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ABSTRACT: Semiconductor nanowires are promising building blocks for next-
generation photonics. Indirect proofs of large absorption cross sections have been
reported in nanostructures with subwavelength diameters, an effect that is even more
prominent in vertically standing nanowires. In this work we provide a three-dimensional
map of the light around vertical GaAs nanowires standing on a substrate by using
fluorescence confocal microscopy, where the strong long-range disruption of the light
path along the nanowire is illustrated. We find that the actual long-distance perturbation
is much larger in size than calculated extinction cross sections. While the size of the
perturbation remains similar, the intensity of the interaction changes dramatically over
the visible spectrum. Numerical simulations allow us to distinguish the effects of
scattering and absorption in the nanowire leading to these phenomena. This work
provides a visual understanding of light absorption in semiconductor nanowire
structures, which is of high interest for solar energy conversion applications.
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Since the discovery of photonic properties of dielectric
nanostructures,1−7 their great potential for solar applica-

tions at lower cost has been unraveled.8−18 Nanowire (NW)
ensembles constitute a new class of metamaterial, where the
optical properties cannot be directly deduced from individual
parts.19−22 Optical properties of NW arrays are tuned by the
individual NW type, geometry, and collective arrangement,
which provide a new playground in solar energy conversion and
the solid-state lighting arenas.23−32 The effective absorption
cross section in vertically standing nanowires can be much
larger than the geometrical one.6,8,33 This large absorption
cannot be explained by the standard Mie-like resonance
formulism, as in the case of horizontally lying structures.34,35

Assessing the absorption cross section in vertical structures is
not straightforward, and it is important to understand how light
is interacting with nanostructures and essential for the accurate
quantum efficiency determination in photodevices. Many
approaches have been shown to measure the optical local
density of states in and around photonic and plasmonic
structures, which include cathodoluminescence tomography,36

near-field optical probe techniques, single molecules attached to
an AFM tip,37,38 or fluorescent solutions probed with super-
resolution microscopes,39−41 among others. Although complex
computational work has shown that super-resolution micros-
copy can be used to scan in all three dimensions,42 no studies

have shown 3D imaging of local density of states at microscale
surroundings of photonic nanostructures.
In this work, we are interested in the 3D visualization of

long-range light−matter interactions in gallium arsenide
(GaAs) standing nanowires, in particular within the region of
large absorption. To this end, we use a simple confocal
microscope setup. The reconstructed fluorescence image
captures the evolution of light extinction around the nanowire
and along its length. By combining the experiments with
electromagnetic simulations, we elucidate the mechanisms
behind self-concentrating light effects and large absorption
cross sections found in semiconductor nanowires and their
relation to the nanowire waveguiding properties. While the
resolution is diffraction limited, we show that this method
provides insightful 3D extinction maps around nanostructures,
which can be an asset to characterize more complex
morphologies.
To demonstrate the power of the technique, we probe GaAs

nanowires vertically standing on a silicon (Si) substrate. GaAs is
a compound semiconductor with a direct band gap of 1.42 eV,
which makes it an excellent candidate for solar energy
applications.
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Figure 1a illustrates the experimental setup that provides a
three-dimensional mapping of light distribution around

nanostructures. The sample is embedded in a liquid solution
with suspended fluorescent dye molecules (see Supporting
Information S1 for more details). The dye fluorescence
intensities are mapped around the nanowires with a laser
scanning confocal microscope. Dye molecules are excited with a
laser beam focused with a confocal microscope objective, and
the emitted light is collected through the same objective and
detected with a photomultiplier (PMT). The physical principle
of this characterization method resides in the fluorescence
intensity of the molecules being proportional to the local
excitation light intensity. Thus, by scanning the laser beam over
an x−y area for a number of z-stacks, a diffraction-limited
resolution 3D map of the light intensity is obtained. The x−y
and z optical resolution in our experiments is specified in the
Supporting Information.
An example of a reconstructed 3D image of light around

GaAs nanowires when illuminated with blue laser light is shown
in Figure 1b. In this case, two vertical GaAs nanowires (10 μm
long, 126 nm in diameter, and 2.5 μm apart) stand vertically on
a Si substrate. The sample is excited with blue light (λ = 488
nm), for which theory predicts that it should not have the
strongest interaction with these nanostructures (see Supporting
Information on the absorption spectrum of a single nanowire).
The represented gray transparency in the image is linked to the
amount of detected light, so that the darkest areas in the image
indicate positions where no light is detected. As a consequence,
the substrate appears dark. Under these conditions, also two
dark columns stand at the position of the nanowires and a dark
layer where the silicon substrate starts, in accordance with the
lack of fluorophores in that volume. Interestingly, a semi-
transparent conical region surrounds the nanowires and widens
up to several micrometers when approaching the nanowires’
bottom. The y−z cross-section intensity contour plot of the
same image (Figure 1c) provides a more quantitative
representation of the conical “shadow”. These pictures
represent a clear visual image of how the nanowire pair is

Figure 1. (a) Schematic illustration of the measurement setup and (b)
a 3D reconstruction of the optical density in an area around two GaAs
NWs on silicon illuminated with blue light (λ = 488 nm) obtained by
confocal microscopy. The nanowires are 10 μm long with a diameter
of 126 nm and 2.5 μm apart. (c) Orthogonal cross-section
fluorescence intensity plot of the same image as in (b). Fluorescence
intensity is normalized to that observed far from the nanowires.
Dotted lines indicate the set of data points represented in (d). (d)
Line-scan profiles experimentally obtained at 1.2 and 7.5 μm below the
nanowire tip (dots). Thick lines correspond to the simulated light
intensity, by considering light with random polarization and
convoluting the data with a Gaussian point spread function.

Figure 2. (a) Calculated absorption efficiency spectrum for a 4.5-μm-long vertical GaAs nanowire in water. Two nanowire diameters (ϕNW) are
shown. Stars correspond to the experimental conditions used. (b) Orthogonal cross-sectional confocal images of GaAs nanowires obtained with 488,
532, and 633 nm excitation wavelengths (from left to right, respectively). The intensity is normalized to that far from the nanowires. Dotted line
indicates the substrate surface (c) FDTD-simulated field energy distribution for the three geometries described above (ϕNW = 100 or 126 nm and L
= 4.5 μm). Here, only the excitation beam is being considered and has been averaged over all polarizations. The nanowire area is shaded as a black
rectangle since fluorescent molecules cannot be found inside. Scale bar is 1000 nm.
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capable of redistributing the electromagnetic field around them
at a long-range distance. It is clear from this picture that there is
less light arriving at the silicon substrate surface due to the
presence of the nanowires. It is interesting to note both the
dimension and the magnitude of the shaded silicon surface. A
better understanding of how light is redistributed around the
nanowires is discussed later on. First, to confirm and prove that
our experimental setup is truly representing the light intensity
distribution around the nanowires of the incoming laser, finite-
difference time-domain (FDTD) simulations were performed.
The steady-state field energy distribution was simulated by
considering an incoming plane wave propagating in the −z
direction and the same wavelength as in the experiment (λ =
488 nm). Due to the asymmetry of the nanowire pair, two sets
of simulations were performed for light polarized in the x and y
axes, respectively. The resulting intensity maps were averaged
to obtain the final distribution map. Figure 1d displays the line
profiles of the calculated electric field intensity squared
superimposed to the fluorescence light intensity at 1.2 and
7.5 μm below the nanowire tip. The calculated field energy
distributions are in remarkable agreement with the detected
light distribution from the confocal images. This result confirms
that the observed confocal images are indeed an excellent
representation of the interaction between a vertically impinging
plane wave and the nanostructures, which can span up to
several micrometers in distance. Such good agreement also
rules out that the confocal image is strongly perturbed by the
possible interactions between fluorophore emission and the
nanostructures. In fact, light emitted by the fluorophores is
perturbed only when very close to the nanowire surface (<12
nm) and is mostly smeared out when convoluting for the point
spread function of the microscope.43,44 See Supporting
Information section S3 for more details. Figure 1 illustrates
the potential of fluorescence confocal microscopy as an
excellent tool to visualize and assess the 3D extinction cross
section of high-aspect-ratio nanostructures. Indeed, the
resulting confocal images are a combination of all possible
interactions of light with the nanostructures, i.e., scattering,
waveguiding, and absorption, and their interplay with and
relevance to the case of GaAs nanowires is discussed below.
Earlier works have shown that vertical semiconductor

nanowires, such as silicon, InP, or GaAs, exhibit absorption
efficiencies that are far above 1 and have a strong spectral
dependence with absorption peaks unexplained by the bulk
optical parameters.6,8,9,33,45 Here, the absorption efficiency
calculated by FDTD as a function of wavelength for two single
GaAs nanowires with diameters ϕNW of 100 and 126 nm is
shown in Figure 2a. One can clearly observe two main peaks,
the position of which varies with ϕNW. For the specific diameter
of 100 nm, the absorption peak occurs at a wavelength very
close to the band gap of GaAs. Even though the extinction
coefficient is small in this spectral region, the strong interaction
with light from a large area surrounding the NW allows for such
extreme absorption. This diameter is particularly important for
the design of solar cells. Here we show that the spectral
dependence of absorption is basically dictated by the coupling
of light into different photonic modes in the nanowire (see refs
33, 34, 46, 47 and the Supporting Information for more details
on the contribution of the HE11 mode to the total absorption in
vertical nanowires). In particular, the main absorption peak at
long wavelengths is due to the coupling of light into the HE11
guided mode. Such distinct light−matter interactions give rise
to large differences in light absorption within small spectral

windows, rendering the vertical nanowire systems particularly
challenging to picture how light is being absorbed. This
motivates our study of GaAs nanowires at different absorption
regimes. Within our experimental constraints, we have used two
different sets of nanowire diameters and three different
wavelengths, marked by stars in Figure 2a, to span over
different absorption efficiency regimes.
Figure 2b shows confocal cross-sectional images of individual

GaAs NWs obtained for the conditions just mentioned, for
which the absorption efficiency changes by up to a factor of 4.
Nanowires of similar lengths (∼4−5 μm) have been chosen.
The color scale represents the intensity of detected light
normalized to that found far from the nanowire (i.e., the bulk
solution). The respective confocal images in Figure 2b exhibit a
strong and clear progression when shifting from the small to
large absorption conditions. In all cases, we observe the conical
shadow as described in Figure 1, but it becomes much darker
when approaching the conditions of large absorption. The fact
that for certain conditions there is light missing in the nanowire
nearby could be an indication that the absorption efficiency in
vertically standing nanowires is larger than its physical diameter.
In the rightmost image of Figure 2b, the shadow is so intense
that light emitted within the shadow and in particular at the
nanowire bottom is below our detection limit. It is interesting
to note that while the darkness of the shadow has a strong
dependence on the absorption regime condition, its extent does
not. This is quite striking and indicates that the interaction
volume between nanowire and light is not noticeably linked to
the absorption cross section; that is, the absorption cross
section cannot be directly measured from the extent of the
shadow. On the other hand, there is a less intuitive effect
observed in the confocal images: the nanowire appears brighter
when approaching the absorption peak. In order to understand
both effects (darker shadow and brighter nanowire for the high-
absorption regime), we show FDTD-simulated field energy
distributions for the three nanowire and illumination conditions
in Figure 2c. The images have been obtained by simulating a
single GaAs nanowire in water with an unpolarized light source.
The simulations are not convoluted with the point spread
function (PSF) of the microscope, so that we can focus on the
physics of the light−nanowire interaction. The simulated maps
show the same trend as in the confocal images when
approaching the absorption peak: (a) there is a conical region
that extends up to several micrometers where the field energy is
reduced although its extent is qualitatively the same regardless
of illumination conditions; (b) the surface of the nanowire
(distances <20 nm) has a strong field concentration. Next we
focus on the origin of these two effects and how to relate them
with the absorption cross section.

■ RELATION BETWEEN THE DARK CONICAL
SHADOW AND ABSORPTION CROSS SECTION

The theory and experimental images from Figure 2 clearly
indicate that in the spectral range close to an absorption peak
the surroundings of the nanowire become darker with a very
characteristic conical geometry. The key question is if this
shadow is related to the absorption cross section of a nanowire,
and if yes, how?
To answer this question, we focus on how light interacts with

a nanowire of a particular diameter and length at the absorption
maxima and minima. While absolute values at which wave-
lengths these maxima/minima occur, the physics is regardless of
the nanowire dimensions. Figure 3a shows the calculated
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effective cross-section diameter of a GaAs nanowire with ϕNW =
126 nm and L = 3 μm as a function of wavelength. It is worth
noting that the effective diameter of the nanowire is larger than
the geometrical one for most of the spectrum, and it is even
almost an order of magnitude larger at the absorption peak. To
decouple absorption from other contributions, we have
simulated the field energy distribution at three characteristic
spectral positions for a lossless GaAs nanowire (i.e., the GaAs
extinction coefficient, k, is set to 0), |Ek=0|. The three spectral
positions correspond to the main absorption peak at 755 nm, a
secondary absorption peak at 383 nm, and the absorption
minimum (although still with a cross-section diameter almost 5
times larger than ϕNW). The color scale in the three |Ek=0|

2

maps has been set logarithmically, and the scale limits maximize
the contrast. When absorption is not taken into account, at 383
and 755 nm (the absorption maxima for the regular GaAs
nanowire), a strong field concentration occurs at the
surroundings of the nanowire (shown in red), while a shadow
(shown in blue) appears at 550 nm (the absorption minimum).
To highlight to what extent absorption is relevant to the

confocal images and how much energy is being is dissipated in
absorption, we have subtracted the |Ek=0|

2 map from the field
distribution as obtained for a regular GaAs (i.e., by taking
absorption into account), |Ek=kGaAs|. We have normalized the
subtraction to the incoming field ((|Ek=0|

2 − |Ek=kGaAs|
2)/|E0|

2),

and we call the result an absorption map (Figure 3c). The
absorption maps at 383 and 755 nm show that most of the light
that was scattered and focused at the nanowire is absorbed. We
believe that this is related to the coupling to guided modes,
whose field is capable of leaking to the far field. For such small
nanowire diameters and vertical configuration, most of the
visible spectrum will interact with the nanowire via the coupling
to its fundamental guided mode.33,34,46,47 Thus, the absorption
spectral dependence is given by the real part of the refractive
index (n) instead of the imaginary one (k). Both the refractive
index and the diameter of the nanowire define the coupling of
light into guided modes. It turns out that the most effective
coupling of a plane wave with the nanowire (and consequently
the highest absorption) occurs when the guided mode extends
outside the boundaries of the nanowire and thus is similar to a
weakly guided mode (see Supporting Information). This occurs
regardless of the absorption power of the nanowire material.
Because of the mode being weakly guided at the absorption
maxima, light is poorly confined to the surroundings of the
nanowire and creates the light concentration effect seen in
Figure 3b. Conversely, if the nanowire can capture those
photons, little light can escape, leaving a shadow at the
nanowire surroundings.
As a final remark, we notice that in all three conditions

represented in Figure 3 the effects of absorption extend several
micrometers from the nanowire surface. We compare this to
the calculated effective absorption cross section plotted with a
dashed line on the absorption maps. The cross section increases
with nanowire length, and it saturates to the value given for an
infinite GaAs cylinder at lengths longer than ∼10 μm (see
Supporting Information on absorption dependence on nano-
wire length). Interestingly, there is not a clear match between
the absorption maps and the absorption cross section. In
particular a very interesting outcome is that at the absorption
minimum, λ = 550 nm, the absorption extends to much larger
distances as compared to the cross section. It is worth noting
that (|Ek=0|

2 − |Ek=kGaAs|
2)/|E0|

2 is only about 20% at the
nanowire surroundings. In other words, the absorption map
shows an extended absorption volume because it is not very
effective. By contrast, at the absorption maxima (λ = 383 and
755 nm), the absorption is so effective that it actually extends in
the absorption map to a region much smaller than that
expected from the cross section.

■ RELATION BETWEEN THE HE11 GUIDED MODE
AND THE LIGHT INTENSITY AT THE NANOWIRE
POSITION

The confocal images show a clear trend of displaying a brighter
signal at the nanowire position when increasing the wavelength.
We explain this phenomenon with the optical antenna effect;
that is, the nanowire collects light from its surroundings and
focuses it at the surface.48 As described in the previous section,
the main mechanism by which light interacts with the nanowire
is via coupling into guided modes. At short wavelengths (λ/n <
ϕNW) the lowest order mode, HE11, is strongly confined to the
core of the NW, as shown by the cross-sectional field
distribution in Figure 4. In contrast, at longer wavelengths
(λ/n > ϕNW) the mode expands and most of the field intensity
resides at the nanowire surface.
Intuitively one would expect that a strong mode confinement

to the GaAs leads to strong absorption, desirable for instance in
solar cell applications. Still, one should also consider how the
incident light can couple into the nanowire. Efficient coupling is

Figure 3. (a) Simulated absorption cross-section diameter as a
function of wavelength for a single GaAs nanowire (L = 3 μm and ϕNW
= 126 nm). The dashed line corresponds to the physical nanowire
diameter. (b) Cross-section representation of the scattered field by
assuming no absorption in the GaAs (L = 3 μm and ϕNW = 126 nm).
The color bars are in logarithmic scale. The limits have been set to
maximize contrast and in such a way that white color is always at a
value of 1. (c) Absorption map representation by using the method
described in the text. The effective absorption cross-section diameter
as a function of length for that particular wavelength is also plotted as
dashed curves. The nanowire is represented by the black square, and
the scale is kept the same in all maps. All simulations have been
polarization averaged.
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possible when there is a large overlap between the incident field
and the field of the photonic modes. When the light source is
an extended plane wave, large absorption occurs at wavelengths
where the mode is expanded enough to allow efficient incoming
light coupling while maintaining enough field energy inside the
nanostructure. We assess the area of interaction by defining a
radius of overlap, roverlap, which is an estimated value of the
range of interaction between the photonic mode and the plane
wave. The full description of how to calculate roverlap is given in
the Supporting Information. The calculated roverlap for the three
cases considered here are listed in Figure 4. From case (i) to
(iii) roverlap increases dramatically, from 46 nm to 268 nm. In the
latter, roverlap is more than 5 times larger than the geometrical
radius (ϕNW/2) of the nanowire. This is a rough estimate of
how much light around the NW is being redistributed into the
form of the photonic mode. With this we have highlighted the
physical mechanism explaining how light can be collected from
an area that is much larger than its physical cross section. This
outstanding and nonintuitive property of standing nanowires is
also referred to as a self-concentrating effect, which is of major
interest for photovoltaic applications and optoelectronics in
general. Interestingly, when more light is collected, i.e., case
(iii), the strongest field resides at the surface of the NW. As a
consequence, fluorophores close to the nanowire surface will be
very efficiently excited. Despite the lack of light emission inside
the NW volume and the large PSF of the microscope, the
strong signal from the surface results in a bright nanowire
image. A closer look into this region may be provided by super-
resolution microscopes, where the optical resolution is down to
a few tenths of a nanometer. However, within this region of
strong interaction between the fluorophore and the nanowire,
other optical effects start playing a role and the relationship
between the detected light and optical density of states is
nontrivial.43,44,49

It is also worth mentioning that under strong coupling
conditions emitted light from fluorophores close to the surface
does also efficiently couple to the nanowire via the near field. In
those cases, one must also take into account the effects of the
nanowire presence on the emitted fluorescent light for a
thorough quantitative assessment of the electromagnetic field
distribution or density of states close to the nanowire surface.

Effects on the emission quantum yield and in/out-coupling of
the emission into/out of the nanowire must be considered, as
shown in detail in refs 44, 50, and 51.
In conclusion, we present a method that provides visual

information in 3D on the light distribution around nanostruc-
tures. In particular, we show that it allows understanding how
light travels and is being absorbed in vertical semiconductor
nanostructures. For the case of GaAs vertical nanowires, we
observe a conically shaped large extinction volume around the
nanostructure for wavelengths close to the absorption
maximum. We find that the light−nanowire interaction is
mainly due to coupling of light into weakly guided modes. The
weaker it is, the strongest the absorption and the darker the
shadow around the nanowires. This is true up to an optimal
absorption wavelength. For longer wavelengths the field is no
longer inside the nanowire and thus cannot absorb light.
Despite the strong dependence of absorption and radius
overlap on wavelength, we observe that light is perturbed in the
micrometer range around GaAs nanowires, regardless of the
strength of the nanowire absorbing power. This result is very
relevant when designing nanowire-based tandem solar cells, as
it affects the direction and amount of light arriving at the
subsequent cells. This method opens the path toward the
investigation of the optical properties of more complex
nanostructures and/or metamaterials.
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