorem 3.1, we have

f
(
T \ E

)
≥ αf

(
OPT(k − τ,D \ E)

)
≥ αf

(
D ∩OPT(k − τ, V \ E)

)
, (7)

where the last line follows since D ∩OPT(k − τ, V \E) is a
subset of D\E of size at most k − τ .

Next, we have for any v ∈ OPT(k − τ, V \ E) that
Pr (v ∈ D ∩OPT(k − τ, V \ E)) = pv, and consequently

E
[
1D∩OPT(k−τ,V \E)

]
= p. (8)

Finally, continuing with (7), we obtain

E [f (T \ E))]

≥ αE
[
f
(
D ∩OPT(k − τ, V \ E)

)]
= αE

[
fL
(
1D∩OPT(k−τ,V \E)

)]
≥ αfL

(
E
[
1D∩OPT(k−τ,V \E)

])
= αfL(p), (9)

where he third line follows from the second property of the
Lovász extension, the fourth line follows from the convexity
of fL, and the last line follows from (8).

C. Statement of main result

With the above preliminaries and lemmas in place, we are
now in a position to state our main result.

Theorem 3.4: For any monotone submodular function f
with f(∅) = 0, and any parameters k, η ≥ 4(log k + 1) and
2 ≤ τ ≤ k

5η(log k+2) , the algorithm D-PRO returns a set W
satisfying the following:

(i) In the case that E is given, we have

E[f(W \ E)] ≥ 1

2
αf (OPT(k − τ, V \ E)) ;

(ii) In the case E is unknown, we have

E[f(W \ E)] ≥
α2
(
1− τ

k

)
2

f (OPT(k − τ, V \ E)) ,

where α is given in (1). In addition, if τ ∈ o
(

k
η log k

)
and

η ≥ log2 k, then as k → ∞, the asymptotic approximation
factor becomes α∞

2 and α2
∞
2 for the first and second case

respectively, where α∞ ≥ 0.387.

Proof: Case 1: From Lemmas 3.2 and 3.3, we
have E[f(W \ E)] ≥ αfL(p) and E[f(W \ E)] ≥
αfL

(
1OPT(k−τ,V \E) − p

)
. Combining these, we obtain

E[f(W \ E)] ≥ 1

2
α
(
fL(p) + fL

(
1OPT(k−τ,V \E) − p

))
≥ 1

2
αfL

(
1OPT(k−τ,V \E)

)
=

1

2
αf (OPT(k − τ, V \ E)) ,

where the second line follows from Jensen’s inequality, and
the third line uses the second Lovász property.

Case 2: From Lemmas 3.2 and 3.3, we have E[f(T \E)] ≥
αfL(p) and E[f(Si \ E)] ≥ αfL

(
1OPT(k−η,V \E) − p

)
. We
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Fig. 1: Comparisons of the D-PRO algorithm, and the existing distributed algorithm of [6] designed for the non-robust setting.

also have E[f(T \E)] ≥ α
(
1− τ

k

)
E[f(Si \E)], which follows

from Theorem 3.1 and the fact that the optimal size-(k− τ) set
has an objective function within a factor k−τ

k of the optimal
size-k set by submodularity and monotonicity (note that |Si\E|
can take any value in {k − τ, . . . , k}).

Combining these observations, we have

E[f(T \ E)]

≥
α
(
1− τ

k

)
2

(
fL(p) + αfL

(
1OPT(k−τ,V \E) − p

))
=
α2
(
1− τ

k

)
2

f (OPT(k − τ, V \ E))

by analogous arguments to Case 1.

IV. EXPERIMENTS

In this section, we validate our algorithm in two contexts
consisting of a non-negative, monotone, and submodular
objective function. We focus on the case of unknown E. We
first introduce the problems, objective functions, and data sets.

Dominating set problem. The dominating set problem
arises as a simple example of influence maximization, where a
graph specifies influence relations among a set nodes, and the
goal is to select a subset of nodes such that the total influence is
as high as possible. More formally, we fix a graph G = (V, F ),
where V denotes the set of nodes and F denotes the set of
edges. Letting N (S) denote the neighbors of the nodes in
S ⊂ V , the goal is to find a set of nodes S of size k that
maximizes the following objective function:

min
|E|≤τ

|(S \ E) ∪N (S \ E)|. (10)

We consider the EGO-TWITTER dataset that consists of 973
social circles from Twitter, used previously in [12]. These form
a directed graph with 81306 nodes and 1768149 edges.

Exemplar based clustering. Exemplar based clustering
provides a powerful means for finding a representative subset
from a much larger set (e.g., image summarization). The goal is
to find a set of items S of size k that maximize the following:

min
|E|≤τ

f({e0})− f((S \ E) ∪ {e0}). (11)

Here we use e0 to denote a reference element, f(S) =
1
|V |
∑
v∈V mins∈S d(s, v) is the k-medoid loss function, and

d(s, v) measures the dissimilarity between images s and v.

For this problem, we consider TINY10K dataset of size
10k [13], consisting of images each represented as a 3072-
dimensional vector. We use d(s, v) = ‖s − v‖2, and let the

reference element e0 be the zero vector. Moreover, we shift
and scale each vector to have zero mean and unit variance.

Experimental setup. In the following, the distributed
algorithm of [6] (which is not targeted at achieving robustness)
is referred to as RAND-GREEDI. We compare the robustness
of the solution produced by our algorithm against the one
produced by RAND-GREEDI.

Given a solution set S of size k, we measure the perfor-
mance in terms of the minimum objective value upon the
removal of τ elements, i.e. f(S \ E) with |E| = τ . Unfortu-
nately, for a given solution set S, finding the worst-case set E
(i.e., the optimal adversary) is an instance of the submodular
minimization problem with a cardinality constraint, which is
known to be NP-hard with polynomial approximation factors
[14]. Hence, implementing the optimal adversary appears to
be computationally challenging.

However, as was observed in [10], the greedy adversary,
which iteratively removes elements to reduce the objective
value as much as possible, behaves in a nearly identical manner
to the optimal adversary for the data sets under consideration.
Hence, we adopt the greedy adversary in our experiments, as
it is easy to implement efficiently.

In Figures 1 (a)–(b), we show how the objective value
changes as we increase the number of removed elements, for
both the EGO-TWITTER and TINY10K datasets. Here, k is fixed
and set to 100. Our algorithm is run with τ = 10, i.e. as if 10
elements were to be removed. However, in both experiments,
we also consider the performance when an even larger number
of elements is removed – up to 50. We can observe that for a
small number of removals, RAND-GREEDI outperforms our
algorithm; this is because D-PRO stores “redundant” items in
order to ensure robustness. On the other hand, as the number
of removals increases, D-PRO outperforms RAND-GREEDI.

In Figure 1 (c)–(d), we vary the size of the returned set
k while the number of removed elements is set to τ = k/2,
for both the EGO-TWITTER and TINY10K datasets. In our
algorithm, we set τ = k/8, so that we under-estimate the true
number of removals. In both experiments, D-PRO dominates
RAND-GREEDI for all values of k considered, often with a
significant gap between the two.
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