-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Motivic and p-adic Localization Phenomena

THESE N° 8025 (2017)

PRESENTEE LE 3 NOVEMBRE 2017
A LA FACULTE DES SCIENCES DE BASE
CHAIRE DE GEOMETRIE
PROGRAMME DOCTORAL EN MATHEMATIQUES

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE

POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES

PAR

Dimitri Stelio WYSS

acceptée sur proposition du jury:

Prof. V. Panaretos, président du jury
Prof. T. Hausel, directeur de thése
Prof. F. Rodriguez Villegas, rapporteur
Prof. O. Schiffmann, rapporteur
Prof. Ph. Michel, rapporteur

(Pr

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Suisse
2017


https://core.ac.uk/display/148033827?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Contents

Abstract

Zusammenfassung

ii

iii

iv

Acknowledgements
Introduction

1 Generalities
1.1 Symplectic geometry . . . . . . ..o
1.2 Grothendieck rings, exponentials and Fourier transform . . . . . ..
1.3 Realization morphisms . . . . . . . . .. ... L.

2 Motivic Classes of Symplectic Reductions of Vector Spaces
2.1 Symplectic reductions of vector spaces . . . . . . ... ... ...
2.2 Hypertoric varieties . . . . . . . ..o

2.2.1 Motivic classes of smooth hypertoric varieties . . . . . . .
2.3 Nakajima quiver varieties . . . . . . .. ... ... ... ..
2.3.1 Motivic classes of Nakajima quiver varieties . . . . . . . .

3 Open de Rham spaces
3.1 Jetsandduals. . . ... ... oo oo
3.2 Coadjoint orbit computations . . . . . . ... ... L.
3.3 Meromorphic connections . . . . . .. .. ... ...
3.4 Fourier transform of apole . . . . . ... ... ... ... ...
3.5 Motivic classes of open de Rham spaces . . . . .. .. ... ...
3.6 Remarks on finite fields and purity . . . . . . ... ... ... ..

4 Push-forward Measures of Moment Maps over Local Fields
4.1 Local fields and some harmonic analysis . . . . .. .. ... ...
4.2 Local Igusa zeta funcions . . . . . . .. .. ... oL
4.3 Push forward measures of moment maps . . . . . ... ... ...
4.4 Hypertoric zeta functions . . . . . . . ... ... L.
4.5 Poles . . . . .o
4.6 The residue at the largest pole . . . . . . . ... ... ... ...
4.7 Indecomposable quiver representations in higher depth . . . . . .

1.4 Hyperplane arrangements . . . . . . .. .. ..o

11
11
14
15
18
20

25
26
26
28
31
34
37






Abstract

In this thesis we compute motivic classes of hypertoric varieties, Nakajima quiver
varieties and open de Rham spaces in a certain localization of the Grothendieck
ring of varieties. Furthermore we study the p-adic pushforward of the Haar measure
under a hypertoric moment map p. This leads to an explicit formula for the Igusa
zeta function Z,(s) of p, and in particular to a small set of candidate poles for
Z,.(s). We also study various properties of the residue at the largest pole of Z,,(s).
Finally, if p is constructed out of a quiver I' we give a conjectural description of
this residue in terms of indecomposable representations of I' over finite depth rings.

The connections between these different results is the method of proof. At the
heart of each theorem lies a motivic or p-adic volume computation, which is only
possible due to some surprising cancellations. These cancellations are reminiscent
of a result in classical symplectic geometry by Duistermaat and Heckman on the
localization of the Liouville measure, hence the title of the thesis.

Keywords: Hypertoric Varieties, Nakajima Quiver Varieties, Open de Rham

Spaces, Igusa Zeta Functions, Motivic Fourier Transform, Duistermaat-Heckman
Theorem.
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Zusammenfassung

In dieser Dissertation berechnen wir die motivischen Klassen von hypertorischen
Varietaten, Nakajima Kocher Varietdten und offenen de Rahm Ré&umen. Ausser-
dem studieren wir das p-adische Haar Mass unter dem Vorschieben einer hyper-
torischen Momentenabbildung p. Dies fithrt zu einer expliziten Formel fiir die
Igusa Zeta Funktion Z,(s) von p und insbesondere zu einer kleinen Menge von
moglichen Polen von Z,,(s). Wir untersuchen ausserdem verschiedene Eigenschaften
des Residuums am grossten Pol von Z,,(s). Im Fall, wenn p aus einem Koécher I'
konstruiert ist, erklaren wir schliesslich eine Vermutung, welche dieses Residuum
mit der Anzahl nicht-aufteilbarer Darstellungen von I' iiber Ringe endlicher Tiefe
in Verbindung bringt.

Diese verschiedenen Resultate sind alle durch eine dhnliche Beweismethode ver-
bunden. Im Zentrum jedes Theorems steht eine motivische oder p-adische Vol-
umenberechnung, welche nur durch iiberraschende Vereinfachungen mdglich ist.
Diese Vereinfachungen erinnern an ein Resultat in klassischer symplektischer Ge-
ometrie von Duistermatt und Heckman tiber die Lokalisierung des Liouville Masses,
was den Title der Dissertation erklart.

Stichworte: Hypertorische Varietéiten, Nakajima Kocher Varietdten, Offene de

Rham Réume, Igusa Zeta Funktionen, Motivische Fourier Transformation, Duistermaat-
Heckman Theorem.
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Introduction

A classical theorem in symplectic geometry due to Duistermaat and Heckman
[DHS82| states, that the volume of a symplectic reduction M J G, where M is
a compact symplectic manifold and G' a compact Lie group, is determined by local
data around the fixed points of the G-action on M. This thesis grew out of the
question whether a similar localization theorem could hold in an algebraic context,
were manifolds are replaced by algebraic varieties and the symplectic volume by a
motivic or p-adic volume.

By the motivic volume of a variety we mean here simply its class in the
Grothendieck ring of varieties, and the p-adic volume of a variety over some lo-
cal field F' comes from the natural Haar measure on F'. As these two volumes have
very little in common with the real symplectic volume, coming from integrating
the Liouville form, there is no way to apply Duistermaat’s and Heckman’s ideas
directly. Instead we will use their theorem as a guiding principle, which we apply
in each of the chapters 2, 3 and 4 to different situations.

This approach turns out to be quite fruitful and we obtain in each case explicit
formulas for the respective volumes. The (sometimes conjectural) interpretations
of these volumes connect our computations with the geometry of various moduli
spaces, non-abelian Hodge theory, representations of quivers and even singularity
theory.

The thesis is divided in 4 chapters. Chapter 1 contains background material
for the later chapters and no original work apart from Definition 1.5 and Propo-
sition 1.6. In Section 1.1 we explain in more detail the motivation coming from
symplectic geometry and the Duistermaat-Heckman theorem. In Section 1.2 we
recall the definition of the Grothendieck ring of varieties KVar and introduce the
Grothendieck ring with exponential KExpVar [CL10, HK09]. The latter enables us
to talk about motivic character sums, which leads to the notion of motivic Fourier
transform. This Fourier transform is the key to exploit localization phenomena
for our computations in the Chapters 2 and 3. Section 1.3 then explains how to
extract geometrical and topological information about a variety from its motivic
volume. Finally, in Section 1.4 we discuss some basic combinatorics of hyperplane
arrangements.

We now summarize the original results of this thesis, which are contained in
the Chapters 2, 3 and 4. More details on the individual sections are given at the
beginning of each chapter.

Motivic Classes of Symplectic Reductions of Vector Spaces

In this chapter we study symplectic reductions of vector spaces and in particular
the two prominent examples of hypertoric varieties and Nakajima quiver varieties.
In Section 2.1 we construct these symplectic reductions algebraically using geo-
metric invariant theory and explain how to compute in principle their motivic
class (or volume) as an element in KVar, or more precisely in the localization
M = KVar[L71; (1 — L")~1 n > 1], where L. = [A!] denotes the class of Al in



KVar. The main ingredient here is Proposition 2.3, a Fourier transform argument
inspired by the finite field computations in [Hau06], which exhibits some sort of
localization phenomenon as explained in Remark 2.4.

Section 2.2 is about hypertoric varieties. In the generic case they are smooth
algebraic varieties M (A) constructed out of a hyperplane arrangement A and their
geometry is closely related to the combinatorics of A [BD00, HS02]. Using our
motivic localization formalism we prove a formula for the motivic class of M(A)
in terms of the intersection lattice of flats L(.A) and the Mdbius function v 4 (see
Section 1.4 for details).

Theorem 0.1. The motivic class of the generic hypertoric variety M(A) in A is
given by the formula

MA) = F5m 3 walPiooLl”,

FEL(A)
where m denotes the rank of A and n = |A| the number of hyperplanes in A.

In Section 2.3 we repeat the same kind of computations for Nakajima quiver
varieties. Here the input data is a quiver I' = (I, E, s,t), that is a finite vertex set
I, a set of arrows £ C I x I and maps s,t: F — I sending an arrow to its source
and target. In [Nak94][Nak98] Nakajima associates to I' and two dimension vectors
v,w € N’ a smooth algebraic variety M (v, w) called Nakajima quiver variety. Our
main result here is again a formula for the class of M(v,w) in .#. Explicitly let
P be the set of partitions. For A € P we write |A| for its size and my () for the
multiplicity of £ € N in A. Given any two partitions A, \" € P we define their inner
product as (A, \') = >, . ymin(é, j)m;(A)m;(\'). Then we prove

Theorem 0.2. For a fized dimension vector w € N! the motivic classes of the
Nakagjima quiver varieties M(v,w) in 4 are given by the generating function

As(e) M(e 1%Wi x;
Z)\ pI HEEEH‘< ()5 )> Hi(i]_im v>T|}\|
P s L) T, 124 (1-L-9)
5 HeeEzL(As(ewMeQ
I SO mp (N s
AP Hie] ]L<>\z,>\z> Hk Hj:kl( )(1_L J)

S M(v, W)LY =

veN!

Y

TIAl

where dy v denotes half the dimension of M(v,w).

We should mention that both Theorem 0.1 and 0.2 generalize known formulas
for the number of points of the respective varieties over a finite field IF,, when we
replace everywhere L by ¢ [Hau06, Haul0, PW07]. The real insight comes from the
idea of using Grothendieck rings with exponentials in order to perform the Fourier
transform computations motivically.

Open de Rham Spaces

Chapter 3 studies the motivic classes of open de Rham spaces and is part of a
joint project with Tamds Hausel and Michael Wong [HWW]. In order to define an
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open de Rham space, we fix an effective divisor D on P! and at each point in the
support of D some local data called a formal type. Then the open de Rham space
M,, is defined as the moduli space of connections on the trivial rank n bundle on
P! with poles along D with prescribed formal types at the punctures. If the formal
types are chosen generically, M,, is a smooth affine variety and can be described
as a symplectic fusion of coadjoint orbits for the groups GL, (C[[z]]/2*) for k > 1
[Boal1].

The same motivic Fourier transform formalism already used in Chapter 2 allows
us to compute the class of M,, in .#, at least when all the poles are prescribed to
be of order at least 2. We write P,, for the set of partitions of size n. For a partition
A= (A > .- > )\) € P, we define the numbers [(\) = [ and N(\) = 2321 )\?
and furthermore we put

l
Stab(A) = [ ] GLx, (C) € GL,(C).
j=1

Theorem 0.3. If the formal types are chosen generically and all poles are pre-
scribed to be of order at least 2, the motivic class of M., in A is given by
(M,] =
L5 (n*=2n)4+n(d—n)+1 (_1)l(>\)—1(l()\) _ 1)!(n!)d
L0t 2 LD Loy me (V)

L5 (=2d) [ab(\)] 41,

where k denotes the degree of D and d the number of points in D.

The proof uses motivic Fourier transform and convolution to reduce the com-
putation to a simpler one at each individual pole. The condition that a pole has
order at least 2 ensures then, that the computation localizes from the whole Lie
algebra gl,,(C) to the subspace of semisimple elements.

By passing to finite fields and using results from [HLRV11] the same formula
holds under the weaker condition that only one pole has to be of order at least 2.

As we will show in [HWW], these formulas are in agreement with the predictions
of Hausel, Mereb and Wong [HMW16]| on the mixed Hodge polynomial of wild
character varieties, which was the original motivation for studying the motivic
class of M,,.

Push-forward Measures of Moment Maps over Local Fields

In Chapter 4 we consider the same situation as in Chapter 2, but instead of the
motivic measure we consider the Haar measure coming from fixing our base field to
be a local field F’ with ring of integers (J. More precisely we consider as in Section
2.2 a hyperplane arrangement A of rank m consisting of n hyperplanes and the
corresponding hypertoric moment map

1 O" x O" — O™,
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Then g is by definition given by a homogeneous polynomial of degree 2 and as
it turns out, a similar localization philosophy as we used in the previous chapters
leads in this situation to a formula for the Igusa zeta function Z,(s) of . Here s
can be thought of as a complex variable, and in fact the general theory for those
zeta functions will imply, that Z,,(s) is a rational function in ¢—°, where ¢ denotes
the cardinality of the the residue field of F' [Igu00]. This rational function can be
written in terms of the combinatorics of A as follows (we refer to Section 1.4 for
details on the notation).

Theorem 0.4. For an essential hyperplane arrangement A the Igusa zeta function
Z,.(s) is given by

Xali (q)

Ts)= 21 T DR aicia) | i
pAZS —qg- — g (s+ +61, _ 1’
A co=I21, 221, el

where the sum is over all proper chains of flats in L(A) of length v > 1 and for
every flat I € L(A) we put 6y = n — |I| 4+ rk(Aj).

As an immediate consequence of the theorem we see that the real parts of the
poles of Z,,(s) are amongst the negative integers —dy for I € L(A). In Section 4.5 we
derive a sufficient criterion for when —d; is an actual pole of Z,,(s). The interest in
such an analysis comes from Igusas’s long standing monodromy conjecture [Igu88],
which describes the poles of I;(s) for any polynomial f in terms of the singularities
of f=0.

In an other direction consider the finite rings O, = O/m®, where m C O
denotes the unique maximal ideal and o > 1. Then assuming that A is coloop-
free, Theorem 0.4 implies that the asymptotic number of solutions to i = 0 in 02",
that is

b Hz €02 | p@) =0}
/7 9

a—r00 qa(2"*m)

converges to a rational function in ¢. After multiplying B, by an explicit factor
we obtain a polynomial B;L(q). Using the functional equation for Igusa zeta func-
tions of homogeneous polynomials [DM91], we show that B, (¢) is palindromic and
based on numerical evidence we conjecture furthermore, that B;L(q) has positive
coefficients, Conjecture 4.32.

Finally, when A is a induced from a quiver I' it is natural to ask for a relation
between the number of solutions of the moment map equation g = 0 and the
number of indecomposable representations of I' by a theorem of Crawley-Boevey
and Van den Bergh [CBVdBO04]. And indeed, the polynomial BL(q) seems to agree
with the asymptotic number of indecomposable representations of I' over O, up to
a factor, see Conjecture 4.37.

viii



1 Generalities

1.1 Symplectic geometry

A real manifold M is symplectic if it admits a non-degenerate, closed 2-form w.
For such a form to exist it is certainly necessary, that dim M = 2n is even. Then
w will induce a natural measure dL on M, called the Liouville measure, given by
integrating the volume form U:TT'L

Next consider a compact Lie group G acting on M by symplectomorphisms,
that is g*w = w for every g € (G. Such an action is Hamiltonian if there exists a
map

M — g" = Lie(G)",

satisfying the following two properties:

e For every X € g there is an equality of 1-forms (du, X) = i¢, w, where {x
denotes the vector field on M generated by X.

e 1 is G-equivariant for the coadjoint action of G on g*.

In this case u is called a moment map for the G-action on M. From the first
condition we deduce in particular, that A € g* is a regular value of p if and only
if G acts locally freely on u~*(\). Hence if A € (g*)¢ and G acts freely on p~1(\)
we can consider the quotient manifold

M [, G =" (V)G

By a theorem of Marsden and Weinstein [MW74] the manifold M /, G is again
symplectic and hence admits in particular its own Liouville measure dLy. The
dependence of dLy on A € (g*)¢ is described by a theorem if Duistermaat and
Heckman [DHS82], which we explain now.

As this section serves mostly as a motivation we restrict ourselves to the case
where G = T is a torus, M is compact and the fixed point locus M is discrete.
Then for any p € ME we get a torus action on the tangent space T,M. Equipping
T,M with a compatible complex structure, we write \[,...\2 € t* = Lie(T)* for
the weights of this action.

Theorem 1.1. [DH82, Theorem 4.1] For any t € t with <)\§,t> # 0 for all p €
M€Y, 1 < j <n the Fourier transform of the push-forward measure . (dL) is given

by
etlu(p),t)

/t* ei<x’t>ﬂ*(dL):/M iu(p)t) g7, — Z H] 1<>\ t> (1)

peEMC

The slogan we take away from (1) is, that the density of u.(dL) varies evenly
on t* away from pu(M®) C t* and hence the only contributions in the Fourier
transform come from M®. Their theorem was later reinterpreted by Atiyah and
Bott as a localization theorem in equivariant cohomology [AB84], which explains
the term ’localization’ in the title of this thesis.



In what follows we will however be interested in a more algebraic setting, where
M is a (smooth) algebraic variety over some field k. It still makes sense to talk
about symplectic forms on M and moment maps of an action of an algebraic group
on M. In this generality the Liouville measure doesn’t makes sense of course,
instead one can consider the tautological motivic measure, which we introduce in
Section 1.2 below. Also if k is a local field one can in some sense refine this motivic
measure using the Haar measure on k.

It turns out that in both situations there is a notion of Fourier transform with
respect to these measures. Therefore it makes sense to ask whether there is some
sort of localization theorem in this algebraic setting. The results in this thesis can
be seen as a series of examples, which indicate that such a theorem might exist,
even though there are still too many problems in order to make a precise conjecture.

1.2 Grothendieck rings, exponentials and Fourier transform

In this section we start by introducing various Grothendieck rings with exponentials
following closely [CLL13]. This allows us to define a naive Fourier transform and
prove a Fourier inversion formula for motivic functions. We should mention that
nothing in this section is new, but rather a special case of the theory developed in
[CL10].

Throughout this section let & be any field. By a variety we will always mean
a separated reduced scheme of finite type over k. The Grothendieck ring of va-
rieties, denoted by KVar, is the quotient of the free abelian group generated by
isomorphism classes of varieties modulo the relation

X-7Z-1,

for X a variety, Z C X a closed subvariety and U = X \ Z. The multiplication is
given by [X] - [Y] = [X x Y], where we write [X] for the class of a variety X in
KVar.

The Grothendieck ring with exponentials KExpVar is defined similarly. Instead
of varieties we consider pairs (X, f), where X is a variety and f : X — A! =
Spec(k[T]) is a morphism. A morphism of pairs u : (X, f) — (Y, g) is a morphism
u: X — Y such that f = gou. Then KExpVar is defined as the free abelian group
generated by isomorphism classes of pairs modulo the following relations.

(i) For a variety X, a morphism f : X — Al a closed subvariety Z C X and
U = X \ Z the relation

(X, )= (Z. fiz) = (U, fiv)-
(ii) For a variety X and pry: : X x A! — A! the projection onto A! the relation

(X XAl,pT‘Al).



The class of (X, f) in KExpVar will be denoted by [X, f]. We define the product
of two generators [X, f] and [Y, g] as

(X, f]-[Y,9] = [X xY, foprx +gopry],

where fopry +gopry : X xY — Al is the morphism sending (z, ) to f(z)+g(y).
This gives KExpVar the structure of a commutative ring.

Denote by L the class of A! resp. (A!,0) in KVar resp. KExpVar. The
localizations of KVar and KExpVar with respect to the the multiplicative subset
generated by I and L™ — 1, where n > 1 are denoted by .# and &xp.# .

For a variety S there is a straight forward generalization of the above construc-
tion to obtain the relative Grothendieck rings KVarg, KExpVarg, #s and &xp.#s.
For example generators of KExpVarg are pairs (X, f) where X is a S-variety (i.e.
a variety with a morphism X — S) and f : X — A! a morphism. The class of
(X, f) in KExpVarg will be denoted by [X, f]s or simply [X, f] if the base variety
S is clear from the context.

There is a natural map

KVars — KExpVarg
[X] = [X, 0]

and similarly .#s — &xp.#s, which are both injective ring homomorphisms by
[CLL13, Lemma 1.1.3]. Hence we do not need to distinguish between [X| and [ X, 0]
for a S-variety X.

For a morphism of varieties u : S — T we have induced maps

w : KExpVarg — KExpVary, [X, fls — [X, f]r
u* : KExpVary — KExpVarg, [X, flr— [X x¢ S, foprx]s.

In general * is a morphism of rings and u; a morphism of additive groups. However
it is straightforward to check that for any v : S — T and any ¢ € KExpVarg we
have

u(l- @) =L-u(p), (2)

where I denotes the class of Al x S and A! x T in KExpVarg and KExpVar,
respectively.

Elements of KExpVarg can be thought of as motivic functions on S. The
evaluation of ¢ € KExpVarg at a point s : Spec(k) — S is simply

s*(p) € KExpVarg,eqx) = KExpVar.

Computations with these motivic functions can sometimes replace finite field com-
putations. More precisely let I, be a finite field and fix a non-trivial additive
character ¥ : F, — C*. Assume that S, X — S and f: X — Al are also defined
over ;. Then the class of (X, f) € KExpVarg corresponds to the function



S(Fy) = C, s > U(f(x)). (3)

r€X;s(Fq)

Furthermore for a morphism u : S — T the operations u; and u* correspond to
summation over the fibres of u and composition with u respectively.

There is a slight technical disadvantage to working over finite fields. Namely
given a fibration f : X — Y where each fiber is isomorphic to some fixed variety
F', we cannot deduce in general

[X] = [F][Y] (4)

in KVar or .#, whereas a similar relation clearly holds over a finite field. However
(4) holds if the fibration is Zariski-locally trivial i.e. Y admits an open covering
Y = U;U; such that f~1(U;) & F x U;. Indeed, in this case we have

X = S0 O = Y 7 U 0T + = [P

Next we discuss an analogue of the crucial identity for computing character
sums over finite fields

V() =

st 0 else,

{qdim(V) if f =0

where V' is a IF;, vector space and f € V* a linear form.

To establish a similar identity in the motivic setting we let V' be a finite dimen-
sional vector space over k and S a variety. We replace the linear form above with
a family of affine linear forms i.e. a morphism g = (g1,92) : X — V* x k, where X
is an S-variety. Then we define f to be the morphism

f:XxV =k
(@, v) = (91(2),v) + g2(z).
Finally, we put Z = g; *(0).
Lemma 1.2. With the notation above we have the relation
[X x V, f] =L V(Z, ga /]

in KExpVarg. In particular, if X = Spec(k) and f € V*, we have [V, f] = 0 unless
f=0.

Proof. By using (2) we may assume S = X. Now because of [CLL13, Lemma 1.1.8]
it is enough to check for each point z € X the identity

z*([X x V, f]) = & (LI V[Z, g2 £])

and this is exactly Lemma 1.1.11 of loc. cit. O



Now we are ready to define a naive motivic Fourier transform for functions on
a finite dimensional k-vectorspace V' and prove an inversion formula. All of this is
a special case of [CL10, Section 7.1].

Definition 1.3. Let py : V x V* — V and py- : V x V* — V* be the obvious
projections. The naive Fourier transformation Fy is defined as

Fv : KExpVar,, — KExpVary,.
P = pV*!(p}k/SO ) [V X V*a <7 >])

Here (,) : V x V* — k denotes the natural pairing. We will often write F instead
of Fy when there’s no ambiguity.

Of course the definition is again inspired by the finite field version, where one
defines for any function ¢ : V' — C the Fourier transform at w € V* by

Flp)(w) =D o) ¥((w,v)).

veV

Notice that F is a homomorphism of groups and thus it is worth spelling out
the definition in the case when ¢ = [X, f] is the class of a generator in KExpVary,.
Letting u : X — V be the structure morphism we simply have

F(X, f)) = [X x V", foprx + (uoprx,prv-)]. (5)
Now we are ready to prove an inversion formula for the naive Fourier transform.

Proposition 1.4. For every ¢ € KExpVary, we have the identity
F(F(p)) =L - i*(p),
where 1 : V. — V' is multiplication by —1.

Proof. Since F is a group homomorphism it is enough to prove the lemma for
¢ = [X, f] with X % V. Tterating (5) we get

F(F(X, ) =[X x V x V" foprx + {uoprx + prv,prv-)].
Now we can apply Lemma 1.2 with Z = {(z,v) € X x V | u(z) +v = 0} to obtain
[X x VX V*, foprx + (uoprx +prv,pry+)] = L™V (Z, f o prx].

Notice that Z is a V-variety via projection onto the second factor and hence the
projection onto the first factor induces a V-isomorphism Z = (X =Y V), which
gives the desired result. ]

Finally, we introduce a motivic version of convolution.



Definition 1.5. Let R : KExpVary, x KExpVar;, - KExpVary,,, be the natural
morphism sending two varieties over V' to their product, and s : V x V — V
the sum operation. The convolution product is the associative and commutative
operation

* : KExpVary, x KExpVar,, — KExpVary,
(P1,902) = @1 % 2 = s1R(p1, P2)-

As expected the Fourier transform interchanges product and convolution prod-
uct.

Proposition 1.6. For ¢, s € KExpVary, we have

F(p1 xp2) = F(p1)F(p2)-

Proof. Asboth F and « are bilinear it is enough to consider generators [ X, f],[Y, g] €
KExpVary, with structure morphisms v : X — V,v : ¥ — V respectively. Using
(5) we can then directly compute

F(X, f]=[Y,g]) = F(s1[X x Y, foprx + gopry])
=[X XY xV* foprx +gopry + (so(u,v)oprxxy,pry-)]
=[X xV* foprx + (uoprx,pry)][Y x V* gopry + (vopry,pry-)]
= F[X, f]FY, g].

[l

We will use the convolution product to study equations in a product of varieties
i.e. consider V-varieties u; : X; — V say for ¢ = 1,2. Then it follows from
the definition of *, that for any v : Spec(k) — V the class of {(z1,22) € X3 X
Xo | ui(x1) + ug(x2) = v} is given by v*([X1] * [X3]). Through Proposition 1.6
we can compute the latter by understanding the Fourier transforms F(X1), F(X3)
separately.

1.3 Realization morphisms

As we will see later, the rings KVar and KExpVar and their localizations .# , & xp.#
are quite convenient to compute in. However it is a priori unclear how much
geometric information we can extract out of these computations. Typically this
is done via morphisms to other rings, which are better understood. We will not
give all the details of the constructions we mention here and refer to [Pop| and also
[HRV08, Appendix].

As a first example, when k = F, is a finite field, (3) defines such a morphism
# : KExpVar — C. Notice that . and L™ — 1 get mapped to ¢ and ¢" — 1 under
#. hence # even lifts to Sxp. A .

Since our focus is more on the topology of complex varieties, we will be in-
terested in realization morphism over a fields of characteristic 0. Assuming the



transcendence degree of k/Q is at most the one of C/Q we can embed k into C
and consider any variety over k as a variety over C. This way the C points of any
variety inherit a topology from C and taking the Euler characteristic of that space
gives a ring homomorphism

e: KVar — Z.

Notice that in this case we do not have an extension to .#, as for example
e(L—-1)=0.

The most interesting realization morphism for us relies on two natural filtra-
tions, called the weight and the Hodge filtration, on the compactly supported
cohomology H}(X,C) of any complex algebraic variety X, which were constructed
by Deligne [Del71, Del74]. Taking the dimensions of the graded pieces we obtain
the (compactly supported) mixed Hodge numbers of X

h]g,q;i(X) = dim¢ (GrfGrZ_qﬂz(X, C)) .

Out of these numbers we form the FE-polynomial, a refined Euler characteristic
defined by
E(X;z,y) = Y (—1)'h2%(X)aPy". (6)

P,q,i>0

As it turns out we obtain this way a morphism

KVar — Z[x, y] (7)
[(X] = E(X;2,y).

Example 1.7. If X = Al is the affine line, then H*(X,C) = H?(X,C) = C
and the generator is of type (1, 1), hence E(X;z,y) = zy. Since E descends to a
morphism on KVar we can use the cut and paste relations to compute further

E(A™) = B(AY)" = (ay)",
E(P") = E(P"') + BE(A") = (zy)" + (zy)" " + - +ay + 1.

From the example we see in particular that F will extend to a morphism

E:. M —7 m,y,i;¥,n21 :
zy (zy)" -1
However we do not know how to extend e or F¥ to KExpVar, which is an interesting
question in its own right.
We finish with a lemma explaining how to extract some simple topological
information out of the E-polynomial.

Lemma 1.8. [HLRV13, Lemma 5.1.2] Let X be smooth and equidimensional of
dimension d. Then E(X;t,t) is a polynomial of degree 2d and the coefficient of t2¢
18 the number of connected components of X.



1.4 Hyperplane arrangements

A general reference for the theory of hyperplane arrangements is [Sta04] and we’ll
also use conventions from [PW07].

Let k& be a field. Generally speaking a hyperplane arrangement in a finite
dimensional k-vector space V is a union of finitely many affine hyperplanes in V.
For us it will be important to consider hyperplanes together with a fixed normal
vector, which will always be integral.

More precisely we fix a basis of V' and consider it’s dual V* with the dual basis.
If we write m for the dimension of V', we have a natural morphism Z™ — V*, which
is injective if Char(k) = 0. Now consider non-zero vectors aq,...,a, € Z™ and
denote their images in V* by the same letters (if Char(k) > 0 we’ll always assume
that the images of the a;’s are non-zero). We further fix elements r1,...,7, € k
and denote by A, » the hyperplane arrangement in V' consisting of the hyperplanes

Hi={veV | (v,a;) =r;} for 1 <i<n.

Most of the time we will just write A for an arrangement and assume implicitly
a choice (a,r).

Definition 1.9. A hyperplane arrangment A is called
e central, if all hyperplanes are linear subspaces i.e. r; = 0 for all ¢,
e essential, if span{ay,...,a,} = V*,

o unimodular, if every collection of m linearly independent vectors a;,,...,a;
spans Z™ over the integers,

m

The rank of A is defined as rk(.A) = dimspan{ay,...,a,}. Most of the time we
consider essential arrangements, in which case rk(A) = dim V.

For a subset ' C {1,...,n} put Hp = (),cp H;. The subset I is called a flat
if Hp #0 and F = {i | Hr C H;}. The set of all flats L(A) is a partially ordered
set with the relation F' < G if F' C G. The unique minimal element in L(A) is the
empty flat ) with Hy = V and a unique maximal element exists if and only if A is
central, in which case we denote it by co. The rank rk(F') of a flat F' is defined as
the dimension of span,cr{a;} and the corank as crk(F) = m — rk(F).

The Mobius function of the poset L(.A)

va: L(A) X L(A) = Z (8)
is defined inductively by

vA(F,F) =1, for every F € L(A).

Z vA(F,G) =0, for all F < F’.
F<G<F'

We also abbreviate v4(F) = v4(0, F) for every F € L(A).



We give now a description of v4 in terms of chains. A chain of flats in L(.A)
is a sequence Fy C F; € --- C Fj of flats where all the inclusions are strict. The
integer [ is called the length of the chain. For two flats ' C F’ write N;(F, F’) for
the number chains Fy C Fy C --- C F; of length [ with Fy = F and F; = F'.

Lemma 1.10. For any two flats F C F' in L(A) we have

vA(F,F') =Y (=1)'N/(F, F").

1>0

Proof. We simply define v4(F, F') = 3,5, (—1)"N;(F, F’) and show that it satisfies
the same recursion as v4. First there’s only one chain of length 0 from F to F for
any ' € L(A) and hence v4(F, F') = 1. More generally for any F' C F’ we have

Nj(F,F') = Z Ni_1(F,G)

F<G<F'
and hence
VA(F,F') =Y (=1)'Ny(F, F)
>0
==Y > (“DTNL(FG == ) Ta(FG).
>0 F<G<F’ FIG<F'

[l

An other important invariant of L(.A) is the characteristic polynomial x 4(t) €
Z[t] given by
xalt)y= > wva(F)er, (9)

FEL(A)

By definition it is monic of degree m. A priory x.4(t) depends on the field
k, but it turns out that the dependence is rather mild. We define the k-variety

c(A) =V \Upgea H.

Theorem 1.11. [Sta04, Theorem 5.15] For any ground field k we have in KVary,
the equality

[c(A)] = xa(L).
In particular, for k =F, a finite field we have

|(A) ()| = xalg)-

Furthermore, away from finitely many positive characteristics L(A) and x 4(t) are
idependent of the field k.

Proof. In [Sta04, Theorem 5.15] the finite field case is proven, but the same proof
works also motivically. The last statement is Proposition 5.13 in loc. cit. O



Corollary 1.12. The characteristic polynomial of any central hyperplane arrange-
ment is divisible by (t —1).

Proof. The complement ¢(A) of a central arrangement A admits a k*-action by
scaling. Hence if k = I, is a finite field, this implies that |¢(.A)(F,)| is divisible by
[F; | =q—1 and then statement now follows from Theorem 1.11. O

Assume now that A is central. For a flat F' the localization Arp is defined as

which is an arrangement in V/Hp and we have rk(Ap) = rk(F). The intersection
lattice L(Ap) can be identified with the sub-lattice of L(A) consisting of flats
contained in F.

Dually, the restriction A* is defined as

A ={H,NHp|i¢F},

which is an arrangement in the vector space Hp. If A is essential we also have
rk(AF) = crk(F). Similarly L(A*) can be identified with the sub-lattices of L(.A)

I ~

consisting of flats containing F. For two flats F' C F’ we write Al, = (Ap)! =

(A"

Proposition 1.13. Let A be a central hyperplane arrangement and F C F’ two
flats in L(A). Then we have

I

(=1 Ay, (1, 1) > 0.

Proof. The statement depends only on L(.A), hence we may assume, that A is
essential i.e. 1k(A) = m. Furthermore by replacing A with A!, we can assume
I =0,I' = co. Then by definition we have v4(0, 00) = x.4(0).

For any 1 < i < n we denote by F* € L(A) the flat corresponding to the single
hyperplane H; and by A\ F* the arrangement we obtain by removing F* from A.
Then y 4 satisfies the deletion-restriction relation

xa(t) = xa\pi (t) = X gri (1)

This is proven in [Sta04, Lemma 2.2] or can also be seen from Theorem 1.11. The
statement now follows by induction on rk(A) = m. If m = 0 there is nothing to
prove. For higher rank the deletion-restriction equation for any 1 < i < n implies

(=1)"va (0, 00) = (=1)™ x4 i (0) + (1) v 4i (0, 00),

as AF' is again essential. Now if A \ F" is not essential we have x4\ ri(0) = 0

and we are done by the induction hypothesis, as rk(A¥ ) =m — 1. Otherwise we
repeat the deletion restriction argument for A\ F"* until we reach a non-essential
arrangement. ]
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2 Motivic Classes of Symplectic Reductions of Vec-
tor Spaces

In this chapter we give formulas for the classes of certain hypertoric and Nakajima
quiver varieties in the localized Grothendieck ring .# introduced in 1.2. These
classes are given by a polynomial expression in . = [A!] and are the motivic
analogue of the point count of these varieties obtained by Hausel in [Hau06, Haul0].

Both hypertoric and Nakajima quiver varieties arise as symplectic GIT-reduction
of an algebraic symplectic vector space and many of the arguments work in this
general setting, which is the content of the first section. In particular, we prove in
Proposition 2.3 a motivic analogue of [Hau06, Proposition 1], which was the main
reason to introduce the naive Fourier transform in 1.2. We also explain, how one
can interpret this as an example of 'motivic localization’ in the spirit of Theorem
1.1.

In the subsequent Sections 2.2 and 2.3 we start by defining hypertoric and Naka-
jima quiver varieties respectively and then compute their motivic classes explicitly.
Having established Proposition 2.3 this simply amounts to redo carefully Hausel’s
finite field computations in the Grothendieck ring of varieties.

Throughout the whole chapter k will denote an algebraically closed field of
characteristic 0

2.1 Symplectic reductions of vector spaces

The following constructions are well known and appear for example in [Pro07]. For
a detailed account on GIT quotients and the relation with symplectic reduction we
refer to [MFK94] and for our purposes also [Kin94].

Let G be a reductive algebraic group over k with Lie algebra g and p : G —
GL(V) a representation, where V' is some finite dimensional k-vector space. We
will always assume that p is injective and hence the action of G on V effective.
The derivative of p is the Lie algebra representation ¢ : g — gl(V'). The action of
G on V induces a Hamiltonian action on T*V =2 V x V* which has a moment map
WV x V* — g* given by

(v, w), X) = {o(X)(v),w), (10)

for (v,w) € V x V* and X € g.
Now for any character y € Hom(G,G,,) and any ¢ € (g*)“ we'll be interested
in the GIT quotient

Mye =€) [, G-
Here the right hand side is defined as

p () /), G =Proj @ klu (19X,
m=0

11



with
Klu= (€)X = {f € klu™ ()] | foplg) =x(9)™f Vg€ G}

In particular, for x = 0 the trivial character M ¢ is the affine variety defined
by
Mg = Spec ki~ ()]

For general y there is always an affinization map
MX@ — Moé, (11)

which is proper.

There is a more geometric way to describe M, ¢ in terms of y-(semi)stable
points. Instead of giving the definition of (semi)stable points we will directly state
"Mumford’s numerical criterion’ characterizing them. For the purpose of this thesis
Proposition 2.1 below may thus be taken as a definition.

A one-parameter subgroup of G is an inclusion A : G,, — G. For any character
x : G — G,, we define the paring (x,\) € Z by y(\(t)) = t06N,

Definition/Proposition 2.1. [Kin94, Proposition 2.5] A point (v,w) € V x V*
18 called x-semistable and x-stable respectively if every one-parameter subgroup \ of
G, for which lim;_,o \(t)(v, w) exists, satisfies (x,A) > 0 and (x, \) > 0 respectively.

For any subvariety Z C V x V* we will write ZX~°% C Z for the open subvariety
of semi-stable points. We also define an equivalence relation on (V' x V*)X~55 by

(v1,w1) ~ (v2,w2) <& G(v1,w1) NG(va,we) # 0 inside (V x VX725,
With this notation we can describe (the points of) M, ¢ as

My =p 1 (X ~. (12)

The varieties of interest for us will be of the form M, . However for computing
motivic classes the affine varieties Mg ¢ are much more tractable. The following
proposition connects the two under certain assumptions essentially by an argument
of Nakajima [CBVdB04, Appendix].

Proposition 2.2. Let ¢ € (g*)¢ be non-zero and le C g* the linear subspace
spanned by £. If G acts freely on p='(1¢)X™ 5% we have in the localized Grothendieck
ring M the equality

(Mol = Myl (13)

If furthermore G acts freely on p=1(&) we have
(Mol = [Mogl- (14)

Proof. Since G acts in particular freely on p=1(0)X~*% we see as in Section 1.1
that ©=1(0)X=%¢ is smooth. Also all G-orbits have the same dimension and are
thus closed. Hence by (12) M, ¢ is the quotient space of a smooth manifold by a

12



free action and is thus smooth itself. A similar argument also shows that the total
space of the family § : =1 (l¢) / G = l¢ is smooth.

Using the bilinearity of 4 we obtain identifications 1 (0) & M, o and 1 (I¢\
0) =2 M, ¢ x kX, hence in KVar

[ () [, Gl = [Myo] + My gl (L = 1).

Now there is a natural contracting k*-action on p~*(l¢) which descends to the
quotient p~1(l¢) / . G and covers the weight 2 action on ¢ via §. It follows from

considering the affinization map 11, that every k*-orbit under this action has a
unique limit point in (u=!(l¢) 7y G)F*. As we clearly have

X X

(W) [, G =@ 10" = (Myo)*,
we deduce from the Bialynicki-Birula Theorem [BB73, Theorem 4.1]

(™ (le) [, G = L{Myl,

where we also used [Sum74, Corollary 2] to guarantee the existence of a k*-invariant
quasi-affine open covering.

By comparing the two expressions for [p~!(l¢) /  G] we obtain (13) after in-
verting L — 1.

Finally, 14 follows simply because the affinization M, ¢ — Mg ¢ is an isomor-
phism if G acts freely on u=1(€). O

In our cases of interest we can compute [My ¢] from the class of the fiber of the
moment map [~ (€)] (see Propositions 2.8 and 2.14), so we finish this section by
explaining how to use the naive Fourier transform 1.3 to compute the latter.

We define

ao = {(v,X) €V x g | o(X)v =0},

which is a g-variety via he projection onto the second factor 7 : a, — g. Analogous
to [Hau06, Proposition 1] we have

Proposition 2.3. Consider V- x V* as a g*-variety via p. Then we have in
KExpVar, the equality

F(V x V) = L8V g, (15)
In particular, for any & € g* the identity
(= () = LA™Y= oa,, (—7,6))] (16)
holds in Exp A .

Proof. By (5) the naive Fourier transform of [V x V*| is

F([VxV*])=[V xV* xg,(uopryxy«,prg)l.

13



Now by the definition (10) of p we have

[V x V" x g, (uopryxye,prg)] = [V x V* x g,((00prg)prv,prv+)].

Thus Lemma 1.2 with X =V x g and Z = a, gives (15). Next we apply F again
and use the inversion Lemma 1.4 to get

LA™ e[V x V*] = F(LY™V[a,]) = LY V]a, x g%, (7 0 pra,, prg-)].
Finally, passing to &zp.#y- to invert L™ 8 and using (i*)? = Idg- gives
[V x V*] = LdmV=dima[g » g% (=moprq,, prg«)].
Then (16) follows from pulling back both sides along ¢ : Spec(k) — g*. O

Remark 2.4. We like to think of Proposition 2.3 as an instance of a motivic
localization formula in the spirit of Theorem 1.1. Namely if a motivic version of
(1) were to exist, it should ideally express the Fourier transform F([V x V*]) as a
sum over the fixed points (V x V*)¢. As G acts linearly on V x V* we further can
assume (V x V*)¢ = {0}. Then (15) indeed reflects such a localization phenomenon
by the fact, that F([V' x V*]) is an honest class in KVary and not KExpVar,,.

2.2 Hypertoric varieties

An algebraic construction of hypertoric varieties was first given in [HS02, Section
6], however much of our exposition is taken from [PWO7].

Consider an inclusion of tori 7™ < T™ which is given in coordinates by an
n X m-matrix A with integer entries and denote the rows of A by a1,...,a, € Z™.
Then the diagonal action of T™ on V = k™ gives rise to the representation

p:T™ — GL(V)
t — diag(t™, ... t%), (17)

where we use the notation t* = t5*...tbm for any t € T™ and b € Z™. The
derivative g : t™ — gl(V) is for any X € t™ given by

o(X) =diag({X,a1),...,(X,an)). (18)

From this we can now construct a variety as in 2.1. More precisely T™ will act
on V x V* in a Hamiltonian way with moment map p: V x V* — Lie(T™) = t™
given by the explicit formula

(v, w) = Zviwiaz‘, (19)
i=1

where (v,w) € V x V* and a; € (t")* via the natural pairing. For a character
x € Hom(T™,G,,) we define the hypertoric variety M, (A) by

My (A) = = (0) /,, T

14



There is a natural central arrangement A C t™ given by the normal vectors
ay,...,a, € (™)*, whose combinatorics are closely related to the geometry of

M, (A).

Proposition 2.5. [HS02, Proposition 6.2] For a suitable character x the hypertoric
variety My (A) is smooth if and only if A is unimodular. In this case T™ acts freely
on (V x V*)x=ss,

Proof. For the only if part we refer to [HS02, Proposition 6.2]. As in the proof
of Proposition 2.2, the if part follows from the second statement, which we prove
now.

To define x consider the set Z = {F € L(A) | tk(F) = m — 1} that is the
set of the maximal flats in L(A) \ co. For every F' € Z the intersection of all
its hyperplanes Hp is a line in t"* which is spanned by a (up to a sign) unique
primitive Ap € Z™. By changing the sign of A\p if necessary we can then choose
X € Z"™ such that (x,\p) <0 for all F' € Z.

Let now (v,w) € (V x V*)X=55_ For every F € Z the vector A\ defines a
one-parameter subgroup of 7™ by t — t**. By Proposition 2.1 we therefore see,
that lim; 0 Ap(t)(v,w) doesn’t exist in V' x V* for all ' € Z. Writing out the
definitions we have

Ap(t) (v, w) = (02 gy lanArdhy gmlan Ay, oo A ARy ),

From this we deduce that for every F' € Z there must be an ¢ € {1,...,n}\ F
such that, depending on the sign of (a;, Ar), either v; # 0 or w; # 0. In particular,
we can construct from this inductively a set I = {i1,72,...,4,,} C {1,...,n} such
that {a;}ic1 are linearly independent, hence a Z-basis of Z™ as A is unimodular,
and for every i € I we have either v; # 0 or w; # 0.

Now let s = (s1,...,8m) € T™ be in the stabilizer of (v, w) i.e. s(v,w) = (v,w).
Then we see, that whenever v; # 0 or w; # 0 we must have s = 1. Hence in
particular s* = 1 for all ¢ € I. Since {a;};e1 form a Z-basis of Z™ we deduce that
s = 1 which proves that the stabilizer of (v, w) is trivial. O

Example 2.6. Consider the diagonal embedding G,,, = T' < T™. Then A is the
nx l-matrix A = (1,1,...,1) and the moment map is (v, w) = vywy +vowe+- -+
UpWy,. Then M, (A) will be smooth for any non-trivial character x : G,, = G,.
If we take for example y = Id we get

P07 = {(v,w) € p~1(0) | v # (0,0,...,0)}.
Thus the projection onto the v-coordinate gives a rank n — 1 vector bundle
Miq(A) — P! and one can check that in fact Mq(A4) = T*P1.
2.2.1 Motivic classes of smooth hypertoric varieties

Throughout this section we assume that A is unimodular and y is chosen as in
Proposition 2.5, so that M, (A) is smooth. Under these assumptions we prove the
following theorem.
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Theorem 2.7. The motivic class of a smooth hypertoric variety M, (A) in A is
given by the formula

Ln—m

Mx(A)] = (=7

> va(F,o0)LIF, (20)

FeL(A)

where vy @ L(A) x L(A) — Z denotes the Mdébius function of the central arrange-
ment A.

Notice that, the geometry of M, (A) will in general depend on the choice of x
[HS02, Section 9], however by Theorem 2.7 not its motivic class. This can already
be seen from the following proposition.

Proposition 2.8. Assume that & € (t"™)* does not vanish on Hp for any F €
L(A)\ co. Then we have in A

(&)

(M (A)] = 0 g)m (21)
(€
0}

~1(¢). Indeed, let (v,w) € p~= (&) be

Proof. First we claim that T™ acts freely on u ).
C {1,...,n}. From the moment

fixed by some t € T™ and put I = {i | v,w; #
map equation (19)
Z viw;a; = &,
i

together with the choice of £ we deduce that span;.;{a;} = (t™)*, and by unimod-
ularity {a;};cr contains a Z-basis of Z™. But now t- (v, w) = (v, w) implies t* =1
for all i € I, which finally implies t = 1 i.e T™ acts freely on p~!(¢). Combining
this with Propositions 2.2 and 2.5 we obtain

(M (A)] = [ () [y T™] = [Spec(kln™" ()] ).

Now as in [Rei03, Lemma 6.5] one can show that 7" acts scheme-theoretically
freely on p~1(€), which implies by [MFK94, Proposition 0.9, Amplification 1.3],
that u=1(¢) — Spec(k[p=(€)]T") is a T™-principal bundle. As every T™-principal
bundle is Zariski-locally trivial [Ser58, Section 4.4] the proposition follows from
(4). O

We are thus left with computing [p~1(&)] which by (16) reduces to understand-
ing [a,, (—m,&)] € KExpVar, where 7 : a, — t™ denotes the projection. This is
done by a familiar cut and paste argument. First we have a stratification

H HF, where HF:HF\UHZ (22)
FEL(A) i¢G

o

y (18) we see that 7 : 7~ '(Hr) — Hp is a vector bundle of rank |F| and
hence we have

lag (-m O = S [UHE) (-7 &) = S [He, OL,

FEL(A) FEL(A)
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where (-,€) : Hp — Al denotes the paring with £&. Theorem 2.7 now follows from
the following

Lemma 2.9. The class [;IF, (-,&)] lies in KVar and equals v4(F, o0)[Spec(k)].

Proof. We can check this directly using the recursive definition of v4 (8). For
F = oo we clearly have

o

[Hoos (- €)] = [Spec(k), (-, §)] = [Spec(k)],

and for any F' < oo

S° Hp, (48] = [Hr, (4,6)] = 0,

F<F'<oo
by Lemma 1.2, since by assumption £ does not vanish on Hp. O

Example 2.10. We continue Example 2.6. The corresponding arrangement A is
given by n times the origin, in particular L(A) = {0, co}. Formula (20) then reads

n—1

M (4)] = T

(-1+L") =L P Y,

which of course agrees with the class of T*P"~1.

Remark 2.11. The proof of Theorem 2.7 relies crucially on Proposition 2.3, which
in turn can be interpreted as a motivic instance of the Duistermaat-Heckman The-
orem 1.1, see Remark 2.4. We will briefly explain here, how the varieties M, (A)
themselves give rise to such localization phenomena, but with more than one fixed
point.

First we describe a second arrangement B, which is commonly associated with
M, (A). Writing d = n — m and identifying Z"/Z™ with Z? we obtain a linear
map B : Z" — 7% where B is a d x n-matrix with integer coefficients. We
write by,...,b, € Z% for the columns of B and Y € (Z")* for any lift of y €
Hom(T™,G,,) = (Z™)* C (t™)*. Then B C (t9)* is the arrangement consisting of
the n affine hyperplanes

Hi={ve (| (b,v) =%} 1<i<n. (23)

The hypertoric variety M, (A) admits a residual torus action of T¢ = T"/T™,
which is again Hamiltonian. The moment map is given explicitly by (see [PW07])

D M, (A) — (19

[v,w] = (vwy,. .., vawy) € ker(A*) = (t4)*.
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As opposed to the T™-action on V x V*, the T%-action on M, (A) will in general
have non-trivial isolated fix points. For a generic point z : Spec(k) — t? we thus
would expect by our localization philosophy in KExpVar a formula of the form

FF(M A= Y e N]Spec(k), (@(p), z)],

pEMX(A)Td

for some A\, — t¢.
This is indeed the case, as we can combine a inclusion-exclusion argument
similar to Lemma 2.9 with the following two facts:

(i) The moment map ® induces a bijection between T-fixed points on M, (A)
and maximal flats (i.e points) in L(B).

(ii) For any flat F' € L(B) and ;IF C (t%)* defined as in (22) we have

o

O (Hp) 2= Ny x Hp.

Here (i) can can be found in [BD00, Corollary 3.5] and (ii) follows from covering
M, (A) with affine hypertoric varieties as in [AP16, Proposition 4.6].

2.3 Nakajima quiver varieties

We start by recalling the definition of Nakajima quiver varieties. Almost everything
can be found in more detail in [Haul0] or in the original sources [Nak94|[Nak98].
Let I' = (I, E) be a quiver with I = {1,2,...,n} the set of vertices and E the set
of arrows. We denote by s(e) and t(e) the source and target vertex of an arrow
e € I, For each ¢ € I we fix finite dimensional k-vector spaces V;, W, and write
v = (dim V;);er, w = (dim W;);e7 € NI for their dimension vectors.

From this data we construct the vector space

Vv,w = @ Hom(‘/s(e% ‘/t(e)) D @HOH’I(WZ, ‘/z)a
eck i€l

the algebraic group
Gy = [[GL(V))

iel

ov = P al(Vy).

el

and its Lie algebra

We have a natural representation
pvw i Gv = GL(Vy w)

and its derivative
Ov,w : 9v — g[(Vv,w)-
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For g = (gi)ier , X = (Xi)ier and ¢ = (e, @i)ecric1 € Vy w they are given
by the formulas

Pv,w(g)SD = (gt(e)gpegs_(l)?gi@i)eEE,iGI
QV,W(X)SO = (Xt(e)soe - SOeXs(e)yX’iSOi)eeE,iEI‘

We are again in the situation of section 2.1 i.e. G, acts on the vector space
Vyw x V§ i in a Hamiltonian way with moment map

v ow - Vv,w @ V;w — g:kf’

given by (10).

Following [Nak98] we fix once and for all x to be the character of G given by
x(9) = [1;c;det(g;)~". For w # 0 the Nakajima quiver variety M(v,w) is then
defined as

M(v,w) = g (0) [ Gu.

Remark 2.12. For w = 0 the action of G, will not be faithful, in which case
one should choose a different character (see [Nak98, Remark 3.13]), but we do not
study this case here.

Example 2.13. [Nak99, Proposition 2.8] Consider the Jordan quiver I' consisting
of a single vertex and a single loop on that vertex with the dimension vectors given
by positive integers v. = n and w = 1. In this case we can identify ,ugyll(()) with the

set of elements (X, r,Y,s) € (End(k™) & k™)* satisfying
pn1(X,r, Y, 8) = [X, Y] +rs' =0,

where [X,Y] = XY — Y X denotes the commutator and s’ the transpose of s.
Now x-stability will imply » = 0 and that

{f €klx,y] | 8" F(X,Y)v =0 for all v € k"} C k[z, 9]

defines an ideal in k[z,y] of length n. This identifies M,,; with Hilb"A? the
Hilbert scheme of n points on AZ.

The motivic class of M(v,w) can again be determined through Proposition
2.2. Take 1, € g} to be the linear functional defined by 1,(X) = .., trX; for
X € gy

Proposition 2.14. The equality

1y W (1v)]

M(v,w)] =

holds in A .
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Proof. First by [Nak98, Lemma 3.10] Gy acts freely on (Vv,w @Vf,’W)Xiss and
also on /L;kv(]lv) by [HaulO, Corollary 5]. Hence by Proposition 2.2 we get

(M(v,w)] = [ (1v) /o G-

Now again as in Proposition 2.8, the quotient p~*(1y) = p '(1v) /o Gv is
a Gy-principal bundle, hence Zariski-locally trivial [Ser58, Lemma 5 and 6], this
implies the proposition by formula (4). ]

2.3.1 Motivic classes of Nakajima quiver varieties

In this section we deduce a formula for the motivic class of M(v,w) in terms of the
combinatorial data of the quiver I'. It will be convenient to consider the generating
series

o(w) = Y [M(v, w)L™TY € A([Th,..., T,]], (24)

veN!

where we define
dy w = dim(gy) — dim(Vy ).

Combining Propositions 2.14 and 2.3 we have

(I)(W) _ Z [VE((}‘L? V]V)]]Ldv,wTv _ Z [agv,w[égj]-a ]1V>]Tv’ (25)

veN! v veN!

with the notations

Aoy v = {(p,X) € Vew X gy | Qv,W(X)U =0}

and 7 : a,, , — gv the natural projection.

Next we use some basic linear algebra to split up the above generating series
into a regular and a nilpotent part. Given a finite dimensional vector space V' of
dimension n and an endomorphism X of V', we can write V- = N(X)® R(X), where
N(X) = ker(X™) and R(X) = Im(X™). With respect to this decomposition we
have X = X"l @ XT°8 with X0l = X|n(x) nilpotent and X™® = X g x) regular.
Now let v/ = (v})ier with v/ < v (i.e the inequality holds for every entry). We
define the three varieties

/

ay {(¢. X) € ay, ., | dim(N(X;)) =v; for i € I}

oviw
agil’w = {(p, X) € a,, ., | X nilpotent},
ape, = {(p, X) € aq, ,, | X regular}.

Lemma 2.15. For every v/ < v we have the following relation in &xp.H#

YR T B RN G 3 )
[G] ~ Gyl Gy ] : (26)
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Proof. Fix for all i € I a decomposition V; = V/ @ V/" with dim(V}) = v,. This
induces inclusions

Vv’,w b Vv—v’,O — Vv,w and Gy > Gv—v/ = Bv-
We will prove that the morphism

. nil reg v’
A‘aev/,w X ay, X Gy — ay,

7v’,0
(¢, X", " X", g) = (pvw(9) (¢ ®¢"),Adg(X' & X))

is a Zariski-locally trivial Gy x Gy _,/-fibration. Since for every (¢’, X') € ai!

Ov! w

we have

(—m, 1) (¢, X)) = ZtrX{ =0,

iel
this will imply the lemma using (4).
First notice that A is well defined because

Ov,w © Adg = Adpvyw(g) O Ov,w-

The Gy x Gy_y-action on the domain of A is given as follows. For
h = (h,h") € Gy X Gy_y and (¢, X', ", X", g) € aml W XagE X Gy we
set

he (@, X' " X", 9) = (pvrw(h)p' s Adp X', py—vr o(R") ", Adpr X", gh™ 1),

where gh~! is understood via the inclusion Gy x Gy_y, < G,. One checks
directly that A is invariant under this action and hence each fiber of A carries a
free Gy X Gy _y/-action.

On the other hand, assume A(p), X1, 07, X1, 91) = A(h, X5, ¢4, X% g2). This
implies

Ad, (X] @ X{) = X, @ X

Since X is nilpotent and X7 regular for j = 1,2, the decomposition V; = V/ @ V/”
is preserved by gz_lgl ie. g;'g1 € Gy x Gy_ys, which shows that each fiber of A
is isomorphic to Gy X Gy_y-.

Finally, to trivialize A locally we notice, that there is an open covering ay =
U;U; and algebraic morphisms t; : U; — Gy such that for X € U; and @ I “the
columns of the matrix t;(X); form a ba31s of N(X;) and R(Xj;). O

Now we use the stratification a,, , =[], <, a;": ., together with Lemma 2.15
to get -
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aw) @ 3 [P0y (=, 1v)] oy

veNI K}LV]
—T, ]1V
3y e g
veN! v/ <v
ml ][amg , aQ_WaHV—V»]
(26) Z Z Qv W Ov—v ,0 TV
veN! v/<v [ v_v,]
= (I)nil(w)q)rega (27)
where we used the notations
[anil ]
Dun(w) = Y S AT
;%%i [G%]
nd s, (-, 1)
at® (-7, 1y
(I)reg = Z — Tv.

[GV]

veNI

Notice that equation (25) also makes sense for w = 0, in which case [HaulO,
Lemma 3] implies ®(0) = 1. Therefore
q)nil(w)

B(w) = g (28)

which leaves us with computing ®,;(w).

We denote by P the set of all partitions A = (A}, A%, ...), where A} > \2 >
The size of A is [\| = A + A2 + ... and P,, denotes the set of partitions of size n.
For A € P,, we write C(A) for the nilpotent conjugacy class, whose Jordan normal
form is given by A. For A = ()\;) € P! with \; € P,, we set

dp () ={(p, X) € dyl | Xi € C(N)},

Ov,w

which gives the stratification

agt = [ aa, ™. (29)
QER
ie vy

nil

o (A)] we look at the projection

To compute [a

mray! (A = CA) =]]c). (30)

iel

22



The fiber of m over X € C(A) is simply ker(ov,w(X)). Because of gy w 0 Ady, =
Adpv,w( ) ©0v,w the dimensions of those kernels are constant and hence 7 is a vector
bundle of rank, say, Ky w(X).

Lemma 2.16. Denote by Z(A) C Gy the centralizer of (some element in) C(X).
We have the following relation in A .
(V] Lrvw®)

Ov,w

GV [Z(N)]

(31)

Proof. The formula (33) below shows in particular that [Z(\)] is invertible in .Z.
Since the projection (30) is a vector bundle, we are left with proving [Gy]/[Z(A)] =
[C(A)]. Since C(A) is isomorphic to Gy/Z (), see for example [Borl2, Chapter
3.9.1], it is enough to prove that the Z(A)-principal bundle G, — G, /Z(A) is
Zariski locally trivial by (4). In fact, this is true for every Z(A)-principal bundle,
which follows from combining Propositions 3.13 and 3.16 of [Mer13]. ]

To compute Ky w(A) and [Z(A)], denote by my(A) the multiplicity of k € N in
a partition A\ € P. Then given any two partitions A\, \’ € P we define their inner
product to be
(LX) = min(i, j)mi(A)m;(X).
i,jEN

Lemma 3.3 in [Hua00] implies now

RN = Y (e Aeger) + D (17 N), (32)

ecE el

where 1V € P, denotes the partition (1,1,...,1).

For [Z(A)] we can use the formula (1.6) from [Mac98, Chapter 2.1]. There the
formula is worked out over a finite field but Lemma 1.7 of loc. cit. holds over any
field. In our notation this gives (see [Hua00, Chapter 3| for details)

mi(X;)
z) =L I [T a-17). (33)
iel keN j=1

Finally, combining (28), (29), (31), (32) and (33) we obtain

Theorem 2.17. For a fized non-zero dimension vector w € N the motivic classes
of the Nakajima quiver varieties M(v,w) in 4 are given by the generating func-
tion

M., L<>\5(E)v>\t(e)> e, L{1™iA) TIA
[T, L) T, T4 (1-L9)
H€€EL<*s<e>’*t<e>>
EAG’PI e, L) I, H;’;kl(Ai)(l_L_j)

Z)\EPI
> My, w)LbewTY =

veNI

;o (34)

TIA|
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Example 2.18. Consider again the Jordan quiver as in 2.13, where we saw M(n, 1) =
Hilb™A2. Then formula (34) gives a generating series for the classes [Hilb™A?]:

mp (A N m
Saep ILe [TV (1 = L9) 7L O

Jj=1

> [Hilb" AL T = ey ,
n>0 Z)\E'P Hk: Hj:l (1 —]L_])_lTl)‘l

“On the other hand there is a well known formula for [Hilb”Az] due to Gottsche
[GO1], which gives

1
§ : R A 21T~ | |
n>0 k>1

Thus we see that (34) gives already in this case a quite non-trivial combinatorial
statement. Similar identities appear for example in [Hua00].
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3 Open de Rham spaces

In this chapter we study meromorphic connections on the trivial rank n bundle on
P'. By fixing some local data C at the poles of the connection one obtains a finite
dimensional moduli space M,,(C), called the open de Rham space. Originally they
were introduced by Boalch [Boa01] to study isomonodromic deformations, however
for us they arise in a slightly different context.

Our starting point is the conjecture of Hausel, Mereb and Wong [HMW16] on
the mixed Hodge polynomial of wild character varieties M pest;. These character
varieties are the target space for the wild Riemann-Hilbert correspondence, which
associates to a meromorphic connection its Stokes data [Boall]. Even though
this correspondence is not algebraic, the purity conjecture [HRVO08] predicts, that
H*(M,,(C)) equals the pure part of H*(Mpess;)-

In our forthcoming paper [HWW] we find numerical evidence for both conjec-
tures by computing the E-polynomial of M,,(C) and proving an agreement with
the conjectural pure part of the mixed Hodge polynomial of the corresponding
M Betri. In this thesis we only explain how to compute E(M,,(C);z,y), or more
precisely [M,,(C)] € ., as this fits into the same motivic Fourier transform setting
we already used in Chapter 2.

In the first two sections we introduce the relevant notation and prove some
computational lemmas on coadjoint orbits. It might therefore be more interesting
to first read Section 3.3, where we define M,,(C) and give a description in terms of
coadjoint orbits following [BoaO1]. More precisely a pole of order k can be modeled
locally by a coadjoint orbit O C gl,,(C[[2]]/2¥)*, and M,,(C) is obtained by a
symplectic fusion of the individual poles, see Proposition 3.6.

Using the motivic convolution construction 1.5, the computation of [M,,(C)]
reduces to understand the Fourier transform of the composition

O < gl,(C[[2]]/2")* = g1, (C)*.

This key computation is carried out in Section 3.4 under the assumption k& > 2,
which will ensure that the 'motivic function’ F([0]) € KExpVarg (¢ is supported
on semi-simple conjugacy classes, which fails for £ = 1. Eventually we would like
to explain this phenomenon in a similar way as in Remarks 2.4, 2.11 i.e. as an
instance of a general motivic localization formula, but we are not able to do so at
the moment.

In Section 3.5 we put everything together and give in Theorem 3.9 an explicit
formula for [M,,(C)] as a polynomial in L, assuming that the order of each pole is
> 2. In the last section we combine our results with the work of [HLRV11] on order
one poles and sketch how to extend our computations, at least over finite fields,
to give a formula for |M,,(C)(F,)| under the milder assumption, that at least one
pole has to be of order > 2.
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3.1 Jets and duals

Let n > 1 be an integer. We abbreviate G = GL,,(C) and g = gl,,(C). Furthermore
T C G will denote the standard maximal torus consisting of diagonal matrices,
t C g its Lie algebra and t"9 C t the subset of elements with distinct eigenvalues.
We also have the jet versions

Gk = GLn((C[[Z]]/Zk) = {90 +zg1 4+ + Zk_lgk—l | Jgo € G: g15---39k—1 € g} )
gk = 01, (C[[2]]/2") = {Xo+ 2X1 + -+ 2" ' X1 | X; € g},

and similarly we define T}, and t;.
Finally, we have the unipotent subgroup By C Gj and its Lie algebra by defined
by

B = {]1 +2zby + 22b2 +---+ Zk_lbk_l | b; € g},
b, = {ZXl + 22X2 + -+ Zk_le,1 | X, € g}.

Note that we have G, = By X G, where G acts on By by conjugation, and thus a
decomposition g = by @ g.
It will be convenient to identify the dual g; with

e Fge = {2 I Y | Ve o)

via the trace residue pairing i.e. for X € g and Y € 2z~ Fg;, we set
k
(Y, X) =Reso trY X =Y t1¥;X;_. (35)
i=1

Under this identification g* corresponds to z~'g C z~*g; and b}, to those elements
in z~*g; having zero residue term. We write

Tyes - QZ — g*, Tiry * QZ — bz (36)

for the natural projections. The adjoint and coadjoint actions of G, on g5 and gj,
will both be denoted by Ad and are defined by the same formula Ad,X = gXg~ .
Notice that with this convention we have (Ad,Y, X) = (V,Ad,-1 X).

3.2 Coadjoint orbit computations

We write g°¢ for matrices with zeros on the diagonal and for X,Y € g we write
[X,Y] = XY — YX for the commutator.

Lemma 3.1. 1. For X € g and Y € t we have [X,Y] € g°?.
2. LetY =27y, + 2= * DY, + - 4 271Y) € with V), € 79 and g € Gy,
such that AdyY —Y € t;,_,. Then g € T}, and Ad,Y =Y.
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3. Let g € T and h € By, such that hgh™" € Ty,. Then hgh™! = g.

Proof. The first statement is clear. For part 2 write Ad,Y Y =W = 2= F=DW o+
-+ 2z71W; € tf_|. Then by rewriting we obtain

gY = (Y + W)g. (37)

The z=% term of (37) reads goYr = Yigo, hence go € T. We now proceed by
induction, assuming Wy, 1 =--- =W, =0 and ¢1,92...9x_» € t for some r < k.
The 2=~ terms of (37) equal

k—r+1 k—r+1
Z 95 Yr—14+5 = Z (Yio14595 + Weo14595).
§j=0 Jj=0

By the induction hypothesis this simplifies to gx—r+1Yx = Wir—190 + Yegk—r+1-
Now by the first part [V, gx_r11] € g°¢ and hence W,_; = 0. But then Y} and
Jk—r+1 commute, which implies gi_,4+1 € t since Y € t7¢9.

For part 3 write h = hgh™! € T}, and consider hh = hg term by term. An
argument analogous to the one for part 2 gives the desired statement. O

Next we study regular semisimple G-coadjoint orbits i.e. let C' = 27*C), +
<4 2710y € £ with Cf, € t79 and write O¢ = {Ad,C | g € Gy} for the coadjoint
orbit through C.

Lemma 3.2. There is an isomorphism

I:(Gx BT — O¢
[ga b] = Adgbca

where we put B¢ = {b € By | by,...,bp_1 € g°?}. Here the action of T on G x B4
is given by (go,b)to = (goto, Ad, -1 b). In particular, (G x B%) — (G x B¢Y)/T is a
Zariski locally trivial T-principal bundle.

Proof. Tt follows from Lemma 3.1.2 that Stabg, (C) = T}, hence we have an iso-

morphism Gy /T, = O¢ which sends [g] € G /T to AdyC. Since G, = G x By,
and Ty, =T x (T, N By) we can further write

Gk/Tk = (G X Bk/(Tk ﬂBk)) /T

Finally, given b € By, a direct computation shows that there are unique ¢ € T), N By,
and ¥ € BY? such that b = v't. This gives By/(Tx N By) = B4 Tt is then
straightforward to check that the T-action on G x B,Zd is as indicated, and the final
statement follows since G — G/T is a Zariski locally trivial T-principal bundle. [J
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3.3 Meromorphic connections

In this section we introduce irregular connections on P! following [Boa01, Section
2]. Fix an effective Z-divisor D = kya; +koao+. .. kgagq, where aq, . .., a4 are points
in P! and ky,...,kq > 1. Write K for the canonical divisor on P'. A meromorphic
connection with poles along D on a rank n vector bundle V — P! is a C-linear
morphism

V:VsVe®KD),

satisfying the Leibniz rule V(fs) = fV(s) +s®df, where f is a local holomorphic
function and s a local section of V.

If z is a local coordinate around a; we can write, after fixing a trivialization of
V,V =d— A, where A is a meromorphic matrix of 1-forms. More precisely we
can write

dz

d

with A; € g. The non-holomorphic part Zfl:l Aj% is called the principal part of
V at a;. Then V is called regular if for every 1 < i < d the leading coefficient Ay,
is diagonalisable with distinct eigenvalues, if k; > 2, or with distinct eigenvalues

modulo Z, if k; = 1.

Remark 3.3. 1. If g : U — GL,, is the transition function for an other trivial-
ization of V' on a neighborhood U of a;, then the transformation A" of A is
given by (see for example [Wel07, Lemma II1.1.6])

A= gAg™" + (dg)g ™,
hence being regular is independent of the choice of trivialization.

2. In [Boa01, Definition 2.2] the term ’generic’ is used instead of 'regular’, how-
ever ’generic’ will have a different meaning for us, see Definition 3.5.

In order to obtain finite dimensional moduli spaces we need to fix a formal type
of order k; at each pole a;, that is a matrix of meromorphic one forms

dz ;dz
%-I—--'—I—C'l?—l—..., (38)

C' = C,ii
where C,ii € "9 and Cji» € t for j < k;. One can think of d — C* as a meromorphic
connection on the trivial rank n bundle over the formal disc Spec(C[[z]]) around
Qg .

A meromorphic connection (V, V) with poles along D has formal type C* at a; if
there exists a local trivialization of V' around a; and a formal bundle automorphism
g € G(C[[2]]) such that we have V = d — A and gAg~—' + (dg)g~* — C" is a diagonal
matrix of holomorphic 1-forms.

From now on the choice of an effective divisor D = kjay + kaas + . .. kgag and
formal types C? for 1 < i < d will be abbreviated by C and the degree of D by

k = Zfﬂ ki.
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Definition 3.4. The open de Rham space M.,,(C) is the set of isomorphism classes
of meromorphic connections (V,V) on P!, where V is a trivial bundle of rank n
and V has poles along D with prescribed formal types C* at a;.

Notice that M, (C) should correspond inside the whole de Rham space (no
assumption on the vector bundle) to the locus, where the underlying bundle is
semi-stable, as on P! a semi-stable bundle of degree 0 is trivial. Hence the name
open de Rham space.

We will see in Proposition 3.6 below, that M,,(C) admits the structure of an
algebraic variety. In order for this variety to be smooth we need to impose a
genericity condition on C, more precisely on the residue terms C} of the C?, which
will naturally reappear during the computations later, see Lemma 3.12. We will
thus be very explicit about it. Define for I C {1,2,...,n} the matrix E; € g by

1 ifi=j€l
Er): = 39
(E1) / {O otherwise. (39)

Definition 3.5. We call C generic if Zle trC% = 0 and for every integer n’ < n

and subsets I1,...,I; C {1,...,n} of size n’ we have
d .
S (¢ B # 0. (40)
i=1
In other words there are no invariant subspaces Vi,...,Vy; C C" of the same

dimension such that ), U"Cﬁv,- = 0, if C is generic. It is clear that we can always
find such a generic C and we will see by direct computations, that the invariants
we compute do not depend on the choice of C.

We now give an explicit description of M,,(C) in terms of G-coadjoint orbits.
First notice that a formal type C as in (38) naturally defines an element in gj
by taking the principal part and forgetting dz. We denote the Gy coadjoint orbit
through C' by O¢ C gj.. The action of G, on O¢ is Hamiltonian with respect to
the standard symplectic structure on O¢ and the inclusion O¢ < gj; is a moment
map. In particular, a moment map for the induced action of G C Gy is given by
Tres : Oc — @, see (36). Consequently, for formal types C!,...,C? the action of
G on Ogt X --- X Oga by simultaneous conjugation admits a moment map

ta: Oct X -+ X Oca — g*

d
YLY2 YY) > mes(Y),
=1

Proposition 3.6. (i) For any choice of C there is a bijection

M,,(C) = pu7(0)/G.
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(ii) If C is generic, we can identify M,,(C) with the points of the smooth affine
GIT quotient u;*(0) / G = Spec(Clu;'(0)]%). If non-empty, M, (C) is
equidimensional of dimension k(n? —n) — 2(n? —1).

Proof. The first part is contained in [BoaOl, Proposition 2.1], but we will reprove
the statement for the convenience of the reader. Fix a coordinate z on P' and
assume that none of the a;’s are at infinity. Given an element [V, V] € M,,(C) we
can write V = d — A (after fixing a trivialization of V') with

d
) dz dz .
A = Z A’IL% m —+ -+ A7i7 + hOlomorphIC terms,
i=1 *

where all A; € g. Thus by looking at the principal parts of A and forgetting dz
we obtain for each 1 < i < d an element A® € g}. By our assumptions V is
regular at each a; and hence has formal type C? if and only if A € O, see for
example [BJL79, Proposition 1]. Furthermore the condition ug(Al,---, A%) =0
is equivalent to V not having a pole at infinity. Finally, an isomorphism of trivial
bundles over P! is given by an element in G, which corresponds to simultaneous
conjugation on Hle Oci.

Assume now C is generic. We show first, that PGL,, = G/C* acts freely on
1171(0). Let (A',..., A%) € ;' (0) and g € G such that Ad,A° = A for 1 <i < d.
We show now, that ¢ is scalar, by looking at some non-zero eigenspace V of g.
Then clearly A} will preserve V for all i and by the moment map condition we
deduce ), trAiW = 0. The point is now, that for each i there is a subspace V of
the same dimension as V' such that

By the genericity of C, 3.5 this implies then V' = V/ = C™ and hence g is scalar.

To prove (41) we fix an i and write A® = Ad,C* for some h € Gj,. By
conjugating A® and g with the constant term hg of h we can assume without loss
of generality h € By, i.e. hg = 1. Then Ai = C,ii € "% and thus g € T.
Next consider h = hgh™!, which satisfies Ad; C? = C?. By Lemma 3.1.2 we have
h € T, and then by 3.1.3 hgh~' = g. This implies that h; preserves V for every
0 < j < k; — 1 and hence we have trdy = tr(Ad,C")y = trAdthliV = trCfv.
This proves (41) and hence PGL,, acts freely on p;'(0).

In particular, all the G-orbits in u;l(O) are closed and hence set-theoretic quo-
tient agrees with the points of the GIT quotient x;'(0) / G [Dol03, Theorem 6.1].
Furthermore as in Section 1.1, freeness of the PGL,, action implies that 0 is a reg-
ular value of j14, which in turn implies smoothness of ;" (0) and hence of M., (C).
By looking at tangent spaces we see that the dimension of M,,(C) is given by

d
dimHOCi —2dim PGL,, = k(n? —n) — 2(n? — 1).

i=1
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3.4 Fourier transform of a pole

In this section we compute the Fourier transform F([O¢]) € KExpVar, of a coad-
joint orbit 7.5 : Oc — g* of a formal type C', where we use the language of Section
1.2. Assuming k > 2 we can give an explicit formula for F([O¢]), but before we
need to introduce some more notation.

As in Section 2.3.1 we denote by P,, the set of partitions of n. A semi-simple
element X € g has type A = (\',...,A') € P, if X has [ different eigenvalues
ai,...,a; and the multiplicity of a; is A\; for 1 < ¢ < [. We write gy = {X €
g | X has type A} and iy : gx < g. Finally, we put N(A\) = >_.(\")%

Theorem 3.7. For any partition A € P, we have in &xp. My the formula
Ln+%(k(n272n)+(kf2)N(>\))
C-1r

where Zy = {(9,X) € G x gr | Ady-1X € t} and ¢%(9,X) = (C1, Ady-1 X).
Furthermore the pullback of F([Oc¢|) to the complement g\ | |, gx equals 0.

K F([Oc)) = [Zx, 9] (42)

Proof. By the formula (5) we have

F([Oc]) = [Oc x g, (Tirr 0 proe,pre)| = [Oc X 8, (proc,prg)l;

where for the second equality sign we used the definition of (,) (35).
By Lemma 3.2 we can rewrite this in &xp.#y as

F([Oc)) = (L - 1) [ x B x 8, (T 0 pr pga,pra )| -
Now notice that for all (g,b, X) € G x B¢? x g we have
(T(g,b), X) = (AdyC, X) = (AdyC, Ady-: X)) .
Thus we finally obtain

F([Oc]) = (L —1)™" [G x B x g, <Adegd C, Ad(pm)_lprgﬂ . (43)

We will simplify this by applying Lemma 1.2. First write g' and g* for the
subspaces of strictly lower and upper triangular matrices in g respectively, such
that g°? = g' @ g*. Next consider the decomposition Bgd = Bid ® B°? with

god {beBgd]bgz---:bk,lzo}ifkiseven

T {be By [bes € g brss =+ = by =0} if k is 0dd
od {bEB,‘;d|b1:---:b%:0}ifkiseven

- {be By [ by €g% by =+ =brs =0} if kis odd.
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It follows from Lemma 3.8 below that there are functions
(h1,h2) : G x g x BS* — (B*Y)* x C

such that <AdbC, Adg—1X> = (h1(g, X, b3),b_) + ha(g, X, by ) forallge G, X € g
and b= (by,b_) € B3? & B°?. More explicitly h; and hy are given by

]’Lg(g,X, b+) = <Adb+C, Adgle> s
(hi(g, X,by),b_) = (AdyC — Ady, C,Ad, 1 X).

Applying now Lemma 1.2 to this decomposition, formula (43) becomes
: od
F([Oc)) = (L = )7 L™ P [hy 1 (0), hal.
Again by Lemma 3.8 we have
hi'(0) = {(g,X,by) € G x gx B | Adj-1 X € t,[by,Ad,-1 X] = 0}.
The condition Ad,-1X € t already implies, that F([O¢]) is supported on [ |, gx.
Notice further that for (g, X,b.) € hi'(0) as [by, Ad,~1 X]| = 0, we have
ha(g, X, by ) = <C, AdbllAdg_lx> = (C,Ady-1 X,

in particular hy is independent of by. Furthermore for any A € P,, the pullback
i3h7'(0) — Z, is a vector bundle of rank £52(N()\) — n) and thus

i [RT1(0), ho] = L7 N=m)(Z, 0],

Together with dim B°? = g (n2 — n) the theorem follows. O

We are left with proving Lemma 3.8, for which we need the following explicit
formula for the inverse of an element b = 1 +2by +-- -+ 2" "1b,_1 € By. If we write
b=l =1 +zwi + -+ 2P Twy,_q, then w; is given for any 1 <i <k —1 by

SIS SR w0
m=1 (J1:d25--0m)
Jitetgm =t

Notice that for L%J <m < k—1, by, can appear at most once in each
summand on the right hand side of (44). This is the crucial observation in the
proof of Lemma 3.8.

Lemma 3.8. For X € g the function

ox : B = C
b— @X(bl,bg, .. -,bk:—l) = <AdbC,X>
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s affine linear in bLﬂJ , ooy bi_1. It is independent of those variables if and only
2
if X € t and by, bo, .. .,bL%J commute with X.

In this case, if k is odd and we decompose b% = b + b*, where b and b* are

strictly lower and upper triangular respectively, then ¢x is affine linear in b* and
independent in of b* if and only if b* commutes with X.

Proof. 1t follows directly from (44), that ¢x depends linearly on b; for |#H] <
1 <k-—1.
For b € B2¢, using the notation (44) we have
ki1

<AdbC,X> = tI‘ZijCi’wi_j_lX, (45)

i=1 j=0

where we use the convention by = wy = 1. We start by looking at the dependence
of (AdyC, X) when varying by_1. The terms in (45) containing by_; are given by

tr(bk,leX - Ckbkle) = tr[bk,l, Ck]X

As Oy € t79, the commutator [by_1, Cx] can take any value g°?, thus tr[bs_1, Cx] X
is independent of by_; if and only if X € (g°?)+ =t.

Assume from now on X € t. We show now inductively that ¢ x is independent
of bL%J ,-..,bp_o if and only if by, bo, .. "bL%J all commute with X.

To do so, fix L%J <m < k—2 and assume that bq,...,br_s_,, commute with
X. Consider the element

O =1+zby 442" by g+ 2™ X + 2™ by 4 2R € BYY

The point is now, that the b,,-parts of the explicit formulas for (Ad,C, X) and
Resg tr(b'CY 1) = Resg tr(C) = tr(Cy) are very similar. Indeed, from (45) we see,
that all the terms containing b, in (Ad,C, X) are contained in

k k—1 k
tr Z meZ-wi_m_lX—l— Z Z bi_r_lCier. (46)

i=m-+1 r=mi=r—+1

To write a formula for Resg tr(b'Cb 1) we write b’ ™! = 1 +zw|+- - -+2F 1w, .
Then we can use a similar expression as (45) to conclude that all the terms con-
taining b, in Resq tr(b'CbH'~!) are contained in

k k—1 k
tr Z meCzw;,m,1+Z Z bi_r_lCiw;. (47)

i=m-+1 r=mi=r+1

Next we want to study the dependence of the difference (46) - (47) on by,.
Notice first, that since [b;, X] = 0 for 1 < i < k —2 — m also [w;, X] = 0 for
1 <i < k—2—m and furthermore [wg_y,—1, X]| = [X, bg—m—1]. From (44) we also
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see w, = w; for all 1 <4 < m. Finally, we remark that w, X — w/. is independent
of by, for m <r <k — 2 and the terms containing b, in w,_1 X — wj,_, are given
by by [bk—m—1, X]. Combining all this we see that the terms containing b,, in (46)
- (47) are just

tr (mek [X7 bkfmfl] + Ckbm [bkfmflaX]) = tl‘[bm, Ck][X7 bkfmfl]-

Since Cj, € t7°9, the commutator [b,,, Cj] can take any value in g°? as we vary by, €
g°?. Hence in order for tr[b,,, C1][X, by _m_1] to be constant, we need [ X, by_n_1] €
t. Since X € t this is only possible if [ X, bg_,,—1] = 0, which finishes the induction
step.

Finally, we consider the special case m = %, when k is odd. Then by the
same argument as before we obtain, that all the terms in (Ad,C, X) which depend
on by, are tr[b,,, C1][X,b,]. Now using the decomposition b,, = b' + b* we have

tr[by, C][X, bn] = 2tr(b*[Cr[ X, b1]]).

Since the orthogonal complement of strictly upper triangular matrices are the upper
triangular matrices we see that tr(b%[C[X,b']]) is independent of b* if and only if
[X,b] = 0. O

3.5 DMotivic classes of open de Rham spaces

Let D = kyai +- - -+ kqaq be an effective divisor on P! and C1, ..., C¢ formal types
such that C is generic. We compute now [M,,(C)] € .#, under the assumption
that all poles are at least of order two, i.e. k; > 2 for 1 < ¢ < d. For a partition
A= (A1 >+ > )\) € P, we define the numbers [(\) =1, N(\) = 22‘:1 )\? and
m;(A) the multiplicity of j € N in A. Furthermore we put

l
Stab(\) = [ [ GLa, € GL,.

Jj=1

Theorem 3.9. The motivic class of M,,(C) in A for a generic C, where all poles
are of order at least 2, is given by
(Mn(C)] = (48)
L5 (n*—2n)4+n(d—n)+1 (_1)l(>\)—1(l()\) _ 1)!(n!)d
L0t 2 LG sy me ()

L5 (k=2d)[Geab ()] 2.

We start by simplifying [M,,(C)] in the following standard way.
Lemma 3.10. In .# we have
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Proof. Similar to Lemma 3.2 we consider the kal—principal bundle o : Gg —

H?Zl Oci. Notice that « is G-equivariant with respect the free G-action on GZ
given by left-multiplication. By restriction we obtain a G-equivariant Tg—principal
bundle X — ;' (0). Taking the (affine GIT-)quotient by G, we obtain a C* \ T} /-
principal bundle G\ X — M,,(C). Also X — G'\ X is a G-principal bundle, as it
is the restriction of Gg — G\ Gﬁ. As the groups T,ff, G and C* \Tg are special
[Ser58, Section 4.3], all the principal bundles here are Zariski locally trivial and we
get

e\x] % OG- 1) (L Do)
MO = g e - e - 6
]

By (49) it is enough to determine [u;"'(0)] = 0¥[O¢1 X - -+ x Ogal, where we
consider 0 : Spec(C) — g* as a morphism. Using motivic convolution and in
particular Proposition 1.6 we have an equality of motivic Fourier transforms

( HOCZ

Notice that the last product is relative to g, hence we have by Theorem 3.7 for
every \ € P,

d
> = F([Oci] # -+ % [0ca]) = [[ F(1Oc]) € KExpVarg.  (50)

=1

d d
Z; H]:([OCD _ (L . 1)—nden+%(k(n2—2n)+N(/\)(k—2d)) H |:Z/\7 QOCZ}

=1 =1
zf,zw]

with the notations k = 3" k;, Zf\l for the d-fold product Zy x4---xgZy and ) _, gpci
for the function taking (z1,...,24) € Z§ to 3., 9% (z:;). By Fourier inversion 1.4
we thus get

— (]L _ 1)—nden+ 2 (k(n?—2n)+N(\)(k—2d))

d
g ' (0)) = 0°F (H f([%]))

:(L— ) nden—}—lk(n —2n)—n? Z LlN(/\)(k 2d)
AEP,

Zf,zso“] (51)

This leaves us with understanding [Zf, Do cpcl} as an element of KExpVar.
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We start by taking a closer look at Zy = {(9,X) € G x gx | Ad,—: X € t}. If
we put ty, = tN gy we have an isomorphism

Z>\ l)f)\ x G (52)
(9, X) = (Ady-1 X, g).

Next we need to fix some notation to describe t) combinatorially. To parametrize
the eigenvalues of elements in t) define for any m € N the open subvariety AT C A™
as the complement of U4 {z; = z;}.

Furthermore we need some discrete data. A set partition of n is a partition I =
{h,L,....;} of {1,2,...,n}ie ;NI; =0 for i # j and U;I; = {1,2,...,n}. For
A= (A > > )\) € P, we write Py for the set of set partitions I = {Iy,...,1;}
of nsuch that {|I1|, ..., [I;]} = {\1,..., \i}. We stress that the I;’s are not ordered
and hence |Py| = N )‘ill_rllizl OV where m;(\) denotes the multiplicity of j in

A

With this notations we get a parametrization

pip/\XAél)f,\ (53)
l

(I,a) — ZajE[j’

Jj=1

where for any subset J C {1,...,n} E; is defined as in (39) and we require |[;| =
Aj. Notice that p is not uniquely defined this way as we might switch I, and I in
a given [, if |I,| = |Ip|. As this doesn’t matter for us, we will just fix a p once and
for all.

For any I € P, we also define t{ as the image of the restriction p; = PI{I}xAL *

~

{I} x AL = L.
Lemma 3.11. The following relation holds in KExpVar

=1

d .
z;l,zgﬂ] = [J(ma(r))*~ [GxStab(X)* 1] >

TZl (Il"“7ld)€(73>\)d

d
Aév Z <Cf7pli >] .

Proof. Combining (52) and (53) we have Zy | |;cp AL X G. One can then check
that (AL x G) x4, (AL x G) has [],~, mx(r)! connected components, each of which
is isomorphic to Al x G x Stab(\). Applying this reasoning d— 1 times and keeping
track of the isomorphisms gives the desired equality. ]

Proof of Theorem 3.9. Combining (49), (51) and Lemma 3.11 we are left with com-
puting the character sum {Alo, Zle <Cf,pp>] for a fixed d-tuple (I1,...,I?) of set

partitions of n. For a € AL we can write

d d l l d
Z<0fjp11(a)> => <C{,ZajEI;> =Y a Z<CfaEz;>-

i=1 =1 j=1 =1
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Now for a fixed 1 < j < [ we have by definition |EI71\ = .-+ = |Ea|. Thus

by our genericity assumption (40) the numbers §; = Zle <C’{,E I> satisfy the
J

assumptions of Lemma 3.12 below, and we deduce

d
ALY <c;‘,pp>] = (-7 - DAL (54)

which proves Theorem 3.9. O

Lemma 3.12. Let f51,...,Bm be complex numbers such that 2311 B; = 0 and
for J C {1,2,....,m} be a proper subset 3 .. ;B; # 0. Then for the function
(,B): Al 5 C, a— 27:1 a;B; we have

AT, (-, 8)] = (=1)™ }(m — 1)L € KExpVar.

Proof. We use induction on m. For m = 1 we have 3; = 0 and Al = A', hence the
statement is clear. For the induction step consider A™ as a subvariety of A"~ 1 x Al.
As B # 0 we have [A™~1 x Al (.. 8)] = 0, hence

[Agnv <7/8>] = _[Agn—l X Al \A;n’ <7ﬂ>]

Now notice that the complement A7~ x A\ A™ has m — 1 connected components,
each of which is isomorphic A”~!, which implies the formula. O

3.6 Remarks on finite fields and purity

The description of M,,(C) in Proposition 3.6 allows us to consider open de Rham
spaces over any field, in particular over a finite field IF,. By taking a spreading out
of M,,(C) over some finitely generated Z-algebra we see that if the characteristic
of IF, is large enough, Theorem 3.9 also hold when we replace every motivic class
with the number of rational points over F, [HRV08, Appendix].

We can even say more. Namely the proof of Theorem 3.7 implies that the
Fourier transform of the count function #¢ : g* — Z, Y — |1, L (Y)(F,)| associated
to the coadjoint orbit m,..s : Oc — g* is supported on semi-simple elements in g,
whose eigenvalues are in the field F,. Given such an X € g of type A € P, the
[F,-version of formula (42) reads

n+3 (k(n®=2n)+(k—2)N (X))

(g—1)"

Fl#o)(x) =1 [Stab(M)(Fg)l > T{Cu 1), (55)

teAdg XNt

where Adg X C g denotes the orbit of X under the adjoint action and F and ¥
are defined as in Section 1.2.

Now even though our argument in Section 3.4 does not work for k£ = 1, formula
(55) continues to hold for X € g semi-simple with eigenvalues in F,. Indeed in
this case #¢ is the characteristic function of the coadjoint orbit O¢ C g* and the
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formula (2.5.5) in [HLRV11] for its Fourier transform agrees with (55), when we
put k£ = 1.

Hence for a generic C with at least one pole of order > 2, we can compute
M, (C)(Fy)| as in Section 3.5, since we have to evaluate the product in (50) only
on semi-simple elements whose eigenvalues are in F, (if all poles are of order 1, one
also has to consider non semi-simple elements).

Corollary 3.13. For a generic C with at least one pole of order > 2, the number
of Fy-rational points of M,,(C) is given by formula (48) when we replace L by q.
In particular, in this case M,,(C) is non-empty and connected.

Proof. The explanation why (48) continues to hold is given in the previous para-
graph. By Katz’s theorem [HRVO08, Theorem 6.1.2] (or in the motivic case by
applying (7)) we see that the same formula (48) also gives the FE-polynomial
E(M,(C);z,y), when L is replaced everywhere with xy. By a direct inspection we
then see that E(M,,(C);t,t) is a monic polynomial of degree 2k(n?—n)—4(n*—1) =
2dim M,,(C), which implies that M,,(C) is non-empty and by Lemma 1.8 also
connected. O

It is somewhat unfortunate that we have to use finite fields to be able to include
order 1 poles in our computations. We plan to come back to this problem in the
future and hopefully prove formula (55) in the motivic setting also for k = 1.

We finish by looking at some special cases of (48). For n = 2 the formula reads

- kaB(kadfl(L 4 1)d71 o 2d71)
[M2(C)] = L1 :

For small values of d [M3(C)] is then given by

2; LN (LM% 4oL 4 2L 0 4. 4 2)
37 Lk_3 (Lk_3 4 3Lk—4 + 4Lk_5 + o4 4) ,
4; LR3 (LR34 4L 4 7L P 4 8K 6 4. 4 8) .

d
d
d

It turns out that in all examples we can compute, the coefficients of [M,,(C)]
as a polynomial in . will always be positive, in particular the coefficients of
E(M,,(C);z,y) seem to be positive. By (6) a sufficient condition for this is that the
compactly supported cohomology of M,,(C) is pure i.e. h2%* = 0 unless p+q = i.
If all poles in C are of order 1 this is proven in [HLRV11, Theorem 2.2.6] using
the description of M,,(C) as a quiver variety. In [HWW] we obtain a quiver like
description of M,,(C) for poles of any order, giving more evidence and a possible
strategy for the following natural conjecture.

Conjecture 3.14. For any generic C the (compactly supported) mized Hodge
structure of M, (C) is pure.
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4 Push-forward Measures of Moment Maps over
Local Fields

In this final Chapter we consider the same situation as in Section 2.1, but with
base field a local field F' and instead of the motivic measure we consider the natural
Haar measure 5 on F. These two measures are not unrelated. Namely .77 will
induce a canonical measure dx on any variety X which is smooth over the ring
of integers O C F. By a theorem of Weil [Weil2] the volume of X (O) is up to a
factor equal to | X (Fy)|, where F, is the residue field of F', which is always assumed
to be finite. As counting over finite fields is essentially a realization of the motivic
measure, we see that dx is in some sense a refinement of the motivic measure.

As a natural question we will thus study the analogue of Proposition 2.3, i.e.
the push forward of the Haar measure along the moment map

iV xV* g (56)

By Weil’s theorem we do not expect to see anything new at the O-smooth fibers of
w, which is why we focus our attention to ~1(0). More precisely we are interested
in the relative volume’ B,, of u~1(0) i.e. the value of the density p.(H xv+)/ 7
at 0 and the geometric information it contains. We are not able to give a precise
answer to this question here, but we hope that the computations and conjectures
we present will be a starting point for interesting future research directions.

We now explain the structure of this chapter in more detail. The first section
contains the necessary background on local fields, we introduce in particular the
Fourier transform operator and the corresponding inversion formula.

In the second section we define the local Igusa zeta function Z¢(s) of a poly-
nomial map f : A" — A™ between affine spaces, our main example being f = u
a moment map as in (56). Not only is Z,(s) a strictly finer invariant than B,,,
but while B, can be infinite, Z,(s) is always a rational function in ¢~ and if B,
is finite we can recover it as a residue of Z,(s) at a simple pole. Another reason
to consider Zy(s) is the functional equation it satisfies, which will explain certain
symmetries of B,,.

In Section 4.3 we use our localization philosophy, or more precisely a p-adic
analogue of Proposition 2.3, to give a formula for computing 7, (s). In general it
seems quite hard to evaluate this formula, but if we restrict ourselves to the moment
maps that appear in the construction of hypertoric varieties (19) we can be very
explicit. In this case we can express Z,(s) = Z4(s) in terms of the combinatorics
of the associated hyperplane arrangement A, which is the content of Section 4.4.

A direct consequence of this explicit formula is that the (real parts of the) poles
of Z 4(s) are contained in a finite set of negative integers & 4. In Section 4.5 we give
a criterion, for when an integer in &4 is an actual pole of Z 4(s) and deduce that
the two largest and the smallest number in 22, (s) will always be poles of Z4(s).
The interest in the poles of Z4(s), or more generally Z;(s), comes from Igusa’s
long standing monodromy conjecture [Igu88]. One version of the conjecture states
that the poles of Z(s) should agree with the roots of the so-called Bernstein-Sato
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polynomial by of f. The conjecture has been checked in many cases when f is
a single polynomial, but in general only a few examples are known [HMYO07]. It
would thus be interesting to see, if one can use analogous localization ideas to
compute the roots of b,, which is a question we will try to answer in the future.

In the last two sections we come back to the relative volume B,,. In 4.6 we use
the description of B, as a residue of Z4(s) to prove that the 'numerator’ B}, of B,
is palindromic as a polynomial in ¢g. Based on numerical evidence we furthermore
conjecture that B;L has positive coefficients.

Finally, in Section 4.7 we consider hyperplane arrangements which come from a
quiver I'. Here our motivation comes from a result of Crawley-Boevey and Van den
Bergh [CBVdBO04], which says that the number of indecomposable representations
of I' over IF, for an indivisible dimension vector is up to a factor equal to the
number of stable points on p~*(0)(F,). In our case, we consider idecomposable 1-
dimensional representations of I' over the finite quotient rings O — O/m®, where
m C O denotes the maximal ideal. Using a formula of Mellit [Mel16] we show that
the asymptotic number of such representations as @ — oo is given by a rational
function Ar(g). We finish by giving some numerical evidence for the conjecture
that the numerator Ar(q) of Ar(q) equals B),(q).

4.1 Local fields and some harmonic analysis

In this section we recall some basic facts about local fields. Everything we say here
can be found in various places, for example [Ser13, Tai75].

By a local field F we will always mean a locally compact, non-discrete, totally
disconnected field, where locally compact means that both abelian groups (F,+)
and F* are locally compact. With this definition there are two kinds of local fields:

Char(F) =0: F is a finite extension of a p-adic field Q, for some prime
number p.

Char(F) > 0: F' is the field of rational functions over a finite field F, i.e.
F =T, ((X)).

We fix now a local field F' once and for all. Write v : F' — Z U {oo} for the
valuation and |- | : F' — Q for the norm. The latter is multiplicative and satisfies
the non-archimedean triangle inequality

|z + y| < max{|z|, |y|} for all z,y € F. (57)

Moreover, we have an equality in (57) whenever |z| # |y|.

Hence the unit ball O = {z € F | |z| < 1} is a sub-ring of F' called the ring
of integers. It is a regular local ring of dimension 1 with maximal ideal m = {x €
F | |x| < 1}. In particular, m is principal and we fix for convenience a generator
mie. (m) = m. The quotient O/m is called the residue field and is isomorphic to
a finite field IF,. The characteristic of F, is called the residue characteristic of F'.
More generally we have for any a € Z>¢ a finite ring O, = O/m®.
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The units O* of O are the complement of mi.e O* = {x € O | |x| = 1}. Then
every x € F'* can be written uniquely as x = un® for some u € O* and a € Z. As
|| = ¢~ we see that the image of the norm map |- |: F — Q is ¢* U {0}.

We will need three more pieces of data naturally associated with F'. The first is
a natural section of the projection O — I, called the Teichmiiller lift o : Fy — O,
which is characterized by ¢(0) = 0 and opx being multiplicative. Every x € O

then has a unique presentation as convergent power series

oo
x = Z o(za)m®, x4 €F,.
a=0

Hence we can speak of the coefficient of z at 7% as an element in F,. In
particular, we have decompositions

O=[]eo@+m, 0= |]a@)+m (58)

CeFy CER)

Next, since (F,+) is locally compact, we can consider the Haar measure /¢ on
F and more generally 77, on F™ for any n > 1, normalized by J#,(O™) =1 . For
any measurable subset A C F",x € F and y € F" we have

Hn(xA) = |2|" A (A),  Ha(y+ A) = A (A). (59)

All integrals we consider will be with respect to this Haar measure, and we will
in general only indicate the variable, over which we integrate. The following lemma
is an easy consequence of (59) and we will use it many times without explicitly
mentioning.

Lemma 4.1. For any o € Z we have
H(n?0) = ({z €O ||z| <q"}) =q77,
A (70 ) = A (fac O ol =q ) =q* (1-q7").

Proof. Both equations follow from (59), for the second one we also use O* =

O\ m. ]

Finally, we fix a non-trivial additive character ¥ : F' — C* normalized by the
condition ker(¥) = m. As in the finite field case, the integrals we compute will not
depend on the actual choice of W.

We finish this section by introducing the Fourier transform on F*. Write S(F™)
for the C-vector space of locally constant, complex valued functions with compact
support on F™. The Fourier transform F(f) of a function f € S(F™) is a function
on F" defined by

F(hH)y) = o f(@)¥((y, x))dx for all y € F™,

where (,) : F" x F™ — F denotes the standard inner product.
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Lemma 4.2. [Igu00, Lemma 8.1.3] The Fourier transform defines a linear iso-
morphism F : S(F™) — S(F™) and satisfies

FFEN(@)=q"f(-=)
forall f €S and x € F™.

For any subset A C F™ we write x4 for the characteristic function of A. In
practice all the Fourier transforms we need can be computed from the following
lemma using the linearity of F.

Lemma 4.3. For every a € Z and y € F™ we have

F(Xroon)(y) = /aon U({y,x))dr = ¢~ " Xr-atron (Y).

Proof. Since V is a character we can write

U((y,x))dx = ﬁ U(y;x;)dx;.
el i1 /meo

If for some 1 < i < n we have |y;| = ¢® with 3 > a, then z; — U(y;2;) will
descend to a non-trivial character on the finite abelian group 7*O/7?*1© and
hence [, W(z;y;)dy; = 0. This implies the lemma. O

4.2 Local Igusa zeta funcions

In this section we fix a polynomial map f : A™ — A™ given by fi,...,fm €
Olx1,...,zy,]. As mentioned already, we are interested in the push-forward measure
f+(7%,) and how it compares to J%,. As it turns out this is described by some
interesting arithmetics of f. For o > 0 denote by By, the number of solutions to
f = 0 modulo ¢ i.e.

By =z € OF | f(x) =0}

Looking at the projection O™ — O} for every o > 0, we see
fu( ) (r00™) = 5, ({x € O™ | ||[f ()|l € 47°}) = Brag™ ™. (60)

In particular, the ”quotient” f.(,)/#,, at the origin is given by

[ () (rO™)  a(ne
By =1 =1 aln=mip,
f 041~>Holo %m (71’0‘ Om) aLH;o q £
We think of By as the relative volume of f~1(0), which is in general a singular
variety. If f71(0) is smooth then it follows from a theorem of Weil [Weil2, Theorem

2.2.5], that By = ¢~ 4m /™ ©)|f=1(0)(F,)|. In the singular case B seems to have
some interesting properties, as we try to illustrate with the following example.
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Example 4.4. Take f: A2™+2 5 A™ to be given for all z,y € O™*! by

f(fﬂ,y) = (l‘lyl — L2Y2,T2Y2 — X3Y3,- -, TmYm — $m+1ym+1)-

Then it is not hard to see, that we have

Broa= ) H(zw) €O} | zw=}""" (61)
A€0,

A direct computation then shows

B+1)(g—1)g* " if [\ =¢g P #0

62
(a+1)g® —ag®t if A=0. (62)

{(z,w) € OF | 2w = A} = {

As it turns out the formula for B¢, will not be particularly nice, however the limit
By = limy—o0 q_o‘(m“)Bf’a seems to be much better behaved. First the A = 0
term in (61) goes to zero and we get

a—1
R F —a(m+2) o a—pB—-1 m+1, — 1ym+1l (a—1)(m+1)
By = lim ¢ > (a—1)q B+ g=1)""q
B=0
= (=g )™ S (B4 1) = B (g),
B=0

where E,, denotes the n-th Eulerian polynomial [Pet15]. These polynomials appear
in many places, notably as the Poincaré polynomials of toric varieties associated
with the permutahedra. In particular, they are palindromic and have positive
coefficients. The first few are given by

Ei(t)=1, Ey(t)=t+1, FE3(t)=1t>+4t+1,
Ey(t) =3+ 112 + 11t + 1, Es(t) = t* + 26t> + 661> + 26t + 1.

From the definition of By it is not at all clear, that By < oo and indeed in
general it will not be. In fact this already fails in the following simple example.

Example 4.5. Consider the multiplication map f : A? — A! given by f(x,y) =
zy. From (62) we see that the number By, of solution to zy = 0 in 02 is given
by (a+1)¢* — ag®~! and hence

By = lim ¢ *Bjq = ali_)néo(oz +1) - ¢ ta = .

a—r00

A both interesting and convenient way to deal with this problems is to intro-
duce an extra complex variable. The resulting object is called the local Igusa zeta
function associated with f and is defined as

7(5) = [ lf@ld
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where [[(y1,...,ym)|| = max(|y1],...,|ym|) and s € C with real part greater
than 0. Because of the non-Archimedian norm Z¢(s) depends only on the ideal
(fi,---,fm) C Olx1,...,z,] hence one can think of Z¢(s) as being associated to
the variety f~1(0).

The relation with the push-forward measure comes from the almost tautological
formula [Bog07, Section 3.6]

[ r@irds = [l o6) (63
on om

Maybe not so surprisingly Z¢(s) is also closely related to the By ,’s. Namely
we define the Poincaré series of f by

Pf(t) = Z Bf@q_nata.
a>0

Then using again (60) we see

Iy(s) = /On 1f@)l|*de =Yg~ ({x | ||f(@)]| = 3)

=S g (A (L @ < ) — 0 (] @) < a1))
a>0

=30 (Brag " = Brasig” ") (64)

= (P~ 1)1 — ) + 1. (65)

The real advantage in introducing Z¢(s) comes from its definition as an integral,
which makes it possible to use analytic and geometric methods to study it. We
quickly explain some basic structure results on Z¢(s), assuming for the rest of this
section that Char(F') = 0.

The key Idea of Igusa [Igu74] was to use an embedded resolution of f to prove
the following theorem, originally in the case m = 1 (for the multivariate case see
[Loe89)).

Theorem 4.6. The Igusa zeta function Zy(s) is a rational function in q=°. The
real parts of its poles in C, as a function of s, are negative rational numbers.

The numerical data of a resolution of f will give a set of possible poles for
Z¢(s) which is in general larger that the actual set of poles. The description of the
actual poles is an intriguing open problem and the content of various monodromy
conjectures (see [Den90] for a survey). This is the reason we will spend some time
on the description of the poles of Z¢(s) in the cases we can compute, see Section
4.5.

The same numerical data also describe the asymptotic behavior of By, as
a — 0o [VZGO8]. For us however the following much simpler criterion will do.
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Lemma 4.7. Assume that the largest poles of Z¢(s) is at s = —m. Then By is

finite if and only if s = —m is a simple pole, in which case we have
qm qm qs+m —1
Bf = qm 1 ReSs:_mIf(S) = (q’rn_l):z:f(s)lsz_m'

Proof. Consider the generating series

(qs+m o 1)Pf(q—s) _ Z(qs—i—m o 1)Bf’aq—a(s+n)

a>0
_ qs+m + Z qfa(ern) (quan7a+1 o Bf,a) )
a>0
If s = —m is a simple pole, then it follows from our assumptions and (65), that

(¢°T™ — 1)P¢(q~*) converges for |s| < m. We can then compute the value at
s = —m as follows:

N — o0

N
(qs—l—m _ 1)Pf(q_5)5:—m = lim 1+ Z q_a(n_m) (qm_an,a—l—l - Bf»a)
a=0

N—o0

If s = —m is a higher order pole, a similar argument shows that By diverges. [l

Example 4.8. Continuing Example 4.5 we can use the formula By , = (a+1)¢* —
aq®t to compute Z¢(s) via (64):

Ti(s)=> q (((a +1)—ag ) g~ ((@+2) — (a+1)g ") qf(aﬂ))
_ 1-g¢ ')

o . —1y2 —a(s+1) _
=(1-¢")?) (a+1)q = A= GO

a>0

In particular, Z;(s) has a poles of order 2 at s = —1 which by Lemma 4.7 explains
the divergence of By.

Finally, we discuss an analogue of the functional equation satisfied by the Weil
zeta function. For this consider a homogeneous polynomial f € Olzq,...,z,]. We
denote for every e > 1 by F(¢) the unique unramified extension of F' of degree

e and by I](ce)(s) the Igusa zeta function of f computed over F(¢). We call Z;(s)
universal over F if there exists T¢(u,v) € Q(u,v) such that for every e > 1 we

have I](f) (s) =Z¢(g~°°,¢~°). Under these assumptions the following is a simplified
version of a theorem of Denef and Meuser.

Theorem 4.9. [DM91] For almost all residue characteristics, if T(s) is universal
over F it satisfies the functional equation

Ze(u™t o™ = ule I T (u, ).
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Remark 4.10. The proof uses an embedded resolution of the projective hypersur-
face {f = 0} C P"~! and the functional equation of the Weil zeta function of the
exceptional divisors, which are now projective as well. The same argument should
hence also prove a version of Theorem 4.9 when f = (f1,..., fim) is a collection of
homogeneous polynomials of the same degree.

4.3 Push forward measures of moment maps

In this section we derive an analogue of Proposition 2.3 over local fields in the
following general set up. Let o : O™ — gl,(O) be an O-linear map, where gl,,(O)
denotes the O-module of n x n-matrices with entries in @. Define a 'moment map’
O™ x O™ — O™ by the equation

(u(z,y),2) = (e(2)z,y)

for all z,y € O™ and z € O™. Notice that the standard paring (,) induces an
isomorphism Home (O™, O) =2 O™ and hence p is uniquely defined this way.
Finally, we define a function a, : I — R>q by

ap(2) = 7, (p(2)O" Nm™) = / Xmn (0(2)x) dz, (66)

n

for z € F™. Here we also use the notation x4 for the characteristic function of
ACF™

Proposition 4.11. The Fourier transform of the push-forward measure i.( )
is given by a,. More precisely we have for every compact measurable A C O™

pis (Hon ) (A) = g™ - Fxa)(z)ap(z)dz.

Proof. By definition of the push-forward measure we can write
B n)(4) = Ao W) = [ xalplegdady. (67)
’VL>< n

For fixed x,y € O™ we have by the Fourier inversion Lemma 4.2

xa(p(z,y) =q" - F(xa)(2)¥ (= (u(z,y), 2))dz

=" | PO felz)e )z

By integrating along y € O™ we thus have by lemma 4.3

[ xatutenay = [ Fone ([ v e@nman)

Fm

=q" - F(xa)(z)xmn (0(2)x)dz.
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Plugging this into (67) we obtain the proposition:
pe )W) =" [ [ P o)) dzdo
n Fm

=q" [ F(xa)(z)ag(z)dz.
Fm

O
Remark 4.12. Ideally we would like to phrase Proposition 4.11 differently by
writing
e (Hon)(A) = q™ [ F(xa)(z)ay(z)dz
F’ITL
:qm/ /W((a,z})ag(z)dadz:qm/ F(a,)(a)da.

Then we could say, that the density of p.(74,) with respect to ., is given by
the Fourier transform of a,, which would be the exact analogue of Proposition 2.3.
However a, will in general not be integrable (Example 4.5 gives such a case), and
hence we cannot interchange the integration over F™ and A in general.

Example 4.13. An interesting special case of Proposition 4.11 comes from taking
A = o(¢) +m™ where ¢ = (¢1,¢2,---,¢m) € Fj'. Then by definition of the
push-forward measure and similar as in (60) we have (the ~ will always denote the
reduction to the residue field Fy).

p(Han ) (A) = Han (™ (A)) = 72" |71 (O)(Fy)].
On the other hand we have essentially by Lemma 4.3
F(xa)(z) = q "xom (2)¥((z,0(C)))

and thus Proposition 4.11 reads

() (A) = [ Wz o(0)an(2

Notice now, that the integrand is invariant on cosets of m” and by (60) we have
the formula a,(z) = ¢~ "|ker(9)(%)(F,)|- Hence we recover [Hau06, Proposition 1]:

B OFEN = q"™ Y |ker(2)(2)(Fg) (¢, 2))-

Zerm

As we already mentioned in (63), the Igusa zeta function Z,(s) is closely re-
lated to the push-forward measure p,(7%,) and hence Proposition 4.11 implies the
following general formula.
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Corollary 4.14.

(s+m) __ s m __ . s+m
q q q q _
Z,(s) = + / a,(2)||z]]" ¢t dz

Proof. By the tautological equation (63) we have

L) = [Nl (i) = 3 a7 () (770 \ 7 O™).

a>0

With Proposition 4.11 and Lemma 4.3 this becomes

9= D0 ([ Foumom@ae)is - [ Fixmmon)Glal)is)

>0 EFm
_.m —a(s+m) </ . —m
=q q ay(z)dz —q / a (z)dz>
0422:0 Toatl@Om ¢ Toa@Om ¢
=1+(g°-1) Z g elstm) / ay(2)dz.
0420 Tae@Om

Now the domain of each integral in each summand contains m™. Using ayjm» =1
we can evaluate the integrals over m™ first and get

—a(s+m) _—m —a(s+m) __ "
St [ agepds =g e -

a>0 a>0

and then

s+m

q _qs —s —a(s+m
Zu(s) = W+(q —1)Zq (o )/ ao(z)dz.

>0 T O'rn\m'rn
az

Finally, we can reorder the domains of integration according to the norm of z and
obtain

—a(stm) a,(2)dz = / a,(2)dz —a(stm)
S | (=X [ ) S

aZO T a(’)nL\an BZO QZB

s+m
__4q Z —B(s+m)
= — a,(2)dz
qs+m —1 (/7r—5(9m\ﬂ——ﬁ+1@m Q( ) ) q

B>0
qs+m

_ —(s+m)d
= Ao\ Z2)||2 Z.
qs+m -1 /Fm\mm Q( )|| ||
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Example 4.15. Consider the case m = 1 and o : O — gl,(O) given by o(z) = z 1,,.
Then the moment map 4 is given by p(z,y) = > 1| @;y; for allz,y € O™ and Z,,(s)
is now straightforward to compute:

First we have for any z € F'\ m and x € O™ the equivalence p(z)xr € m" <
lz;| < (q]z|)™! Vi and hence a,(z) = (q|z])~". Then

/ CLQ(Z)’Z‘_(S+1)CZZ _ q—n/ |Z’_(S+n+1)d2’
F\m

F\m
s —1
_ N —a(s+n+1) arq =1\ _ q (1—(] )
=¢ ") g Q-0 ="
a>0

Plugging this into Corollary 4.14 we obtain the formula

~ (g=1)(¢g" —1)g*
I“(S) - (qs+1 _ 1)(qs+n _ ]_) :

This example appears already in [Igu00] and was part of the initial motivation
for looking at zeta functions of moment maps.

4.4 Hypertoric zeta functions

In this section we determine the Igusa zeta function for the moment maps that
appear in the construction of hypertoric varieties 2.2. Let A be a central hyperplane
arrangement of rank m, where the hyperplanes Hq,..., H, are given by normal
vectors ay, ..., a, € Z™. From now on we will work under the following assumption:

Assumption 4.16. If A € M, «n(Z) denotes matriz whose rows are the a;, we
will always assume that the residue characteristic of F is larger than any of the
minors of A.

As a first consequence of this assumption we notice that the intersection lattice
L(A) does not depend on whether we consider A over F' or over F,.
Associated to A we have a moment map p : O™ x O™ — O™ defined by (19)
ie.
n
u(x,y) = inyiai for all z,y € O".
i=1

The Igusa zeta function associated with A is then defined as

Ta(s) = Zu(5) = [ llnte.)|dady

This is really an invariant of A and does not depend on the choice of normal
vectors as long as 4.16 is satisfied. Also the assumption that A is essential is not
necessary here, as ||p|| depends only on the span of the a;.

In this case a, : F™ — R>( defined in (66) takes a rather simple form. Namely
using (18) we have for z € '™
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1) = [ xme(elz)o)do = 121 [ (i) e = E[mm {1, 1} |

ql (z,a:) |

The determination of Z4(s) thus reduces by Corollary 4.14 to computing

- 1
_ : —(s+m)
Ja(s) = /Fm\mm l_llmm {1, e } 1Bl dz. (68)

1=

The point is now, that the integrand of J4(s) clearly takes only countably many
different values and we can partition £ \ m™ accordingly. Let ¢ = (¢1,...,¢,) €
2%y \ 0 and define

ZZ&C:: {ZIE m

(2, a5) | {: ¢ i >0 } (69)

<q ! if ¢; =0.

With this we can write F™\ m™ = Ucezg \0 ZAc. Now in general for a matrix
0

B € My (O), which has full rank when reduced over F,, we always have
||Bv|| = ||v]| for all v € O (70)

by the non-archimedean triangle inequality (57). In particular, when we apply this
to the matrix A from 4.16 we get

ol = mas | (=001, (1)
Then (68) becomes
Ta(s) = Z g~ L= @ENHm) 2 (Z46), (72)
CEZ;O\O
where we use the notation ¢ = max{ci,...,c,}. We will determine J4(s) using a

recursion for which it will be more convenient to consider

Th(s) =g ™ Tu(s) = Y g 2T (Za ).

CEZ;O\O

Now in general there are linear relations between the a; and hence Z 4 . will be
empty for many choices of c¢. Again because of (57) we need for example

I={ie{l,...,n} | ¢ <c}

to be a flat in A for Z 4 . to be non-empty. Assuming I # () we put ¢; = (¢;)ier €
ZIZO and ¢; = max;¢c(¢;).
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Lemma 4.17. The volume of Z 4 is given by

Iye—
%m(Z_A,c) = XAl (Q)qu(A (e 2)%k(A1)(ZAI,CI)7

where we set Ha,)(Zag,er) =a~ k(A §f T =0 ore; = 0.

Proof. As we already remarked in (71) we have ||z|| = maxi<i<y | (2,a;) | = ¢¢!
for every z € Z 4 , hence in particular Z4 . C 7~ °T1O™. Furthermore for z € Z 4 ¢
and w € m™ we have by definition z + w € Z4 .. In other words, if we write

O™ F™ — (F/m)™,

then every non-empty fiber of SOT%A . Is a translation of m™ and thus

Hon(Zae) =a "2y, (73)

where we abbreviate Z'y . = ¢ (Z4c). Now assume first [ = () ie. ¢, = -+ =
cn, = €. Then the image of Z; . under the projection

(7r_6+1(9/m)m — (W_E'HC’)/W_EHO)T” =

are exactly the points which do not lie in any hyperplane of A C F;*. Thus by
Theorem 1.11 we obtain |Z); .| = xa(q)¢™ ™ and #,(Z ) = xalq)g™ 2.
Next assume I # () but €¢; = 0. Then every z € Z :470 satisfies

(z,a;) =0 for all i € I. (74)

Furthermore by 4.16 we can write the set of all z € (77 °T1OQ/m)™ satisfying

(74) as (W*EHO/m)rk(AI) in a suitable basis. Now the same argument as for [ = ()
shows

—-m T I c—1)—m T I c— —r
Hon(Zae) =q ™ 2ol = xar(@)g™ A DT =y 41 (q)g™ A2 g rk(AD,

The general case works the same way by considering the image of Z:4,c under
the projection (7~¢t10/m)" — (7=°H1O/r1+10)™.
O

Proposition 4.18. J/(s) satisfies the recursion

—rk(AT),,
j,’4(8) =g ™ Z q s X_Al)(Q) (qu(Az)ijI (s + 67 — rk(Ap)) + 1) 7

where we put 6y = n — |I| + rk(Ar) and jj% =0.
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Proof. Using Lemma 4.17 this is now a straightforward computation. Fix a flat
I € L(A) with I # oo = {1,...,n} and set Z} = {c€Z% | ¢;<ceicl}.
Then we have -

S g See e e () = Z g Zere 37 gt (24

ceZ} crezl ceZ>0
- c>cCy
I —cC(s
= X.AI( —2AD Z q Zier l"k(-AI)(ZAI,CI) Z q S(stor)
c1€Z c>cy
I
X.AI( —2rk(A") oy (646
= qs+61 1 Z q Zier or (et I)%k(AI)<ZAth)
CIEZ_
I
xar(q)gm kA
= qs+51 -1 (qu(AI)j.i\I (S + 51 - rk(AI)) + 1) )
where we used in the last line our convention J%y(a,)(ZAa;.c;) = q~ KA for
c; = 0. Now the proposition follows by summing over all flats I # co. ]

Of course a recursion for J(s) implies one for Z4(s), which turns out to be
a bit cumbersome however. Instead we give an explicit formula by iterating the
recursion from Proposition 4.18. Recall that for any flat I € L(.A) we can identify
L(Ay) with the sublattice of L(A) consisting of flats contained in 1.

Theorem 4.19. The Igusa zeta function of an essential hyperplane arrangement
A of rank m is given by

q —rk(AI”)
+ (75)
qm —q = 1—gstm) 00:103%:3..31 Hl q”‘” =

Ta(s) =

where the sum is over all proper chains of flats in L(A) of length r > 1.

Example 4.20. When A is the central arrangement in F consisting of n times the
origin i.e. a; = --- = a, = 1 we recover Example 4.15. In this case L(A) = {0, 00},
and the sum in (75) has only one term corresponding to the chain co 2 ().

From this example we also see that Z4(s) is really an invariant of .4 and not
just of L(A).

Example 4.21. Next we consider the arrangement in F? defined by the three
normal vectors a; = (1,0),a2 = (—1,1),a3 = (0,—1). The moment map is then

given by
T1Y1 — T2Y2
T,Y) = .
uiw.y) <$2y2 - 95393)
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We have L(A) = {0, {1},{2}, {3}, o0}, and hence there are 4 chains of length 1 and
3 of length 2. The contribution of each of them to the sum in (75) is given by

(4-1a-2)
o0 2 (Z) q2(qs+2 _ 1)
: (¢—1)
2 ey
o2 {20 1V

Pl -1

Putting this together we get

(q_1)2qs (qs(q6+2q5+2q4_2q3)_|_2q3_2q2_2q_1)

S (@7~ 1) 17

We give a final example to illustrate that in particular the numerators of Z 4(s)
get complicated very quickly and do not seem to have any interesting structure
apart from the symmetry predicted by Theorem 4.9.

Example 4.22. Consider the arrangement in F'® given by the six normal vectors

1 0 1 1 0 -1
ar=\|1),aa=\|1),a3=10),as=|-1],a5=1| 1 J,a6=1] O
0 1 1 0 -1 1

With the help of Sage we find that the denominator of Z 4(s) is given by
(qs+3 _ 1)(qs+5 _ 1)(qs+6 _ 1)3.

The numerator is the following:

(q_1)2q28 q3s(q24+2q23+3q22+3q21+3q20_q19_11q18+6q17)

+q28(3q19+9q18_ 2q17_9 16_9q15_9q14 3q13+9q12+3q 1)
+¢°(—3¢" — 9¢"? + 3¢" +9¢'° +9¢° + 9¢® + 12¢" — 9¢° — 3¢°)
—6¢7 +11¢° + ¢° — 3¢* — 3¢° — 3¢ 2q—1]

4.5 Poles

Formula (75) shows that I4(s) is a rational function in ¢~*. We start by studying
the poles of 14(s) (as a function in s), more precisely the real parts of those poles.

Then if follows from our formula that the poles of I 4(s) are amongst the nega-
tive integers Z4 = {—d; | I € L(A)}, as opposed to just negative rational numbers
as in Theorem 4.6.
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Of course for a given € € 4 the different summands in (75) with a (¢°=¢—1)~1-
term might cancel. We explain now a criterion which will show in many cases, that
there is no such cancellation. Consider the subset

L(A)e ={I € L(A) | =01 =},

with the induced ordering i.e. I > I' iff I O I'. The following observation gives
some control over L(A)..

Lemma 4.23. (i) For any two flats I O I' in L(A) we have 6; < dp with
equality if and only if {a; | i € I\ I'} are linearly independent in F™ /H.

In particular, if I,1" € L(A)e, any J € L(A) with I > J D I" is in L(A).

(ii) There are unique flats J1,...,Jq € L(A). such that every I € L(A). contains
exactly one of the J;’s

Proof. For (i) we can write
50— 6; = |I| — |I'| + tk(Ap) — tk(A;) = [T\ I'| — rk(A}).

Now the normal vectors defining A%, are exactly the images of {a; | i € I\ I'}
in F™/H; and (i) follows.

Statement (i) follows from the observation that given I,.J;,Jo € L(A), such
that I D J; for i = 1,2, we have J; N Jy € L(A).. Indeed, first we can reduce this
to the case where J; N.Jy = () by restricting to A717/2. Then using (i) we can write
I = J;UuI/, where {a; | j € I'} are linearly independent in F/H;,. As JyNJy =)
we conclude that Jy C I7,J; C I5 and hence {a; | i € I} are linearly independent
in F™ and d; = dp, which finishes the proof. O

Next we write [(¢€) for the length of a maximal chain in L(A).. Each maximal
chain is of the form Iy 2 Iy 2 -+ 2 [y = J; for some 1 < i < d, where J; is as in
Lemma 4.23. For a fixed 1 < ¢ < d we write J; 1, J;2,...J;, for the different Ij’s
that appear in a maximal chain with smallest flat J;. Notice that again by Lemma
4.23 {ac | e € J;; \ J;} are [(€) linearly independent vectors, hence any maximal
chain from J; ; to J; is constructed by adding the a.’s one by one. In particular,
there are [(€)! different maximal chains from J; ; to J;.

Proposition 4.24. A negative integer e € P4\ {—m} is a pole of Ta(s) of order
l(E) + 1 4f Zi,j I/_A(J,"j, OO) # 0.

Proof. We see directly from (75), that the order of the pole € is less than or equal
to l(e) as (¢° ¢ —1)~! can appear at most [(€) times in one summand. For € to be
exactly of order [(€) is equivalent to

R(q) = (¢°~° = 1)"OT L4(5)se # 0.

We now study the contribution of a single summand corresponding to the chain
I=(c0c=1y21L 2 -2 1) (notation as in (75)). Clearly I has to contain
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a maximal chain from L(A). in order to have a non-zero contribution to R(q),
so we assume this from now on. Then we can look at the contribution of I to
the limit lim, oo (1 — ¢~ (™)) R(q), where we include the factor (1 — ¢~ (¢+™)) to
cancel the factor in front of the sum in (75) . The polynomial [];_; x Al (q) is of
i—1
degree tk(A!"), which can be seen directly from the definition (9). Furthermore if
I, ¢ L(A). the summand will contain a factor (¢°++¢ — 1)~! which will tend to
zero as ¢ — oo. Combining these two facts and the description of maximal chains

in L(A). above leads to

I (- RQ =Y Y ()

g co=I1021 221 12Ji

= =1 _valJij, ).

Here we also used Lemma 1.10 for the last equality. By our assumption we then
have lim, o (1 — ¢~ (“+"™))R(q) # 0, and hence also R(q) # 0. O

Remark 4.25. The proof of Proposition 4.24 considers a limit for ¢ — oo and it
is natural to look also at a similar limit when ¢ — 0. It turns out however, that
this will produce exactly the same criterion.

In the next theorem we summarize all the information we have about the poles
of I4(s).

Theorem 4.26. Let A be a central arrangement of rank m consisting of n hyper-
planes and € one of the three numbers —m, —n,max P4 \ {—m}. Then € is a pole
of I4(s) of order l(e) + 1.

Proof. Assume first ¢ = —m. In this case we can directly look at

lim (g™ = 1)L (s),
S—>—m
where we consider the limit from above i.e. s > —m. As the characteristic polyno-
mial of any hyperplane arrangement is monic we see that every summand in (75)
tends either to 0 or 400 individually (assuming ¢ is large enough), hence —m is a
pole of order I(m) + 1.

For ¢ € {—n,max Z 4\ {—m}} we use the criterion from Proposition 4.24.
Together with Proposition 1.13 the statement will then follow from the fact that
all J; j in L(A). have the same rank.

For e = —n = 0y we can see this since L(A)_,, consists exactly of those flats T
for which {a;};cr are linearly independent. Hence the rank of each Ji,; is simply
l(€).

For € = max Z 4 \ {—m} we first notice that there is a unique minimal flat J €
L(A)—m. Indeed, J is defined by the property a; ¢ span,_;{ax} for all i ¢ J. We
can then see that rk(J) = rk(A;) = m—rk(A’) = m—I(—m) and since there cannot
be any flat between J and any J; ; € L(A)e we have rk(J; ;) = m—I(—m)—1. O
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4.6 The residue at the largest pole

By Theorem 4.26 we know that Z 4(s) has its largest pole at s = —m. Furthermore
we know that —m is a simple pole if and only if [(—m) = 0. In this case A is called
coloop-free (see for example [PWO07, Remark 2.3]) meaning there is no a; such that
a; ¢ span,_,;{a;}.

Recall that under these assumptions the residue Ress—_,, Z4(s) has an inter-
esting interpretation. Namely if p : O™ x O" — O™ denotes the moment map
associated with 4 and B, the limit

B, = lim g—e@—m) {z €O | p(z) =0},

a—r 00

then Lemma 4.7 implies B, = q,‘,{%l

4.19 gives

Resg=—m Z,,(s). Combining this with Theorem

Corollary 4.27. B, is finite if and only if A is essential and coloop-free. In this
case we have
Xt (a)

T I;
B, = Z g~ TKA™) H ﬁ;_f (76)

co=1021, 221, i=1 4

where the sum is over all proper chains of flats in L(A) of length r > 0.

The formula shows in particular that B, (¢q) € Z(q) is a rational function in ¢
for ¢ large enough, see 4.16. It is not hard to see that B, (¢) has degree 0, where
the degree of a rational function is defined as the degree of the numerator minus
the degree of the denominator. Indeed the contribution of » = 0 in (76) equals 1
and all other summands have negative degree since 6y —m =n— |[I|+rk A; —m =
n — |I| —1k(AT) > 0 for any flat I # oo, as A is coloop-free.

Example 4.28. As in Example 4.20 we start with the arrangement consisting of
n-times the origin in F'. Then (76) has two terms, one for {oo} and one for oo 2 ()

and we get
P N Vit | Vi SRS )

q(q"~" = 1) q(q"~t = 1)
Example 4.29. The case of m~+1 hyperplanes in F™ in general position appeared
already in Example 4.4 and for m = 2 in 4.21. It is also interesting to consider
these arrangements with some hyperplanes doubled e.g. take A as in 4.21 and add

the normal vector a4 = a3. In this case we obtain

B

(¢ — 1)%(¢* +3¢° + 64 + 3q + 1)
Al =17

Example 4.30. Finally, we consider again Example 4.22, in which case B,, looks

considerably nicer than Z 4(s):

B, =

(g — 1)*(q'° + 4¢° + 13¢® + 35¢7 + 50¢° + 58¢° + 50q¢* + 35¢> + 13¢> + 4q + 1)
*(¢® —1)(¢* — 1)?
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These examples suggest that the "numerator” of B, satisfies some remarkable
properties. In order to make this more precise define the numerator B;(q) by
multiplying B,,(¢) with what we expect to be its denominator i.e.

I(e)+1
B()=q¢" ] <q 1> By(q) € Z[g).

1
cer\-my ~ 1

—e—m __

Notice that B;(q) is indeed a polynomial since the characteristic polynomial of
any central arrangement is divisible by ¢ — 1, see Corollary 1.12.

One thing we would expect from the examples, is that the numerator BL(q)
is palindromic, which is indeed the case. This is a consequence of the functional
equation for the Igusa zeta function of a homogeneous polynomial4.9. Since pu is
in general not given by a single polynomial, we also rely on Remark 4.10.

Proposition 4.31. B/ (q) is a polynomial of degree d =m+3_ 5 \(—py —(€+
m)(l(e) + 1) which is palindromic i.e.

B(q) =q"B(¢").

Proof. We saw already, that B,,(q) has degree 0, hence the formula for d follows
directly from the definition of B),(¢). From the equation

m s+m_1
q"(q )7

B =
I»L(q) qm o 1 1%

(s) |s=—m
and the functional equation 4.9 we deduce B, (q) = ¢~™B,,(¢""), which now implies
palindromicity of B, (q). O

The examples above and some further computer evidence also suggest that the
coefficients of B;L(q) are positive integers. Unfortunately we are unable to prove
this at the moment and can only record it as a conjecture.

Conjecture 4.32. B (q) is a polynomial with positive coefficients.

4.7 Indecomposable quiver representations in higher depth

In this section let I' = (I, E) be a quiver as in 2.3. Most of what we say in this
section will be independent of the orientation of I', hence we use the words quiver
and graph interchangeably. By a subquiver IV = (I, E’) of I we will always mean
a quiver with I’ =T and E' C E.

For a dimension vector v € N/ and a > 1 we write Rep, (I') for the free
O,-module of representations of I" over O, with dimension v i.e.

Repa’v(l—\) _ @ HOHI(QQ (OZs(E) ’ Ogt(e))

eckE

We are only considering 1-dimensional representations here, that isv = (1,1,...,1),
in which case we abbreviate Rep,, (I') = Rep,, (') = O,.
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A representation x € Rep,, (I') is indecomposable if it is not isomorphic to the
sum of two representations with strictly smaller dimension vectors. We denote the
subset of indecomposable representations by Repé"d(F). Since we are considering
only (1,...,1)-dimensional representations, x € Rep, (') will be indecomposable
if and only if the subquiver I'y , = (I, E4 ), where E, , = {e € E | . # 0}, is
connected.

As in 2.3 the group

Go =[] CL1(0) = (02)"
el

will act on Rep,, (') and two representations are isomorphic if and only if they lie
in the same orbit under this action. The number Ar , of indecomposable repre-
sentations up to isomorphism is then given by

Ar.a = |Repl (1) /G

We now explain a formula for Ar , which we learned from unpublished notes
of Anton Mellit [Mell6]. First we have by Burnside’s Lemma

Aro=1Gol™" Y |Aut(z)]. (77)
rE€Repid(T)
To evaluate this sum we define for every x € Rep,, (I') a sequence
' CIlo,C--Clag
of subquivers of I by putting I'y, , = (I, E)») and
Epy={e€E ||z >q "}

for 1 < k < «a. Here the norm of an element in O, is defined as the norm of any
lift to O.

Lemma 4.33. The number of automorphism of x € Rep, (') is given by
| Aut(a)] = (g — 1) Tee)gims Chs),
where we write ¢(I'") for the number of connected components of a graph I".

Proof. An element g = (g;) € G4 is an automorphism of x if and only if for every
e € E we have

(gt(e) - gs(e))xe =0. (78)
In particular, we have g(.) = gs(e) Whenever x. € Oy < e € Ey . This proves the

lemma in the case @« = 1. For a > 1 denote by T the graph obtained from I' by
contracting all the edges in E; ;. Then x and g descend to a representation z €

Rep,, (I) and an automorphism § € Aut(#). Furthermore we have by construction

58



T = 7y for some y € Rep,,_;(T"). This shows that the coefficient of 7¢~! in g does

not actually appear in (78). As I'is a graph on ¢(I'; ;) vertices we thus obtain the
recursion

| Aut(z)| = ¢ | Aut(y)|
and the lemma follows by induction on «. O

Proposition 4.34. [Mell6] The number of indecomposable representations of T’
up to isomorphism over O, is given by

Ara= 3 (g 1P, (79)
I CCI,CT
c(ly)=1
where we write b(I'") = ¢(I'") — V(I) + E(I") for the first Betti number of a graph
I’.

Proof. For a given sequence I'y C --- C I'y, C T' the number of x € Rep,, (I") with
[y =1T% forall 1 <k <« is given by

(g — 1)E(F1)qE(F1)(a—1)(q _ 1)E(F2)—E(F1)q(E(FQ)—E(Fl))(a—2) ..

(g — 1)E(F‘1*1)_E(FQ*Q)qE(chfl)_E(Fa72)( )E(Fa)—E(Faq)

qg—1

—~

as the norm |z.| is prescribed for each e € E by the sequence of graphs. Since
|Go| = ((¢ — 1)q°‘)V(F) and V(I'y) = V(I') for all 1 < k < a by definition, the
formula follows from Burnside’s Lemma (77). O

As in Section 4.6 we consider now the limit of Ar ,(q) as @ — oo appropriately
normalized. In order to do this we have to make sure, that the coefficient of the
highest g-power in Ar , doesn’t grow as we vary «, which will exactly be the case
when I is 2-(edge)connected i.e. when I' stays connected after removing any of its
edges.

Corollary 4.35. Ar ,(q) is a polynomial in q of degree ab(I'). The limit Ar(q) =
limg o0 q_ab(F)Ar’a(q) converges if and only if I is 2-connected, in which case it
s given by

-1

1 b(D) 1
Ap(q)=(1—q") Z H b(T)—b(T: ) 1’ (80)

GGy CIy=T j=1 q I 1

where the sum is over all strict chains of subgraphs of length 5 > 1.

Proof. To get the degree of Ar ,(q) we notice in general, that given two graphs
IV C T on the same set of vertices we have b(I") < b(I"’) since adding an edge to
a graph can at most connect two components. The leading coefficient of Ar , then
comes from summing up over all sequences with b(I'y) = --- = b(['y) = b(I'). If
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there is any subgraph I C T" with b(I") = b(T"), then the number of such sequences
will go to infinity as @ — oo. Hence limg,_, o q_ab(F)AF,a(q) converges if and only
if b(I'") < b(T") for any subgraph of I', which in turn is equivalent to I' being
2-connected.

To compute Ar(g) when I' is 2-connected it will be convenient to rewrite (79)
as a sum over strict chains 'y € T'y € -+ C I'; C I'. Explicitly given any chain
I'h C--- CTI'y, CTI there exists an integer 1 < § < « and integers 0 = [y < [1 <
--- < lg_1 < lg = «a such that L1 =---=T1T4,, for 0 < 5 < (B —1. If we then
put I, =1, for 1 < j < 8 we can rewrite (79) as

/ B . ’
Ar,alq) = > 3 (g )R GE llbT)

0<li<-<lg_1<lp=aT}|C.-CT,CT
c(I')=1

p—1
= Y @-gHw 3 g TT ¢ (T =br),
j=1

I G- CI%Cr 0<ly<-<lg_1<a
c(Tp)=1

From this we see that the only sequences I'j C --- C I'; C T' giving a non-

zero contribution to the limit Ar(q) = lim,— 00 q_o‘b(F)Ana(q) are the ones where
b(I';) = b(I') i.e. I'; = T'. The corollary then follows from the iterated geometric
series summation

T - ) _ T 1
—1, (6T, ) —b(T)) _
Z H g = H O, ) _ 1
0<ly<-<lg_y<oo j=1 j=14

]

In order to compare Ar(q) with B,,(q) from the last section, we define a hyper-
plane arrangement A = A(T") out of I'. For every edge e € F define the hyperplane
H, in F! by the equation Tg(e) —Ty(e)- This way, if I" is connected, we obtain an ar-
rangement of rank |I|— 1, since the 1-dimensional subspace spanned by (1,1,...,1)
will be contained in all hyperplanes. Furthermore A will be coloop-free if and only
if I' is 2-connected.

Since formula (80) is essentially a sum over all possible chains of subgraphs of
I it is quite cumbersome to evaluate it even for small graphs. That is why we used
Sage to compute the following examples.

Example 4.36. For I the affine A, i.e. I ={1,2,3} and E = {(1,2),(2,3),(3,1)}
we get
P +4g+1

Arla) = e

Similarly for I' = As we have

P+ 11 +11g+ 1

AF(Q) (q_ 1)3
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The values B),(q) for the corresponding arrangements were studied in Example 4.4.

One can also consider non simply-laced quivers, for example A, with one edge
doubled, which corresponds to Example 4.29. In this case we we have

¢t 43¢ +6¢ +3¢+1
- (¢> — 1)
The pattern in all the examples is of course that Ar and B4 seem to have very

similar numerators, but slightly different denominators. We record this observation
in the following conjecture.

Ar(q)

Conjecture 4.37. For any 2-connected graph I' = (I, E) with associated arrange-
ment A we have

("™ — D)1= Ap(q) = Bly(q).
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