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ABSTRACT 

Sustainable coastal resource management requires sound understanding of interactions between 

coastal unconfined aquifers and the ocean as these interactions influence the flux of chemicals to 

the coastal ocean and the availability of fresh groundwater resources. The importance of 

submarine groundwater discharge in delivering chemical fluxes to the coastal ocean and the 

critical role of the subterranean estuary (STE) in regulating these fluxes is well recognized. STEs 

are complex and dynamic systems exposed to various physical, hydrological, geological, and 

chemical conditions that act on disparate spatial and temporal scales. This paper provides a 

review of the effect of factors that influence flow and salt transport in STEs, evaluates current 

understanding on the interactions between these influences, and synthesizes understanding of 

drivers of nutrient, carbon, greenhouse gas, metal and organic contaminant fluxes to the ocean. 

Based on this review, key research needs are identified. While the effects of density and tides are 

well understood, episodic and longer-period forces as well as the interactions between multiple 

influences remain poorly understood. Many studies continue to focus on idealized nearshore 

aquifer systems and future work needs to consider real world complexities such as geological 

heterogeneities, and non-uniform and evolving alongshore and cross-shore morphology. There is 

also a significant need for multidisciplinary research to unravel the interactions between physical 

and biogeochemical processes in the STE, as most existing studies treat these processes in 

isolation. Better understanding of this complex and dynamic system can improve sustainable 

management of coastal water resources under the influence of anthropogenic pressures and 

climate change.  

Keywords: groundwater-ocean interactions, nutrients, metals, organic contaminants, tides, 

waves, interacting effects 
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List of Acronyms 

CUA  Coastal unconfined aquifer 

DZ Dispersion zone 

FSGD  Fresh submarine groundwater discharge 

SGD  Submarine groundwater discharge 

SLR Sea level rise 

STE  Subterranean estuary 
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1. Introduction 

Sustainable management of coastal marine and groundwater resources is a major global 

environmental challenge due to accelerating anthropogenic and climate pressures on coastal 

areas [Vörösmarty et al., 2000; Scavia et al., 2002; Ferguson and Gleeson, 2012]. Up to 1.4 

billion people will live in low-elevation coastal zones with a flood frequency of 1 in 100 y by 

2060, representing a 120% increase in the coastal population since the year 2000 [Neumann et 

al., 2015]. Pressures associated with population growth and intensifying coastal development 

will be compounded by climate change effects including sea level rise (SLR) and the increasing 

frequency and intensity of coastal hazards (e.g., storm surges, hurricanes) [Bosello et al., 2007; 

McGranahan et al., 2007; Alongi, 2008; Halpern et al., 2008; Knutson et al., 2010; Hallegatte et 

al., 2011]. These pressures exacerbate the challenges inherent in sustainable management of 

coastal resources, and underscore the need for sound understanding of land-ocean interactions 

[Borja, 2005; Hamilton and Gehrke, 2005; Day et al., 2008], including the exchange of water 

and chemicals across the land-ocean interface. 
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Figure 1. Conceptual diagram of a coastal unconfined aquifer (CUA) and subterranean estuary 

(STE), including major flow processes: 1) density-driven recirculation, 2) tide-induced 

recirculation, 3) wave-driven recirculation and 4) terrestrial fresh groundwater discharge. The 

STE is associated with the dispersion zone (DZ) of the saltwater wedge and the upper saline 

plume (USP). 

Coastal unconfined aquifers (CUAs) are a key hydrogeological feature connecting the world’s 

oceanic and groundwater resources. Beaches, which are globally the most common type of open 

shoreline, typically represent the seaward extent of CUAs [Defeo et al., 2009]. Understanding 

interactions between CUAs and the coastal ocean is critical for integrated resource management 

as these interactions control the exchange of water and chemicals across the land-ocean interface 

in both seaward and landward directions (Figure 1) [Leeks and Jarvie, 1998; Carabin and 
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Dassargues, 1999; Alongi et al., 2004; Newton and Mudge, 2005]. From a terrestrial perspective, 

CUA-ocean interactions are important because they affect the availability of fresh groundwater 

in coastal areas, which can be threatened by seawater intrusion [Werner et al., 2013; Yu et al., 

2016]. From a marine perspective, CUA-ocean interactions are important because they can 

impact coastal water quality and ecosystems due to the discharge of groundwater and associated 

chemicals to the coastal ocean [Moore, 2010]. 

Over the last 30 y, it has become well established that the total flux of water from coastal 

aquifers to the ocean (termed submarine groundwater discharge, SGD) is an important 

component of the hydrologic cycle and can be a major pathway for delivering chemicals across 

the land-ocean interface [Moore, 1996; Burnett et al., 2003; Moore, 2010]. Field investigations 

around the world have documented coastal settings where SGD is an important source of 

freshwater [Burnett et al., 2003; Burnett et al., 2006; Stalker et al., 2009; Wang et al., 2015], 

nutrients [Paytan et al., 2006; Shellenbarger et al., 2006; Lee et al., 2009; Luo et al., 2014], 

carbon [Cai et al., 2003; Goni and Gardner, 2003] and trace elements [Charette and Sholkovitz, 

2006; Beck et al., 2007; Beck et al., 2010] into the coastal and open ocean. Defined as the total 

water efflux across the seabed to the ocean, SGD comprises terrestrial (fresh) groundwater 

discharge as well as all seawater recirculating across the sediment-water interface [Burnett et al., 

2003]. While SGD also occurs across the continental shelf with water exchange driven by forces 

including geothermal heating and pressure gradients through discontinuous confining layers 

[Moore, 2010], this review focuses on SGD and associated chemical fluxes from CUAs to the 

nearshore zone. CUAs and associated ecosystems are highly vulnerable to anthropogenic and 

climate pressures and therefore focusing this paper on CUAs provides understanding required to 

protect coastal resources in light of this vulnerability. 
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Wherever the groundwater table in a CUA is higher than the mean sea level, terrestrial fresh 

groundwater (also called fresh SGD, FSGD) discharges to the ocean. Seawater also intrudes into 

a CUA, forming a zone of saltwater-freshwater mixing in the aquifer. Due to the distinct 

chemical compositions of terrestrial groundwater and seawater, the saltwater-freshwater mixing 

zone is often characterized by strong geochemical (salinity, redox, pH) gradients, making it an 

important chemical reaction zone [Moore, 1999; Charette and Sholkovitz, 2002]. In analogy to 

the classical (surface) estuary, the zone of saltwater-freshwater mixing in a CUA is termed a 

subterranean estuary (STE) [Moore, 1999]. By controlling the functioning of a STE, the 

groundwater flow, solute transport and reaction dynamics in the nearshore zone of a CUA 

(nearshore aquifer) affect the fate and flux of terrestrial chemicals discharging to the coastal 

ocean [e.g., Beck et al., 2007; Kroeger and Charette, 2008; Anwar et al., 2014]. They also affect 

the fate of marine-derived chemicals recirculating through a nearshore aquifer and subsequent 

chemical fluxes returned to the coastal ocean [e.g., Charette and Sholkovitz, 2006; Anschutz et 

al., 2009; Moore, 2010; Charbonnier et al., 2013]. 

The nearshore aquifer is a complex system that is exposed to various dynamic hydrological 

forces that act on a wide range of spatial and temporal scales [Santos et al., 2012c]. These forces 

include the terrestrial hydraulic gradient, tides, waves, seasonal and interannual sea level and 

aquifer recharge variations amongst others. Nearshore groundwater dynamics are further 

complicated by variable-density effects and local hydrologic processes including evaporation and 

rainfall. A simplified representation of the water exchange and groundwater flow processes in a 

CUA system exposed to various driving forces is shown in Figure 1. Additional complicating 

features including geological heterogeneities, and complex alongshore and cross-shore 

morphology are not shown in Figure 1, although their importance is discussed in this review. 
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Smaller-scale water exchange processes including exchange induced by current-bedform 

interactions, bioirrigation and ripple migration are also not included. Santos et al. [2012b] 

recently reviewed these physical drivers for SGD. 

Over the last decade, significant research effort has been devoted to better understanding the 

effect of the various driving forces on SGD and the functioning of a STE (flow, mixing and 

reaction processes) to better understand their impacts on chemical fluxes to the coastal ocean. 

Reviews are available that focus on SGD including the underlying mechanisms (i.e., driving 

forces) [Burnett et al., 2003; Santos et al., 2012b], associated chemical fluxes to the ocean 

[Slomp and Van Cappellen, 2004; Moore, 2010; Knee and Paytan, 2012] and measurement 

techniques [Burnett et al., 2001; Taniguchi et al., 2003]. Similarly, reviews that provide a 

synthesis of the growing number of SGD field studies are available [Taniguchi et al., 2002; 

Kwon et al., 2014; Cho and Kim, 2016]. Saltwater intrusion in coastal aquifers, a topic 

inextricably linked to nearshore groundwater dynamics and SGD, was extensively studied over 

the last 50 y with a comprehensive review recently provided by Werner et al. [2013]. The 

objective of this paper is to provide a review of the relative effects of the various physical forces 

on nearshore groundwater dynamics in CUAs, evaluate current understanding on the interactions 

between these forces, and synthesize conceptual models with respect to how nearshore 

groundwater dynamics impact chemical fluxes to coastal waters. Reviewing nearshore 

groundwater dynamics is relevant not only for understanding SGD and associated chemical 

fluxes to the coastal ocean, but also important for other coastal sub-discipline areas including 

coastal (beach) geomorphology, beach-scale hydrology and salinization of coastal groundwater 

resources (i.e., saltwater intrusion). We first synthesize current understanding with respect to the 

effect of the various driving forces on nearshore groundwater flow and salt transport (Section 2). 
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Second, we review the behavior of nutrients, carbon, greenhouse gases, metals and organic 

contaminants in CUAs (especially the STE), and the ultimate flux of these chemicals to the 

coastal ocean (Section 3). Finally, key knowledge gaps and challenges that need to be addressed 

to advance understanding of this poorly quantified connection between the land and ocean are 

provided. 

2. Flow and salt transport under different drivers 

2.1 Density 

The density difference between seawater and terrestrial fresh groundwater influences nearshore 

groundwater dynamics and contributes to the exchange of water across the CUA-ocean interface. 

Buoyancy forces associated with these density differences interact with advective forces 

associated with terrestrial groundwater discharge, dispersive processes and hydrogeological 

conditions to control the configuration of the saltwater wedge and associated density-driven flow 

and transport in a CUA [Werner et al., 2013]. As described by Cooper [1959], hydrodynamic 

dispersion across the interface (dispersion zone; DZ, Figure 1) of the saltwater wedge causes salt 

to move into the freshwater zone, driving convective recirculation within the saltwater wedge. 

This density-driven recirculation contributes to SGD [Destouni and Prieto, 2003; Smith, 2004]. 

It is challenging to determine the contribution of density-driven recirculation to total SGD from 

field data alone. Therefore, estimates often rely on numerical simulations. Early simulations by 

Destouni and Prieto [2003] suggested that the magnitude of density-driven recirculation is easily 

quantifiable, being a linear function of the FSGD. However, Smith [2004] presented a more 

extensive, non-dimensional parametric study showing that prediction of density-driven 

recirculation is strongly dependent on aquifer dispersivity, which is typically uncertain and 
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highly scale dependent. Smith [2004] also showed that density-driven recirculation is greatest for 

medium FSGD rates because high FSGD reduces saltwater intrusion into the aquifer, whereas 

low FSGD leads to a wide DZ with reduced density gradients to drive recirculation. More 

recently Qu et al. [2014] showed numerically that the anisotropy ratio of horizontal to vertical 

hydraulic conductivity also influences density-driven recirculation with the saltwater wedge 

interface retreating seaward and density-driven recirculation decreasing as this ratio increases. 

The DZ of the saltwater wedge is an important mixing zone between terrestrial groundwater and 

recirculating seawater in a STE. The travel pathway and residence times for density-driven 

recirculation depends on the hydrogeology of the CUA but they are generally long with 

residences times varying from an order of 100 d to over tens of thousands of years [Robinson et 

al., 2007b; Post et al., 2013]. This provides significant time for reactions to occur including 

aquifer sediment transformations such as carbonate diagenesis [Back et al., 1979]. The location, 

shape and thickness of the DZ and thus configuration of the STE depend on various factors 

including the aquifer dispersivity, FSGD and the density contrast between the seawater and 

terrestrial groundwater [e.g., Volker and Rushton, 1982]. The DZ is also influenced by transient 

forcing such as sea level and seasonal recharge variations and therefore it is rarely at steady state 

[Michael et al., 2005; Gonneea et al., 2013b]. These transient effects including implications for 

the extent of saltwater-freshwater mixing in a STE are described in the following sections.  

2.2 Recharge 

Recharge to a CUA and subsequent FSGD is a primary component of SGD and driver of 

chemical flux across the land-ocean interface (Figure 1). Global water budget and integrated 

hydrologic-hydrogeological approaches suggest FSGD may account for 0.3 to 16% of the total 

freshwater discharge to oceans [Zektser and Loaiciga, 1993; Burnett et al., 2003]. FSGD is 
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highly variable at small and large scales, and depends on various geological, hydrological and 

climate factors. While numerous small-scale field measurement techniques (e.g., seepage meters 

and tracers) are available, it remains a challenge to identify coastal areas with high FSGD at 

larger scales (i.e., continental, global). Bokuniewicz et al. [2003] developed a clustering analysis 

tool to help identify coastal areas with potential for high FSGD based on relevant hydrological 

parameters, however the typology model lacks quantification of key controlling parameters. 

More recently, Sawyer et al. [2016] identified areas along the United States coastline vulnerable 

to high FSGD based on water budget analysis combined with continental scale hydrography and 

climate data sets. They defined recharge zones for FSGD as areas outside stream catchments 

where groundwater flows directly to the coast. SGD studies have traditionally been dominated by 

oceanographers using tracer-based approaches. It is, however, challenging to separate the 

respective contributions of FSGD and saline SGD (i.e., seawater recirculation) to total SGD even 

with the use of multiple tracers (radon, radium, methane, salinity, etc.) [e.g., Cable et al., 1996; 

Santos et al., 2009b; Santos et al., 2009c]. Large discrepancies between tracer-based and inland 

hydrology-based estimates (e.g., seepage meters, water budgets) of FSGD are still often observed 

[Destouni and Prieto, 2010] in part because different techniques quantify different components 

of SGD. While understanding of nearshore groundwater dynamics can provide important insight 

into total SGD rates to the coastal ocean, there is a need to better rectify the consistency between 

these approaches. 

Advective transport associated with FSGD affects nearshore groundwater dynamics with the 

balance between inland (recharge) and oceanic (tides, waves) forces controlling water exchange 

rates across the CUA-ocean interface, and the salt distribution and extent of saltwater-freshwater 

mixing in a STE. The interactions between inland and oceanic forces are described further in 
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Sections 2.3 and 2.4. The inland advective force also acts against the buoyancy force associated 

with density gradients in a CUA – this determines the extent of seawater intrusion in the aquifer. 

When FSGD is low, the CUA may be more vulnerable to saltwater intrusion, and vice versa 

[Glover, 1959; Sawyer et al., 2016]. Understanding the relationship between the vulnerability of 

coastal waters to the consequences of FSGD versus a CUAs vulnerability to saltwater intrusion is 

essential for integrated coastal resource management. 

Recharge to CUAs often varies seasonally leading to seasonal variations in FSGD [Michael et 

al., 2005; Charette, 2007; Miyaoka, 2007; Moore, 2007; Loveless et al., 2008; Sugimoto et al., 

2016]. Seasonal recharge patterns also cause the DZ of the saltwater wedge to oscillate landward 

and seaward [Michael et al., 2005]. Michael et al. [2005] showed that these oscillations can lead 

to seasonal discharge of saline water from a CUA. Seasonal oscillations in the DZ location can 

also lead to significant widening of the DZ and thus expansion of the STE particularly in more 

heterogeneous aquifers and where salt gets trapped in non-mobile pores [Lu et al., 2009]. 

Recently Yu et al. [2017] explored the effects of episodic rainfall events, illustrating the delayed 

and cumulative effect of episodic rainfall events on SGD and movement of the saltwater wedge. 

They further showed that a generalized linear model with past rainfall events weighted in the 

form of a convolution may be a valuable approach for evaluating and predicting the SGD, 

movement of the saltwater wedge and associated mass fluxes a STE. 

2.3 Tides 

Tides are an important oceanic force along most coastlines worldwide. Early work examining the 

influence of tides on groundwater dynamics in CUAs focused mainly on tide-induced watertable 

fluctuations [e.g., Lanyon et al., 1982; Parlange et al., 1984; Nielsen, 1990; Li et al., 2000]. 
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However, over the last decade major research efforts were devoted to understanding the 

influence of tides on water exchange across the CUA-ocean interface, and the flow and 

saltwater-freshwater mixing in a STE. 

Tidal fluctuations drive large quantities of water exchange across the CUA-ocean interface as 

seawater fills and drains from the nearshore aquifer over a tidal cycle. Field and numerical 

studies quantified the tidal effect on SGD and showed that tide-induced recirculation can 

represent a major portion of total SGD [e.g., Li et al., 1999; Taniguchi, 2002; Robinson et al., 

2007c; Li et al., 2009]. Seawater infiltration into an aquifer occurs on the rising tide and 

exfiltration (saline SGD) on the ebbing tide [Robinson et al., 1998; Sholkovitz et al., 2003; 

Robinson et al., 2007c]. As a nearshore aquifer is able to fill faster than it can drain, infiltration is 

greatest from the mid-tide to high tide mark and exfiltration is greatest towards the low tide mark 

[Robinson et al., 2007b]. Further, there is an asymmetry in the groundwater table fluctuations 

(rising quickly and falling slowly) that is enhanced by a sloping beach face [Nielsen, 1999; Li et 

al., 2000]. The asymmetry leads to an overheight in the groundwater table near the shoreline, i.e., 

tidally-averaged watertable at the shoreline is higher than the mean sea level [Parlange et al., 

1984; Nielsen, 1990]. For a CUA with a fixed inland head this may reduce FSGD to the coastal 

ocean. 

When the instantaneous tide-induced water exchange and groundwater flows are averaged over a 

tidal cycle, seawater recirculation extends across the intertidal zone. This time-averaged 

circulating flow can lead to the formation of an upper saline plume (USP, Figure 1) [Robinson et 

al., 1998; Boufadel, 2000; Mango et al., 2004; Vandenbohede and Lebbe, 2005; Robinson et al., 

2007b]. Where the USP is present, FSGD travels below the USP and discharges near the low tide 

mark in a zone bounded by the USP and the saltwater wedge. Numerous field, numerical and 
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laboratory studies have observed this salinity distribution in tidally-influenced CUAs [e.g., 

Lebbe, 1981; Boufadel, 2000; Mango et al., 2004; Vandenbohede and Lebbe, 2005; Boufadel et 

al., 2006; Mao et al., 2006; Robinson et al., 2006; Robinson et al., 2007b; Yang et al., 2013; 

Buquet et al., 2016]. The USP, in comparison with the DZ of the saltwater wedge, is a more 

active zone of saltwater-freshwater mixing in a CUA and an important feature of the STE system 

[Robinson et al., 2007b; Thorn and Urish, 2013]. 

The USP does not exist in all tidally-influenced CUAs. Its presence depends on magnitude of 

advective forces associated with terrestrial groundwater discharge (FSGD) to tidal forces (or 

tidal amplitude) [Robinson et al., 2007b], as well as physical parameters including beach 

morphology, aquifer hydraulic conductivity, aquifer anisotropy and heterogeneity, and 

dispersivity [Mao et al., 2006; Li et al., 2008; Li et al., 2009; Boufadel et al., 2011; Abarca et al., 

2013; Evans and Wilson, 2016; Li et al., 2016]. Figure 2 illustrates the effects of FSGD on extent 

of the USP and saltwater-freshwater mixing in the STE under the same tidal conditions. In 

analogy to the surface estuary classification, Robinson et al. [2007b] proposed a classification 

system for a tidally-influenced STE. They showed that the balance of the inland (FSGD) forces 

to tidal forces is an important control on a STE with the ratio of FSGD to the tide-induced saline 

SGD affecting the extent of stratification in a tidally-influenced STE (i.e., stratified, partially 

stratified or well-mixed; see examples in Figure 2). The challenge with this classification system 

is that there is currently no simple approach to predict tide-induced SGD rates. Robinson et al. 

[2007c] presented a non-dimensional analysis to evaluate how various parameters impact tide-

induced SGD for homogeneous, isotropic CUAs; however, the number of simplifications made 

in this study is likely to limit the general applicability of the findings. 
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Figure 2. Simulated salinity (colored contours) and flow streamlines in tidal-influenced CUAs 

with varying stratification (mixed, partially-mixed, stratified). (a) FSGD = 0.3 m2 d-1 and tidal 

amplitude (A) = 1 m; (b) FSGD = 2.1 m2 d-1 and A = 1 m; and (c) FSGD = 4.3 m3 d-1 and A = 1 

m. The flow ratio is defined as the ratio FSGD to tide-induced SGD. The black dashed horizontal 

lines in (a) – (c) indicate the high tide and low tide levels. Simulation results illustrating how 

tide-induced SGD is controlled by FSGD for a given tidal amplitude (A) is shown in (d). 

Information on the numerical simulations is provided in Robinson et al. [2007b].  

While advective transport associated with the tide-induced circulations and FSGD leads to the 

formation of an USP, recent studies have shown that gradients arising from denser saltwater 

overlying less-dense fresh groundwater may lead to flow instabilities in the form of salt fingering 

[Greskowiak, 2014; Röper et al., 2015]. Greskowiak [2014] showed numerically that flow 

instabilities are more likely to occur as the ratio of density gradient to the ambient flow (driven 

by tidal fluctuations and seaward hydraulic gradient associated with FSGD) increases. Röper et 
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al. [2015] later used laboratory sand flume experiments to confirm that instabilities can form 

under low beach slope. While Rapaglia and Bokuniewicz [2009] provided field data suggesting 

potential salt fingering in the subtidal zone near the shoreline, the formation of instabilities 

within the intertidal zone is yet to be observed. The complex flows and salt transport associated 

with instabilities may, however, considerably increase saltwater-freshwater mixing in a STE as 

well as locations where fresh groundwater discharges along the intertidal zone (i.e., discharge 

may no longer occur predominately near the low tide mark) [Greskowiak, 2014; Röper et al., 

2015]. 

In addition to altering the shallow nearshore salinity distribution in a CUA, tidal effects also 

modify the configuration of the saltwater wedge and mixing along the DZ. Ataie-Ashtiani et al. 

[1999] and Chen and Hsu [2004] simulated the effect of tides on seawater intrusion in CUAs and 

found that tides force saltwater to intrude further inland and widen the DZ. These studies were 

based on simulations of shallow CUAs with relatively high ratios of tidal amplitude to aquifer 

depth. Kuan et al. [2012] illustrated through numerical modelling combined with laboratory 

experiments that in tidally-influenced aquifers where an USP forms, the extent of seawater 

intrusion into the aquifer is significantly reduced compared to non-tidal conditions. More 

recently, Pool et al. [2014] and Pool et al. [2015] conducted numerical analyses to quantify the 

effect of tides on the saltwater wedge DZ in homogeneous and heterogeneous CUAs. They 

showed the extent of mixing is influenced by the tidal amplitude, tidal period and hydraulic 

diffusivity, with the aquifer heterogeneity reducing the impact of tides on the extent of mixing 

along the DZ. 

The tide-induced USP is associated with considerably shorter flow paths and residence times 

compared to recirculation through the saltwater wedge. Understanding the residence time of 
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seawater circulating through these saline zones is important because it determines, in part, the 

extent to which different geochemical reactions may take place. Numerical work by Robinson et 

al. [2007b] showed that for the sandy nearshore aquifer simulated, the average residence time of 

seawater recirculating through the USP was in the order of 10 d compared with over 1000 d for 

the saltwater wedge. More recently, Tamborski et al. [2017] found residence times in the 

intertidal zone to range from 0.1 to more than 15 d using pore water measurements of 222Rn and 

224Ra across the intertidal zone of two beaches together with a one-dimensional advection model. 

While most studies focus on the effect of semi-diurnal and diurnal tides on groundwater 

dynamics, the variation in tidal ranges over the spring-neap period also considerably affects the 

flow and salt transport within a STE. Fluctuations in SGD in response to the spring-neap tidal 

cycle has been widely reported [Kim and Hwang, 2002; Taniguchi, 2002; Taniguchi et al., 2006; 

Robinson et al., 2007a; de Sieyes et al., 2008; Wilson et al., 2015]. While the salt distribution in a 

STE (including the configuration of an USP) typically does not oscillate considerably in 

response to semi-diurnal or diurnal tides (except for high permeability gravel beaches [Guo et 

al., 2010; Geng and Boufadel, 2017]), it does vary in response to the spring-neap signal. The 

expansion and contraction of the USP as the spring and neap tides approach, respectively, were 

observed experimentally for microtidal and macrotidal beaches [Robinson et al., 2007a; Abarca 

et al., 2013; Heiss and Michael, 2014; Buquet et al., 2016]. Abarca et al. [2013] also showed the 

complex interactions of the flows and salinity distribution with changes in the cross-shore beach 

morphology over the spring-neap cycle. Aside from this study, the effects of varying beach 

morphology are not well quantified although they may considerably affect the flows and 

saltwater-freshwater mixing in a STE. This may in part be due to the difficulty with measuring 
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and numerically simulating this effect as well as disentangling it from other dynamic forcing 

effects (i.e., spring-neap signal, waves). 

Studies investigating the effects of tides on nearshore groundwater dynamics typically focus on 

evaluating characteristics and processes in the cross-shore direction and assume negligible 

alongshore variability. As such, numerical groundwater models used to quantify tidal effects are 

often two-dimensional (neglect alongshore variations) [e.g., Boufadel, 2000; Robinson et al., 

2007b; Evans and Wilson, 2016], and field studies typically aim to obtain data along a single 

cross-shore monitoring transect [e.g., Michael et al., 2005; Robinson et al., 2006; Abarca et al., 

2013]. Alongshore variations associated with, for instance tidal creeks, headlands and 

embayments and geological heterogeneities are common, but the three-dimensionality of the 

nearshore groundwater system is not well understood. Zhang et al. [2016] showed complex 

three-dimensional flows and salt transport in a CUA at a field site located adjacent to a tidal 

creek with strong alongshore morphology variations. Russoniello et al. [2013] illustrated the 

importance of small-scale submarine geological heterogeneities in controlling SGD and salt 

transport patterns. The three-dimensional flow and salt transport characteristics revealed in these 

studies are likely to be present along many natural coastlines.  

2.4 Waves 

In addition to tides, waves are also an important oceanic force acting on most shorelines 

worldwide. Evaluating the effect of waves on groundwater dynamics is arguably more difficult 

than evaluating the effect of tides as wave forcing is highly irregular and acts on multiple time 

scales. While wave periods typically range from a few to tens of seconds in the nearshore zone, 

wave height also varies over long time scales with intensified wave conditions occurring, for 
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instance, in response to offshore storms. Waves drive large volumes of water exchange across 

the CUA-ocean interface [Li et al., 1999]. It is challenging to quantify wave-driven recirculation 

from field data alone, but estimates have been provided through numerical studies [e.g., Xin et 

al., 2010; Bakhtyar et al., 2011; Geng et al., 2014; Robinson et al., 2014; Xin et al., 2014]. 

Wave-driven recirculation generally constitutes a considerable portion of the total SGD along 

wave-influenced coasts although the rates vary depending on the physical characteristics of the 

coastal setting (e.g., beach slope, hydraulic conductivity) as well as the magnitude of the wave 

forcing (i.e., wave height and frequency) and FSGD. 

Individual waves lead to oscillating infiltration-exfiltration across the CUA-ocean interface at 

high frequency (Figure 3). The dynamics of this rapid infiltration-exfiltration have been studied 

with respect to its effect on beach sediment transport and coastal morphology [e.g., Turner and 

Nielsen, 1997; Horn et al., 1998; Masselink and Hughes, 1998; Turner and Masselink, 1998; 

Baldock et al., 2001; Elfrink and Baldock, 2002; Horn, 2006; Bakhtyar et al., 2012]. Heiss et al. 

[2014] presented field measurements to quantify infiltration into the unsaturated zone as 

individual waves run up and down on the shoreline (Figure 3). Apart from this study and a few 

others including laboratory experiments [Boufadel et al., 2007; Heiss et al., 2015; Malott et al., 

2016; Sous et al., 2016; Turner et al., 2016; Malott et al., 2017], investigations of wave-induced 

water exchange and groundwater dynamics have mostly been based on numerical simulations 

due to the challenge of measuring wave-induced groundwater flows in the field, including how 

to decouple wave and tide effects. Simulation of wave hydrodynamics coupled with density-

dependent groundwater flow is computationally challenging but has been attempted by Bakhtyar 

et al. [2012] and Geng et al. [2014], who solved the Reynolds-Averaged Navier–Stokes (RANs) 

equations to simulate wave motion across a permeable beach surface. Both studies illustrate the 



20 

complexity of wave-induced groundwater flows induced by individual waves with Bakhtyar et 

al. [2012] also demonstrating the additional impact of waves on beach morphology changes 

(e.g., wave-driven erosion/accretion). 

The influence of high frequency individual waves gets rapidly damped with distance from the 

shoreline and with depth [Li and Barry, 2000]. The phase-averaged effect of waves has a more 

extensive impact on overall groundwater dynamics in a CUA. The energy dissipation and 

changes in the onshore radiation stress as a wave breaks leads to an onshore upward tilt in the 

mean sea level referred to as wave setup (Figure 3). Longuet-Higgins [1983] demonstrated 

analytically that the phase-averaged water level profile of wave set-up drives a flow circulation 

through the nearshore aquifer that extends from the wave set-up limit to the wave breaking point 

(Figure 3). Li and Barry [2000] showed that the magnitude of the phase-averaged circulating 

flow depends on the relative strength of inland forcing (i.e., inland hydraulic gradient, FSGD) 

relative to the wave forcing – a similar inland and oceanic force balance to that in the tidal case. 

Xin et al. [2010] used a density-dependent groundwater flow model with wave hydrodynamics 

simulated using the shallow water equations to show that the seawater circulation driven by wave 

setup leads to the formation of an USP similar to that formed due to tides. They also 

demonstrated that the effect of waves on groundwater dynamics including infiltration/exfiltration 

rates, salinity distribution and saltwater-freshwater mixing are mainly due to wave setup. Thus, 

the key effects of waves on a STE can be captured using a phase-averaged modelling approach 

of applying time-averaged heads describing wave setup along the seaward boundary rather than 

simulation of instantaneous waves. This phase-averaged approach is valuable for simulating the 

effects of variable wave forcing on nearshore groundwater dynamics because simulation of 

individual waves over long time scales is computationally demanding. Recently, Malott et al. 
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[2016] validated the phase-averaged approach by comparing numerical simulation results with 

field data of pressure gradients in the swash zone over an isolated period of intensified wave 

conditions. Sous et al. [2016] also provided field evidence of wave-induced recirculation through 

the saturated zone of a beach aquifer. Geng and Boufadel [2015b] developed an alternative 

phase-averaged approach, in which the net influx-efflux across the CUA-aquifer boundary was 

determined from computationally intensive phase-resolved wave simulations and used to specify 

the boundary condition for density-dependent groundwater flow and solute transport simulations.  

 

Figure 3. Conceptual diagram of the effect of waves on water exchange and groundwater flows 

in a nearshore aquifer including the phase-averaged effect of wave set-up, which drives a phase-

averaged circulation through the aquifer. The figure is not to scale. In natural systems, the beach 

profile is non-planar and evolving (erosion/accretion), which would further complicate the flow 

dynamics depicted here. This figure is modified from Malott et al. [2017]. 
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Wave forcing along natural coastlines is highly variable with wave heights changing over time. 

The USP expands and contracts in response to the changing wave conditions, causing 

considerable saltwater-freshwater mixing in a STE [Robinson et al., 2014]. Robinson et al. 

[2014] simulated an isolated period of intensified wave conditions with a storm surge. The 

simulations showed that while the USP rapidly expands as the wave height increases, it may take 

~100 d for the salinity distribution in the STE to recover to its initial pre-storm state after the 

waves subside. The slow recovery of the aquifer salt distribution needs to be considered in field 

data interpretation as many field studies only take snapshot distributions of the salt distribution 

and geochemistry in a STE, thus ignoring the effects of antecedent wave conditions. Xin et al. 

[2014] examined the effects of variable wave forcing on water and salt fluxes across the CUA-

ocean interface by considering year-long random wave data. They showed a retarded and 

prolonged response of SGD to the irregular wave conditions, suggesting that the present SGD 

depends on both the present and past wave conditions. Based on functional data analysis 

[Ramsay and Silverman, 2005], Xin et al. [2014] suggested that the historic wave effect can be 

quantified using a Gamma distribution. This analysis approach adopted forms a sound basis for 

quantifying and predicting SGD induced by irregular forcing conditions. 

In addition to effects of variable wave forcing, large episodic wave events where the coastal 

plain is overtopped and inundated by seawater have a significant and long lasting (order of years) 

influence on the flows and salinity distribution in a CUA [Anderson and Lauer, 2008; Smith et 

al., 2008; Santos et al., 2009a; Yang et al., 2013; Yu et al., 2016]. Yu et al. [2016] showed 

numerically the important role of coastal topographic features in controlling the amount of 

seawater that infiltrates into the CUA when seawater inundation occurs and the length of the 

recovery time afterwards. Anderson and Lauer [2008] suggested that due to the long-lasting 
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effects, episodic overtopping events can be a major controlling factor for saltwater-freshwater 

mixing in STEs on micro-tidal barrier islands. Further, studies suggest that CUAs could be more 

threatened by overland seawater inundation rather than lateral saltwater intrusion (i.e., saltwater 

wedge) in the future as the climate changes [Ferguson and Gleeson, 2012; Holding and Allen, 

2015]. 

2.5 Evaporation 

Evaporation, as an important driving force for salt accumulation in soils, has been widely 

explored in inland groundwater systems due to its important ecological impact on plant growth, 

productivity and distribution [Penman, 1948; Brutsaert, 2005]. In contrast, the effects of 

evaporation on pore-water flow and salt transport in CUAs have attracted limited attention. As 

the CUA-ocean interface gets periodically inundated by tides and waves, different stages of 

evaporation can take place at various spatial and temporal scales [Idso et al., 1974; Brutsaert, 

2005; Shokri and Or, 2011]. Geng and Boufadel [2015a] and Geng et al. [2016a] found that the 

evaporation rate in beaches depends on the local groundwater depth and mainly occurs in the 

intertidal zone. For the large area landward of the intertidal zone, the shallow sand layer above 

the watertable is relatively dry with a weak capillary transport capacity, not able to support a 

large evaporation flux. In the intertidal zone, the evaporation rate varies in response to tidal 

fluctuations. The evaporation takes away freshwater, decreasing the local water saturation and 

leaving salt behind in the shallow sand layer. Thus, evaporation leads to salt accumulation and 

higher pore-water salinity than seawater salinity particularly in the upper intertidal zone [Geng 

and Boufadel, 2015a]. The high pore-water salinity in the shallow sand layer may lead to 

formation and penetration of salt fingers into the beach that act to remove salt from the shallow 

sediment [Geng and Boufadel, 2015c; Xin et al., 2017]. Alternatively, if evaporation occurs 



24 

continuously with no mechanism of salt removal, pore-water salinity would keep increasing. 

Once the saturated salinity level is reached, salt precipitation can occur in the shallow sand layer, 

which would in turn reduce evaporation from the sand [Nachshon et al., 2011; Zhang et al., 

2014]. Despite these studies exploring the effects on evaporation on the salinity distribution in 

shallow STE sediments, the importance of these effects on the flows and saltwater-freshwater 

mixing in a STE remains unclear.  

2.6 Sea level changes 

Global sea level is predicted to rise between 0.26-0.82 m by the year 2100 in response to climate 

change [International Panel on Climate Change, 2013]. Sea level rise (SLR) will alter the 

hydrological balance between the land and ocean, leading to changes in the exchange of water 

and chemicals across the CUA-ocean interface, and flows and salt distribution within a CUA. 

The effects of SLR on seawater intrusion in CUAs (i.e., movement of saltwater wedge) has been 

well studied due to the potential threat to fresh coastal groundwater resources [Ferguson and 

Gleeson, 2012; Werner et al., 2013; Ketabchi et al., 2016]. The effects of SLR on seawater 

intrusion vary depending on the hydrological and geological characteristics of a CUA. A key 

factor is whether a CUA can be classified as a flux-controlled system, where FSGD to the sea is 

constant, or a head-controlled system where the inland watertable head is constant despite SLR 

[Werner and Simmons, 2009; Michael et al., 2013; Ketabchi et al., 2016]. Head-controlled 

systems are more vulnerable to SLR [Werner and Simmons, 2009]. The rise in sea level leads to 

a decrease in the regional hydraulic gradient and thus FSGD, which would intensify seawater 

intrusion into the aquifer. Head-controlled systems are also more often found in low-lying 

coastal areas where overland sea inundation is more likely to occur – this may also rapidly 

increase the extent of seawater intrusion [Ketabchi et al., 2016]. SGD and seawater intrusion are 
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complementary processes. Michael et al. [2013] demonstrated numerically that changes in FSGD 

and density-driven SGD may be negligible in response to SLR in flux-controlled CUAs, but both 

FSGD and saline SGD may considerably decrease in head-controlled CUAs. They also showed 

that SLR may lead to a thickening of the saltwater wedge DZ, and thus widening of the STE, in 

head-controlled systems. Of course, other long-term anthropogenic pressures on CUAs will also 

affect the hydrological balance between the CUA and ocean. For instance, changing local net 

aquifer recharge or groundwater withdrawals (pumping) from CUAs may have a greater 

influence on seawater intrusion and SGD than SLR [Kundzewicz and Doli, 2009; Yechieli et al., 

2010]. 

The effects of SLR on nearshore groundwater flows and salt-freshwater mixing in a STE has 

been less studied than the effects on seawater intrusion. It is possible that for a head-controlled 

CUA, the decrease in hydraulic gradient and thus FSGD (i.e., inland forces) relative to the 

oceanic forces could increase tide- and wave-induced recirculation [Kuan et al., 2012]. SLR 

could also alter the wave motion and tidal fluctuations along shorelines, which would 

subsequently alter water exchange rates, and groundwater flows and saltwater-freshwater mixing 

in a STE. These long-term changes have not yet been investigated. 

In addition to long-term SLR, seasonal and interannual variability in mean sea level can also 

affect SGD rates and mixing within a STE. This was illustrated in a multi-year study conducted 

by Gonneea et al. [2013b] in a STE in Waquoit Bay, Massachusetts. They showed that seasonal 

sea level variations caused by the annual solar tide component and thermosteric sea level 

variability, and interannual sea-level variations associated with climate oscillations (i.e., North 

Atlantic Oscillation and El Niño Southern Oscillation), were the largest contributor to temporal 

variations in hydraulic gradient across the CUA and therefore SGD. This contrasts with other 
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studies [e.g., Michael et al., 2005; Anderson and Emanuel, 2010] that showed seasonal and 

interannual variations in coastal hydraulic gradient and SGD to be largely controlled by inland 

groundwater level changes. Gonneea et al. [2013b] also observed the saltwater wedge DZ to 

oscillate landward and seaward in response to the sea level variations with simulations showing 

subsequent changes in saline SGD rates. The findings from Gonneea et al. [2013b] indicate that 

predicted future changes in regional climate variability may be important for saltwater-

freshwater mixing dynamics in STEs and SGD rates. 

2.7 Interacting effects among forcing 

In early work, SGD was taken to be a linear sum of (independent) fluxes estimated based on the 

various inland and oceanic forces [Li et al., 1999; Taniguchi et al., 2002; Burnett et al., 2006]. 

Indeed, these forces and associated fluxes have been often studied numerically in isolation as 

discussed earlier. For example, most research assessing coastal seawater intrusion focuses on 

inland freshwater input and neglects the dynamic oceanic forcing factors [Werner et al., 2013]. 

Most shorelines are exposed to multiple forcing factors, e.g., terrestrial freshwater discharge, 

density gradients, tides with multiple periodic constituents and irregular and random waves. As 

SGD includes all effluxes across the seabed, measured SGD from tracer-based investigations 

often includes the effects of multiple forcing factors [Santos et al., 2009c], although in some 

cases one forcing may dominate over others. For example, Heiss and Michael [2014] conducted 

a year-long field investigation on a microtidal sandy beach and found that the seawater 

recirculation, USP and configuration of the saltwater-freshwater mixing zone were affected 

mostly by seasonal recharge and to a lesser extent by tidal amplitude and tidal stage. Wilson et 

al. [2015] conducted a year-long field investigation on a muddy marsh with limited terrestrial 
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freshwater input. They found, in contrast, SGD to be proportional to tidal amplitude, varying by 

at least a factor of two between spring and neap tides. 

Interactions among the different forces are generally nonlinear [King, 2012; Geng and Boufadel, 

2015b; Xin et al., 2015; Yu et al., 2017], in which case SGD is not a sum of independent terms. 

As described in Section 2.3, Robinson et al. [2007b] showed that tides can enhance the saltwater-

freshwater mixing along the saltwater wedge DZ, increasing the density-driven circulation and 

saline SGD. On the other hand, an increased FSGD can inhibit tide-induced and density-driven 

SGD.  Xin et al. [2010] demonstrated that the effects of tides and waves do not simply add up, 

and the total saline SGD under the combined influence of tides and waves is less than the saline 

SGDs driven by tides and waves separately. The non-linear interactions among different forces 

acting on CUAs occur at different spatial as well as temporal scales. Both SGD and the salt 

distribution attributed to a particular force must be determined with consideration of the 

influence of other forces both at the present and in the past. The response of SGD and saltwater-

freshwater mixing zone to the different forces is not instantaneous but delayed [Michael et al., 

2005; Lu and Werner, 2013; Heiss and Michael, 2014; Robinson et al., 2014; Xin et al., 2014; 

Liu et al., 2016; Yu et al., 2017]. This complicates the assessment of interactions between 

multiple forces. Via field investigations, Michael et al. [2005] revealed a time lag between 

changes in saline SGD rates, movement in the DZ, and the seasonal oscillations of inland 

recharge. Heiss and Michael [2014] examined saltwater-freshwater mixing dynamics in a sandy 

nearshore aquifer over tidal, spring-neap, and seasonal cycles. A time lag of the saltwater-

freshwater mixing zone was detected in response to the various forces. Xin et al. [2015] 

suggested that tides can increase the total SGD but concurrently weaken the delayed effect of 

waves on SGD. In contrast, tides enhance saltwater-freshwater mixing and strengthen the delay 
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in the effect of waves on the salt fluxes across the CUA-ocean interface. This delays the return of 

the salt distribution in a STE to pre-storm conditions following a period of intensified wave 

conditions.  

3. Impact of the STE on chemical inputs to the ocean 

3.1 Nutrients, carbon and greenhouse gases 

Since early suggestions that groundwater may be a major source of nutrients to the ocean 

[Johannes, 1980], a number of field investigations have demonstrated the biogeochemical 

implications of SGD. While the earlier SGD literature focused on nutrient fluxes, in the last few 

years there has been increased research on carbon cycling and the biological implications of 

SGD. The contribution of groundwater as a source of nutrients and carbon to the coastal ocean 

depends not only on the terrestrial groundwater composition, but also on biogeochemical 

processes within the STE [Anschutz et al., 2009]. The high microbial activity in nearshore 

aquifers due to the large inputs of water, solutes and organic matter from multiple sources makes 

the STE a unique biogeochemical reactor [Moore, 1999]. The biogeochemistry of a STE is often 

more dominated by anoxic pathways than surface estuaries. The more reducing conditions in a 

STE lead to SGD often having much higher proportions of bioavailable ammonium than the less 

available dissolved organic nitrogen (DON) that dominates river nitrogen (N) inputs to the 

coastal ocean [Santos et al., 2014]. Understanding nutrient speciation and ratios is important as it 

determines the biological implications of SGD. Because phosphorus (P) is typically more 

particle-reactive than N and therefore less mobile in groundwater, SGD often has N:P ratios well 

above the ratio required by marine primary producers (i.e., N:P > 16). It has been suggested that 

high N:P ratios in contaminated SGD could drive the coastal ocean towards P-limitation within 

the coming decades, changing its current N-limited status [Slomp and Van Cappellen, 2004]. 
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This model-based prognosis was confirmed experimentally in recent field studies with 

observations of high N:P ratios in SGD [Su et al., 2011; Lee et al., 2012; Santos et al., 2013; 

Santos et al., 2014]. 

Several studies emphasize that SGD is a major source of N and P to the coastal ocean and 

possibly an overlooked driver of eutrophication [e.g., Hu et al., 2006; Lee et al., 2010]. Other 

studies highlight that biogeochemical processes occurring in a STE can attenuate high N and P in 

contaminated terrestrial groundwater prior to discharge to the coastal ocean [Addy et al., 2005; 

Kroeger and Charette, 2008; Santoro et al., 2008]. For example, attenuation of nitrate 

contamination in terrestrial groundwater by denitrification has been observed in STEs [Loveless 

and Oldham, 2010; Weinstein et al., 2011; Erler et al., 2014], resulting in non-conservative net 

nitrate removal (Figure 4A). However, studies have also shown net nitrate production and high 

nitrate concentrations in shallow STEs despite low nitrate concentrations in both terrestrial 

groundwater and seawater. This is linked to high seawater recirculation (i.e., due to tides or 

waves) through the shallow STE combined with non-conservative net nitrate production by the 

mineralization of organic matter (Figure 4B) [Tait et al., 2014; Santos et al., 2009d]. The 

transformation of nutrients is affected by the reaction rates and residence times, which are 

controlled by the flow and transport processes driven by the various forces discussed in Section 

2. Little information is available on biogeochemical reaction rates and residence times in STEs 

[Ibánhez and Rocha, 2017].  
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Figure 4. Examples of nitrate versus salinity scatter plots in (A) a nutrient-contaminated 

[Loveless and Oldham, 2010] and (B) an uncontaminated [Santos et al., 2009d] STE. The solid 

lines represent the theoretical conservative mixing line. In the contaminated CUA (A), nitrate 

was attenuated in the STE. In the uncontaminated CUA (B), nitrate was produced within the STE 

due to seawater inputs at high tide combined with mineralization within the STE. Notice the log 

scale on the ordinate axis in B. 

It is important to quantify the source and travel pathways of nutrients through a CUA and STE in 

addition to the residence times and reaction rates. Recent research attempted to separate the 

relative contribution of FSGD versus saline SGD to nutrient and carbon fluxes. While FSGD 

represents a source of “new” water and dissolved species to the ocean, large quantities of marine 

organic matter can be mineralized in a STE, with saline SGD then delivering large quantities of 

metabolic products (e.g., phosphate, ammonium, nitrate, alkalinity, CH4, and CO2) to the ocean. 

Since the fresh and saline SGD components are usually superimposed, it is difficult to separate 

their relative contributions. In systems with high seawater productivity and organic matter 

content, saline SGD associated with tide- and wave-induced seawater circulating through the 

STE may release nutrients to the ocean due to the mineralization of marine organic matter 

[Anwar et al., 2014; Sadat-Noori et al., 2016b; Santos et al., 2009d]. The loads of marine 
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organic matter delivered into a STE are lower where the coastal ocean is oligotrophic, which 

may result in FSGD rather than saline SGD dominating the nutrient fluxes to the ocean 

[Weinstein et al., 2011]. Quantifying SGD-derived nutrient fluxes to the ocean requires site-

specific understanding of biogeochemical transformations and groundwater flow processes in a 

STE. The typical approach for determining nutrient fluxes to the ocean is to multiply FSGD by 

nutrient concentrations in a CUA. This neglects transformations in the STE, consequently 

overestimating fluxes from contaminated CUAs (as in Figure 4A) and underestimating fluxes 

from CUAs where nitrate is produced (as in Figure 4B). An approach often used to bypass the 

assessment of biogeochemical transformations in the STE consists of sampling pore water in the 

seepage zone just before it discharges across the CUA-ocean interface [Santos et al., 2012a]. For 

this approach, the pore water concentrations in the seepage zone may be lower due to dilution of 

the terrestrial groundwater with large quantities of circulating seawater, and therefore 

consideration needs to be made for the high volume flux through the seepage zone. Defining 

reasonable endmembers for SGD remains a major challenge that often creates large uncertainties 

in site-specific investigations, especially when the physical drivers of SGD are poorly 

understood. 

In spite of these uncertainties, different local and regional studies demonstrate that SGD-

associated fluxes of nutrients into the coastal ocean can be comparable to or even higher than the 

relatively better quantified river fluxes [Slomp and Van Cappellen, 2004; Moore et al., 2008; 

Santos et al., 2008]. Large scale estimates of SGD based on 228Ra observations in large ocean 

basins are now available [Moore et al., 2008; Kwon et al., 2014]. However, there is little 

information on the related large-scale biogeochemical fluxes and their driving forces. Rodellas et 

al. [2015] quantified nutrient fluxes into the Mediterranean Sea and demonstrated that SGD may 
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be comparable to river inputs of N, P and silicon (Si) at the basin scale. Because total SGD 

fluxes were estimated from 228Ra measurements, saline SGD rather than FSGD is likely the main 

contributor to the estimated total SGD nutrient inputs to the Mediterranean Sea. Further, as 

groundwater endmember samples were collected in nearshore locations only, the SGD nutrient 

fluxes may be overestimated because most of the SGD may occur offshore where the 

recirculating seawater may be more nutrient poor than the nearshore groundwater. 

Due to long groundwater travel times, it may take decades for nutrients to be transported through 

a CUA from their source to the ocean and therefore contamination of CUAs can represents a 

legacy pollution issue. While river-derived nutrient inputs into global estuaries tripled in the last 

few decades [Diaz and Rosenberg, 2008], nothing is known about similar changes in the SGD 

contribution. In areas with high groundwater nutrient loading, such as Florida and Chesapeake 

Bay, studies have shown nutrients are released to the ocean decades after the initial 

contamination of the CUA [Hu et al., 2006; Sanford and Pope, 2013]. In the Cook Islands, 

decade-old fresh groundwater from a shallow CUA is now discharging along the shoreline and 

degrading the adjacent coral reef lagoon [Tait et al., 2014]. 

Much of the STE and SGD literature focuses on nutrients. However, due to the role of oceans in 

the global carbon cycle and the rising threat of climate change and ocean acidification, the 

carbon cycle has been examined in recent coastal groundwater investigations, following 

pioneering papers that examined dissolved inorganic carbon (DIC) [Cai et al., 2003] and 

dissolved organic carbon (DOC) [Goni and Gardner, 2003]. For instance, Cai et al. [2003] 

observed high DIC levels in a STE that resulted in SGD-derived DIC fluxes 4-fold higher than 

regional river inputs into the coastal ocean. It is possible that STEs along coastlines with 

carbonate (CaCO3) sediments may behave differently to STEs along quartz coastlines with 
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respect to acting as a net source or sink of carbon [Cyronak et al., 2013]. However, little data are 

available on the biogeochemistry of carbonate sand STEs, although initial investigations indicate 

that SGD may release CO2 from respiration within carbonate sediments [Cyronak et al., 2014]. 

SGD may also modify the pH of the coastal ocean and locally influence ocean acidification 

[Santos et al., 2011b]. The ratios of DIC to carbonate alkalinity (Ac) in SGD provide insight into 

whether SGD acts as a buffer or driver of coastal acidification. DIC:Ac ratios >1 will result in 

SGD potentially decreasing seawater pH, while DIC:Ac ratios <1 will result in SGD buffering 

seawater against ocean acidification. The extremely high CO2 often observed in coastal 

groundwater creates high DIC:Ac ratios, and thus a drop in receiving water pH in most sites 

investigated so far. This includes coastal wetlands [de Weys et al., 2011; Jeffrey et al., 2016], 

coral reef lagoons [Cyronak et al., 2014; Wang et al., 2014], an estuary [Sadat-Noori et al., 

2016a] and a coastal embayment [Liu et al., 2017] (Figure 5). In Waquoit Bay, for example, 

seasonal investigations revealed that the SGD-derived DIC flux is always greater than Ac flux, 

indicating that SGD would reduce the CO2 buffering capacity of the coastal water [Liu et al., 

2017]. However, seawater pH may also increase due to enhanced biological productivity 

supported by SGD-derived nutrients or by adsorption of protons on sediments [Lee and Kim, 

2015]. Therefore, site-specific investigations are needed to determine how SGD may influence 

the pH of receiving waters. 

The gases CO2, N2O, and CH4, which are the main anthropogenic greenhouse gases, are often 

enriched in CUAs [Addy et al., 2005; O'Reilly et al., 2015; Sadat-Noori et al., 2016a]. As such 

SGD may be an important greenhouse gas source. Early investigations used CH4 as a tracer of 

SGD [Bugna et al., 1996; Cable et al., 1996] and revealed significant correlations between CH4 

and groundwater tracers such as 222Rnin coastal seawater [Dulaiova et al., 2006; Santos et al., 
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2009a]. More recent work focused on how SGD can be a source of CH4 in a carbon budget 

context. This includes investigations in permafrost areas where SGD releases CH4 to the ocean 

[Lecher et al., 2016] and coral reef lagoons subject to significant tide-induced seawater 

recirculation through the nearshore aquifer [O'Reilly et al., 2015]. In these cases, tide-induced 

saline SGD rather than FSGD was suggested to be the main source of CH4 to the coastal ocean. 

 

 

Figure 5. A compilation of SGD-derived dissolved inorganic (DIC) and dissolved organic carbon 

(DOC) fluxes. DIC fluxes on average were 13-fold greater than DOC fluxes in the seven systems 

where both species were measured. Original references and data can be found in Sadat-Noori et 

al. [2016a]. 

Even less is known about N2O production in STEs and associated SGD fluxes. N2O is formed as 

a byproduct during nitrification or as an intermediate product during denitrification. With field 

investigations [Kroeger and Charette, 2008; Santos et al., 2009d] and modelling [Spiteri et al., 
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2008a] indicating that both denitrification and nitrification are important in STEs. SGD may be a 

two-fold source of N2O to surface waters. Initial investigations revealed significant fluxes of 

N2O associated with FSGD to an urban estuary [Wong et al., 2013] and in a coral reef lagoon 

where tides drive significant seawater recirculation through the aquifer [O’Reilly et al., 2015]. 

Additional work is needed to determine how SGD releases greenhouse gas to the coastal ocean, 

and whether SGD can explain supersaturated conditions often found in coastal waters. 

3.2 Metals 

The salinity gradient in a STE is often accompanied by redox changes [e.g., Beck et al., 2017], 

which can play a significant role in trace metal cycling. Trace metals with multiple oxidation 

states are particularly impacted by the redox gradients present in STEs. Iron (Fe) and manganese 

(Mn) are among the most important metals due to their abundance in the earth’s crust and 

therefore most aquifer solids. Further, the oxide form of these elements (i.e., Fe and Mn 

(hydr)oxides) are known to scavenge (through adsorption or co-precipitation) other elements, 

even those that do not have a redox chemistry of their own. Charette and Sholkovitz [2002] used 

the term “iron curtain” to describe the accumulation of Fe (hydr)oxides along the redox boundary 

of the STE. They found a significant correlation between Fe and P in aquifer sediments, and 

suggested that the iron curtain could act as a natural permeable reactive barrier for in situ 

removal of chemical species such as phosphate (PO4-P) that have a strong affinity for Fe 

(hydr)oxides. Later, Spiteri et al. [2006] used a reactive transport model to demonstrate that the 

iron curtain’s formation is driven largely by pH (rather than redox) gradients, and that this 

process may be responsible for greatly reduced (PO4-P) transport to the coastal ocean via SGD. 
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Iron curtain-like features have since been directly observed [Windom et al., 2006; Roy et al., 

2010; Trezzi et al., 2016] or inferred [Beck et al., 2007; Santos et al., 2011b; Porubsky et al., 

2014; O'Connor et al., 2015; Reckhardt et al., 2015] in numerous STEs worldwide. Some of 

these STEs include sulfide minerals [Beck et al., 2016]. The predominance of Fe-sulfides versus 

-oxides is likely determined by dissolved organic carbon (DOC) input to the STE and its 

residence time in the subsurface. However, there could be other contributing factors such as the 

microbial community and DOC residence time in the STE since some of the aforementioned 

STEs have high DOC concentrations yet the system never proceeds to sulfate (SO4
2-) reduction 

[e.g. Charette and Sholkovitz, 2002; Windom et al., 2006; Beck et al., 2007]. More work is 

required on this topic as solid-phase Fe speciation plays a key role in microbial biogeochemistry 

and trace metal cycling in aquatic environments including the STE. For example, Bone et al. 

[2006] found that amorphous forms of Fe (hydr)oxides were more efficient scavengers of arsenic 

(As) in the STE than the more crystalline forms. 

It has been revealed that iron curtains are not static features – a decrease in aquifer recharge and 

terrestrial freshwater discharge through the STE can alter the lateral extent of the STE, thereby 

changing the area over which Fe (hydr)oxides can undergo reductive dissolution [Roy et al., 

2013]. Further, seasonal and interannual variability in mean sea level can drive the DZ of the 

saltwater wedge (and its associated redox boundary, if present) in a landward or seaward 

direction. This seasonal movement was shown to correlate with dissolved Fe and Mn and also 

dissolved trace metals and nutrients that are known to associate with their (hydr)oxide form 

[Gonneea et al., 2013b; Gonneea and Charette, 2014]. In the northeastern United States, SLR 

between 1990-2007 was ~0.5 cm y-1 and has been accelerating in recent years [Sallenger et al., 

2012]. In the case of Waquoit Bay, a 50 cm increase in sea level (conservative prediction for 
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2100) is predicted to shift the saltwater wedge DZ 1 m vertically [Spiteri et al., 2008b]. The 

inventory of trace metals within that interval is substantial [Gonneea et al., 2013b]. Thus, on 

long time scales (years-decades), the DZ may advance landward in the STE, leading to additional 

fluxes of trace metals that are sensitive to increases in ionic strength or decreases in redox state. 

This process was also suggested for a mangrove STE in Brazil [Sanders et al., 2012]. 

Though most SGD studies have focused on the nutrient load delivered by groundwater to the 

coastal ocean, some have looked at metals delivered to the ocean via SGD. Trezzi et al. [2016] 

reported on SGD in a Mediterranean region where mine tailings had accumulated along the 

shoreline for several decades. They found that zinc (Zn) and lead (Pb) fluxes were significantly 

elevated in SGD relative to other locations worldwide [e.g., Beck et al., 2009]. Again, the 

mobilization of these metals in groundwater was attributed to the Fe and Mn redox cycles and 

the suspected low pH of the groundwater as it passed through the sediment deposits left behind 

from mining activities. Charette and Buesseler [2004] studied copper (Cu) fluxes in SGD near a 

naval base on the eastern coast of the United States, but found that this source was minor 

compared to that from Cu-based antifouling paints used on boat hulls. Beck et al. [2009] 

compared SGD-derived metal inputs to those from treated wastewater inputs to a surface estuary 

near New York City. They were able to use stable Pb isotopes to differentiate groundwater 

versus sewage-derived Pb inputs, and also to determine the Pb source. Although trace metal 

concentrations were generally higher in the treated wastewater compared to metal concentrations 

in the STE, the SGD trace metal source was equally as important due to the higher magnitude of 

SGD. 

Aside from Fe and Mn, mercury (Hg) has arguably been the most studied trace metal in STEs 

and SGD due to its potential impact on human health through consumption of pelagic fish, which 
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are bio-accumulators of Hg in aquatic environments. Bone et al. [2007] reported Hg enrichment 

in an STE, which they attributed to a combination of high Hg in recharge to the CUA combined 

with low organic carbon content in aquifer solids that might otherwise increase the solid-aqueous 

phase partitioning for Hg. This resulted in SGD inputs to a local embayment that exceeded the 

area-normalized atmospheric deposition rate for the northeastern United States. This is similar to 

findings for a Korean embayment that exchanges with the Yellow Sea [Rahman et al., 2013]. 

Evidence exists for iron curtain control on groundwater Hg cycling; Johannesson and Neumann 

[2013] observed dissolved Hg release during reductive dissolution of Fe (hydr)oxides in a deep 

confined aquifer. In contrast, Szymczycha et al. [2013] reported non-conservative removal (loss) 

of dissolved Hg during saltwater-freshwater mixing in a STE at their study site (southern Baltic 

Sea), SGD was a minor source compared to rivers and atmospheric deposition. Laurier et al. 

[2007] found that mussels from beds located within a zone of enhanced SGD had significantly 

higher Hg in their tissues compared with those harvested from non-SGD impacted locations. 

Black et al. [2009] found that monomethyl-Hg (MMHg) fluxes from SGD were similar to those 

from fine grained surface sediments of a coastal Californian embayment; Lee et al. [2011] 

reported a similar result for a Korean volcanic island. These examples are noteworthy because 

MMHg is the major Hg-species that is known to bio-accumulate through the food web and can 

lead to dangerous levels of Hg in fish that are harvested for human consumption. SGD-driven 

salinity changes played a role in partitioning of Hg from solid phases to the dissolved (and 

presumably more bio-available) phase in the surf zone of Californian and Hawaiian beaches 

[Ganguli et al., 2012; Ganguli et al., 2014]. Ganguli et al. [2012] also showed the importance of 

tides in controlling temporal variability in Hg flux to the ocean with a 5-fold increase in seawater 

MMHg (from 0.1 to 0.5 pM) at low tide compared to high tide due to the higher SGD rate. It can 
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be inferred that the source of this increase is from production in shallow (cm-scale) sediments of 

the STE, as the DZ of the saltwater wedge does not appear to respond to short-term changes in 

sea level such as those due to tides [Gonneea et al., 2013a]. 

These examples illustrate the progress that has been made in our understanding of local-scale 

impacts of SGD on coastal ocean trace metal budgets. However, the role of SGD on metal inputs 

to oceans on regional to global scales remains unclear. A study by Windom et al. [2006] on Fe 

fluxes from the South American continent suggests that SGD is on par with atmospheric Fe 

delivery to the entire South Atlantic Ocean. Beck et al. [2013] used a coastal typology approach 

to derive the strontium (Sr) and Sr isotope budget for the global ocean that included SGD. Such 

an approach might be used to scale local SGD process studies to global input rates for 

contaminant type trace metals. 

Seasonality is also known to play an important role in SGD-derived trace metal fluxes to the 

coastal ocean. Jeong et al. [2012] found that trace metal fluxes from the coastal aquifer of a 

volcanic Korean island were about 20-fold higher in summer compared to winter, driven not by 

changes in SGD, but rather by higher summertime groundwater trace metal concentrations. They 

speculated that the differences were driven by much higher DOC inputs of marine origin to the 

STE during summer, and the higher rates of redox cycling that would come with microbial 

processing of the DOC. These results are consistent with another study that found that 

seasonality in STE metal concentration, not water flux, was the main driver for changes in the 

magnitude of metal fluxes to surface waters carried by SGD [Gonneea et al., 2013a]. These 

findings are important because it is often assumed that SGD-derived chemical fluxes are in phase 

with rates of SGD [e.g., Kelly and Moran, 2002; Moore and Shaw, 2008]. Hence, the timing of 
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trace metal fluxes as well as other chemicals to the coastal ocean may not coincide with patterns 

in the annual water cycle. 

In some coastal ocean trace metal budgets, SGD can be a net sink via removal of trace metals as 

seawater recirculates across the CUA-ocean interface and through the STE. Uranium (U) is a 

trace metal with two main redox states in aquatic systems, one that is mobile in oxic waters and 

another that is particle reactive under reducing conditions. Hence, the reducing environment of 

the STE appears to make it a net sink for U [Charette and Sholkovitz, 2006; Santos et al., 2011a], 

which is present in seawater at ppb concentrations. Santos et al. [2011a], using rapid (90 min) 

sampling of a STE over a 16 h period, provided evidence that tide-induced water exchange was a 

control on U removal (and release in the case of Ba). Beck et al. [2009] found that Cu was 

removed within the STE of a coastal New York embayment, though they did not comment on the 

potential driving mechanism for this process. Regardless, the time-scale over which these 

conditions that are a removal will determine whether or not STEs are important for trace metal 

removal on longer (e.g., decadal to centennial and beyond) time scales [Beck et al., 2010]. 

Supporting long-term trace metal removal within STEs, Jung et al. [2009] calculated that the As 

accumulation by the iron curtain at Waquoit Bay took place over ~2000 y.  

3.3 Organic Contaminants 

With many urban areas, industrial sites, refineries and transport hubs (airports, harbors) located 

along coastlines, elevated concentrations of organic contaminants (e.g., hydrocarbons (petroleum 

products), chlorinated solvents, polyaromatic hydrocarbons and pesticides) in CUAs are common 

in developed areas [Zhao et al., 2011; Sbarbati et al., 2015]. Where terrestrial groundwater 

discharges to the ocean and organic contamination of the CUA is near the shoreline (i.e., < 1 
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km), there is potential for the contaminants to migrate to the coastal ocean via FSGD [Westbrook 

et al., 2005; Mastrocicco et al., 2012; Colombani et al., 2014]. 

Few studies have investigated the potential migration of organic contaminants through CUAs to 

the ocean including the potential natural attenuation of contaminants along redox and pH 

gradients in the STE. A field investigation of a dissolved hydrocarbon groundwater plume 

(BTEXN; benzene, toluene, ethylbenzene and xylenes, naphthalene) flowing towards a tidal and 

seasonally-influenced surface water estuary was presented by Westbrook et al. [2005]. They 

demonstrated that tidal effects including tide-induced recirculation strongly influenced the 

distribution of the hydrocarbon compounds near the shore and their spatial and temporal 

discharge to the estuary. Robinson et al. [2009] numerically simulated the transport of a BTEX 

groundwater plume in a tidally-influenced STE, considering Monod kinetics to describe the 

biodegradation of BTEX species. They showed that the redox gradients in the STE enhanced 

biodegradation of the BTEX species and subsequently reduced contaminant fluxes to the coastal 

ocean. The magnitude of FSGD to the tidal force (i.e., tidal amplitude) was found to 

considerably alter the extent of biodegradation as it affects the extent of mixing in the STE and 

period of exposure of the BTEX species to oxygen in the mixing zone. Further, this ratio controls 

tide-induced recirculation rate and thus the rate of oxygen and organic matter delivery from the 

ocean to the STE. Even neglecting reactions, both tide and wave-induced circulations and 

associated saltwater-freshwater mixing can considerably reduce organic contaminant 

concentrations at the seabed via dilution [Robinson et al., 2007b; Robinson et al., 2009; Geng et 

al., 2014]. 

Most organic contaminants enter the subsurface as NAPLs (non-aqueous phase liquids) with 

dissolved contaminant plumes forming as the NAPL partitions into the aqueous phase. No 
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studies have examined the effects of coastal groundwater dynamics on the morphology and 

migration of NAPLs in CUAs although reversing hydraulic gradients and fluctuating watertables 

may modify NAPL transport, entrapment, and mass transfer between the NAPL and aqueous 

phases. Numerical modeling and laboratory studies have, however, evaluated the effect of tides 

and waves on dense aqueous contaminant plumes showing strong interactions between tide-

induced circulations and dense contaminant plumes as well as the potential occurrence of flow 

instabilities [Zhang et al., 2002; Brovelli et al., 2007; Bakhtyar et al., 2013; Liu et al., 2016]. 

Organic contaminants can also be delivered to a nearshore aquifer from the ocean, for instance, 

following an offshore oil spill. Contamination of beaches from oil spills can severely degrade 

nearshore ecosystems [National Research Council, 2013]. Oil can be transported by wave and 

tide-induced circulations into the beach sediments where it can be attenuated by natural 

biodegradation. Physical remediation efforts (e.g., manual scrubbing, pressure spraying) are also 

often able to remove large amounts of oil from shallow beach sediment [Owens et al., 2008]. 

However, in some cases oil has been found to infiltrate and persist in beach sediments for 

decades after an offshore spill [Owens et al., 2008; Li and Boufadel, 2010]. This tends to occur at 

beaches where there is a high permeability upper layer (i.e., gravel) that is underlain by a low 

permeability layer. The upper layer is able to temporarily store the oil until it penetrates into the 

lower layer where it becomes entrapped by capillary forces and biodegradation is limited due to 

the reducing conditions in the low permeability sediment [Boufadel et al., 2010; Li and Boufadel, 

2010]. In this way, oil is able to persist in the beach sediment until there is a change in 

environmental conditions (e.g., storm event) that leads to erosion of the shoreline [Owens et al., 

2008]. Recent numerical simulations by Geng et al. [2015] and Geng et al. [2016b] illustrated 

the important role of tide-induced circulations, nearshore groundwater flows and chemistry in the 
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shallow nearshore aquifer (i.e., availability of nutrients and dissolved oxygen) in controlling the 

aerobic biodegradation of residual oil in tidally-influenced beaches. They showed that 

biodegradation in the intertidal zone can be either oxygen- or nutrient-limited, and varies along 

across the intertidal zone based on the varying inputs of the seawater and fresh groundwater 

endmembers. Simulating the downward migration and morphology of NAPL (oil) in beaches 

exposed to wave and tidal forcing is challenging. For instance, multiphase simulations presented 

by Malott et al. [2017] demonstrated that instantaneous wave- and tide-induced pressure signals 

need to be considered in predicting NAPL infiltration into beach sediments. Therefore, 

simplified modeling approaches that consider only tide- and wave time-averaged flow fields may 

not be adopted. With offshore oil spills a continuing threat to coastal nearshore ecosystems, it is 

important that research continues on the processes controlling the migration, morphology and 

longevity of oil in nearshore aquifers. 

4. Knowledge gaps and research needs  

Despite considerable research effort focused on understanding interactions between CUAs and 

the coastal ocean in the last 20 y, major knowledge gaps remain regarding this connection 

between the land and ocean that can considerably influence on the integrity of the coastal ocean, 

availability of fresh groundwater resources, and marine biogeochemical cycles. Based on the 

review provided, the following knowledge gaps and research needs were identified: 

 The driving forces for flows and salt transport in a STE are highly dynamic and irregular 

with multiple forces acting on the system. Most field and numerical modelling studies 

evaluate the effect of individual driving forces on groundwater flow and salt transport in a 

STE in isolation or consider two forces only (e.g., tides and seasonal recharge). While this 
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has provided strong mechanistic understanding of the forcing effects, there is a need to better 

understand the interacting effects between forcing including the non-linearity of the 

interactions and how they interact to control nearshore groundwater dynamics and chemical 

fluxes. Further, approaches need to be developed to better identify settings where one forcing 

or a couple of forcing may dominate over others. For instance, as shown by Xin et al. [2014], 

approaches such as functional data analysis may be applied to quantify the effects of multiple 

irregular forcing on SGD taking into account the historical forcing conditions and memory 

effects. 

 Significantly more research effort to date has been devoted to the effect of density and semi-

diurnal/diurnal tides on the flows, salt transport and geochemical processes within a STE 

compared to more irregular and longer period forcing such as waves, seasonal recharge, sea 

level variability, and sea level rise. This is likely in part due to the challenges inherent in 

investigating irregular and longer period forcing via field experiments as well as the 

difficulties of disentangling the various forcing effects. Irregular forcing, particularly varying 

wave conditions and episodic events such as overland seawater inundation, may have a great 

impact on the salinity distribution, mixing and geochemical processes within a CUA due to 

potential large-scale salinization combined with the slow recovery (freshening) of the aquifer 

[Smith et al., 2008; Robinson et al., 2014; Yu et al., 2016]. Large-scale salinization of a CUA 

may also, for instance, lead to mobilization of legacy metals and organic contaminants, 

although these potential impacts have not been explored. Increased knowledge of the effects 

of irregular and longer period forcing is needed to better predict perturbations in the system 

in response to the changing climate and increasing anthropogenic stressors.  
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 Most studies examining chemical transformations in a STE and fluxes to the coastal sea 

(metals, nutrients, carbon, greenhouse gases) are field-based with limited measurements and 

understanding of the underlying physical processes (e.g., water exchange, groundwater 

circulations) and often give limited consideration to the coupling of biogeochemical cycles 

(i.e., nitrogen, carbon, metal cycling). The physical processes need to be studied and 

measured together with the coupled biogeochemical processes as the interactions between 

these processes holds the key to unravelling questions regarding the role of the STE in 

controlling chemical fluxes to the ocean. There is also a need to combine field measurements 

with reactive transport models, which are currently underutilized in STE studies, to generate 

broadly applicable mechanistic understanding including clarification of the interactions 

between flows, residence times and kinetics. Combining physical and geochemical 

investigations, and field and modeling efforts is challenging as researchers generally tend to 

have more expertise in one area only (i.e., hydrology or geochemistry) – multi-disciplinary 

teams may be required to address this.  

 The salt and geochemical conditions in a STE depend on the current as well as historic 

forcing conditions due to the slow recovery time of the system to transient forces. A natural 

CUA system is rarely in equilibrium as it is continuously adjusting to the effects of previous 

conditions. This includes adjusting to both physical forcing conditions as well as changes in 

end member chemical concentrations over time. Despite this, many field studies continue to 

obtain only snapshot (one-off) distributions of the salt and chemical distributions in a STE, 

thus they do not determine the effects of historical conditions. This may lead to 

misinterpretation of field data including drawing incorrect conclusions regarding the effect of 

different forces and chemical behavior. For instance, temporal changes in endmember 
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concentrations may lead to mixing patterns being interpreted as non-conservative mixing, but 

rather the patterns reflect conservative mixing among multiple endmembers that vary 

temporally. Collection of field data over long durations to ensure the effects of past 

conditions is understood is highly intensive. Therefore, there is a need for better fundamental 

understanding of the temporal effects such that they can be incorporated into field 

investigations and data interpretation. 

 Coastlines and thus nearshore aquifer systems are three-dimensional due to shoreline features 

such as creeks and rocky outcrops, and varying alongshore morphology and subsurface 

geological heterogeneities. Most field and numerical modelling studies assume that the 

system is 2D with negligible alongshore and geological variability. This simplification allows 

for the use of a single cross-shore transect for field monitoring and use of a 2D numerical 

model with unit alongshore width. While this simplification is valuable for developing 

process-based understanding of the physical and biogeochemical processes in CUAs, there is 

a need to expand investigations to consider the heterogeneous nature of the system. As 

illustrated by Zhang et al. [2016] and Russoniello et al. [2013], alongshore variability and 

aquifer heterogeneities may play a key role in controlling SGD and the physical and 

biogeochemical processes in a STE. Further, most studies assume that the beach morphology 

(cross-shore and alongshore) is constant, neglecting erosional and accretionary beach 

processes. The changes in the morphology of the beach face will affect the water exchange 

leading to shifts in groundwater circulation patterns and may enhance saltwater-freshwater 

mixing in a STE. While this has been investigated in a few studies [Robinson et al., 2006; 

Abarca et al., 2013], beach morphology changes may have important implications on the 
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biogeochemistry and transformations in a STE and requires further investigation as we seek 

to understand fully the transient behavior of this complex system. 

 While regional and global scale estimates of the magnitude and importance of SGD are 

available [e.g., Zektser and Loaiciga, 1993; Moore et al., 2008; Sawyer et al., 2016], 

improved quantification of the role of the STE and SGD in controlling nutrient, carbon, 

greenhouse gas and metal fluxes to the coastal ocean on global and ocean basin scales is 

needed. There have been limited attempts on measuring these fluxes over large scales other 

than Rodellas et al. [2015] who provided estimates of nutrients fluxes into the Mediterranean 

Sea. There is a need to upscale local scale investigations based on broadly applicable 

understanding of controlling factors. 

 Much of the earlier SGD literature was based on bottom-up approaches, e.g., SGD fluxes are 

estimated and compared to other sources such as river inputs [see Slomp and Van Cappellen, 

2004 for a review]. Bottom-up studies alone do not demonstrate whether the estimated SGD 

flux results in a measurable impact on the coastal ocean because of inherent challenges to 

define the spatial and temporal scale of both river and groundwater inputs. In recent years, 

top-down evidence (i.e., a demonstrated cause-effect) has emerged illustrating clearer links 

between groundwater inputs and a biogeochemical response in coastal waters. For example, 

groundwater inputs have been linked to high N:P ratios in estuarine waters [Santos et al., 

2013], high microphytobenthos production in intertidal flats [Waska and Kim, 2010], and 

algal blooms in coastal waters [Lee et al., 2010]. To obtain stronger evidence on the 

importance of SGD to marine budgets, investigations need to combine both bottom-up and 

top-down approaches. 
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