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ABSTRACT

This paper considers the problem of reconstructing raw signals

from random projections in the context of time-of-flight imaging

with an array of sensors. It presents a new signal model, coined

as multi-channel pulse-stream model, which exploits pulse-stream

models and accounts for additional structure induced by inter-sensor

dependencies. We propose a sampling theorem and a reconstruc-

tion algorithm, based on ℓ1-minimization, for signals belonging

to such a model. We demonstrate the benefits of the proposed

approach by means of numerical simulations and on a real non-

destructive-evaluation application where the peak-signal-to-noise-

ratio is increased by 3 dB compared to standard compressed-sensing

strategies.

Index Terms— Compressed sensing, sparsity, array imaging

1. INTRODUCTION

m
(

p
i
,t
)

rk

pipj

x

z

t

“wavefront”

t
T
x

(

r
k
)

‖
r
k
−
p

i ‖
2

c

∆ij

Fig. 1. Considered time-of-flight imaging configuration.

The notion of pulse stream has been introduced by Hegde and

Baraniuk [1] and designates signals that can be expressed as a con-

volution between a K-sparse spike train and a F -sparse impulse re-

sponse.

This work was supported by the UltrasoundToGo RTD project (no.
20NA21 145911), funded by Nano-Tera.ch.

Formally, let us consider a pulse stream z ∈ R
N , such that

z = h ∗ s with s ∈ R
N the K-sparse spike train and h ∈ R

N the

F -sparse impulse response. The following definition holds:

Definition 1 (Definition 2 of [1]). The pulse-stream model is defined

as follows:

Mz
K,F :=

{

z ∈ R
N : z = s ∗ h | s ∈ MK and h ∈ MF

}

,

(1)

where ∗ denotes the discrete convolution, MK ⊂ R
N and MF ⊂

R
N are unions of LK K-dimensional and LF F -dimensional canon-

ical subspaces, respectively.

For signals belonging to the pulse-stream model Mz
K,F , Hegde

and Baraniuk [1] have derived a sampling theorem where the number

of measurements necessary for perfect reconstruction scales linearly

with K +F instead of KF (standard CS). In this work, we propose

to extend this model to time-of-flight imaging with an array of sensor

elements, whose configuration is described on Fig. 1. The sensing

process is divided into a transmit phase where one or several emitters

are used to send a pulsed-wave in the medium, and a receive phase

where the sensors are used to acquire the response of the medium to

the previously transmitted pulsed wave. Such a configuration covers

a wide range of applications e.g. medical ultrasound imaging, non-

destructive evaluation, seismic imaging, sonar, lidar and synthetic

aperture radar imaging.

Formally, let us assume that the array is made of Nel sensors,

positioned at
(

pi
)Nel

i=1
, as described on Fig. 1. Let us also consider

that the medium is made of K targets positioned at
(

rk
)K

k=1
. The

signal mi (t) received at the i-th sensor can be expressed as:

mi (t) =

K
∑

k=1

akh
(

t− tki

)

, (2)

where ak and tki are the amplitude and delay associated with the k-th

target and h (t) is the received pulse, supposed to be known in the

remainder of the paper. The delay associated with the k-th target

depends on its relative position with respect to the i-th sensor and

can be expressed as follows:

tki = tTx

(

r
k
)

+
‖rk − pi‖2

c
, (3)

where c denotes the wave velocity in the medium, supposed to be

constant, and tTx

(

rk
)

is the transmit delay which depends on the

transmit settings. Such model have been extensively used in medical

ultrasound imaging [2, 3, 4], non-destructive testing [5] and radar

imaging [6, 7].
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Starting from Equation (2), we consider inter-sensor dependen-

cies in order to derive an additional structure of the array signals.

This structure, expressed as restrictions on the possible support of

the array signals, leads us to define a new model, denoted as multi-

channel pulse stream model, from which we present a sampling the-

orem and a recovery algorithm.

The remainder of the paper is organized as follows. In Section 2,

the signal model is presented, with the corresponding sampling the-

orem and recovery algorithm. Section 3 presents results on synthetic

pulse streams as well as on real non-destructive evaluation signals.

Concluding remarks are given in Section 4.

2. PULSE STREAMS IN ARRAY IMAGING

2.1. Signal Recovery From the Pulse-stream Model

From Equation (2), one may express the signal mi (t) as mi (t) =
(si ∗t h) (t), where ∗t denotes the continuous convolution over time,

h (t) is the pulse and

si (t) =

K
∑

k=1

akδ
(

t− tki

)

. (4)

Let us consider that the signal mi (t) is sampled at a rate fs, leading

to N samples mi

(

tj
)

, with tj = t0 + j/fs for j ∈ {1, . . . , N}.

The vector mi =
[

mi

(

t1
)

, . . . ,mi

(

tN
)]T

∈ R
N belongs

to the pulse-stream model Mz
K,F where F denotes the size of the

support of h ∈ R
N , supposed to be small compared to N , and K

the number of point scatterers.

Thus, one may be able to sample array signals at a rate dictated

by Hegde and Baraniuk [1] while ensuring a perfect recovery using

either model-based greedy approaches [8] or ℓ1-minimization [9].

In the proposed work, we have decided to focus on the latter. Since

the pulse is supposed to be known, the following convex problem

can be solved to retrieve mi ∈ R
M from noisy measurements y =

Φmi + n, with Φ ∈ R
M×N a Gaussian i.i.d. matrix:

min
s̄

‖s̄‖1 subject to ‖y − ΦHs̄‖2 ≤ ǫ, (5)

where H is a circulant matrix which contains time-shifted replicas of

the pulse, s is a K-sparse vector and ǫ ∈ R+.

2.2. Multi-channel Pulse-stream Model

The model described in Section 2.1 is suited to single channel re-

constructions. However, such a model does not account for inter-

channel dependencies, which are self-evident in the proposed con-

figuration (see Fig. 1). By taking into account the dependencies, one

may be able to decrease the number of measurements required to re-

construct array signals. The following theorem precises the way the

dependencies between two channels may be expressed.

Theorem 1 (Two-channel scenario). The support σ (si) of the spike

train si corresponding to the sensor located at a distance ∆ij from

the sensor j, whose spike train is sj , has the following property:

σ (si) ⊂ Sij ,

where Sij :=
K
⋃

k=1

Ωij

k is a union of 2Dij-dimensional subspaces

Ωij

k defined by:

Ωij

k := {{k −Dij , . . . , k +Dij} , k ∈ σ (sj)} ,

where Dij = ⌈fs∆ij/c⌉.

In the above theorem, ⌈.⌉ designates the round value.

Proof. Let us suppose that sj (t) =
∑K

k=1
akδ

(

t− tkj
)

and

si (t) =
∑K

k=1
akδ

(

t− tki
)

. From Equation (3), one may de-

duce the following:

tkj = tTx

(

r
k
)

+
‖rk − pj‖2

c

≤ tTx

(

r
k
)

+
‖rk − pi‖2

c
+

∆ij

c

≤ tki +
∆ij

c
.

Reversely, one can deduce that tkj ≥ tki −
∆ij

c
, which leads to tki ∈

[

tkj −
∆ij

c
, tkj +

∆ij

c

]

. Thus, by simple multiplication with fs, one

may deduce that:

∀l ∈ σ (si) , ∃p ∈ σ (sj) | l ∈ {p−Dij , . . . , p+Dij} , (6)

where Dij = ⌈fs∆ij/c⌉. Generalizing Equation (6) to the support

of σ (si), one may retrieve the result of Theorem 1.

Theorem 1 states that the support of si is included into a union

of K 2Dij-dimensional subspaces Ωij

k , located around the support

of the signal received at sensor j. The dimension of each subspace

depends on the distance between the sensors.

Physically, the interpretation of Theorem 1 is clear and can be

deduced from the proof. For any point, the difference of time-of-

flight between two sensors depends on the difference of the distances

of the point to each of the sensors. By simple geometrical consid-

erations (Fig. 1), this difference cannot be higher than ∆ij and the

equality holds when the point is located at the transducer surface.

We can go further than the two-channel scenario by considering

that we have prior knowledge on multiple channels. In this case, the

following theorem holds.

Theorem 2 (Multi-channel scenario). The support σ (si) of the

spike train si corresponding to the sensor located at distances

(∆ij)
N

j=1
from a set of N sensors, whose spike trains are (sj)

N

j=1
,

has the following property:

σ (si) ⊂ S,

where S :=
N
⋂

j=1

Sij is the intersection of the spaces Sij defined in

Theorem 1.

Proof. This is a simple generalization of Theorem 1. Let us denote

as (sj)
N

j=1
the spike trains associated with the N considered sensors.

Then, Theorem 1 states that:

∀j ∈ {1, . . . , N}, σ (si) ∈ Sij ⇔ σ (si) ∈
N
⋂

j=1

Sij .

In this case, the support σ (si) is included into a smaller sub-

space, taking into account the dependencies between the sensor i
and the N other ones. We use the result of Theorem 2 to define the

multi-channel pulse-stream model as:

Uz
K,F :=

{

z ∈ R
N : z = s ∗ h | s ∈ MK , σ (s) ⊂ S

}

, (7)

where the pulse h is supposed to be known.



2.3. Sampling Theorem for Multi-channel Pulse-stream Signals

The multi-channel pulse-stream model has an additional structure

compared to the single-channel pulse-stream model, i.e. Uz
K,F ⊂

Mz
K,F . This can be exploited in order to reduce the sampling rate

requirements for signals belonging to Uz
K,F . The theorem hereafter

makes this precise and sets the sampling requirement.

Theorem 3. Suppose that Uz
K,F is the multi-channel pulse-stream

model defined in Equation (7). Let t > 0 and δ > 0. Choose a

M ×N i.i.d. Gaussian matrix Φ with

M ≥ O

(

(K + F ) ln

(

1

δ

)

+K

(

1 + log

(

|S|

K

))

+ t

)

.

Then Φ satisfies the following property with probability 1 − e−t

∀z1, z2 ∈ Uz
K,F ,

(1− δ) ‖z1 − z2‖
2 ≤ ‖Φz1 − Φz2‖

2 ≤ (1 + δ) ‖z1 − z2‖
2.

In the theorem above |S| denotes the cardinality of the set S.

Proof. The proof is based on Theorem 1 of [1]. Suppose that z ∈
Uz
K,F , then, z ∈ Mz

K,F . From [1], one may set the bound M as:

M ≥ O

(

(K + F ) ln

(

1

δ

)

+ log (LKLF ) + t

)

(8)

where t > 0. When h is known, LF = 1. Moreover, if we consider

that σ (s) ⊂ S, then the following inequality holds:

LK ≤

(

|S|

K

)

≈

(

e|S|

K

)K

⇔ log (LK) ≤ K

(

1 + log

(

|S|

K

))

.

Introducing the above results in Equation (8) leads to the results of

Theorem 3.

The main benefit of Theorem 3 is that the number of measure-

ments required for perfect reconstruction are O (K log (|S|/K)),
instead of O (K log (N/K)) in the case of the single-channel pulse

stream model. Indeed, the additional structural assumption involved

in the fact that z ∈ Uz
K,F implies that σ (s) ∈ S which means that

the recovery problem can be solved in R
|S| rather than R

N and, con-

sequently, that the signal can be acquired with O (K log (|S|/K))
Gaussian i.i.d. measurements.

2.4. Recovery of multi-channel pulse-stream signals

As described in Section 2.1, the signal m = s ∗ h, m ∈ Uz
K,F

can be written as m = Hs. Let us consider that the signal y =
Φm is measured, where Φ ∈ R

M×N satisfies the requirements of

Theorem 3. As stated in Section 2.3, the recovery problem in R
N

can be recast as the following recovery problem in R
|S|:

Find α ∈ R
|S|

such that ‖y − (ΦH)|S α‖2 ≤ ǫ, ‖α‖0 ≤ K, (9)

where ǫ ∈ R+ accounts for the noise level and (ΦH)|S ∈ R
M×|S|

corresponds to a submatrix of ΦH formed by the columns indexed

by the support S. Depending on the ratio between the number of

measurements M , the size of the support S and the noise level, two

different recovery procedures may be considered.

2.4.1. Recovery by least-square minimization

When M ≥ |S| and ǫ = 0, Problem (9) involves an overcomplete

matrix (ΦH)|S ∈ R
M×|S| and can be solved by simple least-square

minimization. In this case, the solution α⋆ of Problem (9) is ex-

pressed as:

α
⋆ = (ΦH)†|S y, (10)

where (ΦH)†|S denotes the Moore pseudo-inverse of (ΦH)|S .

2.4.2. Recovery by ℓ1-minimization on the signal support

In a more general case, α⋆ can be recovered by solving the following

convex optimization problem [9]:

min
α∈R|S|

‖α‖1 subject to ‖y − (ΦH)|S α‖2 ≤ ǫ. (11)

In the remainder of the paper, Problem (11) is solved using the al-

ternating direction methods of multipliers (ADMM) [10], where the

inequality constraint is expressed in terms of its indicator function.

3. EXPERIMENTS AND DISCUSSION

We now present the results of experiments that validate the proposed

approach and show its benefits.

3.1. Synthetic Pulse Streams
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Fig. 2. Normalized MSE for (a) ∆ = 0.31 mm (one wavelength)

and (b) ∆ = 0.62 mm (two wavelengths) vs. the compression ra-

tio (M/N ) for the proposed method for 1-, 2-, 5- and 10-channel

scenarios. Signals parameters: N = 2000, F = 31, K = 20.

We consider a synthetic configuration with K = 20 point-

scatterers with random amplitudes and positions. 10 sensors are

considered, with an inter-sensor spacing of ∆. Pulse-streams of

length N = 2000 are simulated mimicking ultrasound plane-wave

imaging with normal incidence [11]. The considered pulse h (t)
is a convolution between a 2-cycle square excitation signal and a

Gaussian pulse (2.5 cycles, center frequency 5.208 MHz, bandwidth

67 %) which mimics the impulse response of ultrasound transducer

elements. The sampling frequency fs is set to 20.8 MHz.

Figure 2 displays the averaged results of a Monte-Carlo sim-

ulation over 1000 trials of the ADMM algorithm. Each trial was

conducted by randomly generating the amplitudes and positions of

the K point-scatterers, the Gaussian i.i.d matrix Φ ∈ R
M×N and

by reconstructing the raw data m of one sensor from different val-

ues of M/N . Single-channel as well as multi-channel scenarios are

considered. For the multi-channel scenarios, prior knowledge on the

support of the spike trains of 1, 4 and 9 neighboring sensors of the
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Fig. 3. (a) Original signal (b) Noisy signal (SNR = 30 dB) (c) Recovered estimate from M = 160 measurements in a 1-channel scenario (d)

Recovered estimate from M = 160 measurements in a 5-channel scenario.

sensor of interest are considered. Figures 2(a) and 2(b) show the nor-

malized mean squared error, for two different inter-sensor spacings,

namely 0.31 mm (one wavelength) and 0.62 mm (two wavelengths).

The maximum number of iterations is set to 1000 and ǫ = 0.

This experiment demonstrates that a higher number of chan-

nels, which decreases the dimension of the subspace S (Theorem

2), results in a better recovery. Indeed, Fig. 2(a) show that the 5-

and 10-channel scenarios outperform the 2-channel one. Figure 3

shows that the proposed algorithm is robust to small amount of

noise (SNR = 30 dB). For this experiment, a small amount of Gaus-

sian noise is added to the element raw-data of each sensor, leading

to the signal displayed on Figure 3(b). Figures 3(c) and 3(d) show

the recovered signals for the 1-channel and 5-channel scenarios,

respectively, for a number of measurements M = 160. It can be seen

that the signal recovered from the 5-channel scenario is closer to the

original signal than the one recovered from the 1-channel scenario.

3.2. Experimental Non-destructive-evaluation Signals

An aluminum block containing side drilled holes located at different

depths have been insonified with 1 plane wave (normal incidence)

using an open phased-array platform (OEM-PA, Advanced OEM

Solutions, Cincinnati, USA), equipped with a linear probe (Ima-

sonic SAS, Voray-sur-l’Ognon, France) composed of 64 elements

with 0.93 mm pitch, working at 5 MHz with 100 % bandwidth. The

sampling frequency has been set to 50 MHz and the speed of sound

in aluminum is 6300 m s−1. The pulse is approximated as a convo-

lution between a 0.5-cycle excitation signal and a 1-cycle Gaussian-

modulated sinusoidal impulse response. The first channel is com-

pressed with a compression ratio M/N = 0.5 and the other chan-

nels with a compression ratio M/N = 0.03. The compression is

achieved with a random normal matrix. In the 1-channel scenario, all

the channels are reconstructed in parallel. In the multi-channel sce-

nario, the reconstruction is performed sequentially. The first channel

is reconstructed first and its support is used as a prior knowledge

for the multi-channel reconstruction. Concerning the optimization

algorithm, the maximum number of iterations is set to 1000 and

ǫ = 0.3‖y‖2. Standard delay-and-sum beamforming [11] is applied

to generate the radio-frequency image from the raw-data. The enve-

lope is extracted through Hilbert transform and normalized to obtain

the B-mode image. Figure 4(a) displays the reference B-mode im-

age obtained with no compression and Fig. 4(b) shows the recovered

B-mode image in the multi-channel scenario. It highlights that the

multi-channel scenario leads to a nearly perfect reconstrucion, with a

peak-signal-to-noise-ratio (PSNR), calculated against the reference

image, of 28.3 dB while the 1-channel scenario leads to significantly

lower image quality (PSNR = 25.5 dB)1.
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Fig. 4. (a) Original B-mode image; (b) Recovered B-mode image

from 3 % measurements in a 2-channel scenario (PSNR = 28.3 dB).

3.3. Discussion

In the proposed method, we map an active sensing problem onto a

passive one. This choice is motivated the complexity (high mem-

ory footprint) and the high coherence of the dictionaries involved in

active sensing problems [12]. In addition, according to Theorem 2,

the current method requires a perfect estimation of the support which

can be challenging in realistic scenario. To address this problem, one

may suggest a strategy where one sensor works at a CS rate dictated

by Hegde and Baraniuk and the others work at the 2-channel CS

rate provided by Theorem 1. The reconstruction is achieved sequen-

tially by considering one single-sensor scenario and multiple multi-

channel scenarios. A limitation of the current approach is the need

of perfect knowledge of the pulse that can be tackled by exploring

blind-deconvolution approaches [1, 13, 14] and grid mismatch that

may lead to additional noise.

4. CONCLUSION

We have presented an extension of the pulse-stream model coined as

multi-channel pulse-stream model. It accounts for the inter-sensor

dependencies as an additional structure to the general pulse-stream

model and enables us to quantitatively estimate the number of ran-

dom projections necessary to sample such signals. We also suggest a

reconstruction method based on ℓ1-minimization on the reduced sig-

nal support and illustrates its benefits on synthetic and experimental

non-destructive-evaluation signals.

1https://github.com/AdriBesson/ICASSP2018-pulse-streams
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rent Simon, “A Linear Model Approach for Ultrasonic Inverse

Problems with Attenuation and Dispersion,” IEEE Trans. Ul-

trason. Ferroelectr. Freq. Control, vol. 61, no. 7, pp. 1191–

1203, jul 2014.

[6] Omer Bar-Ilan and Yonina C. Eldar, “Sub-Nyquist Radar via

Doppler Focusing,” IEEE Trans. Signal Process., vol. 62, no.

7, pp. 1796–1811, apr 2014.

[7] Richard Baraniuk and Philippe Steeghs, “Compressive Radar

Imaging,” in IEEE Natl. Radar Conf. - Proc., apr 2007, pp.

128–133.

[8] Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, and

Chinmay Hegde, “Model-based Compressive Sensing,” IEEE

Trans. Inf. Theory, vol. 56, no. 4, pp. 1982–2001, apr 2010.

[9] Emmanuel J Candes, Yonina C Eldar, Deanna Needell, and

Paige Randall, “Compressed Sensing with Coherent and Re-

dundant Dictionaries,” Appl. Comput. Harmon. Anal., vol. 31,

no. 1, pp. 59–73, jul 2011.

[10] Stephen Boyd, “Distributed Optimization and Statistical

Learning via the Alternating Direction Method of Multipliers,”

Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, jan 2011.
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