
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. W. Zwaenepoel, président du jury
Prof. C. Koch, directeur de thèse

Prof. M. Püschel, rapporteur
Dr C. Curino, rapporteur

Prof. K. Aberer, rapporteur

Efficient Online Processing for Advanced Analytics

THÈSE NO 7731 (2017)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 26 OCTOBRE 2017
À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

LABORATOIRE DE THÉORIE ET APPLICATIONS D'ANALYSE DE DONNÉES
PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2017

PAR

Mohamed Elsayed Mohamed Ahmed EL SEIDY

Nothing in this world can take the place of persistence. Talent will not;

nothing is more common than unsuccessful men with talent. Genius will not;

unrewarded genius is almost a proverb. Education will not;

the world is full of educated derelicts.

Persistence and determination alone are omnipotent.

The slogan Press On! has solved and always will solve the problems of the human race.

— Calvin Coolidge

To my long gone father Elsayed who has left a young seed behind and
to my mother Soad who continued to water the seed till it thrived.

Acknowledgements

This Ph.D. dissertation would not have been possible without the support of my advisor,

mentors, colleagues, family, and friends. Most importantly, I would like to thank my advisor

Prof. Christoph Koch for mentoring and guiding me through the Ph.D journey. I thank him for

devoting all his energy, time, and experience to pave a successful path ahead of me. He has

inspired me and taught me the principles of critical thinking and abstract reasoning.

I am also thankful to my thesis committee members, Prof. Willy Zwaenepoel, Prof. Karl Aberer,

Dr. Carlo Curino, and Prof. Markus Puschel, for giving their time and energy to evaluate

my thesis and to provide insightful feedback. I am indebted to Prof. Willy for continuously

supporting and believing in me since the beginning of the journey. Prof. Karl has taught me the

first principles of distributed processing through his class. I am also grateful to Dr. Carlo for

being a supportive, friendly, and inspiring mentor during my internship at Microsoft Research

and for encouraging me to explore new research directions. I would also like to thank Prof.

Markus for giving me fruitful feedback on my work during his visit to EPFL.

I would like to thank all the current and former members of the DATA lab at EPFL, Abdallah

Elguindy, Daniel Lupei, Mohammad Dashti, Aleksandar Vitorovic, Amir Shaikhha, Yannis

Klonatos, Milos Nikolic, Vojin Jovanovic, Thierry Coppey, Immanuel Trummer, Lionel Parreaux,

Andrej Spielmann, and Andres Notzli, who provided me with valuable feedback and support

on my research. I am also grateful to my colleagues, Matt Olma, Iraklis Psaroudakis, Danica

Porobic, and Renata Borovica, for the friendly support during the stressful times. I would also

like to thank Simone Muller for being the backbone of our lab.

I am deeply grateful for the support and encouragement of my friends and family. I would

like to thank my best friend, Eslam Elnikety who has a big role in shaping my life. I would

also like to thank the women in my life, who continuously supported me, i.e., my mom Soad,

my sisters, Sara and Soha, and my partner Aida have always been there for me. I am thankful

to my friends Mirena Dimova and Christina Strelchouk for supporting me and being patient

during the stressful periods of my Ph.D.

This work was supported by the EPFL DATA lab, the ERC grant 279804.

Lausanne, 28 March 2017 M. E.

i

Abstract
With the advent of emerging technologies and the Internet of Things, the importance of on-

line data analytics has become more pronounced. Businesses and companies are adopting

approaches that provide responsive analytics to stay competitive in the global marketplace.

Online analytics allow data analysts to promptly react to patterns or to gain preliminary in-

sights from early results that aid in research, decision making, and effective strategy planning.

The growth of data-velocity in a variety of domains including, high-frequency trading, social

networks, infrastructure monitoring, and advertising require adopting online engines that can

efficiently process continuous streams of data.

This thesis presents foundations, techniques, and systems’ design that extend the state-

of-the-art in online query processing to efficiently support relational joins with arbitrary

join-predicates (beyond traditional equi-joins); and to support other data models (beyond

relational) that target machine learning and graph computations. The thesis is divided into

two parts:

We first present a brief overview of Squall, our open-source online query processing en-

gine that supports SQL-like queries on top of streams. Then, we focus on extending Squall

to support efficient theta-join processing. Scalable distributed join processing requires a

partitioning policy that evenly distributes the processing load while minimizing the size of

maintained state and duplicated messages. Efficient load-balance demands apriori-statistics

which are not available in the online setting. We propose a novel operator that continuously

adjusts itself to the data dynamics, through adaptive dataflow routing and state repartitioning.

It is also resilient to data-skew, maintains high throughput rates, avoids blocking during state

repartitioning, and behaves as a black-box dataflow operator with provable performance

guarantees. Our evaluation demonstrates that the proposed operator outperforms the state-

of-the-art static partitioning schemes in resource utilization, throughput, and execution time

up to 7x. In the second part, we present a novel framework that supports the Incremental

View Maintenance (IVM) of workloads expressed as linear algebra programs. Linear algebra

represents a concrete substrate for advanced analytical tasks including, machine learning,

scientific computation, and graph algorithms. Previous works on relational calculus IVM

are not applicable to matrix algebra workloads. This is because a single entry change to an

iii

Acknowledgements

input-matrix results in changes all over the intermediate views, rendering IVM useless in

comparison to re-evaluation. We present Lago, a unified modular compiler framework that

supports the IVM of a broad class of linear algebra programs. Lago automatically derives

and optimizes incremental trigger programs of analytical computations, while freeing the

user from erroneous manual derivations, low-level implementation details, and performance

tuning. We present a novel technique that captures Δ changes as low-rank matrices. Low-rank

matrices are representable in a compressed factored form that enables cheaper computations.

Lago automatically propagates the factored representation across program statements to

derive an efficient trigger program. Moreover, Lago extends its support to other domains

that use different semi-ring configurations, e.g., graph applications. Our evaluation results

demonstrate orders of magnitude (10x—100x) better response times in favor of derived trigger

programs in comparison to simple re-evaluation.

Key words: online query engine, theta-joins, efficient joins, skew-resilience, adaptivity, matrix

algebra, incremental view maintenance, rewrite systems, incremental computation, compiler

optimization, graph computation

iv

Résumé
Avec l’avènement des nouvelles technologies et l’internet des objets, l’importance des analyses

de données en ligne a grandi. Les entreprises adoptent des approches qui fournissent des

analyses réactives afin de rester compétitive sur le marché global. L’analyse de données en ligne

permettent aux analystes de répondre promptement à des tendances ou acquérir une certaine

prévision à partir de premier résultat aidant la recherche, la prise de décisions et la mise en

place de stratégies efficaces. La vitesse croissante des données dans une variété de domaines

tel que le trading à haute fréquence, les réseaux sociaux, le monitoring d’infrastructure et la

publicité nécessite l’adoption de moteur de recherche pouvant analyser efficacement un flot

de données continu.

Cette thèse présente des fondements, des techniques et des conceptions de systèmes qui

repousse l’état de l’art dans le traitement des requêtes en ligne afin de soutenir efficacement

des join relationel avec des join-prédicats (au delà des traditionels equi-joins) et soutenir

d’autres modèles de données qui cible le machine learning et le calcul de graphes. Cette thèse

est divisée en deux parties :

Nous présentons d’abord un court survol de Squall, notre moteur de traitement de requêtes

en ligne, une source ouverte qui peut traiter les requêtes du genre SQL en plus des flux de

données. Ensuite, on se concentre sur l’expansion de Squall afin de supporter efficacement le

traitement theta-join. Le traitement extensible de join distribués nécessite une politique de

partitionnement qui distribue de manière égale la charge de traitement tout en minimisant la

taille de l’état maintenu et des messages dupliqués. Afin d’équilibrer efficacement la charge

il faut des statistiques en amont qui ne sont pas disponible sur le réglage en ligne. Nous

proposons un opérateur novateur pouvant continuellement s’ajuster à la dynamique des

données à travers un routage adaptatif de celles-ci et re-partitionnement des états. Il est

aussi résistant aux biais de données, maintient un rendement élevé et ne bloque pas lors

du re-partitionnement. Il agit également comme une boite noire des flots de données avec

des garanties de performance vérifiable. Notre évaluation démontre que l’opérateur dépasse

les modèles de partitionnement statique dans l’utilisation des ressources, le rendement et la

vitesse d’exécution jusqu’à un facteur 7.

Dans la seconde partie, nous présentons une structure novatrice qui supporte le Incremental

View Maintenance (IVM) des charges de travail exprimées sous la forme de programme en

algèbre linéaire. L’algèbre linéaire représente un substrat concret pour des tâches d’analyses

v

Acknowledgements

avancées incluant, l’apprentissage des machines, le utraitement de données scientifiques

et les algorithmes de graphiques. Des travaux précédents sur le calcul relationnel IVM ne

s’appliquent pas à une matrice de charge de travail en algèbre. Ceci est causé par le fait que

la modification d’une seule entité dans une matrice-input cause un changement dans tous

les points de vues intermédiaires, rendant l’IVM inutile comparée à la ré-évaluation. Nous

présentons donc Lago, une structure modulaire unifiée pouvant supporter les IVM d’une

large classe de programmes en algèbre linaire. Lago déduit et optimise automatiquement

des programmes d’analyse progressive, toute en libérant l’utilisateur d’erreur de déduction

manuelle, des petits détails de mise en œuvre et le réglage de performance. Nous présentons

une technique novatrice qui capture les changementsΔ sous forme de matrices à rang inférieur.

Les matrices à rang inférieur sont représentables dans une version compressée qui permet un

traitement moins coûteux. Lago propage automatiquement les représentations factorisées

dans les affirmations du programme afin d’en dériver un trigger program qui est efficace. De

plus, Lago étend son domaine d’action à d’autres applications de configuration semi-ring

comme par exemple les applications de graphes. Nos résultats d’évaluation montre un temps

de réponse de 10 à 100 fois plus rapide en faveur des trigger programs déduits en comparison

à la simple ré-évaluation.

Mots clefs : moteur de requête en ligne, theta-joins, joins efficace, résistance aux biais, adapta-

tivité, algèbre matricielle, incremental view maintenance, système de réécriture, traitement

progressif, optimisation de compilation, calcul de graphes.

vi

Zusammenfassung
Mit dem Aufkommen neuer Technologien und dem Internet der Dinge ist die Bedeutung der

Online-Datenanalytik ausgeprägter geworden. Geschäfte und Unternehmen nehmen Ansätze

an, die responsive Analytik bieten, um auf dem globalen Markt wettbewerbsfähig zu bleiben.

Online Analytik erlaubt es Datenanalytikern, zeitnah auf Muster zu reagieren oder vorläufige

Erkenntnisse aus früheren Ergebnissen zu gewinnen, die bei der Forschung, Entscheidungsfin-

dung und einer effektiven Strategieplanung helfen. Das Wachstum der Datengeschwindigkeit

in einer Vielzahl von Domänen, einschließlich Hochfrequenzhandel, soziale Netzwerke, Infra-

struktur Überwachung und Werbung, erfordern Online Motoren, die effizient kontinuierliche

Datenströme verarbeiten können. In dieser Arbeit werden Grundlagen, Techniken und System-

design, die den Stand der Technik in der Online-Abfrageverarbeitung erweitern, um relationale

Joins mit beliebigen Join-Prädikaten (über traditioneller Equi-Joins hinaus) effizient zu unter-

stützen; und um andere, nicht relationale Datenmodelle, die auf maschinelles Lernen und Gra-

phentheorie zielen, zu unterstützen. Die Arbeit ist in zwei Teile gegliedert: Zuerst präsentieren

wir einen kurzen Überblick über Squall, unseren Open-Source-Online-Abfrage-Verarbeitungs-

Engine, der SQL-ähnliche Abfragen auf Datenströme unterstützt. Dann konzentrieren wir uns

auf die Erweiterung von Squall, um eine effiziente Theta-Join-Verarbeitung zu unterstützen.

Die skalierbare verteilte Join-Verarbeitung erfordert eine Partitionierung Richtlinie, die die Ver-

arbeitungslast gleichmäßig verteilt, während die Größe des beibehaltenen Zustandes und der

duplizierten Nachrichten minimiert wird. Effiziente Lastverteilung fordert apriori-Statistiken,

die im Online Einstellung nicht verfügbar sind. Wir schlagen einen neuartigen Operator vor,

der,durch adaptives Datenfluss-Routing und Zustands Repartitionierung, sich kontinuierlich

an die Datendynamik anpasst,. Er ist auch stabil gegen Daten-Skew, hält hohe Durchsatzraten,

vermeidet Blockierung während der Repartitionierung und verhält sich wie ein Black-Box-

Datenfluss-Operator mit nachweisbaren Leistungsgarantien. Unsere Auswertung zeigt, dass

der vorgeschlagene Operator den aktuellen Stand hinsichtlich der statischen Partitionierungs-

schemata in Ressourcennutzung, Durchsatz und Ausführungszeit bis zu 7x übertrifft. Im

zweiten Teil präsentieren wir einen neuen Rahmen, der die inkrementelle Viewpflege (Incre-

mental View Maintenance - IVM) von Arbeitsbelastung unterstützt, ausgedrückt als lineare

Algebra-Programme. Lineare Algebra stellt eine konkrete Grundlage für fortgeschrittene analy-

tische Aufgaben dar, einschließlich maschinelles Lernen, wissenschaftliche Berechnungen

und Graphenalgorithmen. Bisherige Arbeiten zum Kalkül IVM sind nicht auf Matrix Algebra

vii

Acknowledgements

Arbeitsbelastung anwendbar. Dies liegt daran, dass ein einziger Änderungeintrag in eine Ein-

gabematrix zu Veränderungen über alle Zwischenansichten führt, was IVM im Vergleich zur

Neubewertung nutzlos macht. Wir präsentieren Lago, ein einheitliches modulares Compiler-

Framework, das das IVM einer breiten Klasse von linearen Algebra-Programmen unterstützt.

Lago leitet und optimiert automatisch inkrementelle Trigger-Programme von analytischen

Berechnungen ab und befreit dabei den Benutzer von fehlerhaften manuellen Ableitungen,

Low-Level-Implementierungsdetails und Performance-Tuning. Wir stellen eine neuartige

Technik vor, die Δ Veränderungen als niederrangige Matrizen erfasst. Niederrangige Matrizen

sind in einer komprimierten Formfaktor darstellbar, die Berechnungen mit weniger Aufwand

ermöglicht. Lago propagiert automatisch die faktorisierter Darstellung über die Programman-

weisungen, um ein effizientes Auslöserprogramm abzuleiten. Außerdem erstreckt sich Lago

seine Unterstützung für andere Anwendungen und Domänen unterschiedlicher Halbring

Konfigurationen, z. B. Graph Anwendungen. Unsere Auswertungsergebnisse zeigen in Grö-

ßenordnung (10x—100x) bessere Reaktionszeiten zugunsten abgeleiteter Triggerprogramme

im Vergleich zur einfachen Neubewertung.

Schlüsselwörter: Online-Abfrage-Motor, Theta-Joins, effiziente Joins, Skew-Resilience, Adapti-

vität, Matrix-Algebra, inkrementelle Viewpflege, Rewrite-Systeme, inkrementelle Berechnung,

Compiler-Optimierung, Graphentheorie

viii

Contents
Acknowledgements i

Abstract (English/Français/Deutsch) iii

List of figures xiii

List of tables xv

1 Introduction 1

1.1 Existing Systems and Limitations . 2

1.2 Contributions and Thesis Outline . 4

2 Background: A Bird’s Eye View of Online Processing 7

2.1 Introduction . 7

2.2 Requirements for Online Systems . 10

2.3 The Online Stream Processing Terrain . 12

2.4 Summary . 19

3 Squall: Online Query Processing 21

3.1 Data Model . 21

3.2 The Squall Framework . 22

3.2.1 Interface . 23

3.2.2 Query plans . 24

3.2.3 Operators . 25

3.2.4 Query optimizer . 26

3.2.5 Underlying Processing Platform . 26

3.3 Summary . 27

4 Online Theta Joins 29

4.1 Challenges and Contributions . 30

4.2 Background & Preliminaries . 31

4.2.1 Join Partitioning Scheme . 31

ix

Contents

4.2.2 Operator Structure . 32

4.2.3 Input-Load Factor (ILF) . 33

4.2.4 Grid-Layout Partitioning Scheme . 34

4.3 Related Work . 35

4.4 Intra-Operator Adaptivity . 37

4.4.1 Monitoring Statistics . 38

4.4.2 Analysis and Planning . 38

4.4.3 Actuation . 49

4.4.4 Equi-Joins Specialization . 54

4.5 Evaluation . 56

4.5.1 Skew Resilience . 58

4.5.2 Performance Evaluation . 58

4.5.3 Scalability Results . 62

4.5.4 Data Dynamics . 63

4.5.5 Summary . 64

5 Lago: Online Advanced Analytics 65

5.1 Challenges and Contributions . 66

5.2 Incremental Computation Δ . 67

5.2.1 The Delta Δ Representation . 69

5.3 The LAGO Framework . 71

5.3.1 Architecture . 72

5.3.2 Lago DSL . 73

5.3.3 Transformation Rules . 77

5.3.4 Meta-Information . 81

5.3.5 Wiring it all together . 84

5.4 Other Use cases . 86

5.4.1 Incremental Linear Regression . 86

5.4.2 Incremental Matrix Powers . 87

5.5 Related Work . 93

5.6 Evaluation . 95

5.6.1 Incremental Linear Regression . 96

5.6.2 Graph Analytics . 99

5.6.3 Scalability Evaluation . 103

6 Conclusion 105

A Appendix 107

A.1 Analysis under Window Semantics . 107

A.2 LAGO Rules . 110

x

Contents

Bibliography 125

Curriculum Vitae 127

xi

List of Figures

3.1 The Squall query processing engine. An example query plan is first translated to

a logical plan, then to a physical plan and finally to a storm topology. 22

4.1 Examples of the join-matrix M for various (monotonic) joins R ��θ S between

two streams (relations) R and S. 31

4.2 (a) R ��θ S join-matrix example, grey cells satisfy the θ =�= predicate. (b) a

(2,4)-mapping scheme using J = 8 machines. (c) the theta-join operator structure. 32

4.3 (a) join-matrix with dimensions 1GB and 64GB (b) a (8,8)-mapping scheme

assigns an ILF of (8 1
8)GB (c) a (1,64)-mapping scheme assigns an ILF of 2GB. . . 33

4.4 Migration from a (8,2)- to a (4,4)-mapping. 42

4.5 (a) decomposing J = 20 machines into independent groups of 16 and 4 machines. 43

4.6 Theta-joins elasticity. 47

4.7 Execution time performance results part I. 59

4.8 Execution time performance results part II. 59

4.9 Operator metrics performance results part I. 60

4.10 Operator metrics performance results part II. 60

4.11 Scalability performance results. 62

4.12 Performance results under fluctuations. 63

5.1 Deriving the trigger program for the matrix powers program A8 68

5.2 Propagation of data-changes in matrix programs. 69

5.3 The architecture of the Lago framework. 71

5.4 The core Lago DSL divided into two main classes, i.e., matrix and scalar operations. 73

5.5 Syntactic sugar: Examples of additional operations defined using compositions

of the Lago DSL. 75

5.6 Matrix addition and multiplication in the core Lago DSL generalized for semirings 76

5.7 Program P represents all-pairs Graph Reachability or Shortest Path after k-hops

depending on the semiring configuration. 76

xiii

List of Figures

5.8 Delta Δ derivation rules for the core language constructs. The iterate construct

is first unfolded using the simplification rules in the appendix before applying Δ

rules on it. Moreover, the Δ rule for matrix inverse enables the cheaper Woodbury

formula as explained in the subsequent examples in section 5.4.1. 77

5.9 Inferring dimensions and cost of matrices. 81

5.10 An example for bottom-up propagation of meta-information. 83

5.11 Lago IVM phases. 84

5.12 Walking through an example undergoing the IVM phases. 85

5.13 Step-by-step Δ derivation of the Ordinary Least Squares program till the factor-

ization phase. 89

5.14 Step-by-step Δ derivation of Matrix powers till the factorization phase. 92

5.15 Performance evaluation of Incremental Linear Regression. 96

5.16 Performance Evaluation of Meta-Information specialization opportunities. . . 101

5.17 Performance Evaluation of Incremental Graph programs usingSymbit for Reach-

ability and Dense for Shortest Distance. 102

5.18 Scalability and additional storage results. 103

A.1 Simplification rules 110

A.2 Equivalence rules 111

A.3 Inferring symmetry of matrices. 111

A.4 Inferring Sparse Structures of matrices. 111

A.5 Inferring Ranks of matrices. 111

A.6 Inferring structure of Triangular matrices (U : Upper triangle, L: Lower triangle) 111

A.7 Inferring layout of bit vector matrices (R: Row layout, C: Column layout) . 111

xiv

List of Tables
4.1 Queries used for Theta-join evaluation. 56

4.2 Query performance under skew. 58

5.1 Equivalent operations in Matlab, R, and Lago. 74

5.2 Report on compilation metrics. 97

5.3 The average Octave and Spark view refresh times in seconds for INCR of P 16

and a batch of 1,000 updates. The row update frequency is drawn from a Zipf

distribution. 104

xv

1 Introduction

This thesis presents foundations, techniques, and system designs that extend the state-of-

the-art in online query processing to efficiently support relational joins with arbitrary join-

predicates (beyond traditional equi-joins); and to support other data models that target

machine learning, scientific, and graph computations.

With the advent of emerging technologies and data acquisition tools, the importance of

data analytics has become more pronounced. More than ever, businesses, companies, and

institutions are incorporating data analysis tools into their workflows. Such tools provide

useful information, patterns, and insights that aid in research, decision making, and effective

strategy planning.

We currently live in the data deluge era where data grows consistently. In general, data

continuously expands in three main dimensions, namely volume, variety, and velocity [114].

For instance, Facebook maintains a 300PB data warehouse with a daily data-growth rate of

600TB [172]. The Large Hadron Collider (LHC) generates 30PB of raw data every year, which

is used for scientific simulations [2]. Therefore, modern applications not only have to keep

up with the expansion pace of data diversity and size, but they also have to be agile enough

to cope with the rapid change in evolving datasets. The immense growth of data velocity

in massive data domains including high-frequency trading, social networks, online gaming,

infrastructure monitoring, recommendation systems, and advertisement require adopting

online engines that can efficiently process continuous streams of real-time data (along with

traditional batch processing systems for historical data). Businesses must embrace approaches

that provide responsive analytics to stay competitive in the global marketplace. Online and

responsive analytics allow data analysts and statisticians to promptly react to patterns or to

gain preliminary insights from approximate or incomplete results at very early stages of the

computation. The rise of various systems and solutions that process real-time data streams

reflects the current trends and interests in streaming data analytics. This trend has fostered a

1

Chapter 1. Introduction

number of open-source and commercial frameworks for online stream processing. However,

these systems lack the support for a wide class of online analytics that enable advanced

analyses including general-join processing and domain-specific operations.

1.1 Existing Systems and Limitations

Michael Stonebraker et al. [164] present eight requirements for achieving efficient online

stream processing (Chapter 2). We focus here on the main requirements for modern online

analytics while discussing the limitations of existing systems. We first give an example to

demonstrate these requirements.

Example. Due to the increasing ubiquity of smart devices that contain GPS functionality,

many geosocial networks have emerged. Geosocial networks, such as FourSquare i, Facebook

Places ii, Google Latitiude, and Waze iii, have millions of active users. These companies in-

gest large volumes of high-speed data including sensor data, geolocation information, and

crowdsourced user reports, e.g., accidents, traffic jams, and nearby police units. Running

online analytics on the ingested data helps companies provide real-time services such as

tracking friends [53, 69], identifying mobility patterns, avoiding traffic congestions, recom-

mending routes and deployment of police units, and improving road safety [75]. To provide

these services on geospatial datastreams, an efficient online analytics engine should satisfy

a set of requirements: a) ensure low-latency and responsive processing, b) scale out across

commodity-hardware machines to distribute the large volumes of ingested data, and c) sup-

port expressible analytics on diverse data models. For example, merging different streams

of sensory-data using complex join conditions, e.g., spatial or similarity joins; building pro-

gressive machine learning models to predict traffic congestion and recommend routes; and

maintaining dynamic social graphs to study network structure.

Support for low latency responsive analytics. One of the main requirements for online an-

alytics to provide fast responses to queries as more data arrives. Many current systems for

data analytics have been developed to tackle data analysis at a large scale, including relational

database management systems [122], multidimensional OLAP engines [44], MapReduce [56]

and Spark [188] for general-purpose processing and other specialized solutions for graph

computations [78, 105, 38, 173], array processing [113, 163, 119, 123, 80], data mining and

machine learning [131, 78]. These systems are geared towards offline batch processing, i.e.,

they compute high throughput analytics on fixed static datasets. One way to support dynami-

cally evolving datasets is to re-evaluate computations every time a batch of input tuples arrive.

However, recomputing offline data analytics from scratch on every data change of small or

iwww.foursquare.com
iiwww.facebook.com/places/

iiiwww.waze.com

2

1.1. Existing Systems and Limitations

moderate size is highly inefficient.

Online stream processing engines such as Borealis [7] and Stream [21] are designed for low-

latenborcy query processing on data streams. They provide declarative languages that support

SQL-like queries (e.g., selection, projection, joins, etc) on fixed windows of data streams.

These systems fulfil the low latency requirement. However, their utility is limited to relational

processing and they do not support data parallelism, which results in limited scalability and

the inability to handle long-lived data (large states), i.e., small-window semantics.

Support for stateful and scalable analytics. Another important requirement for online analyt-

ics is the support for large scale stateful processing [39]. Modern online applications typically

experience high input rates of streaming data. It is necessary to provide platforms and systems

that can scale out to accommodate these requirements. Recently, several distributed stream

processing engines have emerged to handle the increasing volumes of data streams including,

Storm [127], Heron [110], Spark Streaming [190, 189], and Flink [20]. Such systems leverage

data partitioning and parallelism to distribute work among a cluster of machines.

These frameworks have several limitations. First, most of these systems provide frameworks

for general online data processing. This puts the burden of building efficient query plans or

engines on the developer. Second, some of them provide an interface that supports simple

relational query processing based on stateless operators, e.g., projections, selections, and joins

with static databasesiv. On the other hand, the more interesting and advanced operations

are stateful, e.g., streaming joins [39, 21]. However, scaling-out stateful operations is more

challenging as it entails careful partitioning of state and maintaining an even load distribution.

Moreover, the online setting necessitates delicate and adaptive partitioning mechanisms to

ensure load balancing at all times. In Chapter 4, we present a provably efficient and adaptive

online operator for stateful theta-join processing.

Support for queryable and expressive analytics on top of streams. In the quest for better

insights, modern applications demand for advanced analytics like machine learning, scientific

computing, and graph processing. Data processing systems that support domain-specific

operations can greatly empower users to perform complex data analysis. Current online

systems are suitable for relational and descriptive analytics which mainly evaluates simple

equi-joins and aggregations on the ingested data. They do not provide the infrastructure to

support online analytics of other data models beyond relational. In Chapter 5, we present a

framework that supports incremental evaluation of matrix programs that can capture machine

learning and graph computations.

ivFlink is an exception as it supports stateful window semantics

3

Chapter 1. Introduction

1.2 Contributions and Thesis Outline

Chapter 2 gives an overview of the online stream processing landscape, including the various

classes of online processing and existing systems. After that, we present foundations, tech-

niques, and system designs that support online incremental processing of advanced analytics

within the context of two different systems:

Squall: Chapter 3 gives a brief summary of our open source online query processing engine

Squall that supports SQL-like computations on top of streams. Then, Chapter 4 describes

how to extend online relational analytics (Squall) with support for efficient and general join-

processing. In particular, scalable join processing in a distributed environment requires

a partitioning policy that evenly distributes the processing load while minimizing the size

of state maintained and number of messages communicated. In an online or streaming

environment in which no statistics about the workload are known, we show how traditional

static partitioning approaches perform poorly. We present a novel parallel online dataflow join

operator that supports arbitrary join predicates. The proposed operator continuously adjusts

itself to the data dynamics through adaptive dataflow routing and state repartitioning. The

operator is resilient to data skew, maintains high throughput rates, avoids blocking behavior

during state repartitioning, takes an eventual consistency approach for maintaining its local

state, and behaves strongly consistently as a black-box dataflow operator. We prove that the

operator ensures a constant competitive ratio of 1.25 in data distribution optimality and that

the cost of processing an input tuple is amortized constant, taking into account adaptivity

costs. Our evaluation demonstrates that our operator outperforms the state-of-the-art static

partitioning schemes up to 7x in resource utilization, throughput, and execution time.

Lago: The second part of the thesis targets efficient online evaluation of matrix algebra pro-

grams. Statistical models, machine learning applications, and graph algorithms are usually

expressed as linear algebra programs which is beyond the relational data model. There exists

many systems and frameworks [131, 78, 113, 123, 80, 119, 149, 160, 192] that optimize such

programs under large volumes of offline data. Under the online setting, the re-evaluation of

the analytic programs on each matrix change is prohibitively expensive. We present Lago, a

unified modular compiler framework that supports the IVM of a broad class of linear algebra

programs. Lago automatically derives and optimizes incremental trigger programs of ana-

lytical computations, while freeing the user from erroneous manual derivations, low-level

implementation details, and performance tuning. We present a novel technique that captures

Δ changes as low-rank matrices (Section 5.2.1). Low-rank matrices are representable in a com-

pressed factored form that enables converting programs that utilize expensive O(n3) matrix

operations, e.g., matrix-matrix multiplication and matrix-inverse, to trigger programs that

evaluate delta expressions with asymptotically cheaper O(n2) matrix operations, e.g., matrix-

vector multiplication. Lago utilizes the low-rank property and automatically propagates it

4

1.2. Contributions and Thesis Outline

across program statements to derive an efficient trigger program. Moreover, Lago extends its

support to other applications and domains of different semi-ring configurations, e.g., graph

applications. Our evaluation results demonstrate orders of magnitude (10x—100x) better

response times in favor of derived trigger programs in comparison to simple re-evaluation.

This work includes material from several publications in which the author of this thesis is the

lead author or a co-author.

• Chapter 4 presents material where the author led the research, design and implemen-

tation of the system and strategies. The author also participated in the core design and

implementation of Squall as presented in Chapter 3.

– Mohammed Elseidy, Abdallah Elguindy, Aleksandar Vitorovic, Christoph Koch.

Scalable and Adaptive Online Joins.

VLDB 2014.

– Aleksandar Vitorovic, Mohammed Elseidy, Khayyam Guliyev, Khue Vu Minh, Daniel

Espino, Mohammad Dashti, Ioannis Klonatos, Christoph Koch.

Squall: Scalable Real-time Analytics.

VLDB Demo 2016.

• The author also contributed in introducing the concept of low-rank delta matrices and rep-

resenting them in a compressed factored-form for incremental computation in Chapter 5

(Section 5.2). These contributions have been published in SIGMOD 2014. Moreover, the

author led all the subsequent research and evaluation in Chapter 5 which presents Lago, a

compiler framework for deriving and optimizing IVM trigger programs for a class of matrix

algebra programs. Stefan Mihaila and Daniel Espino contributed to the implementation

of the framework as part of their master thesis research. This work is under submission

towards SIGMOD 2018.

– Mohammed Elseidy, Amir Shaikhha, Daniel Espino, Stefan Mihaila, Christoph Koch.

Towards Incremental Computation of Advanced Analytics.

SIGMOD 2018, under submission.

– Milos Nikolic, Mohammed Elseidy, Christoph Koch.

LINVIEW: Incremental View Maintenance for Complex Analytical Queries.

SIGMOD 2014.

5

2 Background: A Bird’s Eye View of
Online Processing

This chapter serves as a brief overview of online stream processing. First, we discuss the

importance of online analytics while presenting several real-world use cases and applications.

Then, we present the main characteristics and requirements of efficient online systems, as pre-

sented by Michael Stonebraker et al. [164], to meet the demands of different stream processing

applications. Finally, we give a brief survey of the online stream processing terrain where we

discuss three main categories of emerging platforms: query engines, streaming algorithms,

and general-purpose online systems.

2.1 Introduction

Over the last decade, Big Data has become the principal term that describes the current era of

information systems. Scientists, businesses, markets, and institutions process large amounts

of data to acquire insights and knowledge that help them in research and decision making.

However, processing Big Data efficiently has many challenges. At first, the biggest challenge

was scaling analytics to immense volumes of data. A large body of research has been developed

over the years to tackle this challenge resulting in frameworks, algorithms, and commercial

and open-source systems that can efficiently scale to massive volumes. However, recently,

the requirements of Big Data have evolved to include additional challenges, in particular, the

variety of ingested data types and models and the velocity of data changes. This is referred to

as the three V’s of the Big Data challenge [114], and are defined more precisely as:

1. Volume: the ability to analyze and process massive amounts of data, i.e., terabytes and

petabytes.

2. Variety: the ability to clean and incorporate data from different sources and formats.

3. Velocity: the ability to cope with high-speed ingested data.

7

Chapter 2. Background: A Bird’s Eye View of Online Processing

This thesis focuses on the challenges related to large volumes and high-velocity data. It is

difficult for current traditional data processing systems to cope with the fast-paced growth of

large-data domains including social networks, high-frequency trading, online gaming, and

online advertisement [32, 157]. There is an ever-increasing demand for efficient analytics

that process large volumes of data in an online fashion. Businesses are currently shifting

towards real-time data-based products that allow continuous computations, interactivity,

and instant decision-making. The following examples demonstrate several applications that

require continuous online processing:

• Smart Cities. Smart cities [93] is an urban development vision that integrates communica-

tion technology and Internet of Things solutions in a secure fashion to manage a city’s assets

and to incubate a human adaptive environment. Real-time data from different sources is

analyzed for city planning and human mobility [90]. For instance, the data gathered is used

to help governments in the dynamic decision making process [153] such as optimizing

public transport and allowing people avoid traffic congestion across different routes within

a city. The urban data is also used for weather and air content monitoring.

• Business Intelligence. In the business sector, online analytics is widely used for inventory

management, understanding customer behavior to improve the customer online experi-

ence, and evaluating sales performance in real-time to achieve sales quotas through instant

incentives such as discounts, bundles, free shipping, and easy payment terms. For instance,

large businesses and retailers offer specialized recommendations and promotion programs

to reach potential customers. They search for patterns in customers and sales data to

find suitable suggestions and proposals during an active customer session. This requires

maintaining information about customers’ profiles including shopping history, location

information, and interests. Amazon offers product recommendations according to the

session information, including the recently explored products [1]. At Twitter, many of the

recommendations are based on recent tweets [110]. Furthermore, many start-ups, such as

QuantCast and RocketFuel, base their businesses around online advertising.

• The Medical Sector. Hospitals use distributed stream processing for health monitoring

objectives. For instance, they monitor patients’ health through real-time streams of mea-

surement data generated from different medical instruments and sensors [156]. This helps

medical personnels in diagnosis, exploring correlations in patient diseases, and instantly

reacting to proactive medical alerts.

• Online Anomaly and Fraud Detection. It is crucial to continuously detect fraudulent

activities with credit card transactions to prevent damage and abuse. For example, on-

line marketplace providers such as eBay and BetFair run sophisticated fraud detection

algorithms on real-time trading activity. The banking sector too monitors and processes

8

2.1. Introduction

multiple transaction streams every day to detect suspicious activities and to prevent credit

card fraud [99, 95].

• Stock Market and Algorithmic Trading. In exchange markets, fast and responsive actions

are essential for achieving profits. For instance, matching ask/bid transactions in order

books requires fast and continuous processing. Moreover, acting fast during arbitrage

opportunities can result in high profit gains. Arbitrage opportunities appear when a com-

modity is sold on one market exchange at a specific price and bought on another one at

a lower price. Therefore, it is crucial to act fast given such opportunities. Not only does

this require low-latency processing, but it also requires advanced analytic processing. For

instance, trading systems can analyze additional data from external data providers, e.g.,

social networks, to improve trading strategies. For example, a positive sentiment around a

particular stock (using sentiment analysis), can trigger a bullish stance towards the stock

price. Combining trading strategies with social media data typically involves fast and

advanced query processing.

• Real-Time Monitoring. Real-time surveillance and monitoring require low latency pro-

cessing to take fast action in critical situations. For instance, interconnected infrastructures,

such as utility grids, computer networks, and manufacturing facilities maintain and monitor

their performance, availability, and capacity [108]. In other domains such as the Internet of

Things (IoT) and sensor networks, data is continuously ingested and analyzed in real-time

to enable interactivity and instant response to urgent situations.

• Online Gaming. In the gaming industry, stream processing is used to enhance the gaming

experience of players. For instance, Supercell [19], a gaming company that provides online

games for portable devices such as Clash of Clans and Boom Beach, uses Amazon Kine-

sis [18] to process data streams generated from various devices. Amazon Kinesis enables

Supercell to support real-time analysis of games, improve interactive player experience,

and run personalized business analytics [19].

There are endless opportunities to utilize real-time streaming data. Different applications in-

cluding, web pages personalization, weather forecasting, pay-as-you-drive insurance models,

recommender systems, and energy trading services are emerging domains that are beginning

to shift their business models to benefit from real-time analytics. With the ubiquity of the

Internet of Things, distributed real-time stream processing will soon be the de-facto standard

for analytics.

9

Chapter 2. Background: A Bird’s Eye View of Online Processing

2.2 Requirements for Online Systems

Streaming applications have various requirements not supported by traditional batch process-

ing engines. In [164], Michael Stonebraker et al. present a set of general requirements for data

stream processing engines that have become accepted for real-time streaming applications.

Some of these requirements inherently conflict with each other as different tradeoffs that

depend on the application semantics. We present them next:

Keep the Data Moving. Online systems, as opposed to offline engines, need to maintain

low-latency in processing incoming data. The goal is to avoid costly operations on the critical

path of online execution. To achieve that, data needs to be processed on-the-fly. In particular,

every new tuple contributes a small change to the corresponding internal state and the final

result. Computations must be incremental and avoid costly re-evaluation per change. State

management should not cause, to the degree possible, costly storage overheads, such as

writing transactional commits and logs to disk, that have a detrimental effect on processing

performance.

Process and Respond Instantaneously. Sustaining high-throughput is a critical requirement

for online systems. In particular, they should be able to ingest large volumes of data while

maintaining low-latency response times. Stream processing engines should be equipped

with highly optimized execution engines that deliver real-time responses for high-volume

applications. The various components of the engine need to be designed to achieve a balance

between high-throughput and low-latency. For instance, batching data tuples results in better

throughputs at the cost of increased response times. Therefore, it is important to find the right

batch size that meets the requirements of the online application.

Partition and Scale Applications Automatically. Online engines should be able to scale-out

to accommodate the large volumes of input data and to maintain high-throughput rates. Mod-

ern applications typically require ingesting high-velocity data streams, on-the-fly intensive

computations, and maintaining large state sizes [39, 21]. A single-machine configuration is

not suitable for these requirements. On the other hand, distributed computation has become

increasingly important given the favourable price-performance characteristics of low-cost

commodity clusters. Under this setting, streaming applications can be split over multiple

machines to distribute load and computation. Moreover, the processing engine could take

advantage of modern multi-processors and multicore architectures to avoid blocking for exter-

nal events and thereby enabling low-latency. A critical challenge in parallel and distributed

platforms is to achieve load balance which ensures equal partitioning of workload and state

across the available resources, thereby increasing efficiency and utilization. Therefore, effi-

cient online processing requires automatic, transparent, and agile load balancing to efficiently

respond to changes in runtime, e.g., input-data rates and data statistics. These changes might

have a skewed distribution and can degrade performance severely.

10

2.2. Requirements for Online Systems

• Skew Resilience. In statistics and probability theory, skew is the measure of asymmetry

in the probability distribution of a random variable around its mean. Skewed distribu-

tions exist abundantly in the real world, ranging from natural, e.g., biological or physical

systems [138, 88, 137, 121] to artificial, i.e., man-made, phenomena [194, 148, 138]. In

practice, many applications [185, 184] require analyzing data that is naturally characterized

by a skewed distribution. Parallel and distributed systems for data processing are highly

vulnerable to data skew [111, 112]. Data skew has a direct impact on distributed query

processing performance as it results in imbalanced load and overloaded nodes which limit

performance and restrict scalability [185, 177]. Skew vulnerability is more pronounced in

the online setting for several reasons: First, streams are liable to continuous fluctuations

in input-value distribution, as can be seen in the case of concept drifts [77]. Second, the

sequential access semantics of streaming data makes load balancing vulnerable to input ar-

rival order. This vulnerability, referred to as temporal skew, potentially degenerates parallel

computation to serial execution. A skewed load distribution has severe consequences on

online performance. Overloaded nodes represent computational or I/O bottlenecks that

harm latency by orders of magnitude [25]. A single overloaded machine has a ripple effect

over the entire distributed plan. In particular, it can congest the network queues of online

processing pipelines crippling the entire plan. In practice, a single limping node impacts

the entire plan’s resource utilization and overall performance [65, 64]. In this thesis, we

present a data-flow join operator (chapter 4) that is content-insensitive and resilient to data

skew preventing any bottlenecks during online processing.

Support for Expressive Declarative Languages. Online processing systems use continuous

and long-running queries to analyze dynamic datasets. Two desirable properties of such

query languages are: a) expressiveness where users can easily run various queries that capture

complex conditions in streaming data, and b) declarativity where users can specify queries

using high-level domain-specific languages rather than a low-level imperative programming

model. Traditional query processors provide relational operators such as selections, projec-

tions, equi-joins, and SQL-like query syntax for expressing grouped aggregations over stream

windows. In the quest for deeper insights, modern applications increasingly demand more

powerful analytics. Online data processing engines that support both complex relational and

domain-specific operations can greatly enable analysts to perform advanced analysis. This

thesis presents techniques, designs, and algorithms that enable online query engines to effi-

ciently support both relational joins with general join-predicates and incremental evaluation

of matrix algebra programs. Matrices can model various domains including machine learning,

graph processing, and scientific computing.

Handle Stream Imperfections. In a conventional database, data is always available before

running any queries. However, in the online setting, there are no guarantees about data

arrival order. An online system should include built-in mechanisms that provide resilience

11

Chapter 2. Background: A Bird’s Eye View of Online Processing

against stream “imperfections” such as making provision for handling delayed, missing, or

out-of-order data.

Integrate Stored and Streaming Data. Many streaming applications require comparing

“present” with “past” states. It is desirable for an online engine to have the capability of

combining streams with static offline data and provide careful management of stored state. An

application example for this use case is fraud detection or other data mining applications that

try to identify unusual activity. This can be realized by summarizing usual historical activity

patterns as a “signature”, and then comparing with present activity in real-time.

Guarantee Data Safety and Availability. Distributed systems are vulnerable to failure [70]

including hardware-related faults such as hard disk failures, I/O device failures, software bugs

and errors, driver failures, physical damage, etc. An efficient engine should be resilient to such

failures, available at all times, and capable of failure recovery while maintaining the integrity

of data and state.

Generate Predictable Outcomes. Streaming engines should be able to process real-time data

in a predictable manner with deterministic guarantees about the output. Moreover, the ability

to generate deterministic results is an important requirement for fault tolerance and recovery.

This requirement stems out from the fact that reprocessing the same input stream should yield

the same predictable outcome regardless of when it is executed.

2.3 The Online Stream Processing Terrain

This section provides a brief overview of the online processing landscape where we discuss

classes of online computation and existing systems for online processing. For a detailed discus-

sion about the different online systems, we refer the interested reader to Liu’s comprehensive

survey [118].

MapReduce Systems

The MapReduce framework provides an efficient distributed computational model for large

volumes of static data. The framework is designed to support high-throughput batch process-

ing. However, MapReduce batch processing systems [56, 5, 100] are not amenable to online

and low-latency processing because the framework is built on top of blocking components. In

particular, a MapReduce job does not produce any output results before all the input data has

been processed. A job consists of map stage followed by a reduce stage. The reduce stage only

begins after all the mappers finish processing their input data. If the computation consists

of multiple dependent MapReduce jobs, subsequent jobs do not begin until the previous is

done [72]. This framework is not designed for low-latency and responsive computations.

12

2.3. The Online Stream Processing Terrain

Combination of Offline and Online Systems

The Lambda Architecture proposed by Nathan Marz [128] defines a framework that runs

applications on top of a fault-tolerant batch processing engine simultaneously with a low-

latency online processing engine. The architecture consists of three layers. The batch layer

computes views on the statically ingested data and repeats the computations periodically. By

the time the output results are generated, they would be outdated, as new data has arrived

in the meantime. A parallel high-speed processing layer closes this gap by simultaneously

processing the new data with weaker guarantees. Note that, once the results from the batch

processing layer are produced, they overwrite the corresponding preprocessed results from

the speed layer. A serving layer is responsible for answering queries by merging precomputed

results from both the batch and speed layers to produce an appropriate final result.

Twitter’s Summingbird [34] adopts the Lambda architecture and offers a high level declarative

language interface for both offline and online processing. Applications written in Summing-

bird can generate MapReduce jobs using Scalding [4] for offline processing. They can also

generate online Storm [127] topologies for the same application. Summingbird also allows

running the same application in both backends simultaneously, known as the hybrid mode.

Similarly, Google offers the DataFlow [15] framework, which supports the lambda architec-

ture. In particular, it supports both the FlumeJava and the MapReduce frameworks for offline

processing and the MillWheel [14] framework for online processing.

Mini-Batch Systems

Previous works propose alternative approaches to enable online processing by modifying the

Hadoop i framework by eliminating its blocking behavior. For instance, the Hadoop Online

Prototype (HOP) [52] and Scalla [116, 115] are systems that adopt this approach. HOP allows

pipelining the intermediate data between Map and Reduce stages. It also supports pipelining

data between consecutive MapReduce jobs. HOP pipelines the map output in small batches

to the reducers while performing multi-pass sort-merge during reduce.

Later on, Boduo Li et al. [116] showed that HOP is not suitable for high-performance online

processing. The reason is the inefficiency of sort-merge that imposes long stalling blocking

costs and impedes incremental online processing. Sort-merge is a fundamental operation

within the Hadoop framework and is widely used in partitioning and parallel processing.

On the other hand, the authors propose Scalla [116, 115], a system that uses hashing to

facilitate fast in-memory processing. Scalla introduces better performance in the case of

memory overflows by carefully partitioning tuples among memory and disk. Both HOP [52]

and Scalla [116, 115] leverage general purpose mini-batch MapReduce processing.

iAn open source implementation of the MapReduce framework

13

Chapter 2. Background: A Bird’s Eye View of Online Processing

There are other systems that attempt to support online analytics for batch processing en-

gines. Spark [188] is an in-memory MapReduce system where computations are expressed as

transformations on resilient distributed datasets (RDDs). An RDD is a distributed in-memory

datastructure that ensures fault tolerance in the case of machine failures. Spark Stream-

ing [190, 189] extends Spark to support online processing by introducing discretized streams,

i.e., a stream of RDDs. Each RDD is amenable to transformations and processing. Spark

Stream discretizes the input data into small batches of RDDs to simulate a data stream.

All the previous systems [52, 116, 115, 190, 189] alter batch processing frameworks to allow

mini-batching or micro-batching. Mini-batch systems achieve better latencies than batch

systems however, they still suffer from high synchronization overheads. This is because the

system needs to synchronize after each processed batch and the fresh tuples are buffered until

the current batch is processed. This is equivalent to a coarse-grained lock-step which requires

synchronization and increased latencies. Thus, the slowest machine (staggler) limits the entire

dataflow execution. A single machine can experience performance degradations for various

reasons, including data skew or unexpected reasons such as small glitches in the network or

limping hardware.

Online Stream Processing

The field of online stream processing can be divided into three main categories [32]: a) the

online algorithmic research: sampling, synopsis, and sketch based algorithms for approximate

probabilistic processing usually in a single-pass; b) the query-based online systems that have

emerged from database research which this thesis contributes to; c) finally, general purpose

streaming platforms for implementing and executing custom streaming applications and

which this thesis builds its systems on. These different areas naturally intersect and benefit

from each other.

1. Online Algorithmic Research. Online algorithmic research studies the different algorithmic

aspects of computing approximate results on unbounded data streams. This is different from

online aggregation [92] that operates on static databases. Many of the algorithmic problems

require approximate estimates given very limited resources, i.e., processing power, storage, and

main memory. That line of work presents fundamental algorithms for many problems ranging

from counting [54, 23, 96] to maintaining approximate statistics, sketches, quantiles and

synopsis over streams [86, 125]. Moreover, previous works present online learning methods

that are capable of incrementally training models for prediction [29, 17, 67], e.g., naïve bayes

predictors and Hoefding tree classifiers, or clustering tasks [10, 12, 27, 43, 48], e.g., k-means

clustering. This class of computations are specialized to specific problems and algorithms

and is orthogonal to our work in this thesis which supports different data models for online

computation.

14

2.3. The Online Stream Processing Terrain

2. Query-based Systems. These are systems that expose a high-level SQL-like query language

for online analytics on top of streaming data. There are three main classes of online query

processing, in particular: a) window-stream processing, b) incremental view maintenance,

c) and online aggregation. In the next chapter, we present a brief overview of Squall, an

online query processing framework that supports these classes of computation. For a detailed

discussion about integrating these classes of computation into the Squall framework, the

interested reader can consult [175].

• Window-stream processing. This class of computations focuses on processing large un-

bounded streams of data using bounded memory resources. Window semantics [103]

refers to evaluating queries on a window of recently-arrived tuples which can be either

time-based or tuple-based. A window can be sliding where a portion of the window expires

at a given time or tumbling where all the tuples in the window expire at the same time.

There are other non-exact approaches that handle large spikes in the input data-rates

by discarding tuples, i.e., load shedding. Early query engines such as TelegraphCQ [42],

NiagaraCQ [46], Aurora [8, 49], Borealis [7] and STREAM [21] are designed for low-latency

query processing on data streams. They provide declarative languages that support SQL-

like relational operations (e.g., selection, projection, joins, etc) on fixed windows of data

streams. However, they have limited scalability and are incapable of handling long-lived

data, i.e. large state [39, 21].

STREAM [21] was developed at Stanford university. It was initially built to target stream

environments with fluctuating load characteristics. Therefore, it was designed to adaptively

work under severe resource constraints during runtime. STREAM provides a declarative

language called CQL to define continuous queries on top of streams. The STREAM runtime

engine provides a set of performance optimizations including synopsis sharing that mate-

rializes nearly identical synopses and sketches; global operator scheduling that reduces

memory utilization in the case of bursty input streams; monitoring and adaptive query pro-

cessing that collects runtime statistics and uses it to re-optimize the query plan. The early

STREAM prototype did not include support for distributed processing and fault tolerance.

TelegraphCQ [42] is one of the earliest stream processing systems and has been developed

at the university of Berkeley. Its design and implementation are built upon PostgreSQL [147]

and Telegraph [3], an early engine for adaptive dataflow processing. TelegraphCQ was de-

signed to support continuous queries on both relational tables and streams. It provides

a declarative language called StreaQuel that supports SQL-like operations with window

semantics. StreaQuel query plans are executed on Telegraph’s distributed runtime envi-

ronment which is equipped with adaptive logic that is used to efficiently route data across

operators and distributed runtime nodes.

NiagaraCQ [46] is an online system that targets supporting continuous query processing

over multiple XML files. It is the streaming processing sub-system of the Niagara project

15

Chapter 2. Background: A Bird’s Eye View of Online Processing

which focuses on querying the internet. NiagaraCQ addresses scalability by taking advan-

tage of the fact many web based queries share similar structures. It scales in the number of

queries by proposing techniques for grouping continuous queries for efficient evaluation.

Grouping similar structures can save on the computation cost, memory cost, and I/O cost.

It also proposes providing partial results to long-running queries, where it is acceptable to

provide an answer over some portion of the input data.

Aurora [8, 49] is an early stream processing engine developed by Brown university and

MIT. Aurora was designed as a centralized stream processing engine for the single-machine

setting and thus it does not provide advanced features such as scalability, fault tolerance,

and reliability. It can run stream queries on top of unbounded streams using the Stream

Query Algebra call SQuAl. The algebra supports both window and historical semantics.

Moreover, Aurora also supports load shedding features which drop random tuples during

overload and contention periods.

Later on, Borealis [7] was introduced as a the successor of the Aurora system. Borealis com-

bines both, the core stream processing model of Aurora and the distributed functionality of

Medusa [152]. On top of the Aurora functionality, Borealis provides several key enhance-

ments: a) Distributed computation via inter-operator parallelism, b) a mechanism of

fault tolerance to provide reliability and availability in case of system failures, c) a revision

processing mechanism that handles stream and tuple imperfections, and d) a dynamic

query modification mechanism that permits modifying queries during runtime.

• Incremental View Maintenance. IVM [30, 107, 87] stores query (intermediate) results as

materialized views which are continuously updated as tuples are fed in. The goal of clas-

sical IVM is to avoid full query re-evaluation after every update. IVM relies on reusing

precomputed results (views) from before. It avoids re-evaluation by only computing the

delta expressions, after which the corresponding views are updated appropriately. Most

notably, DBToaster [107] achieves orders of magnitude better performance on SQL queries

in comparison to traditional re-evaluation through recursive IVM. In this thesis, we extend

the horizon of IVM, in particular, by supporting the Incremental View Maintenance of

matrix-algebra programs that can model a class of machine learning and graph computa-

tions.

• Online Aggregation. OA [89, 92, 102, 142] presents approaches that compute approximate

aggregates of query results long before the final result is computed. OA uses statistical

estimation theory tools to provide approximate results defined within confidence error

bounds. It operates on static databases where data is known ahead of time and as more

data is processed, the approximate estimate gets closer to the final result. Previous work

presents novel aggregation estimation and sampling techniques from base relations (or

intermediate results) to produce approximate aggregates that converge relatively quickly

with tighter error bounds. This thesis is orthogonal to this line of work as we target exact

16

2.3. The Online Stream Processing Terrain

computation rather than approximate.

3. General Purpose Streaming Platforms. General purpose streaming platforms have emerged

from demands of defining custom online streaming applications. Query-based systems focus

on building efficient plans for certain classes of computation and online algorithmic research

focus on providing solutions for specific problems. On the other hand, general purpose

frameworks provide platforms for developing and executing streaming applications while

automatically supporting application programming, scalability, and fault-tolerance. A natural

abstraction of data stream processing is the Graph flow data model, i.e., a DAG of pipelined

operators rather than a series of map and reduce stages. The graph contains data-sources

that continuously emit data items consumed by the downstream nodes which do the actual

processing on the received items. Historically, this has been the core concept in message

passing systems which follow a data-driven programming concept. There are two types of

abstractions that need to be present: a data source element which emits new data tuples and a

data-processing element which defines the logic of data processing.

The current trend towards real-time online processing has fostered a number of open-source

and commercial software frameworks for general purpose data stream processing. Next, we

describe systems that are specifically designed for general purpose online processing.

Twitter Storm [127] is a distributed stream processing framework that facilitates developing

scalable online applications. Storm is a polyglot where it allows writing applications in several

languages that are then translated into a logical topology. A topology is a dataflow DAG that

represents the required computation. This allows the developer to be only concerned with the

computational logic and not about computation distribution. Storm achieves high scalability

through horizontal partitioning and uses ZeroMQ [13] for message passing, which ensures

low-latency and guaranteed message processing. It offers persistent storage and supports

various consistency semantics such as at-least once, at-most once, and exactly-once. On the

discovery of a task failure, messages are automatically reassigned by quickly replaying the

stream. Squall (Section 3.2) is an analytics engine with a declarative SQL language built on

top of Storm. In this thesis, we show how to extend Squall to support general-purpose join

processing and skew-resilient operations.

Heron [110] is a next-generation online processing engine developed at Twitter. It is the

successor of Storm and is backward compatible with Storm topologies. Heron was built

from scratch with the goal of eliminating several performance bottlenecks in Storm. Critical

performance issues in Storm arise from layers of indirection during tuple processing. In

particular, a worker JVM-process runs several executor threads and each executor is assigned

to multiple processing tasks [110]. This design results in non-negligible processing overhead

from multiplexing and demultiplexing each tuple through multiple queues and threads within

17

Chapter 2. Background: A Bird’s Eye View of Online Processing

the different layers. Moreover, multiple levels of indirection cause conflicting scheduling goals

and therefore inefficiencies. Heron limits the maximum number of heartbeat-connections

using a hierarchical structure of communicating nodes, thereby extending scalability. Heron

achieves an order of magnitude performance improvement over Stormii.

Trill [41] and the parallel version, Quill [40], are high performance incremental analytics

engines based on the tempo-relational data model. They expose a rich set of data types and

user libraries for efficient processing of streaming and relational queries. Additionally, they

exploit low level column storage approaches that significantly enhance latency and throughput

performance.

Naiad [136] provides a high-level language (LINQ [130]) to support online analytics for cyclic

and iterative computation. It does so by presenting a data model that supports global times-

tamps. In particular, a timestamp signifies the temporal location of a tuple within the dataflow,

i.e., location in the DAG, epoch number, and a loop counter. It also supports synchronous and

asynchronous computations providing flexibility in developing online applications. Although

a global timestamp allows a user to express interesting communication patterns, the scalabil-

ity and throughput of the system is limited because all tuples need to be timestamped by a

centralized entity in the framework.

MillWheel [14] is a framework for low-latency stream processing applications. It exposes

a programming model that enables developers to write application logic represented as a

custom topology DAG where records are continuously delivered along the edges of the graph. It

builds upon efficient fault-tolerant techniques that replay failed tuples, i.e., upstream backup,

while eliminating duplicates using Bloom filters.

Amazon Kinesis [18] is a recent commercial web-service that processes real-time massive data

from streams. Kinesis allows for custom stream processing as well as query processing. It

exposes a Kinesis client library that facilitates applications development using the producer

and worker abstractions. The producer accepts input data from external data streams and

processes it to produce a Kinesis stream. The stream consists of data records represented as

data tuples which are then consumed by the worker application client. Kinesis automatically

adapts and auto-scales to fluctuations in the streaming data rates, providing better resource

utilization and lower costs for their customers. It also guarantees fault tolerance by check-

pointing and replaying the failed data records.

Flink [20] is an Apache project that got developed from a research project called Strato-

sphere [16]. This system is designed for online processing and iterative analytics, but it

can also support offline processing as a special case of online processing. Flink presents a

functional interface that exposes operations, including User defined functions (UDFs), on

iihttp://www.infoq.com/news/2015/06/twitter-storm-heron

18

2.4. Summary

parallel collections. It also has a cost-based optimizer that chooses an optimal query plan with

respect to resource utilization, e.g. storage size.

IBM InfoSphere Streams [28] is a commercial high-performance stream processing engine.

InfoSphere exposes a declarative programming language, the Stream Processing Language

(SPL), to allow developing online applications. SPL allows developers to design applications

without worrying about the idiosyncrasies of distributed execution. Users can develop high

performant operators using C++ or Java that leverage concurrent processing. A job consists

of one or more Processing Elements that communicate using message passing. IBM Streams

has a wide domain of commercial applications including transportation, stock market trading,

radio astronomy, DNA sequencing, weather forecasting, and telecommunications [28].

2.4 Summary

This chapter presented an introduction to the online stream processing landscape. First we

have demonstrated a set of applications that require real-time and interactive computation.

Then, we explained the core requirements of efficient stream processing as outlined by Michael

Stonebraker et al. Finally, we presented the different work that has been done in the field of

online processing to demonstrate current applications’ demands. We focus on one important

requirement for online engines that is to provide an expressive and declarative interface that

facilitates analytics on top of streams. This thesis describes techniques, approaches, and the

design of systems that support efficient evaluation of online advanced analytics. In particular,

this thesis presents approaches that extend SQL-like query computations with efficient general-

join processing (chapter 4) and support for a wider range of analytics beyond the relational

model. In chapter 5, we present efficient IVM of matrix algebra programs. Matrices can model

various domains including machine learning, graph processing, and scientific computing.

19

3 Squall: Online Query Processing

Analysts process and run exploratory queries on terabytes of data to gain useful insights. Many

of these queries include data transformations, e.g., selections and projections, linking and

merging with other data sets or streams, e.g., joins, and computing aggregates. This chapter

presents an overview of Squall [73], an open-source online distributed query processing

engine that allows querying data streams using relational algebra. It exposes several language

interfaces that enable SQL-like data manipulation on distributed data streams. Several open-

source [20, 127, 110] and commercial [28, 18] systems have been proposed that provide support

for SQL-like streaming analytics. However, they do not support arbitrary join processing. This

chapter serves as a precursor to the next which presents efficient online theta-joins that

extends Squall’s functionality to support efficient general join-processing and skew resilience.

We briefly describe the framework and design to pave the road to the next chapter. A detailed

discussion about the framework can be found in [175].

3.1 Data Model

Squall’s data model is based on streams of relational tuples. In particular, a stream S is defined

as an unbounded sequence of tuples of the form 〈s,t〉 where s is a relational tuple and t

is the resulting tuple’s associated timestamp. Relational transformations, e.g., projection

and selection, can be applied on stream tuples resulting in another stream of transformed

relational tuples.

An un-windowed stream-join between streams S1 and S2 is defined as the relational-join view

between two append-only bags B1 and B2. When a new tuple s1 arrives to stream S1, it is

added to the corresponding bag, i.e., B1, and then joined against the other bag B2, where the

join-results are emitted into a new results-stream S . New tuples arriving to S2 are processed

in a symmetrical fashion. There are various semantics for choosing the associated timestamp,

21

Chapter 3. Squall: Online Query Processing

Parser/
Translator

Logical plan

Query
Optimizer

Physical plan

Squall-to-Storm
Translator

Storm Topology

Spout Spout

Spout

R S

T⋈ ⋈
σ

Agg

⋈

Agg

Comp.
Par=4

Part. scheme

⋈ Comp.
Par=3

Part. scheme

S Comp.
Par=1σ

T Comp.
Par=2

R Comp.
Par=3

Bolt
Stream grouping

Bolt
Stream grouping

π

π

Parser

SELECT SUM(T.E)
FROM R,S,T

WHERE R.B = S.B
AND S.D = T.D

AND S.C > 3

SQL

Functional

Interactive

Imperative

Parser/
T l t

Logical plan

Query
Optimizer

Physical
Translator Optimizer Translator

Interface:

Figure 3.1 – The Squall query processing engine. An example query plan is first translated to a
logical plan, then to a physical plan and finally to a storm topology.

e.g., the min or max of the corresponding joined tuples.

Un-windowed streams represent full-history (or landmark-window) semantics. Many other

applications have different requirements that do not need to store an unbounded stream of

data which might outgrow memory and storage capacity. One possibility is to use window

semantics that restrict the scope of computed results over a bounded set of tuples defined

within a window. These windows could be defined by temporal or row based semantics [39],

generating sliding-window or tumbling-window streams. In the context of joins, a time-based

sliding window join of duration t on stream S restricts stream tuples to only join with tuples

from the other stream whose timestamp is within the last t time units. A tuple-based sliding

window of size k joins with the last k tuples arrived in the stream. Both types of window

semantics “slide” forward as time advances or as new tuples arrive. Window semantics enable

purging states that has fallen out of the current window as future arrivals cannot possibly join

with them anymore.

3.2 The Squall Framework

The stages of running a query within the Squall framework are depicted in Fig. 3.1. In particular,

a user writes a query using one of front-end languages which is then translated to a logical

plan. A logical plan depicts a high-level algebraic representation of the query. This plan is then

optimized and translated to a physical query plan. A physical plan is an annotated plan that

contains information about running the query in the physical distributed platform. Finally,

the annotated plan is translated to a Storm topology which can be deployed over a Storm

cluster. Next, we give an overview of Squall’s main concepts and components.

22

3.2. The Squall Framework

3.2.1 Interface

Squall offers multiple interfaces for writing streaming queries. We illustrate the different

interfaces through the following SQL query from Hyracks [33] that uses the TPCH benchmark.

TPCH is a well-known decision support benchmark that demonstrates real world decision

support systems on large volumes of data. The interested reader can refer to [6] for more

details about the benchmark, schema, and queries. The following query computes the total

number of orders placed by customers in various market segments [6] in a five-minutes sliding

window.

SELECT CUSTOMER.MKTSEGMENT, COUNT(ORDERS.ORDERKEY)

FROM CUSTOMER join ORDERS on CUSTOMER.CUSTKEY=ORDERS.CUSTKEY

GROUP BY CUSTOMER.MKTSEGMENT

RANGE 5 min

SQL Interface. Squall exposes a declarative SQL interface that allows writing SQL-like queries

on top of streams. Similar to how Hive [168] provides SQL analytics on top of Hadoop [168]

for offline processing, Squall provides support for continuous SQL queries on top of Storm.

SQL is the de-facto standard for querying relational data. It remains the enduring standard

declarative language for databases for four decades. SQL is a widely spread standard that is

well-understood by database programmers and is implemented by almost all current DBMS.

Therefore, leveraging the familiar SQL querying model to stream processing increases pro-

ductivity and adoption. In addition, SQL is not only used in relational databases but is also

used on top of general purpose distributed systems such as Hadoop. At Facebook, 95% of the

Hadoop jobs are generated by Hive, whereas, the remaining 5% are handwritten [151]. Squall

supports a wide range of SQL-like queries and constructs that support full-history and window

semantics. The previous SQL query is a valid example for continuous-query in Squall.

Scala API. Using functional programming in data analysis has recently gained wide adoption

including Spark [188], Flink [20], and Slick [158]. It enables productivity and development

convenience. Squall exposes an embedded Scala DSL that allows running different data-

transformations on streams, e.g., map, flatmap, filter, groupby, etc. The DSL also supports

arbitrary compositions, e.g., joining streams, using a convenient functional interface. Squall

also provides an interactive REPL interface that allows users and developers to interactively

construct query plans and run them. The functional (Scala) interface leverages the brevity,

productivity, and convenience of functional programming. The previous SQL query is written

as follows:

val customers = Source[customer]("customer").map { t => Tuple2(t._1, t._7) }

val orders = Source[orders]("orders").map { t => t._2 }

val join = customers.join(orders)(k1=> k1._1)(k2 => k2)

val agg = join.groupByKey(x => 1, k => k._1._2).onSlidingWindow(5*60)

agg.execute(conf)

23

Chapter 3. Squall: Online Query Processing

Imperative Interface. Finally, Squall provides an imperative interface that gives developers

full control in defining exact query plans. This interface allows developers to explicitly add

operators into the dataflow chain. For instance, the previous SQL query is imperatively

expressed as follows:

Component customer = new DataSourceComponent("customer", conf)

.add(new ProjectOperator(0, 6));

Component orders = new DataSourceComponent("orders", conf)

.add(new ProjectOperator(1));

Component custOrders = new EquiJoinComponent(customer, 0, orders, 0)

.add(new AggregateCountOperator(conf)

.setGroupByColumns(1).setWindowSemantics(5*60));

Window Semantics. The previous example demonstrates a sliding window query. Squall

supports various flavours of window semantics including sliding, landmark, and tumbling

windows. In sliding windows, only some of the window-tuples expire at a given time, whereas

tumbling windows evict all tuples in the window at the same time. Landmark windows operate

from a fixed time point which could express full-history semantics. In addition to temporal

windows, tuple-based windows are also supported.Each line in the following code snippet

illustrates a different definition of window semantics on the previous query (using the Scala

api):

Agg.onWindow(20, 5) // Range 20 secs and slide every 5 seconds

Join.onSlidingWindow(10) // Range 10 seconds and slide every 1 second

Agg.onTumblingWindow(20) // Tumble aggregations every 20 seconds

3.2.2 Query plans

Squall translates an input program, written using one of the previous interfaces, to a logical

query plan as depicted in Fig. 3.1. A logical query plan is an algebraic representation of the

query in the form of a DAG of relational algebra operators. After that, after optimization, Squall

performs query optimization and generates a physical query plan of physical operators which

encapsulates additional information related to operator implementation and its correspond-

ing parallelism. In particular, an operator is horizontally distributed across machines with

respect to a partitioning scheme. Each partition is assigned to a machine which runs local

computations on it. To minimize the amount of shuffled data, consecutive operations that

have the same partitioning scheme are co-located as a chain of operations. We refer to these

physical operators as components. Figure 3.1 demonstrates a physical query plan example with

components depicted as rectangular boxes. Notice how query optimization, in this example,

pushes selections, projections, and aggregations up the query plan as early as possible to

prune unnecessary redundant data. It also co-locates consecutive operations within the same

24

3.2. The Squall Framework

component to minimize the number of data-routing hops and thus the number of commu-

nication messages. Additionally, it re-orders the join operators so as to minimize the size of

intermediate results with accordance to the estimated join selectivites. More details about

Squall’s query optimization can be found in [175].

3.2.3 Operators

Squall offers a variety of relational operators such as selections, projections, joins, and aggre-

gations i. Stateless computations, e.g., map operations, can easily scale through horizontal

partitioning. However, stateful computations, e.g. joins, are more challenging as they are vul-

nerable to data-skew and load-imbalance, and are therefore bottlenecks for online processing.

An operator consists of a partitioning scheme and a local processing algorithm.

Partitioning schemes

An operator’s partitioning scheme defines the data-route and the state-distribution of input

streams across machines. Squall supports content-sensitive partitioning schemes like hash-

partitioning and range-partitioning. These schemes are useful for computations that require

collecting all the relevant data on the same machine to allow correct computations, e.g., hash-

partitioning for equi-joins and groupby. These schemes are content-sensitive as they depend

on the input’s content to partition the data, e.g., key-hashing. This type of partitioning is

vulnerable to data-skew as parallelism and flexibility are limited to potentially coarse-grained

keys which might render distributed processing and load balancing infeasible.

Squall also supports content-insensitive partitioning schemes [175]. These are schemes that

rely on random shuffling and thus, are independent of variances in input data streams. Ran-

dom shuffling is traditionally used for stateless computations as it enables high scalability.

In this thesis, we present content-insensitive schemes for stateful join computations that

are skew-resilient. The next chapter presents a dataflow operator for efficient arbitrary-join

processing.

Local processing

Each machine is assigned a portion of the workload with respect to a specific partitioning

scheme. Each node is responsible for processing its assigned portion independently from the

other partitions. Local computations have to be non-blocking to prevent hindering online

processing. For joins, machines can employ different flavours of non-blocking join algo-

rithms [180, 171, 62, 63, 101, 133]. Squall provides a family of local join algorithms that exploit

iwe currently support SUM, COUNT and AVERAGE aggregates

25

Chapter 3. Squall: Online Query Processing

in-memory indexes to speedup online processing. For instance, equi-joins utilize efficient

hash indexes whereas monotonic-joins, e.g., range and band-joins, use balanced binary tree

indexes. Indexes are built incrementally and probed on-the-fly. In particular, when a tuple

arrives, it is first stored for future processing, where its corresponding index is updated, then it

is joined against the indexes of the opposite stream in order to produce the join results. Squall

is designed for efficient in-memory processing, however, it offers out-of-core support such

as BerkeleyDB [143], which spills tuples to disk whenever memory overflows. However, disk

accesses deteriorate latency performance by orders of magnitude. Squall can also support

more advanced processing such as incremental view maintenance and approximate online

aggregation [175].

3.2.4 Query optimizer

Squall provides a cost-based and rule-based optimizer that automatically creates efficient

physical plans. The optimizer tries to find a plan that maximizes throughput and minimizes

both latency and resource utilization by choosing a query plan with optimal join order and

component-parallelism. Carefully setting component parallelism is important to achieve

a balance in producer and consumer queues. This balance prevents from overloading or

under-utilizing resources. An overloaded machine suffers from ever-increasing latency and

low throughput whereas, under utilized machines waste resources that incur costs especially in

cloud environments that employ pay-as-you-go policies. A detailed discussion about Squall’s

optimizer can be found in [175].

3.2.5 Underlying Processing Platform

Squall uses Twitter’s Storm [127] as an underlying distribution platform. However, its design

and architecture are applicable to other online general purpose processing engines [175].

Dataflow programs are represented as topologies in Storm. A topology is a DAG of nodes

that are horizontally partitioned across physical machines. The nodes can be datasources

called spouts or computational node called bolts. A spout emits streams of data items called

tuples. Spouts can read data from external sources such as HDFS, Kafka queues, Cassandra,

MongoDB, etc and emit the read tuples downstream. On the other hand, bolts consume the

emitted tuples to perform general computations. Spouts and bolts are interconnected in the

topology graph through stream groupings. A stream grouping represents the routing policy

for streaming tuples. Squall is built on top of Storm where it maps a physical query plan to a

Storm topology. It is responsible for assigning an efficient implementation of spouts, bolts,

and stream groupings that represent the query topology.

26

3.3. Summary

3.3 Summary

Squall ii is an online and distributed query processing engine. It is an open-source project that

has been designed and developed through collaborative effort. Squall has recently attracted a

community of users that rely on it for efficient query processing. It represents an advanced

query engine for efficient stream processing. In the next chapter, we present an efficient online

join operator that extends Squall to support arbitrary join-predicates and that is resilient to

data-skew.

iihttps://github.com/epfldata/squall

27

4 Online Theta Joins

A broad range of modern online applications, including fraud-detection mining algorithms,

interactive scientific simulations, geosocial network services, and intelligence analysis are

characterized as follows: They (i) perform joins (merge) on large volumes of data streams with

potentially complex predicates; (ii) require operating in real-time while preserving efficiency

and fast response times; (iii) and maintain large state windows, which depend on the history

of previously processed tuples [39, 21].

To evaluate joins with generic predicates (known as theta-joins) on very large volumes of

data, previous works [161, 141] propose efficient partitioning schemes for offline theta-join

processing in parallel environments. The goal is to find a scheme that achieves load balancing

while minimizing duplicate data storage and network traffic. Offline approaches require that

all data is available beforehand and accordingly perform optimization statically before query

execution. However, these approaches are not suitable for the online setting. Previous work on

stream processing has received considerable attention [7, 21], but is geared towards window-

based relational stream models, in which state typically only depends on a recent window

of tuples [39]. Although this simplifies the architecture of the stream processing engine, it

is ineffective for emerging application demands that require maintaining large historical

states [39].

This motivates our work towards efficient theta-join processing in an online scalable manner.

In this context, the traditional optimize-then-execute strategy is ineffective due to lack of

statistics such as cardinality information. For pipelined queries, cardinality estimation of

intermediate results is challenging because of the possible correlations between predicates [97,

162] and the generality of the join conditions. Moreover, statistics are not known beforehand in

streaming scenarios, where data is fed in from remote data sources [61]. Therefore, the online

setting requires a versatile dataflow operator that adapts to the data dynamics. Adaptivity

ensures low latency, high throughput, and efficient resource utilization throughout the entire

29

Chapter 4. Online Theta Joins

execution.

4.1 Challenges and Contributions

This chapter presents a novel design for an intra-adaptive dataflow operator for stateful online

join processing. The operator supports arbitrary join-predicates and is resilient to data skew.

It encapsulates adaptive state partitioning and dataflow routing. The authors of [82] point out

the necessity of investigating systematic adaptive techniques as current ones lack theoretical

guarantees about their behavior and instead rely on heuristic-based solutions. Therefore,

to design a provably efficient operator we need to characterize the optimality measures and

the adaptivity costs of the operator. This requires theoretical analysis and addressing several

systems design challenges which we discuss while outlining our main contributions.

1. Adapting the partitioning scheme requires state relocation which incurs additional network

traffic costs. Our design employs a locality-aware migration mechanism that incurs minimal

state relocation overhead.

2. We present an online algorithm that efficiently decides when to explore and trigger new

partitioning schemes. An aggressively adaptive approach has excessive migration overheads,

whereas a conservative approach does not adapt well to data dynamics which results in poor

performance and resource utilization. Our presented algorithm balances between maintaining

optimal data distribution and adaptation costs. It ensures a constant competitive ratio (3.75) in

data distribution optimality and amortized linear communication cost (including adaptivity

costs).

3. Previous adaptive techniques [155, 117, 145] follow a general blocking-approach for state

relocation that quiesces input streams until relocation ends. Blocking approaches are not

suitable for online operators that maintain large states because they incur lengthy stalls.

Our design adopts a non-blocking protocol for migrations that seamlessly integrates state

relocation with on-the-fly processing of new tuples while ensuring eventual consistency and

result correctness.

4. Statistics are crucial for optimizing the partitioning scheme. The operator must gather

them on-the-fly and constantly maintain them up-to-date. Traditionally, adaptive solutions

delegate this to a centralized entity [155, 117, 85, 182] which may be a bottleneck if the volume

of feedback is high [82]. Our approach for computing global statistics is decentralized requiring

no communication or synchronization overhead.

Next we discuss related work; Section 4.2 introduces the background and concepts used

throughout the rest of the chapter and it outlines the problem and the optimization criteria;

Section 4.4 presents the adaptive dataflow operator and its design in detail; and Section 4.5

30

4.2. Background & Preliminaries

S
R

1 1 1 2 2 2 2 5

1
1

1
2

2
5

(a) θ = R.a = S.a

R
S

9
9
8
4
4
2

521 53 6 8 9

(b) θ = |R.a −S.a| ≤ 2

R
S

9
9
8
4
4
2

521 53 6 8 9

(c) θ = R.a ≤ S.a

Figure 4.1 – Examples of the join-matrix M for various (monotonic) joins R ��θ S between
two streams (relations) R and S. Grey cells denote output tuples that satisfy the join predicate

θ, alternatively empty cells do no satisfy the predicate.

evaluates performance and validates the presented theoretical guarantees.

4.2 Background & Preliminaries

This section defines notations and conventions used throughout the rest of this chapter. It

describes the data partitioning scheme used by the dataflow operator, outlines the operator’s

structure, and defines the optimization criteria.

4.2.1 Join Partitioning Scheme

We adopt and extend the join-matrix model [141, 161] to the data streaming scenario.

Definition 4.2.1. A join R ��θ S between two data streams R and S is modeled as a join-matrix

M that represents the cartesian product R ×S. For row i and column j , the matrix cell M(i , j)

represents a potential output result. M(i , j) is true, i.e., an output tuple, if and only if the

corresponding tuples ri and s j satisfy the join predicate θ. The result of any join is a subset of

the cross-product. Hence, the join-matrix model can represent any join condition.

Fig. 4.1 demonstrates a set of join-matrices with monotonic join predicates whereas Fig. 4.2a

shows an example of a join-matrix with the predicate �=.

We assume a shared-nothing architecture where each node operates independently across

the cluster. More specifically, none of the nodes share memory or disk storage. J physical

machines are dedicated to a single join operator. A partitioning scheme maps matrix cells to

machines for evaluation such that each cell is assigned to exactly one machine. This ensures

result completeness and avoids expensive post processing or duplicate elimination. There are

31

Chapter 4. Online Theta Joins

S

1

5

2

6

3

7

4

8

n=2

m=4

(b)

R
S

2
6
2
2
3
2

221 26 9 3 2

(a)

R

R
1

R
2

S1 S2 S3 S4

....

....

21

.... J..

21 J..

J Joiner Tasks

R S

⋈

J Reshuffler Tasks

(c)

Statistics
Manager

ControllerTuple
keys

Ri Sj

Scheme
Partitioner

A reshuffler task
with a controller

A joiner task

Figure 4.2 – (a) R ��θ S join-matrix example, grey cells satisfy the θ =�= predicate. (b) a
(2,4)-mapping scheme using J = 8 machines. (c) the theta-join operator structure. J reshuffler

and J joiner tasks where each physical machine is assigned one from each. One of the
reshuffler tasks is designated the additional role of a controller.

many possible mappings [141], however, we present a grid-layout partitioning scheme which

(i) ensures minimum join work distribution among all machines, (ii) incurs minimal storage

and communication costs, (iii) and has a symmetric structure that lends itself to adaptivity.

We refer the interested reader to [176] for bounds, proofs, and comparison with previous

partitioning approaches [141]. The scheme can be briefly described as follows: to achieve load

balance such that each machine is assigned the same number of cells to evaluate, the join-

matrix M is divided into J regions of equal area and each machine is assigned a single region.

As illustrated in Fig. 4.2b, the streams R and S are split into equally sized stream partitions

R1,R2, . . . ,Rn and S1,S2, . . . ,Sm where n ·m = J . For every pair (Ri ,S j), where 1 ≤ i ≤ n and

1 ≤ j ≤ m, there is exactly one machine storing both partitions Ri and S j . Accordingly, each

machine evaluates the corresponding Ri ��θ S j independently. We refer to this as the (n,m)-

mapping scheme.

4.2.2 Operator Structure

As illustrated in Fig. 4.2c, the operator is composed of two sets of tasks. The first set consists of

joiner tasks that do the actual join computation whereas the reshufflers set is responsible for

distributing and routing the tuples to the appropriate joiner tasks. An incoming tuple to the

operator is randomly routed to a reshuffler task. One task among the reshufflers, referred to as

the controller, is assigned the additional responsibility of monitoring global data statistics and

triggering adaptivity changes. Each of the J machines run one joiner task and one reshuffler

32

4.2. Background & Preliminaries

S
R

<64GB>

<1
G
B
>

1 2 3 4 62 63 64

1

(a)

(b)<1GB>

<1
G
B
>

(c)

2 3 8

57 58 59 64

<8GB>

<1
/8
G
B
>

61

Figure 4.3 – (a) join-matrix with dimensions 1GB and 64GB (b) a (8,8)-mapping scheme
assigns an ILF of (8 1

8)GB (c) a (1,64)-mapping scheme assigns an ILF of 2GB.

task.

The reshufflers randomly divide incoming tuples uniformly among stream partitions. Under

an (n,m)-mapping scheme, for an incoming r (resp. s) tuple, it is assigned a randomly chosen

stream partition Ri (resp. S j). This routing policy ensures load balance and resilience to data

skew, i.e., content-insensitivity. For a large number of input tuples, the numbers in each

partition are roughly equal. Thus, all bounds, later discussed, are meant to approximately

hold in expectation with high probability.

Exactly m joiners are assigned partition Ri and exactly n joiners are assigned partition S j .

Therefore, whenever a reshuffler receives a new R(resp. S) tuple and decides that it belongs

to partition Ri (resp. S j), the tuple is forwarded to m(resp. n) distinct joiner tasks. Any flavor

of non-blocking join algorithm, e.g., [180, 171, 166, 62, 89], can be independently adopted at

each joiner task. Local non-blocking join algorithms traditionally operate as follows: when a

joiner task receives a new tuple, it is stored for later use and joined with stored tuples of the

opposite relation.

4.2.3 Input-Load Factor (ILF)

Theta-join processing cost, in the presented model, is determined by the costs of joiners

receiving input tuples, computing the join, and outputting the result. Under the presented

grid-scheme, the join matrix is divided into congruent rectangular regions. Therefore, the

costs are the same for every joiner. Since all joiners operate in parallel, we restrict our attention

to analyzing one joiner.

The join computation and its output size on a single joiner are independent of the chosen

mapping. This holds because both quantities are proportional to the area of a single region,

33

Chapter 4. Online Theta Joins

which is |R| · |S|/J . This is independent of n and m. However, the input size corresponds to the

semiperimeter of one region and is equal to sizeR · |R|/n + sizeS · |S|/m, where sizeR (sizeS) is

the size of a tuple of R(S). This also represents the storage required by every joiner since each

received tuple is eventually stored. We refer to this value as the input-load factor (ILF). This

is the only performance metric that depends on the chosen mapping. An optimal mapping

covers the entire join matrix with minimum ILF. Minimizing the ILF maximizes performance

and resource utilization. This is extensively validated in our experiments (Section 4.5) and

is attributed to the following reasons: (a) there is a monotonically increasing overhead

for processing input tuples per machine. The overhead includes demarshalling the mes-

sage, appending the tuple to its corresponding storage and index, probing the indexes of the

other relation, sorting the input in case of sort-based online join algorithms [62, 133], etc.

Minimizing machine input size results in higher local throughput and better performance.

(b) Minimizing storage size per machine is also necessary, because performance deteriorates

when a machine runs out of main memory and begins to spill to disk. Local non-blocking

algorithms perform efficiently when they operate within the memory capacity, however they

employ overflow resolution strategies that prevent blocking, but persist to experience perfor-

mance hits and long delayed join evaluation [61]. (c) Overall, minimizing the ILF results in

minimum global duplicate storage and replicated messages (J · I LF). This maximizes overall

operator performance and increases global resource utilization by minimizing total storage

and network traffic and thus preventing congestion. This is essential for cloud infrastructures

which typically follow pay-as-you-go policies.

Fig. 4.3 compares between two different mappings for a join-matrix with dimensions 1GB

and 64GB for streams R and S respectively. Given 64 machines, an (8,8)-mapping results in

an (8 1
8)GB ILF (region semiperimeter of 8+ 1

8) and a total of 520GB (8 1
8 ∗64) of replicated

storage and messages. Whereas a (1,64)-mapping results in a 2GB ILF and a sum of 128GB

of replicated data. Since stream sizes are not known in advance, maintaining an optimal

(n,m)-mapping throughout execution requires adaptation and mapping changes.

4.2.4 Grid-Layout Partitioning Scheme

The partitioning scheme used throughout the chapter is inspired, but greatly differs from that

of [141]. Initially, the number of joiners will be restricted to powers of two. This allows the

derivation of bounds (including most notably the input-load factor). Later this assumption will

be relaxed. In this subsection, we give some theoretical justification of using this grid-layout

scheme with a power of two number of joiners. In the previous work of Okcan et al., the join

matrix is divided into square regions with some of the machines left unused. The authors

prove that the region semiperimeter and area are within twice and four times that of the

optimal lower bound respectively and are defined as follows:

34

4.3. Related Work

Theorem 4.2.2. (Okcan et al. [141]) Under the mapping scheme discussed in [141], the region

semiperimeter is at most 4 ·�|R| |S|/J and the region area is at most 4RS/J with the optimal

lower bounds being respectively 2 ·�|R| |S|/J and |R| |S|/J .

Under the grid-layout mapping scheme, allowing rectangular regions rather than restrictive

square regions, the bounds derived can be substantially improved.

Theorem 4.2.3. Under the grid-layout mapping scheme, the region semiperimeter is at most

1.07 times the optimal and the region area is exactly |R| |S|/J attaining the optimum lower

bound.

Proof. The area bound is straightforward. Since there are J regions each with exactly the

same area, covering the join matrix, the area is exactly |R| |S|/J . It remains to show the

semiperimeter bound. If the ratio of the relation sizes is J or more, the grid-layout mapping

is either (1, J) or (J ,1), being exactly optimal. Otherwise, let the ratio |R|/ |S| be ρ where

1/J < ρ < J . Since n and m are powers of two, it holds that 1
2ρ ≤ n/m = n2/J ≤ 2ρ. The

semiperimeter is |R|/n +|S|/m = ρ |S|/n +|S|n/J . The maximum value of the semiperimeter

is (1�
2
+�

2) |S|√ρ/J =
√

9
8 |S|

√
ρ/J and is attained at n being either

√
2ρ J or

√
ρ J/2. This is

at most
√

9
8 = 1.07 times the optimal lower bound.

4.3 Related Work

Parallel Join Processing. In the past decades, much effort has been put into designing dis-

tributed and parallel join algorithms to cope with the rapid growth of data sets. Graefe gives an

overview of such algorithms in [83]. Schneider et al. [154] describe and evaluate several parallel

equi-join algorithms that adopt a symmetric partitioning method which partitions input on

the join attributes, whereas Stamos et al. [161] present the symmetric fragment-and-replicate

method to support parallel theta-joins. This method relies on replicating data to ensure result

completeness and on a heuristic model to minimize total communication cost.

MapReduce Joins. MapReduce [56, 5] has emerged as one of the most popular paradigms for

parallel computation that facilitates parallel processing of large data and scalability. There

has been much work done towards devising efficient join algorithms using this framework.

Previous work focuses primarily on equi-join implementations [11, 31, 144, 146, 186] by par-

titioning the input on the join key, whereas Map-Reduce-Merge [186] supports other join

predicates as well. However, the latter requires explicit user knowledge and modifications

to the MapReduce model. Recently, Okcan et al. [141] proposed techniques that supports

theta-join processing without changes to the model. Finally, Zhang et al. [191] extend Okcan’s

work to evaluate multi-way joins.

35

Chapter 4. Online Theta Joins

All of the aforementioned algorithms are offline. They have a blocking behavior that is at-

tributed either to their design or to the nature of the MapReduce framework (the reduce phase

cannot commence before the map phase has completed). In contrast, this thesis sets out to

build an online operator that supports scalable processing of theta-joins which allows for early

results and rich interactivity.

Online Join Algorithms. There has been great interest in designing non-blocking join algo-

rithms. The symmetric hash join SHJ [180] is one of the first along those lines to support

equi-joins. It extends the traditional hash join algorithm to support pipelining. However, the

SHJ requires that relations fit in memory. XJOIN [171] and DPHJ [101] extend the SHJ with

overflow resolution schemes that allow parts of the hash tables to be spilled out to disk for

later processing. Similarly, RPJ [166] uses a statistics-based flushing strategy that tries to keep

tuples that are more likely to join in memory. Dittrich et al. present PMJ [62, 63] which is a

sorting-based online join algorithm that supports inequality predicates as well. Mokbel et

al. present HMJ [133] that combines the advantages of the two state-of-the-art non-blocking

algorithms, namely XJOIN and PMJ. Finally, The family of ripple joins [89] generalize block

nested loop join, index loop join, and hash join to their online counterparts. Ripple joins

automatically adapt their behavior to provide approximate running aggregates defined within

confidence intervals. All the previous algorithms are local online join algorithms, and thus,

are orthogonal to our data-flow operator. In the presented parallel operator, each machine

can freely adopt any flavor of the aforementioned non-blocking algorithms to perform joins

locally on its assigned data partition.

Stream Processing Engines. Distributed stream processors such as BOREALIS [7] and STREAM [21]

focus on designing efficient operators for continuous queries. They assume that data streams

are processed in several sites, each of which holds some of the operators. They are optimized

to handle unbounded streams of data by dropping tuples (load shedding) or having window

semantics. In contrast, this thesis is concerned with the design of a scalable operator, as op-

posed to a centralized approach. And along the same lines of [39], it targets stateful streaming

queries which maintain large states, potentially full historical data. Castro et al. [39] introduce

a scale-out mechanism for stateful operators, however they are limited to stream models with

key attributes.

Adaptive Query Processing. Adaptive query processing AQP techniques cope their behavior,

at run-time, to data characteristics. There has been a great deal of work on centralized

AQP [22, 61, 91, 81] over the last few years. For parallel environments, [82] presents a detailed

survey. The FLUX operator [155] is the closest to our work. FLUX is a general adaptive operator

that encloses adaptive state partitioning and routing. The operator is content-sensitive and

suitable for look-up based operators. Although the authors focus on single-input aggregate

operators [117], it can support a restricted class of join predicates, e.g. equi-join. FLUX

36

4.4. Intra-Operator Adaptivity

supports equi-joins under skewed data settings but requires explicit user knowledge about

partitions before execution. In [85, 178], the authors present techniques to support multi-way

non equi-joins. All these approaches are mainly applied to data streaming scenarios with

window semantics. On the other hand, this thesis presents an adaptive dataflow operator for

general joins. It advances the state of the art in online equi-join processing in the presence

of data skew. Most importantly, along the lines of [61, 81, 91], the operator can run on long

running full-history queries without window semantics, load shedding, and data arrival order

restrictions.

Eddies. Eddies [169, 60] are among the first adaptive techniques known for query processing.

Eddies act as a tuple router that is placed at the center of a dataflow, intercepting all incoming

and outgoing tuples between operators in the flow. Eddies observe the rates of all the operators

and accordingly make decisions about the order at which new tuples will visit the operators.

In principal, eddies are able to choose different operator orderings for each tuple within the

query processing engine to adapt to the current information about the environment and data.

Compared to our work, this direction seeks adaptations at an orthogonal hierarchical level, it is

concerned with inter-operator adaptivity as opposed to our work on intra-operator adaptivity.

Moreover, the original eddies architecture is centralized and cannot be applied to a distributed

setting in a straightforward manner [82]. However, the work in [169] leverages the eddies

design to a distributing setting but assumes window semantics; tolerates loss of information;

and neglects adaptations on operators that hold internal state.

4.4 Intra-Operator Adaptivity

We present an intra-operator adaptive approach that modifies its mapping configurations as

data flows in. The goal of adaptive processing is, generally, dynamic recalibration to imme-

diately react to the frequent changes in data and statistics. Adaptive solutions supplement

regular execution with a control system that monitors performance, explores alternative con-

figurations and triggers changes. These stages are defined within a cycle called the Adaptivity

Loop. This section presents the design of an adaptive dataflow theta-join operator that contin-

uously modifies its (n,m)-mapping scheme to reflect the optimal data assignment and routing

policy. We follow a discussion flow that adopts a common framework [61] that decomposes

the adaptivity loop into three stages: (i) The monitoring stage that involves measuring data

characteristics like cardinalities. (ii) The analysis and planning stage that analyzes the per-

formance of the current (n,m)-mapping scheme and explores alternative layouts. (iii) The

actuation stage that corresponds to migrating from one scheme to another with careful state

relocation. In the subsequent discussion, Alg 1 and Alg 2 represent the logic for the first two

stages, whereas Alg 4 depict the logic for the final stage. |R|, |S| represent the current cardinali-

ties for streams R and S respectively, whereas |ΔR|, |ΔS| represent the additional (delta) tuples

37

Chapter 4. Online Theta Joins

Algorithm 1 Controller Algorithm.

Input: Tuple t
Initialize: |R|← 0, |S|← 0, |ΔR|← 0, |ΔS|← 0;

1: function UPDATE STATE(t)
2: if t ∈ R then
3: |ΔR|← |ΔR|+ J � Scaled Increment.
4: else
5: |ΔS|← |ΔS|+ J

6: MigrationDecision(|R|, |S|, |ΔR|, |ΔS|)
7: Route t according to the current (n,m)-scheme.
8: end function

for R and S, respectively, that have entered the operator.

4.4.1 Monitoring Statistics

In this stage, the operator continuously gathers and maintains online cardinality information

of the incoming data. Traditional adaptive techniques in a distributed environment [155,

117, 85, 182] either rely on a centralized controller that periodically gathers statistics or on

exchanging statistics among peers [169, 193]. This may become a bottleneck if the number of

participating machines and/or the volume of feedback collected is high [82]. In contrast, we

follow a decentralized approach, where reshufflers gather statistics on-the-fly while routing

the data to joiners. Since reshufflers receive data that is randomly shuffled from the previous

stages, the received local samples can be scaled by J to construct global cardinality estimates

(Alg 1 lines 3,5). These estimates can be reinforced with statistical estimation theory tools [92]

to provide confidence bounds. The advantages of this design are three-fold: a) A centralized

entity for gathering statistics is no longer required, removing a source of potential bottlenecks.

Additionally, it precludes any exchange communication or synchronization overheads. b) This

model can be easily extended to monitor other data statistics, e.g., frequency histograms. c) The

design supports fault tolerance and state reconstruction. When a reshuffler or a controller task

fails, any other task can take over.

4.4.2 Analysis and Planning

Given that global statistics are constructed in Alg. 1, the controller is capable of analyzing the

efficiency of the current mapping scheme, and thus, determining the overall performance of

the operator. Furthermore, it checks for alternative (n,m)-mapping schemes that minimize

the ILF (Alg 1 line 6). If it finds a better one, it triggers the new scheme. This affects the route of

new tuples and impacts machine state. Adopting this dynamic strategy reveals three challenges

38

4.4. Intra-Operator Adaptivity

that need careful examination: a) Since the controller is additionally a reshuffler task, it has

the main duty of routing tuples in parallel to exploring alternative mappings. Thus, it has to

balance between the ability to quickly react to new cardinality information against the ability

to process new tuples rapidly (the classic exploration-exploitation dilemma). b) Migrating to a

new mapping scheme requires careful state maintenance and transfer between machines. This

incurs non-negligible overhead due to data transmission over the network. The associated

costs of migration might outweigh the benefits if handled naïvely. c) An aggressively adaptive

control system suffers from excessive migration overheads while a conservative system does

not adapt well to data dynamics. Adaptivity thrashing might incur quadratic migration costs.

Thus, the controller should be alert in choosing the moments for triggering migrations.

In this section, we describe a constant-competitive algorithm that decides when to explore

and trigger new schemes such that the total cost of communication, including adaptation, is

amortized linear.

1.25-Competitive Online Algorithm

Alg. 2 decides the time points that explore and trigger migration decisions. Right after an opti-

mal migration, the system has |R| and |S| tuples from the respective relations. The algorithm

maintains two counts |ΔR| and |ΔS|, denoting the newly arriving tuples on both relations

respectively after the last migration. If either |ΔR| reaches |R| or |ΔS| reaches |S|, the algorithm

explores alternative mapping schemes and performs a migration, if necessary.

The two metrics of interest here are the ILF and the migration overhead. The aim of this section

is to demonstrate the following key result.

Theorem 4.4.1. Assume that the number of joiners J is a power of two, the sizes for |R| and |S|
are no more than a factor of J apart, and that tuples from R and S have the same size. For a

system applying Alg. 2, the following holds:

1. The ILF is at most 1.25 times that of the optimal mapping at any point in time. ILF ≤ 1.25·ILF∗,

where ILF∗ is the input-load factor under the optimal mapping. Thus, the algorithm is 1.25-

competitive.

2. The total communication overhead of migration is amortized, i.e., the time cost of routing a

new input tuple, including its migration overhead, is O(1).

The proof of this theorem is established within the following discussion in this section.

Input-Load Factor. We hereby analyze the behavior of the ILF under the proposed algorithm.

Since we assume that size(r)=size(s), it follows that minimizing the ILF is equivalent to mini-

mizing (|R|/n +|S|/m).

39

Chapter 4. Online Theta Joins

Algorithm 2 Migration Decision Algorithm.

Input: |R|, |S|, |ΔR|, |ΔS|
1: function MIGRATIONDECISION(|R|, |S|, |ΔR|, |ΔS|)
2: if |ΔR| ≥ |R| or |ΔS| ≥ |S| then
3: Choose mapping (n,m) minimizing |R|+|ΔR|

n + |S|+|ΔS|
m

4: Decide a migration to (n,m)
5: |R|← |R|+ |ΔR| ; |S|← |S|+ |ΔS|
6: |ΔR|← 0; |ΔS|← 0

7: end function

Lemma 4.4.2. If J is a power of two and it holds that 1/J ≤ |R|/ |S| ≤ J , then under an optimal

mapping (n,m),
1

2

|S|
m

≤ |R|
n

≤ 2
|S|
m

and
1

2

|R|
n

≤ |S|
m

≤ 2
|R|
n

.

Proof. An optimal mapping minimizes |R|/n + |S|/m, under the restriction that n ·m = J .

This happens when |R|/n and |S|/m are closest to each other. Since J is a power of two, by

assumption, (and also n and m), it follows that under the optimal mapping |R|/n ≤ 2 |S|/m.

Assume it were not the case, then |R|/n > 2 |S|/m. Under the mapping (2n,m/2), both |R|/n

and |S|/m are closer, yielding a lower input-load factor, contradicting the optimality of (n,m).

Choosing such a mapping is possible, assuming that 1/J ≤ |R|/ |S| ≤ J . The other inequality is

symmetric.

This lemma is useful in proving all subsequent results. The first important result is that the

ILF is within a constant factor from that of the optimal scheme. This is due to the fact that

Alg. 2 does not allow the operator to receive many tuples without deciding to recalibrate. The

following theorem formalizes this intuition.

Lemma 4.4.3. If |ΔR| ≤ |R| and |ΔS| ≤ |S| and (n,m) is the optimal mapping for (|R| , |S|) tuples,

then the optimal mapping for (|R|+ |ΔR| , |S|+ |ΔS|) is one of (n,m), (n/2,2m), and (2n,m/2).

Proof. Without loss of generality, assume that |ΔS| ≥ |ΔR|. It holds that an optimal mapping

will not decrease m (since |S| grew relative to |R|). Therefore, the optimal is one of (n,m),

(n/2,2m), (n/4,4m), . . . , etc. To prove that the optimum is either (n,m) or (n/2,2m), it is

sufficient to prove the following inequality

|R|+|ΔR|
n/2 + |S|+|ΔS|

2m ≤ |R|+|ΔR|
n/4 + |S|+|ΔS|

4m
|S|+|ΔS|

m ≤ 8(|R|+|ΔR|)
n

40

4.4. Intra-Operator Adaptivity

which means that the ILF under an (n/2,2m)-mapping is smaller than that under an (n/4,4m)-

mapping. This holds because |S|/m ≤ 2 |R|/n (lemma 4.4.2), even if |ΔS| = |S| and |ΔR| = 0.

The case |ΔR| ≥ |ΔS| is symmetric.

Alg. 2 decides migration once |ΔR| = |R| or |ΔS| = |S|. Therefore, lemma 4.4.3 implies that

while the system is operating with the mapping (n,m), the optimum is one of (n,m), (n/2,2m),

and (2n,m/2). This implies the following.

Lemma 4.4.4. If |ΔR| ≤ |R| and |ΔS| ≤ |S| and (n,m) is the optimal mapping for (|R| , |S|)
tuples, then under Alg. 2, the input-load factor ILF never exceeds 1.25 · ILF∗. In other words, the

algorithm is 1.25-competitive.

Proof. By lemma 4.4.3, the optimal mapping is either (n,m), (n/2,2m) or (2n,m/2). If the

optimal mapping is (n,m) then ILF = ILF∗. Otherwise, the ratio can be bounded as follows.

Without loss of generality, assume that the optimum is (n/2,2m) then

ILF

ILF∗ ≤ (|R|+ |ΔR|)/n + (|S|+ |ΔS|)/m

(|R|+ |ΔR|)/(n/2)+ (|S|+ |ΔS|)/(2m)

where the constraints |ΔR|/n ≤ |R|/n, |ΔS|/m ≤ |S|/m and those in lemma 4.4.2 must hold.

All cardinalities are non-negative. Consider the ratio as a function of the variables |R|/n, |S|/m,

|ΔR|/n and |ΔS|/m. The maximum value of the ratio of linear functions in a simplex (defined

by the linear constraints) is attained at a simplex vertex. By exhaustion, the maximum occurs

when |ΔR| = 0, |ΔS| = |S| and |S|/m = 2 |R|/n. Substituting gives 1.25.

Migration Overhead. It remains to show that, under the described algorithm, the migration

overhead is amortized. This requires showing that the migration process can be done efficiently

and that when a migration is triggered, enough tuples are received to “pay” for this migration

cost.

The migration of interest is the change from the (n,m) to (n/2,2m)-mapping (symmetrically,

(n,m) to (2n,m/2)). Migration can be done naïvely by repartitioning all previous states around

the joiners according to the new scheme. This approach unnecessarily congests the network

and is expensive. In contrast, we present a locality-aware migration mechanism that minimizes

state transfer overhead. To illustrate the procedure, we walk through an example. Consider

a migration from a (8,2) to a (4,4)-mapping scheme (J = 16) as depicted in Fig. 4.4. Before

the migration, each joiner stores about an eighth of R and half of S. After the migration, each

joiner stores a quarter of R and only one quarter of S. To adapt, joiners can efficiently and

deterministically discard a quarter of S (half of what they store). However, tuples of R must be

exchanged. In Fig. 4.4, joiners 1 and 2 store the “first” eighth of R while joiners 3 and 4 store

41

Chapter 4. Online Theta Joins

15 16

13 14

1211

9 10

7 8

65

43

21

12

1615

11

14

10

13

9

65 7 8

4321

n=8

Relation S: Keep
 part i of n

i/n

i/n
Relation S:

Discard part i of n

Legend

8/8

7/8

6/8

5/8

4/8

3/8

2/8

1/8

1/2 2/2

4/8

7/8

3/8

8/8

1/8 2/8

5/8 6/8

2/4 2/4 4/44/4

3/41/41/4 3/4

2/21/22/21/2

m=2

m'=2*m=4

n'=n/2=4

i/n Relation R
part i of n

2 subgroups each of size
n/2=4 perform exchanges

R
S

4

3

4

3

2 2

11

Mapping
Migration

R
S

7/8

3/8

1/8

5/8

4/8

8/8

2/8

6/8

Figure 4.4 – Migration from a (8,2)- to a (4,4)-mapping. Discards are performed on the state of
stream S and exchanges are performed on the state of stream R.

the “second” eighth of R. Joiners 1 and 3 can exchange their tuples and joiners 2 and 4 can do

the same in parallel. Joiners 5 and 7, 6 and 8, and so forth operate similarly in parallel. This

incurs a total overhead of |R|/4 time units which is the bi-directional communication cost of

|R|/8. This idea can be generalized, yielding bounds on the migration overhead.

Lemma 4.4.5. Migration from (n,m) to (n/2,2m)-mapping can be done with a communication

cost of 2 |R|/n time units. Similarly, migrating to (2n,m/2) incurs a cost of 2 |S|/m.

Proof. Without loss of generality, consider the migration to (n/2,2m). No exchange of S state

is necessary. On the other hand, tuples of R have to be exchanged among joiners. Before

migration each of the J joiners had |R|/n tuples from R, while after the migration, each must

have 2 |R|/n. Consider one group of n joiners sharing the same tuples from S (corresponding

to a “column” in Fig. 4.4). These joiners, collectively, contain the entire state of R. They can

communicate in parallel with the other m−1 groups. Therefore, we analyze the state relocation

for one such group and it follows that all groups behave similarly in parallel.

Divide the group into two subgroups of n/2 joiners. Number the joiners in each group

1,2, . . . ,n/2. Joiner pairs labeled i should exchange their tuples together. It is clear that

each pair of joiners labeled i ends up with a distinct set of 2 |R|/n tuples. Fig. 4.4 describes

this exchange process. Each of the pairs labeled i can communicate completely in parallel.

Therefore, the total migration overhead is 2 |R|/n, since each joiner in the pair sends |R|/n

42

4.4. Intra-Operator Adaptivity

1 2 3

765

4

8

129 10 11

151413 16

1817

19 20

Reshufflers

J1=16

J2=4

P1=16/20

P2=4/20

(a)

Figure 4.5 – (a) decomposing J = 20 machines into independent groups of 16 and 4 machines.
Tuple storage within a group is defined by the probability measures.

tuples to the other.

Lemma 4.4.6. The cost of routing tuples and data migration is linear. The amortized cost of an

input tuple is O(1).

Proof. Since all joiners are symmetrical and operate simultaneously in parallel, it suffices to

analyze cost at one joiner. Therefore, after receiving |ΔR| and |ΔS| tuples, the operator spends

at least max(|ΔR|/n, |ΔS|/m) units of time processing these tuples at the appropriate joiners.

By assigning a sufficient amortized cost per time unit, the received tuples pay for the later

migration.

By lemma 4.4.3, the optimal mapping is (n,m), (n/2,2m) or (2n,m/2). If the optimal mapping

is (n,m), then there is no migration. Without loss of generality, assume that |ΔS| ≥ |ΔR| and

that the optimal mapping is (n/2,2m). Between migrations, max(|ΔR|/n, |ΔS|/m) time units

elapse, each is charged 7 units. One unit is used to pay for routing and 6 are reserved for

the next migration. The cost of migration by lemma 4.4.5 is 2(|R|+ |ΔR|)/n. The amortized

cost reserved for migration is 6max(|ΔR|/n, |ΔS|/m). Since a migration was triggered, either

|ΔR| = |R| or |ΔS| = |S|. In either case, it should hold that the reserved cost is at least the

43

Chapter 4. Online Theta Joins

migration cost, that is,

6max(|ΔR|/n, |ΔS|/m) ≥ 2(|R|+ |ΔR|)/n.

If |ΔR| = R , then by substituting, the left hand side is 6max(|ΔR|/n, |ΔS|/m) ≥ 6 |R|/n and the

right hand side is 2(|R|+ |ΔR|)/n = 4 |R|/n. Therefore, the inequality holds. If |ΔS| = S, then

the left hand side is

6max(|ΔR|/n, |ΔS|/m) ≥ 2 |ΔR|/n +4 |S|/m.

Therefore, the left hand side is not smaller than the right hand side, since 2 |S|/m ≥ |R|/n (by

lemma 4.4.2). Thus, the inequality holds in both cases. The cases, when |ΔR| ≥ |ΔS| or when

the optimal is (2n,m/2), are symmetric.

Lemmas 4.4.4 and 4.4.6 directly imply Theorem 4.4.1.

Generalization and Discussion

In the previous section, the analysis was based upon three assumptions: the cardinality ratio

of the larger relation to the smaller relation does not exceed J ; the number of joiners is a power

of two; and tuples from R and S have the same size. In this section we outline how to relax

these assumptions and show that the algorithm remains to have a constant-competitive ratio

and the migration overhead cost persists to be amortized and linear in the number of input

tuples.

Relation Cardinality Ratio. Without loss of generality, assume that |R| > |S|. The analysis in

the previous section assumed that |R| ≤ J |S|. This can be relaxed by continuously padding the

smaller relation with dummy tuples to maintain the ratio less than J . This requires padding

the relation S with at most |R|/J ≤ T /J tuples, where T is the total number of tuples |R|+ |S|.
Therefore, the total number of tuples the operator handles, including dummy tuples, is at

most T +T /J = (1+1/J)T tuples. The ratio of the relation sizes still respects the assumption.

Therefore, the analysis in the previous section holds except that the ILF now gets multiplied by

a factor of 1+1/J . This factor is at most 1.5 (since J ≥ 2). This factor tends to one as the number

of joiners increases. Therefore, the algorithm is still constant-competitive, with the constant

being 1.25 ·1.5 = 1.875. Similarly, adding the dummy tuples multiplies the migration overhead

by at most 1.5. Therefore, the communication overhead remains linear.

Number of Joiners. Assume that J ≥ 1, then J has a unique decomposition into a sum of

powers of two. Let J = J1 + J2 + . . .+ Jc where each Ji is a power of two. Accordingly, the

machines are broken down into c groups, where group i has Ji machines. There can be at

most �log J� of such groups. Finally, each group operates exactly as described in the previous

section. Fig. 4.5a illustrates an example, given a pool of J = 20 machines, it is clustered into

44

4.4. Intra-Operator Adaptivity

three groups of sizes 16 and 4 which operate independently. An incoming tuple is sent to all c

groups to be joined with all stored tuples. Only one group stores this tuple for joining with

future tuples. The group that stores this tuple is determined by computing a pseudo-random

hash whose ranges are proportional to the group sizes. The probability that group i is chosen

is equal to Pi = Ji /J . With high probability, after T tuples have been received, the number of

tuples stored in group i is close to (Ji /J)T .

It is essential that if a pair of tuples is sent to two machines, each belonging to a different

group, that this pair of tuples is received in the same order by both machines. With very high

probability (after a small number of tuples has been received), the mappings of two groups

will be similar. More specifically, for two groups with sizes J1 < J2, it will hold that n2 (m2) is

divisible by n1 (m1). Blocks of machines in the bigger group correspond to a single machine

in the smaller group (see figure 4.5). In each such block, a single machine does the task of

forwarding all tuples to machines within that block as well as the machine in the smaller group

(see the same figure). This ensures that machines get tuples in the same order at the cost of

tuple latency proportional to log J , since tuples have to be propagated serially among log J

groups of machines.

Let the biggest group be L with size J ′ which is at least half of J . The storage is bounded by that

of L (receiving the entire input). The optimal storage is at most half that of L (since J ′ is at least

half of J). Therefore, the competitive ratio of storage is at most doubled (1.875∗2 = 3.75). Since

groups operate independently, migrations are performed asynchronously and completely in

parallel. Therefore, only tuple routing gets multiplied by a log J factor, since every tuple is

broadcast to at most log J groups. Therefore, the total routing cost, including migrations, is

O(T log J).

It remains to show that the described distribution of data does not affect the original configura-

tion that all joiners perform an equal amount of join work. Without loss of generality, consider

two tuples tR and tS where tR arrives to the system before tS (the other case is symmetric).

We show that the probability a specific joiner j computes {tR } �� {tS} is 1/J , implying directly

that the work gets equally distributed. For joiner j to perform the join, tR has to be stored

on j . The probability of this happening is (Jg /J) · (1/ng) where Jg is the group size of group

g containing joiner j and ng is the number of rows in the mapping of this group. tS gets

communicated to all groups. The probability that tS is sent to j is exactly 1/mg where mg

is the number of columns in the mapping of group g . Multiplying both probabilities and

noticing that ng ·mg = Jg gives exactly 1/J .

Optimality-Communication Tradeoff. It is possible to modify Alg. 2 to tradeoff the mapping

optimality with the communication overhead. The algorithm checks for the possibility of

performing migration whenever either |ΔR| = |R| or |ΔS| = |S|. By modifying these conditions

to be |ΔR| = ε |R| or |ΔS| = ε |S|, where 0 < ε≤ 1, we directly get a tradeoff between optimality

45

Chapter 4. Online Theta Joins

and communication cost.

Theorem 4.4.2. Under the modified Alg. 2 (parameterized by ε), the competitive ratio of the ILF

becomes 3+2ε
3+ε and the amortized communication cost becomes 7

ε =O(1
ε).

Proof. The proof is exactly following the lemmas of subsection 4.4.2 and replacing the con-

ditions |ΔR| ≤ |R| and |ΔS| ≤ |S| by |ΔR| ≤ ε |R| and |ΔS| ≤ ε |S|, respectively. The competitive

ratio is given by the following expression:

ILF

ILF∗ ≤ (|R|+ |ΔR|)/n + (|S|+ |ΔS|)/m

(|R|+ |ΔR|)/(n/2)+ (|S|+ |ΔS|)/(2m)

This attains its maximum value 3+2ε
3+ε at |ΔR| = 0, |ΔS| = ε |S| and |S|/m = 2 |R|/n.

For every input tuple, an amortized cost of 3+ 4/ε is given. Between migrations, at least

max(|ΔR|/n, |ΔS|/m) are received. Without loss of generality, the migration cost is 2 |R|+|ΔR|
n .

If |ΔR| = ε |R|, substituting shows that the amortized cost exceeds the migration cost. In the

case of |ΔS| = ε |S|, substituting and noting that S
m ≥ R

2m (by lemma 4.4.2), it also holds that

the total migration cost is less than the amortized cost. The theorem statement immediately

follows.

Notice that by setting ε= 1, Theorem 4.4.1 is recovered.

Elasticity. In the context of online query processing, the query planner may be unable to

a-priori determine the number of machines J to be dedicated to a join operator. It is thus

desirable to allocate as few joiners as possible to the operator while ensuring that the stored

state on each machine is reasonably maintained to prevent disk spills and performance

degradation. We hereby present a scheme that allows the join operator to elastically expand

using more machines, as needed, while maintaining all the theoretical bounds described

(merely constant changes in the communication cost).

For joiners, designate a maximum number M of tuples (ILF) per joiner. At migration check-

points (following theorem 4.4.2 when |ΔR| = ε |R| or |ΔS| = ε |S|), after migration, if each joiner

stores a number of tuples exceeding M/2, the system expands by splitting every joiner into 4

joiners. Every joiner communicates its tuples to three new joiners as described in Fig. 4.6. This

can be done with a total communication cost equal to twice the number of tuples stored on

that joiner prior to expansion.

Under this scheme, it is obvious that the competitive ratio of the ILF is unaffected, since

splitting every machine to four machines does not change the ratio of n to m. It remains to

show that the amortized cost of communication is not much affected.

46

4.4. Intra-Operator Adaptivity

14

1615

4

13

11

12

3

76 9 10

8251

2/4 4/4 4/42/4

3/43/41/4 1/4

2/22/21/21/2

Expand

R
S

43

21

2/
4

4/
4

4/
4

2/
4

3/
4

3/
4

1/
4

1/
4

2/
2

2/
2

1/
2

1/
21/2 2/2

R
S

2/
2

1/
2

J=4

J=16

Relation S: Keep
 part i of n

i/n

i/n Relation S:
Discard part i of n

Legend

i/n Relation R: Keep
part i of n

i/n Relation R:
Discard part i of n

Figure 4.6 – This figure illustrates the expansion of the system. Each machine state is
distributed to 4 joiners. Each joiner communicates the appropriate portions of its state to the
three new joiners. For example, joiner 1 sends the second half of its S tuples to joiners 5 and 7.
It sends the second half of its R tuples to 6 and 7. It also sends the first half of R to 5 and the

first half of S to 6.

Theorem 4.4.3. Under the modified Alg. 2 (parameterized by ε), the described expansion has

an amortized cost of 8
ε =O(1/ε).

Proof. After receiving |ΔR| and |ΔS| tuples, the operator spends at least max(|ΔR|/n, |ΔS|/m)

units of time processing these tuples at the appropriate joiners. Each is assigned an amortized

cost of 4+4/ε≤ 8/ε. The communication cost due to expansion is at most 2(|R|+|ΔR|
n + |S|+|ΔS|

m).

4max(|ΔR|/n, |ΔS|/m) is used to account for 2 |ΔR|/n + |ΔS|/m. It remains to notice that
4
ε max(|ΔR|/n, |ΔS|/m) ≥ 2(|R|/n + |S|/m) since either |ΔR| = ε |R| or |ΔS| = ε |S| and since
1
2
|R|
n ≤ |S|

m ≤ 2 |R|
n (by lemma 4.4.2).

Relative Tuple Sizes. Let the sizes of an R tuple and an S tuple be size(r)= τR and size(s)= τS

respectively. An input R tuple can be viewed as the reception of τR “unit” tuples. Similarly

an S tuple is τS unit tuples. The previous analysis holds except that migration decisions

47

Chapter 4. Online Theta Joins

can be slightly delayed. For example, if the migration decision is supposed to happen after

the reception of 5 unit tuples and a tuple of size 1000 units is received, then the migration

decision is delayed by 995 units. Therefore, the ILF is increased by at most an additive factor of

max(τR ,τS), i.e., ILF ≤ K · ILF∗ +max(τR ,τS).

Window Semantics. Until now, we have discussed an append-only state model. This is com-

mon in systems that compute online approximations of query results such as those adopted in

online aggregation systems [89, 92, 102]. Under this setting, input data from static databases

are continuously fed into the running query to produce early approximate results. Further-

more, these results can be defined within confidence bounds using statistical estimation

theory tools. In this case state continuously grow as more input data is fed in. The temporal

state model represents a more dynamic setting which allows insertions and state-purge. This

is adopted in the more common window-semantics query processing engines [155, 7, 21].

Our work can be extended to support the temporal state model, and therefore window se-

mantics. The migration decision algorithm and the analysis are slightly tweaked to take into

consideration tuple-purge along with insertions.

Adaptation Loop Revisited. Alg. 3 decides the time points at which adaptation decisions are

triggered. Right after an optimal migration, the operator has received |R| and |S| tuples from

the respective relations. The algorithm maintains two counts |ΔR| and |ΔS|, representing the

newly arrived and purged tuples on both relations respectively after the last migration. If

either |ΔR| reaches |R|/2 or |ΔS| reaches |S|/2, the algorithm explores alternative mapping

schemes and performs a migration, if necessary.

The two metrics of interest here are the ILF and the migration overhead.

Theorem 4.4.4. Assume that the number of joiners J is a power of two, the sizes for |R| and

|S| are no more than a factor of J apart, and that tuples from R and S have the same size. An

adaptive scheme that applies Alg. 3 ensures the following characteristics:

1. The ILF is at most 1.4 times that of the optimal mapping at any point in time. ILF ≤ 1.4 · ILF∗,

where ILF∗ is the input-load factor under the optimal mapping at any point in time. Thus, the

algorithm is 1.4-competitive.

2. The total communication overhead of migration is amortized, i.e., the cost of routing a new

input tuple, including its migration overhead, is O(1).

Proofs and analyses are illustrated in the appendix.

48

4.4. Intra-Operator Adaptivity

Algorithm 3 Migration Decision Algorithm (with deletions).

Input: |R|, |S|, |ΔR|, |ΔS|
1: function MIGRATIONDECISION(|R|, |S|, |ΔR|, |ΔS|)
2: if |ΔR| ≥ |R|/2 or |ΔS| ≥ |S|/2 then
3: Choose mapping (n,m) minimizing |R|+|ΔR|

n + |S|+|ΔS|
m

4: Decide a migration to (n,m)
5: |R|← |R|+ |ΔR| ; |S|← |S|+ |ΔS|
6: |ΔR|← 0; |ΔS|← 0

7: end function

4.4.3 Actuation

The previous section provides a high-level conceptual description of the algorithm. Migra-

tion decision points are specified to guarantee a close-to-optimal ILF and linear amortized

adaptivity cost. This section describes the system-level implementation of the migration

process.

Previous work on designing adaptive operators [155, 117, 145] follow a general theme for state

relocation. The following steps give a brief description of the process: (i) Stall the input to the

machines that contain state to be repartitioned. The new input tuples are buffered at the data

sources. (ii) Machines wait for all in-flight tuples to arrive and be processed. (iii) Relocate state.

(iv) Finally, online processing resumes. Buffered tuples are redirected to their new location to

be processed. This protocol is not suitable for stateful operators. Its blocking behavior causes

lengthy stalls during online processing until state relocation ends.

Eventually Consistent Protocol

It is essential for the operator to continue processing tuples on-the-fly while performing

adaptations. Achieving this presents new challenges to the correctness of the results. When

the operator migrates from one partitioning scheme Mi to another Mi+1 it undergoes a

state relocation process. During this, the state of each machine, within the operator, does

not represent a state that is consistent with either Mi or Mi+1. Hence, it becomes hard to

reason about how new tuples entering the system should be joined. This section presents a

non-blocking protocol that allows continuous processing of new tuples during state relocation

by reasoning about the state of any tuple circulating the system with the help of epochs. This

ensures that the system (i) is consistent at all times except during migration, (ii) eventually

converges to the consistent target state Mi+1, and (iii) produces correct and complete join

results in a continuous manner.

The operation of the system is divided into epochs. Initially, the system is in epoch zero.

49

Chapter 4. Online Theta Joins

Whenever the controller decides a mapping change, the system enters a new epoch with

incremented index. For example, if the system starts with the mapping (8,8), later migrates to

(16,4) and finally migrates to (32,2), the system went through exactly three epochs. All tuples

arriving between the first and the second migration decision belong to epoch 1. All tuples

arriving after the last mapping-change decision belong to epoch 2. Reshufflers and joiners

are not instantaneously aware of the epoch change, but continue to process tuples normally

until they receive an epoch change signal along with the new mapping. Whenever a reshuffler

routes a tuple to joiners, it tags it with the latest epoch number it is aware of. It is crucial for

the correctness of the scheme described shortly to guarantee that all machines are at most one

epoch behind the controller. That is, all machines operate on, at most, two different epochs.

This is, however, guaranteed theoretically and formalized later in Theorem 4.4.7.

The migration starts by the controller making the decision. The controller broadcasts to all

reshufflers the mapping change signal. When a reshuffler receives this signal, it notifies all

joiners and immediately starts sending tuples in accordance to the new mapping. Joiners

continuously join incoming tuples and start exchanging migration tuples. Once a joiner has

received epoch change signals from all reshufflers, it is guaranteed that it will receive no

further tuples tagged with the old epoch index. At that point, the joiner proceeds to finalize

the migration and notifies the controller once it is done. The controller can only start a new

migration once all joiners notify it that they finished the data migration. The subsequent

discussion shows how joiners continue processing tuples while guaranteeing consistent state

and correct output.

The timestamp of the migration decision at the controller partitions the tuples into several

sets. During a migration, τ is the set of all tuples received before the migration decision. μ is

the set of all tuples that are sent from one joiner to another (due to migration). The set of new

tuples received after the migration decision timestamp are either tagged with the old epoch

index, referred to as Δ, or with the new epoch index, referred to as Δ′. Notice that μ⊂ (τ∪Δ).

To simplify notation, no distinction is made between tuples of R or S. For example, writing

Δ��Δ′ refers to (ΔR ��Δ′
S)∪ (ΔS ��Δ′

R), where σR (σS) refers to the tuples of R(S) in the set

σ.

During the migration, joiners have tuples tagged with the old epoch and the new epoch. Those

tuples tagged with the new epoch are already on the correct machines since the reshuffler sent

them according to the new mapping. Joiners should redistribute the tuples tagged with old

labels according to the new mapping. The set of tuples tagged with the old label is exactly

τ∪Δ. Joiners discard portions and communicate other portions to the other machines. The

discarded tuples are referred to as DISCARD(τ∪Δ). For convenience, (τ∪Δ)−DISCARD(τ∪Δ)

is referred to as KEEP(τ∪Δ). The migrated tuples are MIGRATED(τ∪Δ) which coincides exactly

with μ. KEEP(τ) refers to tuples in KEEP(τ∪Δ)∩τ. The same holds for DISCARD, MIGRATED

50

4.4. Intra-Operator Adaptivity

and the set Δ.

Definition 4.4.5. A migration algorithm is said to be correct if right after the completion of a

migration, the output of the system is exactly (τ∪Δ∪Δ′) �� (τ∪Δ∪Δ′).

During the migration, the output may be incomplete. Therefore, completeness and consis-

tency are defined only upon the completion of the migration. The complete output is the

join of all tuples that arrived to the system before (τ) and after the migration decision (Δ∪Δ′).

Alg. 4 describes the joiner algorithm. The output of the algorithm is provably correct. For the

proof of correctness, an alternative characterization of the correct output is needed.

Lemma 4.4.7.

(τ∪Δ∪Δ′) �� (τ∪Δ∪Δ′)

is equivalent to the union of (1) τ �� τ, (2) Δ �� Δ, (3) τ �� Δ, (4) Δ′ �� μ, (5) Δ′ �� KEEP(Δ),

(6) Δ′ �� KEEP(τ), and (7) Δ′ ��Δ′.

Proof. Since set union distributes over join, the result can be rewritten as

(τ�� τ)∪ (τ��Δ)∪ (τ��Δ′)∪ (Δ��Δ)∪ (Δ��Δ′)∪ (Δ′ ��Δ′).

The subsets (1), (2), (3) and (7) appear directly in the expression. It remains to argue that

Δ′ �� (τ∪Δ) is equal to Δ′ �� (μ∪KEEP(τ∪Δ)). This follows directly from the correctness of

the migration. τ∪Δ is the set of tuples labeled with the old epoch, while (μ∪KEEP(τ∪Δ)) is

the same set distributed differently between the machines according to the new mapping.

Alg. 4 exploits this equivalence to continue processing tuples throughout migration. Informally,

parts (1), (2) and (3) are continuously computed in HANDLETUPLE1 whereas, (4), (5), (6) and

(7) are continuously computed in both HANDLETUPLE1 and HANDLETUPLE2.

Theorem 4.4.6. Alg. 4 produces the correct and complete output and ensures eventually consis-

tent state for all joiners.

Proof. First, it is easy to see that the data migration is performed correctly. τ is sent immedi-

ately at the very beginning (line 3). Tuples of Δ are sent as they are received (line 20). Finally,

the discards are done once the migration is over (line 29). By lemma 4.4.7, the result is the

union of:

1. τ�� τ. This is computed prior to the start of migration as it represents historical state.

2. (Δ��Δ)∪ (τ��Δ). Δ is initially empty. Tuples are only added to it in line 16. Every added

tuple gets joined with all previously added tuples to Δ and to all tuples in τ (also in line 16). It

follows that this part of the join is computed. τ never changes until the migration is finalized.

51

Chapter 4. Online Theta Joins

Algorithm 4 Joiner-Epoch Algorithm.

Input: s signal
Initialize: Use HANDLETUPLE1 to handle incoming tuples.

1: procedure MAIN(s)
2: if First Reshuffler Signal Received then
3: SEND τ for migration.
4: else if All Reshuffler Signals Received then
5: Use HANDLETUPLE2 to handle incoming tuples.
6: else if Migration Ended then
7: Run FINALIZEMIGRATION.
8: Use HANDLETUPLE1 to handle incoming tuples.

Input: t an incoming tuple
9: procedure HANDLETUPLE1(t)

10: if t ∈μ then OUTPUT

11: {t }�Δ′; μ←μ∪ {t }
12: else if t ∈Δ′ then
13: OUTPUT {t }� (μ∪Δ′); Δ′ ←Δ′ ∪ {t }
14: OUTPUT {t }� KEEP(τ∪Δ)
15: else if t ∈Δ then
16: OUTPUT {t }� (τ∪Δ); Δ←Δ∪ {t }
17: if t ∈ KEEP(Δ) then
18: OUTPUT {t }�Δ′

19: if t ∈ MIGRATED(Δ) then
20: SEND {t } for migration

Input: t an incoming tuple
21: procedure HANDLETUPLE2(t)
22: if t ∈μ then
23: OUTPUT {t }�Δ′; μ←μ∪ {t }
24: else if t ∈Δ′ then
25: OUTPUT {t }� (μ∪Δ′); Δ′ ←Δ′ ∪ {t }
26: OUTPUT{t }� KEEP(τ∪Δ)

27: procedure FINALIZEMIGRATION

28: SEND(Ack) signal to coordinator
29: τ← KEEP(τ∪Δ)∪μ∪Δ′

30: Δ←�; Δ′ ←�; μ←�

3. Δ′ �� (μ∪KEEP(τ∪Δ)). Whenever a tuple is added to Δ′ (in lines 13 and 25), it gets joined

with μ∪KEEP(τ∪Δ) (lines 13, 14, 25 and 26). Whenever a tuple is added to μ (lines 11 and 23),

it gets joined with Δ′. Furthermore, tuples added to Δ are joined with Δ′ if they are in KEEP(Δ)

52

4.4. Intra-Operator Adaptivity

(line 18). τ never changes until the migration ends.

4. Δ′ ��Δ′. Initially Δ′ is empty. Tuples get added to it in lines 13 and 25. Whenever a tuple

gets added, it gets joined with all previously added tuples (lines 13 and 25).

Therefore, all parts are computed by the algorithm (completeness). Since the analysis covers

all the lines that perform a join, it follows that each of the 4 parts of the result is output exactly

once (correctness). Thus, the result of the algorithm is correct right after migration is complete.

Tuples tagged with the old epoch (τ and Δ) are migrated correctly. Tuples tagged with the new

epoch (Δ′) are immediately sent to machines according to the new scheme. Therefore, at the

end of migration, the state of all joiners is consistent with the new mapping.

Theoretical Guarantees Revisited

The guarantees given in Theorem 4.4.1 assume a blocking operator. During migration, it is

required that no tuples are received or processed. However, Alg. 4 continuously processes

new tuples while adapting. We set the joiners to process migrated tuples at twice the rate of

processing new incoming tuples. We show that, under these settings, the proven guarantees

hold. It is clear that the amortized cost is unchanged and remains linear because incoming

tuples continue to “pay” for future migration costs. The results for competitiveness, on the

other hand, need to be verified.

Theorem 4.4.7. With the non-blocking scheme Alg. 4, the competitive ratio ensured by Theo-

rem 4.4.1 remains 1.25i.

Proof. We prove that the numbers of tuples, received during migration, |ΔR| and |ΔS|, are

bounded by |R| and |S|, respectively. 1.25-competitiveness follows immediately (by lemma 4.4.4).

Consider a migration decision after the system has received |R| and |S| tuples from R and

S. Let the current mapping be (n,m). Lemma 4.4.3 asserts that the optimal mapping is

one of (n,m), (n/2,2m) and (2n,m/2). This is trivially true for the first migration. Since we

prove below that |ΔR| and |ΔS| are bounded by |R| and |S|, this also holds for all subsequent

migrations, inductively. Without loss of generality, let the chosen optimal mapping for a

subsequent migration be (n/2,2m). The migration process lasts for 2 |R|/n time units (by

lemma 4.4.5). Alg. 4 processes new tuples at half the rate of processing migrated tuples. Thus,

during migration, the operator receives at most 1/2 · (n/2) new tuples from R and 1/2 · (2m)

from S per time unit. Hence, it holds that,

iNotice that Theorem 4.4.7 is based on the assumptions made in Theorem 4.4.1. However, it naturally follows,
that if any of the assumptions are relaxed the competitive ratio is changed accordingly as described in section 4.4.2.

53

Chapter 4. Online Theta Joins

|ΔR| ≤ 2 |R|
n

· n

4
< |R|

|ΔS| ≤ 2 |R|
n

·m ≤ |S|
m

·m = |S|

where the last inequality holds by lemma 4.4.2 (with the optimal being (n/2,2m) instead of

(n,m)).

Towards Fault-Tolerance

Although fault tolerance is orthogonal to the scope of our discussion, this section outlines how

to extend the presented dataflow operator to provide fault-tolerance using existing techniques.

For topologies with arbitrary operators, FTOpt’s [170] fault-tolerance protocol guarantees

exactly-once semantics (no lost or duplicate tuples). We can easily extend our operator to

follow the protocol such that the entire query plan provides end-to-end fault-tolerance. The

protocol is established between any two communicating nodes (producer/consumer pairs)

in the query plan by splitting the fault-tolerance responsibilities between them. When a

consumer takes responsibility of a received tuple, it sends an acknowledgment to the producer.

This frees the producer from replaying acknowledged tuples on failures. The consumer can

fulfill its responsibility by checkpointing to stable storage. On the other hand, the producer is

responsible for replaying unacknowledged tuples on failure. This protocol supports many-to-

many producer/consumer relationships.

At a high level, when a node fails, it first recovers its state from the latest checkpoint. Because

some tuples may have been processed successfully on a consumer, but their acknowledgment

may not have reached the producer before its failure, the recovered node then communicates

with the downstream and upstream nodes to identify which tuples to replay. For every commu-

nication pair, the consumer provides information about the last seen tuple, and the producer

has to replay only the missing portion of the stream. This protocol can provide fault-tolerance

during migration as well. The only additional consideration is that communication pairs may

vary due to the different migrations, and hence, this information also needs to be preserved.

4.4.4 Equi-Joins Specialization

Monotonic join condtions can enable further optimizations by avoiding to cover empty regions.

Fig. 4.1 demonstrates several examples of monotonic join conditions and their corresponding

join matrix structure. We focus here on equi-joins because they are common in practice and

are very vulnerable to data skew. Our proposed operator can be further specialized for the

54

4.4. Intra-Operator Adaptivity

case of equi-joins to enable efficient and skew-resilient equi-joins.

Content-Sensitive Partitioning. One common partitioning strategy is key partitioning, where

tuples from both streams are partitioned on the key attribute. This ensures that all tuples

with the same key are gathered at the same place for join processing. This approach is simple,

maximizes locality, and avoids the overhead of replicated messages or storage. Nevertheless, it

is highly vulnerable to skew. Hash-key partitioning simplifies the assignment scheme to a one

dimensional domain. That is, partitioning the join-matrix M is reduced to partitioning a set

of keys across machines. This coarse grained approach makes load balancing infeasible under

skewed distributions. Moreover, it is sensitive to the order of input values, i.e., it is simple

to construct an adversarial data input order that would limit parallelism to a single machine

at all times. Previous adaptive approaches [155, 39, 117] fall into this class. FLUX adaptively

rebalances load by repartitioning keys from one machine to another whenever a machine is

overutilized.

Content-Insensitive Partitioning. This chapter has described a symmetric partitioning scheme.

This symmetric approach is useful for processing arbitrary join predicates or when the join

matrix M is dense. However, in the common class of selective joins, e.g., equi-joins, the sym-

metric scheme becomes expensive because of covering unnecessary empty regions within the

join matrix M. This induces additional communication and storage replication overhead. In

this scenario, a content-sensitive partitioning approach would be more suitable as knowledge

about key values are utilized to avoid covering unnecessary regions. In the following, we

present an asymmetric scheme that only covers candidate regions and ignores the rest. More-

over it is a hybrid approach that combines the best of both worlds from content-sensitivity

and content-insensitivity.

We observe that the join matrix M under the equi-join predicate has a specific structure. That

is, candidate areas are represented as non-overlapping independent rectangular regions. Thus,

the optimization problem can be simplified to that of optimizing each region independently.

Independent Partitioning. Fig. 4.1a illustrates an equi-join example depicted within the join

matrix model. We observe that (i) each key defines an independent rectangular region which

doesn’t share any state with other keys, and (ii) there are large portions of empty regions

that don’t need to be covered. These observations enable enormous savings. We describe

an adaptive scheme specialized for equi-joins. The scheme operates as follows: it regularly

maintains key frequencies of each stream. Accordingly, each rectangular region defined by its

corresponding key is either hash partitioned or divided into congruent rectangular regions

using symmetric partitioning. The partitioning decision is made according to the area of the

rectangular region. In this case, we are dealing with fully dense regions, since each rectangle

represents a fully joinable region. These costs are quadratic in input size and thus when

they surpass a specified threshold, it becomes important to maintain load balance by equally

55

Chapter 4. Online Theta Joins

Query Join Predicate

EQ5 (R�N�S)�L Equi-join
EQ7 (S�N)�L Equi-join

BNC I L�L Band-join
BC I L�L Band-join

Table 4.1 – R, N, S, and L correspond to the relations Region, Nation, Supplier, and
Lineitem respectively as defined in the TPC-H benchmark.

distributing this workload.

This hybrid approach combines between content sensitivity by coalescing together dense

regions defined by each key independently and content insensitivity by dividing each dense

region equally across J machines. Thereby, it combines the best of both worlds. Namely,

coalescing the workload and avoiding covering vast empty regions. This results in savings

in communication and storage costs, and guaranteed distribution of workload across all

machines at all times.

Independent Adaptation. Dividing each large key rectangle using symmetric partitioning

allows for independent adaptation. Now each rectangle operates and adapts independently

among the same set of J machines as previously described.

4.5 Evaluation

Environment. Our experimental platform consists of an Oracle Blade 6000 Chassis with

10 Oracle X6270 M2 blade servers. Each blade has two Intel Xeon X5675 CPUs running at

3GHz, each with 6 cores and 2 hardware threads per core, 72GB of DDR3 RAM, 4 SATA 3 hard

disks of 500GB each, and a 1Gbit Ethernet interface. All blades run Solaris 10, which offers

Solaris Zones, a native resource management and containment solution. Overall, there are 220

virtual machines available exclusively for our experiments, each with its own CPU hardware

thread and dedicated memory resources. There are 20 separate hardware threads for running

instances of the host operating system.

Datasets. For the evaluation setup, we use the TPC-H benchmark [6]. We employ the TPC-

H generator proposed by [45] to generate databases with different degrees of skew under

the Zipf distribution. The degree of skew is adjusted by choosing a value for the Zipf skew

parameter z. We experiment on five different skew settings Z0, Z1, Z2, Z3, Z4, which correspond

to z = 0, z = 0.25, z = 0.5, z = 0.75 and z = 1.0, respectively. We build eight databases with sizes

8,10,20,40,80,160,320, and 640GB.

Queries. We experiment on four join queries, namely, two equi-joins, called EQ5 and EQ7 , from

56

4.5. Evaluation

the TPC-H benchmark and two synthetic band-joins. The equi-joins, EQ5 and EQ7 , represent

the most expensive join operation in queries Q5 and Q7, respectively, from the benchmark. All

intermediate results are materialized before online processing. Moreover, the two band-joins

depict two different workload settings. a) BC I is a high-selectivity join query that represents a

computation-intensive workload, and b) BNC I is a low-selectivity join query that corresponds

to a non-computation-intensive workload. The output of BC I is three orders of magnitude

bigger than its input size, whereas the output of BNC I is an order of magnitude smaller. Both

join queries are described below and all query characteristics are summarized in Table 4.1.

B
C

I SELECT *
FROM LINEITEM L1, LINEITEM L2

WHERE ABS(L1.shipdate - L2.shipdate) <= 1

AND L1.shipmode=TRUCK AND L2.shipmode!=TRUCK

AND L1.Quantity>45

B
N

C
I SELECT *

FROM LINEITEM L1, LINEITEM L2

WHERE ABS(L1.orderkey - L2.orderkey) <= 1

AND L1.shipmode=TRUCK AND L2.shipinstruct=NONE

AND L1.Quantity>48

Operators. To run the testbed, we implement SQUALLii, a distributed online query processing

engine built on STORMiii, Twitter’s backend engine for data analytics. The engine is based

on Java and runs on JRE v1.7. Throughout the discussion, we use four different dataflow

operators: (i) STATICMID, a static operator with a fixed (
�

J ,
�

J)-mapping. This scheme as-

sumes that both input streams have the same size and lies in the center of the (n,m)-mapping

spectrum. (ii) DYNAMIC, our adaptive operator, initialized with the (
�

J ,
�

J)-mapping scheme.

(iii) STATICOPT, another static operator with a fixed optimal mapping scheme. This requires

knowledge about the input stream sizes before execution, which is practically unattainable in

an online setting. (iv) SHJ, the parallel symmetric hash-join operator described in [83]. This

operator can only be used for equi-join predicates and it is content-sensitive as it partitions

data on the join key. STATICMID, assumes as a best guess, that the streams are equal in size;

hence it has a square grid partitioning scheme, i.e., (
�

J ,
�

J). Comparing against STATICOPT

shows that our operator does not perform much worse than an omniscient operator with

oracle knowledge about stream sizes, which are unknown beforehand. Joiners perform the

iihttps://github.com/epfldata/squall/wiki
iiihttps://github.com/nathanmarz/storm

57

Chapter 4. Online Theta Joins

EQ5 EQ7

Zipf SHJ STATICMID DYNAMIC SHJ STATICMID DYNAMIC

Z = 0 79 838∗ 168 98 210 192
Z = 1 79 851∗ 176 159 301 183
Z = 2 2742∗ 1425∗ 158 191 462 369
Z = 3 4268∗ 2367∗ 212 5462∗ 2610∗ 334
Z = 4 5704∗ 2849∗ 203 6385∗ 3502∗ 415

Note: [*] Overflow to disk.

Table 4.2 – Runtime in secs.

local join in memory, but if it runs out of memory it begins spilling to disk. For this purpose,

we integrated the operators with the back-end storage engine BERKELEYDB [143]. We first

experimentally verify that, in case of overflow to disk, machines suffer from long delayed

join evaluation and performance hits. Then, for a more fair comparison, we introduce more

memory resources, such that all operations fit in memory if possible. The heap size of each

joiner is set to 2GB. As indexes, joiners use balanced binary trees for band joins and hashmaps

for equi-joins. Input data rates are set such that joiners are fully utilized.

4.5.1 Skew Resilience

Table 4.2 shows results for running joins EQ5 and EQ7 with different skew settings of the 10G

dataset. It compares the performance of our DYNAMIC operator against the SHJ operator using

16 machines. We report the final execution time. We observe that SHJ performs well under

non-skewed settings as it evenly partitions data among machines and does not replicate data.

On the other hand, the DYNAMIC operator, distributes workload fairly between machines, but

pays for the unnecessary overhead of replicating data. As data gets skewed, SHJ begins to

suffer from poor partitioning and unbalanced distribution of data among joiners. Thus, the

progress of join execution is dominated by a few overwhelmed workers, while the remaining

starve for more data. The busy workers are congested with input data and must overflow to

disk, hindering the performance severely. In contrast, the DYNAMIC operator is resilient to

data skew and persists to partition data equally among joiners.

4.5.2 Performance Evaluation

We analyze in detail the performance of static dataflow operators against their adaptive

counterpart. We report the results for EQ5 and EQ7 on a Z4 10G dataset and of BNC I and

BC I on a uniform (Z0) 10G dataset. We start by comparing performance using 16 machines.

As illustrated in Table 4.2, DYNAMIC operates efficiently, whereas STATICMID consistently

performs worse. For skewed data, the latter suffers from very high values of ILF, and thus,

58

4.5. Evaluation

 0
 400
 800

 1200
 1600
 2000
 2400
 2800

 0 20 40 60 80 100

In
pu

t-
L

oa
d-

F
ac

to
r

(M
B

)

Percentage of Input Stream Processed

SHJ
StaticMid
Dynamic
StaticOpt

(a) EQ5 Input-Load Factor.

 0

 500

 1000

 1500

 2000

 2500

Q5 Q7 BNCI BCI
 0

 20

 40

 60

 80

 100

 120

In
pu

t-
L

oa
d-

F
ac

to
r

(M
B

)

T
ot

al
 C

lu
st

er
 S

to
ra

ge
 C

on
s.

 (
G

B
)

StaticMid
Dynamic
StaticOpt

(b) Final Input-Load Factor.

Figure 4.7 – Execution time performance results part I.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 20 40 60 80 100
 0

 1000

 2000

 3000

 4000

 5000

 6000

E
xe

cu
ti

on
 T

im
e

(S
ec

s)

SH
J

E
xe

cu
ti

on
 T

im
e

(S
ec

s)

Percentage of Input Stream Processed

SHJ
StaticMid
Dynamic
StaticOpt

(a) EQ5 Execution Time.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Q5 Q7 BNCI BCI

E
xe

cu
ti

on
 T

im
e

(S
ec

)

x10

StaticMid
Dynamic
StaticOpt

(b) Total Execution Time.

Figure 4.8 – Execution time performance results part II. The 2nd y-axis depicts the results for
SHJ only.

overflows to disk, hindering the performance drastically. For a fair comparison, we increase

the number of machines to 64 such that STATICMID is given enough resources. Under this

setting, STATICMID has a fixed (8,8)-mapping scheme, whereas the optimal mapping scheme

for all joins is (1,64). Our results show that DYNAMIC behaves roughly the same as STATICOPT.

This is attributed to the fact that DYNAMIC migrates to the optimal mapping scheme at early

stages. For completeness, we also include the results for EQ5 and EQ7 using SHJ. The operator

overflows to disk due to high data skew.

Input-Load Factor. As described in §4.2.3, different mappings incur different values for the

input-load factor. Examining the average input-load factor for each operator shows that the

growth rate of the ILF is linear over time. Due to the lack of space, we illustrate this behavior for

EQ5 only. Fig. 4.7a plots the maximum size of ILF per machine against the percentage of total

59

Chapter 4. Online Theta Joins

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

Q5 Q7 BNCI BCI

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

T
up

le
s/

Se
c)

SHJ
StaticMid
Dynamic

StaticOpt

(a) Operator Throughput.

 0

 20

 40

 60

 80

 100

 120

Q5 Q7 BNCI BCI

L
at

en
cy

 (
m

s)

StaticMid
Dynamic
StaticOpt

(b) Tuple Latency.

Figure 4.9 – Operator metrics performance results part I.

 0

 500

 1000

 1500

 2000

 2500

(1,64) (2,32) (4,16) (8,8)

 0

 20

 40

 60

 80

 100

 120

In
pu

t-
L

oa
d-

F
ac

to
r

(M
B

)

T
ot

al
 C

lu
st

er
 S

to
ra

ge
 C

on
s.

 (
G

B
)

Optimal mappings

StaticMid
Dynamic
StaticOpt

(a) Final Input-Load Factor.

 1000

 10000

 100000

 1e+06

 1e+07

(1,64) (2,32) (4,16) (8,8)A
ve

ra
ge

 T
hr

ou
gh

pu
t (

T
up

le
s/

Se
c)

Optimal mappings

StaticMid
Dynamic

StaticOpt

(b) Operator Throughput.

Figure 4.10 – Operator metrics performance results part II.

input stream processed. SHJ and STATICMID suffer from a larger growth rate than DYNAMIC.

Specifically, their rates are 27, 14 and 2MB per 1% input stream processed, respectively. The

graphs depicted in Fig. 4.7b report on the final average ILF per machine for all the join queries.

STATICMID is consistently accompanied with larger ILF values. Its ILF is about 3 to 7 times

that of DYNAMIC. The optimal mapping (1,64) lies at one end of the mapping spectrum and is

far from that of STATICMID. And SHJ is up to 13 times that of the other operators.

§4.2.3 also emphasizes the fact that minimizing the ILF maximizes resource utilization and

performance. This is due to the fact that higher ILF values also imply (i) unnecessary replicated

data stored around the cluster, (ii) more duplicate messages sent congesting the network, and

(iii) additional overhead for processing and housekeeping replicated data at each joiner. In

what follows, we measure the impact of ILF on overall operator performance.

60

4.5. Evaluation

Resource Utilization. Fig. 4.7b also shows the total cluster storage consumption (GB), as

shown on the right axis. STATICMID’s fixed partitioning scheme misuses allocated resources as

it unnecessarily consumes more storage and network bandwidth to spread the data. Moreover,

it requires four times more machines (64) than DYNAMIC to operate fully in memory (16

machines used in Table 4.2). SHJ could not fully operate in memory even with 64 machines.

DYNAMIC performs efficiently in terms of resource utilization. This is essential for cloud

infrastructures which typically follow pay-as-you-go policies.

Execution Time. Fig. 4.8a shows the execution time to process the input stream for query

EQ5 . The other join queries are similar in behavior and we omit them due to the lack of space.

Fig. 4.8b shows the total execution time for all the join queries. We observe that execution

time is linear in the percentage of input stream processed. The ILF has a decisive effect on

processing time. The rigid assignment (8,8) of STATICMID yields high ILF values and leads

to consistently worse performance. As ILF grows, the amount of data to process, and hence,

processing time increases. However, this performance gap is not large when the join operation

is computationally intensive, i.e., BC I in Fig. 4.8b. The execution time for SHJ, shown at

the right axis of Fig. 4.8a, is two orders of magnitude more, illustrating that poor resource

utilization may push the operator to disk spills, hindering the performance severely. In all

cases, the adaptivity of DYNAMIC allows it to perform very close to STATICOPT.

Average Throughput and Latency. Fig. 4.9a shows global operator throughput. For all queries,

the throughputs of DYNAMIC and STATICOPT are close. They are at least twice that of STAT-

ICMID, and two orders of magnitude more than that of SHJ, except for BC I where the difference

is slight. This validates the fact that the ILF has a direct effect on throughput, and that the

effect is magnified when overflow occurs. The throughput gap between operators depends

on the amount of join computation a machine has to perform (e.g. compare BC I and BNC I).

Fig 4.9b shows average tuple latencies. We define latency as the difference between the time

an output tuple t is emitted and the time at which the (more recent) corresponding source

input tuple arrives to the operator. The figure shows that the operator latency is not greatly

affected by its adaptivity. During state migration, an additional network hop increases the

tuple latency. DYNAMIC achieves average latency close to that of STATICMID while attaining

much better throughput.

Different Optimal Mappings. So far, the join queries we experiment on capture the inter-

esting case of an optimal mapping that is far from the (
�

J ,
�

J) scheme. As illustrated in

Figs. 4.10a, 4.10b, we compare performance under various optimal mapping settings. We

achieve this by increasing the size of the smaller input stream. In all cases, DYNAMIC adjusts

itself to the optimal mapping at early stages. Fig. 4.10a shows how the input-load factor

gap between DYNAMIC and STATICMID decreases as the optimal mapping gets closer to the

(
�

J ,
�

J)-mapping scheme. Similarly, Fig. 4.10b illustrates how the performance gap decreases

61

Chapter 4. Online Theta Joins

 0

 100

 200

 300

 400

 500

 600

80GB/16 160GB/32 320GB/64 640GB/128

(M
in

ut
es

)

Dataset Size / # of Machines

 0

 100

 200

 300

 400

 500

 600

 700

10GB/16 20GB/32 40GB/64 80GB/128

(S
ec

on
ds

)
E

xe
cu

ti
on

 T
im

e
In-Memory Computation

Out-Of-Core Computation

Q5
Q7

BNCI

(a) Total Execution Time.

 100

 1000

 10000

100000

 1e+06

Q5 Q7 BNCI

80GB/16
160GB/32
320GB/64

640GB/128

 10000

100000

 1e+06

 1e+07

Q5 Q7 BNCI

A
verage T

hroughput (T
uples/Sec)

In-Memory Computation

Out-Of-Core Computation

10GB/16
20GB/32
40GB/64

80GB/128

(b) Operator Throughput.

Figure 4.11 – Scalability performance results.

between the two operators. This validates the fact that the input-load factor has a decisive

effect on performance. In case of the optimal (
�

J ,
�

J)-mapping scheme, STATICOPT has the

same mapping as STATICMID, whereas DYNAMIC does not deviate from its initial mapping

scheme. However, it performs slightly worse because adaptivity comes with a small cost.

4.5.3 Scalability Results

We evaluate the scalability of DYNAMIC. Specifically, we measure operator execution time

and throughput as both the data-size and parallelism configurations grow. We evaluate weak

scalability on 10GB/16 joiners, 20GB/32 joiners, and so forth as illustrated in the in-memory

computation graphs of Figs. 4.11a, 4.11b. Ideally, while increasing the data-size/joiners config-

uration, the input-load factor and the output size should remain constant per joiner. However,

the input-load factor grows, preventing the operator to achieve perfect scalability (same

execution time and double average throughput as the data-size/joiners double). For ex-

ample, for BNC I , under the 20GB/32 configuration, the input stream sizes are 0.68M (mil-

lion) and 30M tuples, respectively, yielding a (1,32) optimal mapping scheme with an ILF of

0.68M +30M/32 ≈ 1.61M · si zetuple per joiner. However, under the 40GB/64 configuration, the

input stream sizes are 1.36M and 60M, respectively, yielding a (1,64) optimal mapping scheme

with an ILF of 1.36M +60M/64 ≈ 2.29M · si zetuple. In both cases, the output size per joiner

is the same (64K tuples). However, the ILF differs by 42% because of the replication of the

smaller relation. The ILF for the other two joins does not grow more than 9%. Accordingly, the

62

4.5. Evaluation

Number of Tuples Processed

k=8

 0
 2
 4
 6
 8

103 104 105 106 107 108

 1

 1.5

k=6

 2
 4
 6

 1

 1.5

k=4

 2

 4

 1

 1.5

k=2

|R
|/

|S
| R

at
io

C
om

pe
ti

ti
ve

 R
at

io

Initiate
Adaptivity

|R|/|S|
Competitive Ratio

 2
 1

 1.5

(a) ILF/ILF* Ratio.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100

E
xe

cu
ti

on
 T

im
e

(S
ec

s)

Percentage of Input Stream Processed

k = 2
k = 4
k = 6
k = 8

(b) Execution Time.

Figure 4.12 – Performance results under fluctuations.

execution time (Fig. 4.11a) and the average throughput (Fig. 4.11b) graphs show that EQ5 and

EQ7 achieve almost perfect scalability. In case of BNC I , a joiner processes more input tuples

as data grows. Overall, the operator achieves very good scalability taking into account the

increase in ILF.

Secondary storage. Out-of-core computation in Figs. 4.11a, 4.11b illustrates performance

under weak scalability with secondary storage support. As before, all the queries achieve near

optimal scalability, taking into account the increase in ILF. This validates the fact that our

system can scale with large volumes of data, and that it works well regardless of the local join

algorithm. However, compared to the in-memory results (Fig. 4.11a), the performance drops

by an order of magnitude. This validates our conclusion that secondary storage is not perfectly

suited for high-performance online processing.

4.5.4 Data Dynamics

In order to validate the proven theoretical guarantees, we evaluate the performance of DY-

NAMIC under severe fluctuations in data arrival rates. We simulate a scenario where the

cardinality aspect ratios keep alternating between k and 1/k where k is the fluctuation rate.

Data from the first relation is streamed into the operator until its cardinality is k times that of

the second one. Then, the roles are swapped, by quiescing the first input stream and allowing

data to stream in from the second until its cardinality is k times that of the first. This fluc-

tuation continues until the streams are finished. We experiment on an 8G dataset using the

Fluct-Join query defined below on 64 machines. We run the query under various fluctuation

factor, specifically, k = 2, k = 4, k = 6 and k = 8. We set the operator to begin adapting after it

has received at least 500K tuples, corresponding to less than 1% of the total input.

63

Chapter 4. Online Theta Joins
Fl

u
ct

-J
o

in

SELECT *
FROM ORDER O, LINEITEM L

WHERE O.orderkey=L.orderkey

AND O.shippriority !=5-LOW AND O.shippriority !=1-URGENT

Analysis. The first metric of interest is the ILF competitive ratio of DYNAMIC in comparison

to an oracle that assigns the optimal mapping, and thus optimal ILF*, instantly at all times.

Fig. 4.12a plots both the |R|/ |S|, on the left axis, and the ILF/ILF* ratio, on the right axis,

throughout query execution. In the graph, migration durations are depicted by the shaded

regions. We observe that the ratio never exceeds 1.25 at all times which validates the result

of Theorem 4.4.7. Even under severe fluctuations, the operator is well advised in choosing

the right moments to adapt. Fig. 4.12b shows the execution time progress under different

fluctuation factor. Although DYNAMIC undergoes many migrations, it persists to progress

linearly showing that all migration costs are amortized. This verifies the results of Lemma 4.4.6

and Theorem 4.4.1.

4.5.5 Summary

Experiments show that our adaptive operator outperforms practical static schemes in every

performance measure without sacrificing low latency. The static schemes emphasize the

effect of ILF on resource utilization and performance. This validates the optimization goal

of minimizing ILF as a direct performance measure. Our operator ensures efficient resource

utilization in storage consumption and network bandwidth that is up to 7 times less than non-

adaptive theta-join counterparts. Non-adaptivity causes misuse of allocated resources leading

to overflows. Even when provided enough resources, the adaptive operator completes the join

up to 4 times faster with an average throughput of up to 4 times more. Adaptivity is achieved at

the cost of a slight increase in tuple latency (by as little as 5ms and at most 20ms). Experiments

also show that our operator is scalable. Under severe data fluctuations, the operator adapts

to data dynamics with the ILF remaining within the proven bounds from the optimum and

with amortized linear migration costs. Additionally, the operator, being content-insensitive,

is resilient to data skew while content-sensitive operators suffer from overflows, hindering

performance by up to two orders of magnitude.

64

5 Lago: Online Advanced Analytics

Analytics has seen a paradigm shift from aggregate query processing, e.g., in SQL, to more so-

phisticated analytics where data practitioners, engineers, and scientists utilize advanced data

models to gain insights about the collected data. These analytical tasks include machine learn-

ing, statistical analyses, scientific computation, and graph computations. Currently, a wide

range of tools and environments for expressing and optimizing such workloads have evolved.

These include systems specialized for machine learning tasks such as MLlib [131] and Sys-

temML [78]; platforms dedicated for graph processing such as GraphChi [113], GraphLab [119],

Pregel [123] and PowerGraph [80]; low-level autotuned kernels such as Spiral [149] for linear

transformations; and Riot [192] for out-of-core statistical analysis. However, the existing tools

lack support for dynamic datasets. Most datasets evolve through changes that are small relative

to the overall dataset size. For example, the activity of a single customer, like his purchase

history or review ratings, represents only a tiny portion of the overall collected data corpus.

Recomputing data analytics on every (moderate) dataset change is far from efficient. An al-

ternative approach, called Incremental View Maintenance, combines pre-computations with

incoming Δ changes to provide a computationally cheap method for updating the final result.

IVM [30, 107, 87] of relational calculus is well known in the Databases literature. Unfortunately,

these techniques are not compatible with other domains. Many of the advanced analyses boil

down to linear-algebra expressions over matrices [78, 105, 38, 173]. Matrix algebra represents

a concrete substrate for analytical tasks, machine learning, scientific computation, and graph

algorithms. Many machine learning algorithms, including regression, recommendations, and

matrix factorizations, are representable as matrix manipulation operations [78]. Moreover,

recent research [105, 38, 173] suggests that modelling graph analytics using matrix opera-

tions results in better parallelization efficiency, e.g., coarse grained parallelism, and higher

productivity, e.g., using a simpler level of abstraction.

65

Chapter 5. Lago: Online Advanced Analytics

5.1 Challenges and Contributions

This chapter presents techniques and tools that support Incremental View Maintenance of

advanced analytics represented as matrix algebra. We now present the structure of this chapter

while outlining our main contributions:

1. Lago: Automatic IVM Derivation: Lago (Section 5.3) is a unified modular compiler frame-

work that supports the IVM of a broad class of linear algebra programs. Lago automatically

derives and optimizes incremental trigger programs of analytical computations, while

freeing the user from erroneous manual derivations, low-level implementation details, and

performance tuning. Lago extends and builds upon previous work [140] that presents a

novel technique that captures Δ changes as low-rank matrices (Section 5.2.1). Low-rank

matrices are representable in a compressed factored form that enables converting pro-

grams that utilize expensive O(n3) matrix operations i such as matrix-matrix multiplication

and matrix-inverse, to trigger programs that evaluate delta expressions with asymptoti-

cally cheaper O(n2) matrix operations, e.g., matrix-vector multiplication. Lago utilizes the

low-rank property and automatically propagates it across program statements to derive

an efficient trigger program. Moreover, Lago extends its support to other applications and

domains of different semi-ring configurations, e.g., graph applications.

2. Framework and Components Synergy: The Lago framework is based upon several syn-

ergistic components: 1) First, Lago provides a domain-specific language (Section 5.3.2)

that supports basic linear algebra operations including multiplication, addition, inverse,

transpose, etc. This establishes a common ground that decouples the high-level represen-

tation of the program from IVM derivation, optimization, and domain representation, e.g.,

semi-ring configuration. The language is designed to be succinct to maintain simplicity

while preserving sufficient expressiveness, i.e., other constructs can be defined as composi-

tions of the core language. 2) Secondly, we present a set of domain-specific transformation

rules that allows for delta derivation, simplification, and cost-based optimization of ma-

trix algebra programs (Section 5.3.3). 3) Thirdly, we leverage and infer matrix-expression

properties and meta-information including data type, dimensions, cost, symmetry, etc, to

enable IVM and achieve high performance. Examples in this chapter demonstrate how

dimensions are used to guide cost-based optimization; how symmetry enables further

transformations; and how data and semi-ring types permit specialization opportunities

during code generation (Section 5.3.4). Such information enables orders of magnitude

iMore precisely, the complexity of matrix multiplication is O(nγ) where 2 ≤ γ ≤ 3. For all practical reasons,
the complexity of matrix multiplication implementations, e.g., using BLAS [179] has cubic cost O(n3). Other
algorithms, such as Coppersmith-Winograd and its successors, suggest better exponents of 2.37+ε; however, these
algorithms are only applicable for astronomically large matrices. Our incremental techniques remain relevant
as long as matrix multiplication stays asymptotically worse than quadratic time. Note that the asymptotic lower
bound is Ω(n2) operations because it needs to process at least all 2n2 entries.

66

5.2. Incremental Computation Δ

performance improvements as demonstrated in Section 5.6. 4) Finally, in Section 5.3.5, we

show how all these components are wired up all together to construct Lago. In particular,

we present a four phase compilation strategy that automatically transforms an input matrix

program to an efficient trigger program that is amenable to dynamic datasets.

3. Use cases & Evaluation: In sections 5.4 and § 5.6, we present and evaluate the IVM of

several practical use case examples including computing linear regression models, gradient

descent, and all-pairs graph reachability or shortest path computations. The evaluation

results demonstrate orders of magnitude better performance in favor of derived trigger

programs in comparison to simple re-evaluation.

5.2 Incremental Computation Δ

In the following discussion we use the following terminology: (i) column vectors are denoted

by lower case letters x, matrices are represented as upper case letters X, and subscripts are

used to name the respective vectors and matrices, (ii) ΔX (Y) represents the delta function of

expression Y given changes to matrix X and δY represents the delta variable that evaluates the

delta expression ΔX (Y). (iii) and finally, unless otherwise stated, arithmetic matrix operations

are denoted by + and . for addition and multiplication respectively.

Most datasets evolve through changes that are small relative to the overall dataset size. For

example, a social network graph evolves through connections that are relatively small in

comparison to the entire graph size. Recomputing data analytics on every slight dataset change

is far from efficient. Incremental View Maintenance [30, 107, 87] (IVM) studies the incremental

maintenance of relational queries. IVM trades off storage in favor of cheaper computations.

The main idea is to confine the re-evaluation to the changes affected by the incremental

updates only. Then, they are used to update materialized views of the precomputed results.

Within the Databases literature, several approaches [30, 107, 87] have been proposed to achieve

this. Most notably, DBToaster [107] achieves orders of magnitude better performance on

SQL queries in comparison to traditional re-evaluation. However, these approaches are not

applicable to matrix programs. To demonstrate this, consider the simple example of computing

matrix powers. Matrix powers play an important role in many different domains including

evaluating the stochastic matrix of a Markov chain after k steps, solving systems of linear

differential equations using matrix exponentials, answering graph reachability queries after k

hops. Fig. 5.1a demonstrates an example of computing the 8th power of the input matrix A.

The program requires computing 3 costly O(n3) matrix-matrix multiplications to evaluate the

result. Now, consider a trigger program that updates the final result given a single entry change

ΔA to the input matrix A. For explanatory reasons, Fig. 5.1b gives a simplistic representation of

such a trigger program where it computes the delta expression for each of the intermediate

variables B, C, and D, respectively. Then finally, these materialized views are updated with

67

Chapter 5. Lago: Online Advanced Analytics

def pow(A)={
B:= A.A;
C:= B.B;
D:= C.C;
return D;

}

(a) Example program that computes the 8th power
of input matrix A.

def powDelta(ΔA)={
ΔB:=(A+ΔA).(A+ΔA)-A.A;
ΔC:=(B+ΔB).(B+ΔB)-B.B;
ΔD:=(C+ΔC).(C+ΔC)-C.C;
A+=ΔA;B+=ΔB;C+=ΔC;D+=ΔD;
return D;

}

(b) Trigger program that computes Δ expressions
for each statement and finally updates the

corresponding materialized views.

def powDelta(ΔA)={
ΔB:= A.ΔA + ΔA.A + ΔA.ΔA;
ΔC:= B.ΔB + ΔB.B + ΔB.ΔB;
ΔD:= C.ΔC + ΔC.C + ΔC.ΔC;
A+=ΔA;B+=ΔB;C+=ΔC;D+=ΔD;
return D;

}

(c) An optimized version of the trigger program
after applying algebraic simplification.

def powDelta(uA,vA)={

UB:= [uA (A.uA + uA.(vTA.uA))];

VB:= [(vTA.A) ; vTA];
UC:= [UB (B.UB + UB.(VB.UB))];
VC:= [(VB.B) ; VB];
UD:= [UC (C.UC + UC.(VC.UC))];
VD:=[(VC.C) ; VC];
A+=uA.vA;B+=UB.VB;C+=UC.VC;D+=UD.VD;
return D;

}

(d) Final optimized trigger program that represents Δ
expressions in a factored form.

Figure 5.1 – Deriving the trigger program for the matrix powers program A8

the corresponding delta expressions, e.g., B+=ΔB. Furthermore, when the expressions are

expanded algebraically utilizing the associative and distributive laws of matrix addition over

multiplication, one could deduce the more simplified expressions illustrated in Fig. 5.1c.

On relatively small changes, one could imagine that by confining the computation to the

deltas, we could achieve better performance in comparison to re-evaluation. Unfortunately,

this is not the case. As depicted in Fig. 5.2, consider a single entry change ΔA in A. As the

figure illustrates, dark cells correspond to entry changes where as white cells correspond to

the neutral value, i.e., no change. We can easily compute ΔB in O(n2) time, as there is only

one single entry in ΔA. After the multiplication, the resulting ΔB matrix has entry changes on

a single row and a single column. Similarly, computing ΔC can be done in O(n2) time, as one

only needs to multiply the two vectors from ΔB with full matrices. However, this is not the case

anymore when computing ΔD. ΔC has changes all over its matrix entries. When it is used in the

68

5.2. Incremental Computation Δ

Figure 5.2 – A single data-entry change ΔA in the input A can result in whole matrix
perturbations of subsequent Δ expressions. ΔB has changes in a row and a column, whereas

ΔC has changes all over all the entries.

subsequent statement to compute ΔD, full fledged O(n3) matrix multiplications are required.

This renders incremental computation useless in comparison to naive re-evaluation. The

above example shows that linear algebra programs are, in general, sensitive to input changes.

Even a single entry change in the input can cause an avalanche effect of perturbations, quickly

escalating to full matrix perturbations, even after executing only two statements.

5.2.1 The Delta Δ Representation

Until now, we have stored the results of Δ expressions in full matrices. However, one can

realize that this representation is highly redundant and that Δs are usually characterized by

having low ranks. Capturing this information is important, as it enables representing the

Δ expressions in a packed factored form which compacts storage and greatly reduces the

computation cost of its evaluation. The matrix rank-k is defined as the maximum number of

linearly independent rows or columns in the matrix.

Consider a matrix A being updated with ΔA, i.e., A+ΔA. If ΔA is a single entry change then it is

a rank-1 matrix. Moreover, the expression A+ΔA represents a rank-1 update. In fact, a rank-1

update can represent updates of a single row/column or even several rows/columns that are

linearly dependent to each other. A rank-1 matrix can be represented in a compressed compact

form as an outer product of two vectors Δ := uvT rather than a full matrix. To demonstrate

this, suppose that matrix A has dimensions 3×3 and the single entry change ΔA adds the value

69

Chapter 5. Lago: Online Advanced Analytics

c at index [2,2] of matrix A. This change can be represented in the factored form as follows:

ΔA :=

⎡
⎢⎣

0 0 0

0 0 0

0 0 c

⎤
⎥⎦ := u.vT :=

⎡
⎢⎣

0

0

1

⎤
⎥⎦

[
0 0 c

]
.

Similarly a row change or a column change at [2,_] or [_,2] can be represented as follows

respectively:

ΔA :=

⎡
⎢⎣

0 0 0

0 0 0

c0 c1 c2

⎤
⎥⎦ := u.vT :=

⎡
⎢⎣

0

0

1

⎤
⎥⎦

[
c0 c1 c2

]
,

ΔA :=

⎡
⎢⎣

0 0 c0

0 0 c1

0 0 c2

⎤
⎥⎦ := u.vT :=

⎡
⎢⎣

c0

c1

c2

⎤
⎥⎦

[
0 0 1

]
.

In general, rank-k matrices can represent more general update patterns as they can be repre-

sented as a sum of k rank-1 matrices.

Let us illustrate the benefits of this factored form in the previous example. Consider a rank-1

update ΔA = uAvT
A, where uA and vA are column vectors. One can compute ΔB := uA (vT

A A)+
(A uA) vT

A + (uA (vT
A uA)) vT

A as a sum of three outer products. The evaluation order enforced by

these parentheses results in matrix-vector and vector-vector multiplications only. Thus, the

evaluation of ΔB requires O(n2) operations only. Moreover, rather than representing the delta

expressions as a sum of outer products, we represent them in a more compact vectorized form

for performance, storage, and presentation reasons. Generally, a sum of k outer products is

equivalent to a single product of two matrices with dimensions (n ×k) and (k ×n), which are

obtained by horizontally/vertically stacking the corresponding vectors together as follows:

ua .vT
a +ub .vT

b +uc .vT
c :=

[
ua ub uc

]
⎡
⎢⎣

vT
a

vT
b

vT
c

⎤
⎥⎦ :=U V

where U and V are block matrices with dimensions (n ×3) and (3×n) respectively. Following

the same structure, we can represent ΔB in the factored form UB VB (with rank-2) as derived in

Fig. 5.1d:

ΔB := uA.(vT
A.A)+ (A.uA +uA.(vT

A.uA)).vT
A ⇒

UB := [uA (A.uA +uA.(vT
A.uA))]

VB := [(vT
A.A) ; vT

A]

This factored representation is forward substituted further down the program to derive the Δ

70

5.3. The LAGO Framework

Figure 5.3 – The architecture of the Lago framework.

expressions for each of C and D as depicted in Fig. 5.1d.

In summary and without loss of generality, we capitalize on the low-rank structure of delta

matrices by representing a delta expression Δn×n of rank k as a product of two matrices

with dimensions (n × k) and (k ×n), where k � n. This allows for efficient evaluation of

subsequent delta expressions without performing expensive O(n3) operations; instead, only

O(kn2) operations are computed. The benefit of incremental processing diminishes as k

approaches n.

5.3 The LAGO Framework

In the previous section, we introduced the concept of incremental computation for matrix

algebra and the ability to derive efficient trigger programs by representing updates in a factored

form through exploitation of their low rank structure. In this section, we discuss how to

automatically derive those trigger programs. One could assume a manual approach in dealing

with this problem, however the developer has to put effort into deriving the incremental

program, then optimizing it to ensure low cost computation, then finally writing down the

code for the trigger program. This is a long and tedious process that includes a) delta derivation

which is error prone, b) optimization which requires simplification, cost-based rewrites, and

delicate ordering of operations, and c) writing the final trigger program code which requires

71

Chapter 5. Lago: Online Advanced Analytics

careful consideration, e.g., evaluating the delta expressions using the precomputed results

before updating the views. We propose offloading all of these responsibilities to Lago, a

compiler framework dedicated for deriving, optimizing, and generating trigger code for various

underlying processing substrates, thereby freeing the user from erroneous manual derivations,

optimization, and low-level implementation details.

5.3.1 Architecture

In this section, we present the architecture of the Lago framework, then we describe its un-

derlying components in detail, and finally, we discuss how all these components are wired

together to achieve our goals. The main tasks of the Lago framework are as follows: 1. accept-

ing an input matrix program; 2. deriving the incremental Δ expressions for the statements;

performing simplification and cost-based optimizations to optimize the derived expressions;

and finally 3. generating the output trigger program code for the underlying system using the

derived Δ expressions. Fig. 5.3 gives an overview of the Lago architecture.

1. First, section 5.3.2 presents the domain-specific language used to describe matrix programs

in the framework. It includes a restricted set of domain-specific operations specialized for

matrix algebra that is independent of the application domain.

2. To derive the incremental program, Lago needs a set of reduction rules that symbolically de-

rive the incremental expressions from the input program and those that simplify the derived

expressions. Afterwards, equivalence rules are applied whenever optimization is required.

These are called transformation rules (Section 5.3.3). A search module is required to navi-

gate the search space of functionally equivalent programs created by the optimization rules.

Different search algorithms can be utilized for different workloads. Similar to DBMSs, vari-

ous flavours of search algorithms can be employed, such as brute force, DP-programming,

or randomized algorithms [98]. However, the discussion about search strategies is orthogo-

nal to this chapter. To evaluate the cost of candidate programs, one needs to estimate their

running costs. Similar to how Database Management Systems (DBMSs) estimate query-

plan costs using cardinality and selectivity information, Lago leverages meta-information

(Section 5.3.4) for matrix programs. The meta-information encapsulates various properties

associated to matrix expressions, such as dimensions, structure, symmetry, rank, etc. More-

over, Lago defines inference rules to derive this meta-information for candidate programs

whenever possible. This information helps in estimating program costs and in leveraging

specialized back-end implementations.

3. Finally, Lago generates trigger code for the underlying processing substrate using code

generation. Code generation is extensible, in the sense that one can easily use various code

generators for different environments, e.g., Octave, R, Spark, SystemML, etc. The main task

72

5.3. The LAGO Framework

m ::= m ·m – Matrix-Matrix Multiplication
| m +m – Matrix Addition
| m� – Matrix Transpose
| m-1 – Matrix Inverse
| m⇒m – Matrix Concatenation
| vects – Row Matrix Construction
| diag[s][s] – Diagonal Matrix Construction
| let x = m1 inm2 – Let binding
| iterate[s](m)(x ⇒m) – Matrix Iteration
| x – Matrix Identifier

s ::= s bop s – Scalar Binary Operation
| cols(m) – Number of Columns of a Matrix

Figure 5.4 – The core Lago DSL divided into two main classes, i.e., matrix and scalar
operations.

in this phase is to generate code for the materialized precomputed results and updating

them with their corresponding optimized Δ expressions.

Next, we discuss each of these components in detail, then we describe how they interact with

each other to assemble the Lago framework.

5.3.2 Lago DSL

Many sophisticated data analytics programs, including machine learning, graph algorithms,

and statistical programs, express computation using matrices and vectors using a high-level

abstraction. Lago exposes a domain-specific language (DSL) that expresses such program

formulations. The DSL is formulated using standard matrix manipulation primitives excluding

elementwise operationsii.

Lago adopts a functional approach in the language design. This choice is motivated by the

design of languages like relational algebra and Monad algebra [35, 36] in the DB community.

Functional programming is a popular paradigm that treats computation as the evaluation

of mathematical functions while avoiding state mutation. Since the domain in hand is also

mathematical, this paradigm fits well and the inherited benefits are manifold. Most problems

that commonly arise in imperative languages from mutable state and side effects are elimi-

iiElementwise operations could not propagate factorized expressions down the program. For instance, the
expression X .∗u.v t , could not exploit the low rank structure and be further factorized into UV . That said, the
Lago core language can be extended with additional operations only if they can satisfy this requirement, i.e., when
updated with a low rank expression the resulting delta expression maintains a low rank that can be represented in
a compact factorized form, e.g. the Woodbury formula for matrix inverses.

73

Chapter 5. Lago: Online Advanced Analytics

Matlab R Lago
A * B A %*% B A · B
A + B A + B A + B

A’ t(A) A�

[A,B] cbind(A, B) A ⇒ B
[A;B] rbind(A, B) A � B

ones(n, m) matrix(1, n, m) ones[n, m]
zeros(n, m) matrix(0, n, m) zeros[n, m]

eye(n) diag(n) id[n]

Table 5.1 – Equivalent operations in Matlab, R, and Lago respectively. Fig. 5.5 defines the
extended operations.

nated. This plays a critical role in performing optimizations. In particular, transformations

and their compositions preserve semantics. This eliminates worries about overall program

correctness. Moreover, given the mathematical nature of the DSL, transformation rules and

meta-information inference rules are much easier defined, as later discussed in Section 5.3.2

and Section 5.3.4. Alternatively, other declarative languages proposed in the literature, such

as SystemML [78], take an imperative approach that supports generic control flow and mu-

table state. Mutable state enables better runtime performance yet makes reasoning and

optimization much harder.

Core Language

Another important design choice that drives the language design is to keep the core language

succinct enough while maintaining expressiveness that supports a wider range of linear

algebra operations through composition. This keeps the language simple, which in turn

keeps all the transformation and inference rules at a simple maintainable level. Fig. 5.4

presents Lago’s core language grammar which includes matrix multiplication, matrix addition,

transpose, matrix inverse, horizontal concatenation (stacking), matrix construction, diagonal

matrix construction, let binding, and declaring matrix identifiers respectively. vect[s1](s2)

constructs a 1× s1 matrix with the constant value s2. diag[s1][s2] creates an s1× s1 matrix

with diagonal elements of value s2. The rest of operations are self-explanatory. Additionally,

we define binary operations on scalars and computing the columns of a matrix.

These constructs are sufficient for expressing non-iterative matrix operations. However, sup-

porting iterative computation is a challenging undertaking. For example, the declarative

language presented in SystemML [78] uses imperative constructs such as while loops. Alter-

natively, to support iterative computation without using imperative loops or mutable states

we present the iterate[s](m)(x ⇒ m) construct which allows us to perform step-by-step

computations. The construct is defined by specifying the number of iterations s, the matrix

74

5.3. The LAGO Framework

fill[r, c](s)
:= vect[r](1)� · vect[c](s)

rows(m)
:= cols(m�)

k ·m
:= diag[rows(m)][k] ·m

m1 −m2

:= m1 + -1 ·m2

m1 �m2

:= (m1
� ⇒m2

�)
�

id[n]
:= diag[n][1]

ones[r, c]
:= fill[r, c](1)

zeros[r, c]
:= fill[r, c](0)

Figure 5.5 – Syntactic sugar: Examples of additional operations defined using compositions of
the Lago DSL.

m value for the initial step, i.e., neutral value, as well as a function, x ⇒m, which computes

the current step given the accumulator computed from the previous steps. Notice how the

iterate operator relates to the functional fold operator. It is important to note that the

iterate construct represents syntactic sugar for recursive functions. An initial program

with the iterate operator is first expanded into simpler core language constructs using the

simplification rules described next.

Extensions

Various matrix manipulation operations can be defined as syntactic sugar over the core

language. This means that there is no need to extend the core language with further redundant

operations, which in turn complicates the language, the transformations, the reasoning power,

the search space and eventually the modularity of the framework. Instead, one can define these

operations in terms of compositions of the core language constructs. Fig. 5.5 demonstrates

the expressiveness of the core Lago DSL and Table 5.1 illustrates some examples of equivalent

operations in Matlab, R, and Lago using compositions of the small set of core language

operations.

Semiring Configurations. Different domains and applications can be built on top of matrix

algebra using various semiring configurations. One domain example that makes use of matrix

algebra and semirings is graph computation. To explain this further, lets define a semiring

first:

Definition 5.3.1. Given a set S and two binary operations ⊕, ⊗ called addition and multiplica-

tion respectively, a semiring 〈S ,⊕,⊗〉 is an algebraic structure, such that 〈S ,⊕〉 is a commutative

monoid with the identity element 0, 〈S ,⊗〉 is a monoid with the identity element 1, left and right

multiplication ⊗ distributes over addition ⊕, and multiplication by 0 yields back 0.

75

Chapter 5. Lago: Online Advanced Analytics

m ::= m ⊗R m
| m ⊕R m

m1 ·m2 := m ⊗N m
m1 +m2 := m ⊕N m

Figure 5.6 – Matrix addition and multiplication in the core Lago DSL generalized for semirings

iterate[k](id)(acc=> G · acc + id)

Figure 5.7 – Program P represents all-pairs Graph Reachability or Shortest Path after k-hops
depending on the semiring configuration.

Semirings & Graphs. Graphs are among the most important abstract data structures in com-

puter science. The algorithms that operate on them are critical to a wide variety of applications

including bioinformatics, computer networks, and social media. The vast growth in graph data

has forced a shift to parallel computing for executing graph algorithms. Implementing parallel

graph algorithms while achieving good parallel performance is a difficult task as it requires fine

grained synchronization [38]. Recently, there has been an interest in addressing this challenge

by exploiting the duality between the canonical representation of graphs as abstract collections

of vertices and edges and a sparse adjacency matrix representation [105, 38, 173]. Furthermore,

there is a duality between the fundamental operations on graphs, Breadth First Search (BFS),

and the fundamental operation of matrices, matrix multiplication. The benefits of repre-

senting graph algorithms as matrices are manifold [105, 38, 173]. Firstly, this linear algebraic

approach is widely accessible to scientists and engineers who may not be formally trained

in computer science. Secondly, higher performance can be achieved, as parallelizing graph

algorithms can now leverage decades worth of research on parallelizing matrix operations,

coarse grained parallelism, and optimization with regards to the memory hierarchy. And fi-

nally, it leverages productivity and ease of implementation. The common primitive operations

used are the numerical addition and multiplication which define a semi-ring 〈S ,⊕,⊗〉 where

S ∈ {R}, ⊕=+, ⊗=×. Many graph problems can be articulated as matrix algebra programs

under different semi-ring semantics. For instance, computing all-pairs graph reachability or

shortest path after k hops can be expressed as program P depicted in Fig. 5.7. The semiring

configuration defines the semantics of the program. For example, program P with the Boolean

semiring 〈{0,1},∨,∧〉 configuration expresses the k-hop reachability program. Similarly, with

the tropical semiring 〈R,min,+〉 [38] configuration, program P expresses the k-hop shortest

path program.

IVM & Semirings. Lago exposes a DSL that supports high level matrix operations. This directly

allows us to represent graph programs. Moreover, all the primitives that we have previously

76

5.3. The LAGO Framework

Δx (m1 +m2) →Δx (m1) + Δx (m2) DELTA-ADD

Δx (m1 ·m2) → DELTA-MULT

Δx (m1) ·m2 +m1 · Δx (m2) + Δx (m1) · Δx (m2)
Δx

(
m�) →(Δx (m))� DELTA-TRANS

Δx
(
m-1

) →(m + Δx (m))-1 −m-1 DELTA-INV

Δx
(
y
) →δy if x = y DELTA-VAR-EQ

Δx
(
y
) →zeros[rows(y), cols(y)] if x �= y DELTA-VAR-NEQ

Δx (m1 ⇒m2) → Δx (m1) ⇒ Δx (m2) DELTA-STACK

Δx
(
let x = m1 inm2

) → DELTA-LET

let δx
(
y
)

= Δy (m1) in Δx (m2)
Δx (vect[c](s)) →zeros[1, c] DELTA-VECT

Δx
(
diag[c][s]

) →zeros[c, c] DELTA-DIAG

Figure 5.8 – Delta Δ derivation rules for the core language constructs. The iterate construct
is first unfolded using the simplification rules in the appendix before applying Δ rules on it.

Moreover, the Δ rule for matrix inverse enables the cheaper Woodbury formula as explained
in the subsequent examples in section 5.4.1.

presented to support the incremental view maintenance of matrix expressions naturally follow

under the different semiring definitions. For example, as graphs evolve with time, one can

model new connections in the graph as ΔG expressions added to the original adjacency matrix

G iii.

Deriving the Δ expressions and trigger programs is only concerned with the abstract rep-

resentation of matrices and their transformations, and is independent from the semiring

definition. However, this information is useful later on during the code generation phase for

specialization, as demonstrated in the section 5.6. The semiring information can be expressed

using the core language except for matrix inverse. As illustrated in Fig. 5.6, we generalize the

Lago core language by replacing matrix addition and multiplication with two meta-operators

⊕R and ⊗R parameterized by a semi-ring R instance. For example, ⊕N and ⊗N are concrete

instances of the meta-operators with the arithmetic semiring N parameter.

5.3.3 Transformation Rules

Definition 5.3.2. The Δx (m) operator symbolically derives the delta Δ of expression m with

respect to variable (or matrix) x. Derivation of the delta expressions and their optimizations

are achieved by recursively applying delta transformation rules on the expression m until all Δ

operators are omitted.

iiiNote that Δ changes represented as additions are naturally defined within the semiring, however deletions
depend on the availability of an additive inverse, for example under the boolean semiring, the additive inverse
does not exist and thus we cannot model deletions.

77

Chapter 5. Lago: Online Advanced Analytics

There are two types of transformation rules: First, reduction rules which are used to derive

the Δ operators and to perform simplifications on the derived expressions. Second, to further

perform cost-based optimizations, Lago relies on a set of equivalence rules that create a space

of functionally equivalent programs which are passed to the search algorithm in order to find

a program with optimal cost. Transformation rules are responsible for constructing the search

space of programs. It is very important that transformation rules preserve program semantics.

For illustration purposes, consider a 2-hop instance of the Graph program in Fig. 5.7 yielding

the following expressioniv:

G.G + G.id + id

We will continue using this simple running example throughout the following subsections.

Reduction Rules

These are rules in the form of lhs → rhs, where it always reduces a matched expression from

the left-hand-side to the right-hand-side. There are two classes of reduction rules, in particular,

derivation and simplification rules which are explained next.

Derivation Rules. This class of reduction rules are used to derive the delta expressions, Δ

operators are expanded and evaluated recursively. Using the distributive and associative

properties of common matrix operations, we demonstrate the set of delta derivation rules

for the core language as depicted in Fig. 5.8. The rules are applied recursively until all deltas

of expressions are evaluated, i.e., no more matching derivation rules exist. To illustrate this,

given our running example, consider that graph G is evolving with ΔG changes and that we

would like to evaluate the following expression:

ΔG(G.G + G.id + id)

We notice, that the Δ operator is applied over an entire expression that can be reduced by the

derivation rules. First, after applying the DELTA-ADD rule, the expression becomes:

ΔG(G.G) + ΔG(G.id) + ΔG(id)

Furthermore, applying the DELTA-MULT rule yields:

ivNotice that we omit the id in G.G.id. This is only meant to simplify the following flow and avoid redundant
discussions as with the subexpression G.id.

78

5.3. The LAGO Framework

ΔG(G).G + G.ΔG(G) + ΔG(G).ΔG(G) + ΔG(G).(id) + G.ΔG(id)
+ ΔG(G).ΔG(id) + ΔG(id)

Moreover, there are ΔG operators on expressions that do not contain any G bindings, which

can be further reduced to zeros using the DELTA-VAR-NEQ rule. Also, using the DELTA-VAR-EQ

rule, all the ΔG (G) expressions are reduced to delta variable instances δG . This yields the

expression:

δG.G + G.δG + δG.δG + δG.zeros + G.zeros + δG.zeros + zeros

Fig. 5.8 demonstrates the delta rules for each of the core language constructs. The derivation

of these rules are based on matrix identities. DELTA-ADD distributes the Δ operator across

the summands. DELTA-MULT is directly derived from the distributivity of matrix multipli-

cation over addition. DELTA-TRANS pushes the Δ into the expression before evaluating the

transpose. DELTA-INV depicts the actual definition of Δ computation, which does not pro-

vide any computational savings at first glance, however it enables the Woodbury formula

optimization that admits efficient evaluation. This is explained further in the example of

section 5.4.1. DELTA-VAR-EQ simply maps the Δx of a matrix y to a variable instance (called the

delta variable) if x = y , i.e., the matrix being changed x is identical to expression y . Similarly

for DELTA-VAR-NEQ, if x �= y , i.e., the matrix being changed x is different than the expression

y , then the delta expression for y is zeros. DELTA-STACK distributes the Δ across the stacked

matrices. DELTA-LET simply instantiates a delta variable instance and pushes the Δ across the

expressions. Finally, DELTA-VECT and DELTA-DIAG reduce the Δ of the constant matrices to

zeros.

Simplification Rules. The second class of reduction rules represents expression simplification.

Symbolic computation is commonly accompanied by simplification. The derived expression is

usually unnecessarily large and contains redundant computations. The expression is generally

amenable to simplification. This is a major step in performing symbolic computations in

computer algebra systems (CAS). For example, in CASs, right after deriving symbolic differen-

tials, they usually perform simplification with the goal of minimizing the expression size. The

same artifact happens while deriving Δ expressions, however, the goal is to avoid unnecessary

redundant operations that will most probably result in higher cost. Fig. A.1 demonstrates

a subset of simplification rules used within Lago. These kinds of transformation rules are

important when the expression tree is undergoing derivation or major transformations by

Lago and requires simplification along the way. For instance, consider the previous running

example, there are many zeros matrices that have been created throughout the derivation

process. After applying several simplification rules as demonstrated in Fig. A.1, our running

example is simplified to the following expression:

79

Chapter 5. Lago: Online Advanced Analytics

δG.G + G.δG + δG.δG

Note that simplification rules are always deterministically applied, and the choice of applying

them is not left to the searching algorithm. To be more precise, simplification rules can be

safely applied whenever possible and they do not increase the size of the search space.

Equivalence Rules

These are rules that define equivalent expressions lhs ↔ rhs. In particular, it is not clear

beforehand which form of the expression (lhs or rhs) will result in an optimized program

down the road. However, their presence is important not only because of their probable

performance improvement, but also their possible impact on permitting other rewrite rules

later. This effect is known as enabling transformations in compilers. Fig. A.2 presents a subset

of equivalence rules used within Lago. Common subexpression elimination (CSE) and forward

substitution (FS) are among these rules. In essence, these rules are the reverse of each other,

hence it is not clear which one should be applied. General purpose compilers adopt CSE as

a best-effort heuristic to enhance performance. That is, they apply them whenever possible

as an enabling compiler optimization. Moreover, other domain-specific frameworks such

as SystemML adopt these optimizations as static optimization opportunities, i.e., heuristics.

In contrast, we argue that decisions about these optimizations should be taken under the

light of cost-based optimization. In particular, algebraic and domain structure information

often enable optimizations that override these general compiler heuristics. To illustrate this,

consider our running example: δG.G + G.δG + δG.δG , where the matrix G has dimensions

n ×n. Now, suppose that δG is a simple single entry change which can represented as an

outer-product u.vT, i.e., (n×1) × (1×n). Using simple heuristics a compiler can directly detect

that the expression δG = u.vT occurs several times within the program, hence by applying CSE,

one can compute u.vT once and then reuse it later on for further computation. In particular,

the derived program becomes

let D := u.vT in D.G + G.D + D.D

Although CSE saved us from computing uvT more than once, i.e., saving O(n2) operations, it

results in more costly computations further on, in particular, the O(n3) matrix multiplications

G.D, D.G, and D.D. On the other hand, given that u.vT is an outer product of two vectors,

using cost-based optimization, it is much cheaper, i.e., O(n2) overall, to avoid CSE and keep

the computations inlined as follows:

u.(vT.G) + (G.u).vT + u.(vT.u).vT

80

5.3. The LAGO Framework

m1 :D(n,m),C(c1) m2 :D(n,m),C(c2)

m1 +m2 :D(n,m),C(c1+c2+n·m)
DC-ADD

m1 :D(n,m),C(c1) m2 :D(m,p),C(c2)

m1 ·m2 :D(n,p),C(c1+c2+n·m·p)
DC-MULT

m :D(n,m),C(c)

m� :D(m,n),C(c+n·m)
DC-TRANS

m1 :D(n,m),C(c1) x :D(n,m) �m2 :D(p,k),C(c2)

let x = m1 inm2 :D(p,k),C(c1+c2)
DC-LET

m1 :D(n,m),C(c1) m2 :D(n,p),C(c2)

m1 ⇒m2 :D(n,m+p),C(c1+c2+(n·(m+p)))
DC-STACK

vect[c](s) :D(1,c),C(c)
DC-VECT

diag[c][s] :D(c,c),C(c·c)
DC-DIAG

Figure 5.9 – Inferring dimensions and cost of matrices.

This pattern occurs frequently in the derivation of incremental programs as we will demon-

strate later in the examples of section 5.4. Equivalence rewrite rules construct programs which

should be included in the search space. This is because it is not possible to decide locally if a

rewrite rule will produce a better program or not. Even if it locally generates a better program,

it might disable further transformations along the way. In other words, in order to not fall into

a local optimum, one should traverse the search space of equivalent programs and rely on the

search algorithm along with cost estimation to decide globally which program to pick.

Some transformation rules require specific conditions to check for their applicability in order

to preserve semantics. These are known as conditional rewrite rules in the literature [104].

Apart from the structure of the program, these rules can use meta-information to check their

applicability. This way, the framework can make sure that the transformation rules are sound,

meaning that they do not change the program semantics. For example, m� is equivalent to m

in the case that the matrix m is symmetric. Next, we discuss meta-information and how it is

inferred.

5.3.4 Meta-Information

DBMSs extensively use workload-specific information such as selectivity and cardinality in

order to estimate query costs during query optimization. We observe that the idea of meta-

information used by query optimizers can be abstracted and used for other domains. For

example, in the domain of matrix algebra, symmetry, dimensions, structure, and rank of

matrices are workload-specific information that permits further enhancements. To that end,

81

Chapter 5. Lago: Online Advanced Analytics

Lago permits encoding information about matrix and expression properties. The data type is

the most obvious example of such information, e.g., a matrix of boolean elements or a matrix

of double-precision numbers, e.g., Fig. A.3. Matrix dimensions are another, which are, in

essence, very similar to relation cardinalities. The sparsity and the rank of a matrix are similar

to the notion of selectivity in databases. Finally, the cost estimate itself can also be considered

as another type of meta-information that can be used during cost-based optimization.

There are many benefits to meta-information: 1) First, to verify program correctness. For

example, in the case of matrix multiplication, dimensions are used to check if the number of

columns of the first matrix is equal to the number of rows of the second matrix. 2) Secondly, to

guide the optimizing compiler to reason about optimization opportunities by evaluating cost

estimates. 3) Thirdly, to enable conditional rewrites. 4) Finally, to enable further specialization

opportunities during the code generation phase.

Lago is extensible; in a sense, one can introduce more properties that capture the workload-

specific information available. These properties are not limited to the information about the

input data provided by the input program. Similar to type inference algorithms, Lago tries to

propagate this meta-information throughout the whole program whenever possible. This is

achieved by defining meta-information inference rules as described next.

Inference Rules

The user provides the information about the input matrices by specifying their associated meta-

information. In order to leverage this information, they should be propagated throughout the

program. This way, the optimizing compiler can utilize the provided information for the whole

program. The Lago framework requires inference rules in order to infer the information of

an expression based on its input data through a bottom-up derivation approach. These rules

are similar to type inference rules which are used in type systems of programming languages.

For instance, Fig. 5.9 illustrates the inference rules for matrix dimensions. Fig. A.3, Fig. A.6,

Fig. A.5, and Fig. A.4 in the appendix demonstrate a subset of the inference rules for matrix

symmetry, triangular matrices, matrix rank, and diagonal matrices respectively.

For example, consider our original reachability example. If the input graph G is undirected,

then it is symmetric and only requires to be stored in a lower triangular binary adjacency matrix.

As depicted in Fig. 5.10, starting from these properties of matrix G, the information propagates

upwards to infer the meta-information of the intermediate and final results using the inference

rules described before. This information is useful for specialization purposes. For instance,

boolean matrices can be represented in a more compact form (e.g., bit vectors) in comparison

to the more general double-precision matrices. Similarly, lower-triangular matrices can be

represented using less space given the symmetric nature of the matrix. Moreover, specialized

82

5.3. The LAGO Framework

Figure 5.10 – Meta-Information propagating bottom-up using their respective inference rules.
Bin, Sym, Low, D, and Cost correspond to the inferred Binary, Symmetric, Lower-Triangular,

Dimensions, and Cost properties respectively.

implementations of operations can be leveraged using the knowledge of symmetry. Similar

inference rules can be applied during the evaluation of the trigger program, e.g., G.U.V is

symmetric if U .V is symmetric.

Cost Model. One of the most essential meta-information instances is cost estimation. The

cost estimate is used to guide the search space in choosing efficient derived programs. Cur-

rently, the cost estimate is modelled as a function of the number of arithmetic operations that

need evaluation. Similar to cost estimation in database systems which requires cardinality

information of relations, the cost estimation in Lago also requires knowledge about the dimen-

sions of matrices. This means, before starting the inference process for the cost estimation

meta-information, the dimension inference should be performed. The inference rules for

cost estimation are given in Fig. 5.9. Cost and dimensions inference are illustrated in Fig. 5.10.

Returning back to our running example, these inference rules helped the search algorithm

in estimating the cost and favoring forward substitution of δG over CSE given the following

83

Chapter 5. Lago: Online Advanced Analytics

Figure 5.11 – Lago IVM phases.

parenthesization order:

u.(vT .G) + (G.u).vT + u.(vT.u).vT

Cost estimation is extensible as well. For instance, in addition to dimensions, one can in-

troduce and define additional meta-information abstractions that can introduce specialized

solutions and, therefore, better cost estimation. For example, based on the structure of matri-

ces, e.g., upper/lower triangular, one can use specialized matrix multiplication algorithms,

e.g., SSYMM in BLAS, that only computes the required entries, thereby saving space and

computation cost. This can be reflected in the cost model by inferring the structure of the

matrix, e.g., Fig. A.6, before performing cost inference. By further reflecting this information

as new inference rules in the cost estimation, one could further specialize the precision of the

cost model estimation.

5.3.5 Wiring it all together

In the previous sections, we have discussed the building blocks that constitute the Lago frame-

work. In this section, we discuss how all these parts are put together to generate incremental

trigger programs. An incremental program consists of an initialization phase that precomputes

and materializes the initial value of the intermediate and result expressions, and a trigger

function that computes a set of Δ expressions that update their corresponding viewsv.

To achieve these goals, an input program accepted by Lago undergoes several phases. As

depicted in Fig. 5.11, the input program passes through four stages, namely, ANF, DERIVATION,

FACTORIZATION and MATERIALIZATION. Next, we explain each phase while illustrating it using

our running example.

1. ANF. As a preprocessing step, an input Lago program P is first simplified and then optimized

using cost-based optimization to find an appropriate ordering of operations. After that, it is

converted to the administrative normal form (ANF) A [76]. In our context, the ANF is defined

as a simple representation of the program that assigns a unique variable to each subexpression

vFor presentation clarity purposes, in the rest of this chapter we omit the “·” symbol whenever multiplication is
understood within context.

84

5.3. The LAGO Framework

P :

let x0 := G + id
let x1 := Gx0 + id

x1

(a) Simplified program.

A:

let x0 := G + id
let x1 := Gx0

let x2 := x1 + id
x2

(b) ANF version of the program.

Δ:

let δ0 := δG

let δ1 := δG x0 + Gδ0 + δGδ0

let δ2 := δ1

δ2

M:

[G → δG , x0 → δ0,

x1 → δ1, x2 → δ2]

(c) After the Derivation phase.

Δ:

let U0 := u
let V0 := vT

let U1 := u ⇒ GU0

let V1 := vT(x0 + U0V0) �V0

let U2 := U1

let V2 := V1

U2V2

(d) After the Factorization phase.

// Global Views:
MG := G
M0 := G + id
M1 := GM0

M2 := M1 + id
// P Inc(u,v):
/* Generate Δ */
// Update Views:
MG+=uvT;M0+=U0V0;
M1+=U1V1;M2+=U2V2;

(e) After Materialization phase.

Figure 5.12 – Going through the IVM phases of program P from Fig. 5.7.

while also ensuring that each variable is assigned before it is used. The ANF is extensively

used in optimizing compilers due to its simplistic canonical representation that facilitates

reasoning and optimization [76]. To explain this, consider our reachability program P as

depicted in Fig. 5.7. First, the program is simplified using the simplification rules in Fig. A.1

where the iterate construct is unfolded and multiplications with the identity matrix are

omitted, yielding the simple program in Fig 5.12a. Afterwards, in Fig. 5.12b, the simplified

program is transformed into its ANF A, where each simple subexpression containing one

operation is assigned to a unique variable.

2. Derivation. In this phase, the delta derivation rules are recursively applied over the A
program reducing it to Δ. During derivation, a map M is created that maps each intermediate

result variable xi in A to its corresponding delta δi variable. Moreover, simplification rules are

applied whenever possible. This ensures that each statement si ∈Δ represents a sum of matrix

85

Chapter 5. Lago: Online Advanced Analytics

products, i.e., Σimi where mi is an expression of matrix products. Fig. 5.12c presents the final

delta program derived from ΔG (A) and the corresponding map M.

3. Factorization. The main goal of this phase is to represent each δi variable in a compact

factored form Ui Vi . This is achieved by recursively propagating and forward substituting

each δk variable with its corresponding factored form UkVk within each statement that calls

δk . Note that forward substitution begins with the initial substitution of δG with uvT . Given

that Δ is in ANF form, then it is ensured that δk and therefore, UkVk is defined before being

used. Then, each statement si is optimized using the equivalence rules along with cost-

based optimizations. In particular, the search algorithm explores the search space created

by applying valid equivalence rules on the statement si . Then, it chooses the program with

minimum inferred cost as explained in section 5.3.4. Notice that search is confined within the

scope of a single statement si . This guided approach avoids searching a vast search space that

includes all the statements of the whole program.

This ensures that each statement si ∈ Δ is a sum of matrix products containing UkVk , i.e.,

Σ jpjqj where pj and qj are expressions of matrix products and j represents the index of mini-

mum dimension within the overall matrix products. Finally, each statement is factorized to

Ui Vi using the FACTORIZATION rule in Fig. A.2 (Appendix), such that Ui = p0 ⇒ p1 · · ·⇒ pn
and similarly Vi = q0 � q1 · · · � qn. Fig. 5.12d presents the factorized Δ program with its

corresponding updated map M.

4. Materialization. Finally, in this phase Lago generates the incremental program. First, it

generates global materialized views for each of the variables defined in A. Then, it generates

the trigger program Δ derived from the previous stage. Finally, it updates the global views with

their corresponding δi expression derived in M. Fig. 5.12e illustrates the final incremental

program for P given incremental changes to G, i.e., δG := uvT .

5.4 Other Use cases

To further illustrate the stages undertaken by Lago, we demonstrate how it automatically

generates trigger programs for several use case examples other than our running graph ex-

ample. Moreover, the performance results for the IVM of these use cases can be found in the

evaluation section.

5.4.1 Incremental Linear Regression

Linear regression is an approach for modelling the relationship between the dependent vari-

ables Ym× j and independent variables Xm×n . It is extensively used in fitting predictive models

to an observed dataset of X and Y values. The goal is to estimate, given the input, the unknown

86

5.4. Other Use cases

parameters. The ordinary least squares method solves this problem by finding a statistical

estimate of the parameter β∗ best satisfying Y = Xβ. The program, written as a linear alge-

bra program, is β∗ := (X T X)−1 X T Y . The evaluation of the previous closed form equation

requires expensive O(n3) matrix-matrix computations for computing matrix multiplications

and inverses. It is far from efficient to re-evaluate the expression over and over again as the

input datasets evolve. Input datasets naturally evolve by either growing (for example as more

observations are accumulated to X and Y), or by changing (as more accurate estimates arrive).

Alternatively, Lago derives materialized views of precomputed intermediate results and their

corresponding delta expressions to generate trigger programs.

Here, we focus on how to derive the delta expression for β∗ under updates to X with δX := uvT.

Fig. 5.13 demonstrates the derivation of the incremental program going through the IVM

phases. Fig. 5.13a presents the the original Lago program. After the program is simplified,

optimized and converted to the ANF representation A, we compute its delta with an initial M
of δX as depicted in Fig. 5.13b. Afterwards, the DERIVATION PROCESS starts where several delta

derivation steps and simplifications are applied as illustrated in Fig. 5.13c to Fig. 5.13g. In

Fig. 5.13h, the FACTORIZATION phase starts by forward substituting the δX variable (defined in

M) with uvT. The new delta expression for δ0 is then derived. After applying a few simplifica-

tions, Lago factorizes δ0 into U0V0 as demonstrated in Fig. 5.13j and Fig. 5.13k, which in turn

is inlined into all variable calls of δ0 while updating M simultaneously. The same approach is

applied recursively, finally yielding, in Fig. 5.13o, all the delta expressions in factored form and

their respective materialized views defined in M. In the end, during the materialization phase,

Lago uses the derived A to generate the global views for the intermediate results x0 := X T X ,

x1 := x−1
0 , and x2 := X T Y and for the final program x3 := x1x2. Additionally, it generates the

trigger program using the derived delta expressions for each materialized view represented in

U0V0, U1V1, U2V2, and U3V3 respectively.

5.4.2 Incremental Matrix Powers

Matrix powers play an important role in many different domains including evaluating the

stochastic matrix of a Markov chain after k steps and solving systems of linear differential

equations using matrix exponentials. They also lay the foundation for more advanced analytics

like batch gradient descent and furthermore, computing graph analytics.

Consider the same running example as in section 5.2 that computes the 8th power of an input

matrix A as depicted in Fig 5.14. The original program can be represented using a simple

iterate construct as demonstrated in Fig 5.14a. Once again, the evaluation of the program

requires expensive O(n3) matrix-matrix computations. Re-evaluation of the entire program

on any delta change δA := uvT is a costly process. On the other hand, Lago derives the delta

of these expressions on each incremental change. First, the program is converted to ANF in

87

Chapter 5. Lago: Online Advanced Analytics

Fig. 5.14b. Then, the DERIVATION phase starts by applying delta derivation rules as depicted

in Fig. 5.14c to Fig. 5.14g while updating M to include the mappings between intermediate

result variables and their corresponding delta variables. In Fig. 5.14h, the FACTORIZATION

phase starts by replacing δA with uvT which is inlined into the expression. Thereby, the δ0

variable is evaluated and optimized using the appropriate equivalence rules generating the

corresponding factorized form U0V0 in Fig. 5.14k. The same process in repeated in a recursive

manner evaluating the delta expressions U1V1, U2V2, and U3V3 for each of x0, x1, x2 and the

final program x3.

88

5.4. Other Use cases

/*Original program*/
(X T X)−1X T Y

(a)

/*Transform to ANF then
compute Delta of it*/
ΔX(let x0:=(X T X) in
let x1:=x−1

0 in
let x2:=X T Y in
let x3:=x1x2 in x3)

(b) M= [X → δX]

/*Apply Delta-let rule*/
let δ0:=ΔX((X T X)) in
ΔX(let x1:=x−1

0 in
let x2:=X T Y in
let x3:=x1x2 in x3)

(c) M= [X → δX , x0 → δ0]

/*Apply Delta-Mult rule*/
let δ0:=δT

XX+
X T δX+ δT

X δX in
ΔX(let x1:=x−1

0 in
let x2:=X T Y in
let x3:=x1x2 in x3)

(d) M= [X → δX , x0 → δ0]

/*Apply delta rules*/
let δ0:=δT

XX+X T δX+ δT
X δX in

let δ1:=(x0 +δ0)−1 −x−1
0 in

let δ2:=δT
XY + X T ΔX(Y)+ δT

X ΔX

(Y) in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(e)
M= [X → δX , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Apply Delta-Ind-Var rule*/
let δ0:=δT

XX+X T δX+ δT
X δX in

let δ1:=(x0 +δ0)−1 −x−1
0 in

let δ2:=δT
XY + X Tzeros+ δT

Xzeros
in

let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(f)
M= [X → δX , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*perform simplifications*/

let δ0:=δT
XX+X

TδX+ δT
X δX in

let δ1:=(x0 +δ0)−1 −x−1
0 in

let δ2:=δT
XY in

let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(g)
M= [X → δX , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Begin: Factorization Phase
inline δX := uvT rule*/
let δ0:=(uvT)TX+
X T uvT+ (uvT)T uvT in
let δ1:=(x0 +δ0)−1 −x−1

0 in
let δ2:=(uvT)TY in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(h)
M= [X → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

Figure 5.13 – Step-by-step Δ derivation of the Ordinary Least Squares program till the
factorization phase.

89

Chapter 5. Lago: Online Advanced Analytics

/*Transpose homomorphism*/
let δ0:=vuTX+
X T uvT+ vuT uvT in
let δ1:=(x0 +δ0)−1 −x−1

0 in
let δ2:=(vuT)Y in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(i)
M= [X → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*cost based factorization*/
let δ0 := (v ⇒ X T u) (uT(X + uvT

)� vT) in
let δ1:=(x0 +δ0)−1 −x−1

0 in
let δ2:=(vuT)Y in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(j)
M= [X → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*factorize and replace δ0*/
let U0:=v ⇒ X T u in
let V0:=uT(X + uvT) � vT in
let δ1:=(x0 +δ0)−1 −x−1

0 in
let δ2:=(vuT)Y in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(k)
M= [X → uvT , x0 →U0V0

x1 → δ1, x2 → δ2, x3 → δ3]

/*inline δ0 =U0V0 rule*/
let U0:=v ⇒ X T u in
let V0:=uT(X + uvT) � vT in
let δ1:=(x0 +U0V0)−1 −x−1

0 in
let δ2:=(vuT)Y in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(l)
M= [X → uvT , x0 →U0V0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Apply Woodbury formula*/
let U0:=v ⇒ X T u in
let V0:=uT(X + uvT) � vT in
let δ1

:=−x−1
0 U0(id+V0x−1

0 U0)−1V0x−1
0 in

let δ2:=(vuT)Y in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(m)
M= [X → uvT , x0 →U0V0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Fast Forward:Repeating
previous rules*/

let U0:=v ⇒ X T u in
let V0:=uT(X + uvT) � vT in
let U1:=−x1U0 in
let V1:=(id+V0x−1

0 U0)−1V0x−1
0 in

let δ2:=(vuT)Y in
let δ3:=δ1x2 + x1δ2+ δ1δ2 in δ3

(n)
M= [X → uvT , x0 →U0V0

x1 →U1V1, x2 → δ2, x3 → δ3]

/*Fast Forward:Repeating
previous rules*/

let U0:=v ⇒ X T u in
let V0:=uT(X + uvT) � vT in
let U1:=−x1U0 in
let V1:=(id+V0x−1

0 U0)−1V0x−1
0) in

let U2:=v in let V2 = uTY in
let U3:=U1 ⇒ x1U2 in
let V3:=V1(x2 +U2V2) � V2 in
U3V3

(o)
M= [X → uvT , x0 →U0V0

x1 →U1V1, x2 →U2V2, x3 →U3V3]

90

5.4. Other Use cases

/*Original program*/
iterate[4](A)(acc=>
acc · acc)

(a)

/*Apply iterate unfold rule &
Transform into ANF
then compute Delta*/
ΔA(let x0:=AA in

iterate[3](x0)(acc=>
acc · acc))

(b) M= [A → δA]

/*Recurse iterate unfold rule*/
ΔA(let x0:=AA in
let x1 := x0x0 in
let x2 := x1x1 in
let x3 := x2x2 in
iterate[0](x3)(acc=>
acc · acc))

(c) M= [A → δA]

/*Apply simplification rule*/
ΔA(let x0:=AA in
let x1 := x0x0 in
let x2 := x1x1 in
let x3 := x2x2 in
x3)

(d) M= [A → δA]

/*Apply delta-let rule*/
let δ0 :=Δ(AA) in
ΔA(let x1 := x0x0 in
let x2 := x1x1 in
let x3 := x2x2 in
x3)

(e) M= [A → (A,δA), x0 → (A A,δ0)]

/*Recurse iterate unfold rule*/
let δ0 := δAA + AδA + δAδA in
let δ1 := δ0x0 + x0δ0 + δ0δ0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
ΔA(x3)

(f)
M= [A → δA , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Apply delta rule*/
let δ0 := δAA + AδA + δAδA in
let δ1 := δ0x0 + x0δ0 + δ0δ0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(g)
M= [A → δA , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Begin Factorization phase
inline δA := uvT rule*/
let δ0 := uvTA + AuvT + uvT uvT

in
let δ1 := δ0x0 + x0δ0 + δ0δ0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(h)
M= [A → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

91

Chapter 5. Lago: Online Advanced Analytics

/*cost based optimization*/
let δ0 := uvTA + (Au + uvT u)vT in
let δ1 := δ0x0 + x0δ0 + δ0δ0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(i)
M= [A → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*cost based factorization*/
let δ0 := (u ⇒ Au + uvT u) (vTA �

vT) in
let δ1 := δ0x0 + x0δ0 + δ0δ0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(j)
M= [A → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Factorize δ0*/
let U0:=u ⇒ (Au + uvT u) in
let V0:=vTA � vT in
let δ0:=U0V0 in
let δ1 := δ0x0 + x0δ0 + δ0δ0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(k)
M= [A → uvT , x0 → δ0

x1 → δ1, x2 → δ2, x3 → δ3]

/*inline δ0 =UV rule*/
let U0:=u ⇒ (Au + uvT u) in
let V0:=vTA � vT in
let δ1 :=U0V0x0 + x0U0V0 +

U0V0U0V0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(l)
M= [A → uvT , x0 →U0V0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Cost based optimization*/
let U0:=u ⇒ (Au + uvT u) in
let V0:=vTA � vT in
let δ1 :=U0 ⇒ (x0U0 + U0V0U0)

V0x0 � V0 in
let δ2 := δ1x1 + x1δ1 + δ1δ1 in
let δ3 := δ2x2 + x2δ2 + δ2δ2 in
δ3

(m)
M= [A → uvT , x0 →U0V0

x1 → δ1, x2 → δ2, x3 → δ3]

/*Fast Forward: Repeating
rules*/

let U0:=u ⇒ (Au + uvT u) in
let V0 = vTA � vT in

let U1:=U0 ⇒ (x0U0 + U0V0U0)
in let V1:=V0x0 � V0 in

let U2:=U1 ⇒ (x1U1 + U1V1U1)
in let V2:=V1x1 � V1 in

let U3:=U2 ⇒ (x2U2 + U2V2U2) in
let V3:=V2x2 � V2 in
U3V3

(n)
M= [A → uvT , x0 →U0V0

x1 →U1V1, x2 →U2V2, x3 →U3V3]

Figure 5.14 – Step-by-step Δ derivation of Matrix powers till the factorization phase.

92

5.5. Related Work

5.5 Related Work

This section presents related work in different directions.

Computer Algebra Systems. CAS is a software program that allows computation over mathe-

matical expressions and that automates tedious and difficult algebraic manipulation tasks.

They can perform symbolic computations including differentiation and integration. Examples

include Mathematica [181], MAPLE [134] and additional packages in Theano [167]. Similarly,

Lago performs symbolic computation in a sense that it derives Δ expressions using the re-

duction rules that we present in this chapter. Moreover, Lago differs from CAS in its ability

to derive incremental programs; perform cost-based optimization; and generate efficient

specialized code.

Scientific Databases. RasDaMan [24] and AML [126] represent database systems that are spe-

cialized in array processing. They provide infrastructure for expressing and optimizing queries

over multidimensional arrays. Queries are translated into an array algebra and optimized

using a large collection of transformation rules. ASAP [163] supports scientific computing

primitives on a storage manager optimized for storing multidimensional arrays. Additionally,

RIOT [192] provides an efficient out-of-core framework for scientific computing. However,

none of these systems support incremental computation. In contrast, Lago is specialized for

supporting IVM of matrix programs. Moreover, it provides a generic unified framework for

different semiring configurations of matrix algebra.

High Performance Computing. There is high demand for efficient matrix manipulation in

numerical and scientific computing. BLAS [68] exposes a set of low-level routines that repre-

sent common linear algebra primitives for higher-level libraries including LINPACK, LAPACK,

and ScaLAPACK for parallel processing. Hardware vendors such as Intel or AMD and code

generators such as ATLAS [179] provide highly optimized BLAS implementations for dense

linear algebra. Moreover, other works such as Combinatorial BLAS [38, 66] provide efficient

BLAS implementations dedicated for sparse linear algebra. All of this work is orthogonal to

Lago as it operates at a higher level of abstraction. In essence, IVM translates input matrix

programs to trigger code that calls cheaper matrix BLAS primitives.

Iterative Computation. Recently, there has been a growing interest in designing frameworks

for iterative and incremental computation. The differential dataflow model [129] presents a

new methodology to model incremental computation for iterative algorithms. Their approach

relies on the assumption that input changes result in small changes down the road. However,

this assumption does not hold for matrix algebra programs because of the avalanche effect of

input changes as described in this chapter. For iterative applications under the MapReduce

framework, several systems [37, 71, 191] have been proposed. They present techniques that

cache and index loop-invariant data on local disks and persist materialized views between

93

Chapter 5. Lago: Online Advanced Analytics

iterations. Moreover, Dryad [100] and Spark [187] represent systems that support iterative

computation under the general DAG execution model. Mahout, MLbase [109] and others [55,

174, 132] provide scalable machine learning and data mining tools. All these systems are

orthogonal to Lago. Our work is concerned with the design and implementation of a compiler

framework for the incremental view maintenance of matrix algebra. Moreover, the framework

can be easily coupled with any of these underlying systems at the code generation layer as we

illustrate in the evaluation section 5.6 with Spark.

IVM and Stream Processing. Incremental View Maintenance techniques [30, 107, 87] support

incremental updates of database materialized views by employing differential algorithms to

re-evaluate the view expression. Chirkova et al. [50] present a detailed survey on this direction.

Moreover, data stream processing engines [7, 135, 21] incrementally evaluate continuous

queries as windows advance over unbounded input streams. In contrast to all the previous

approaches, this chapter targets incremental maintenance of linear algebra programs as

opposed to classical database (SQL) queries. The linear algebra domain has different semantics

and primitives; thus, the challenges and optimization techniques widely differ.

Graph Analytics. There is plethora of frameworks dedicated for graph processing including

Powergraph [80], Pregel [124], GraphLab [119, 120], GraphChi [113], and Galois [139]. They

provide various programming models specialized for graph processing based on Bulk Syn-

chronous Programming. Recently, there has been work on representing graph algorithms

using sparse matrix manipulation operations including CombBLAS [38], GraphMat [165], and

Graphblas[66]. However, none of these systems support incremental computation. There have

been several works that target incremental computation of specific graph problems [51, 84], in-

cluding connectivity [94], minimum spanning tree [94], transitive closure [57, 58], and all-pairs

shortest path [59, 106]. However, each of these solutions aim at a particular graph problem

and are not represented as matrix computations. In contrast, Lago provides a general matrix

framework that supports graph IVM, cost-based optimization, and low-level specializations.

Linear Algebra DSLs. The Spiral [149] project provides a domain-specific compiler for syn-

thesizing digital signal processing kernels, e.g., Fourier transforms. The authors present the

SPL [183] language that expresses recursion and formulas in a mathematical form. They

present a framework that optimizes at the algorithmic and implementation level and that

uses runtime information to guide the synthesis process. The LGen compiler [159] targets

small scale basic linear algebra computations of fixed size linear algebra expressions which

are common in graphics and media processing applications. The authors present two level

DSLs, namely LL to perform tiling decisions and Σ-LL to enable loop level optimizations. The

generated output is a C function that includes intrinsics to enable SIMD vector extensions.

Orthogonally, Lago targets IVM of LA programs for different domains, i.e., semiring config-

urations, and is restricted to high-level optimizations. The closest to our work is the basic

94

5.6. Evaluation

linear algebra compiler presented in [74]. It decomposes a linear algebra target equation into

a sequence of computations provided by BLAS or LAPACK and generates associated Matlab

code. Similar to our work, their approach exploits domain knowledge and properties of the

operands by rewriting and inference rules. However, we focus on IVM and optimization under

this setting.

Incremental Statistical Frameworks. Bayesian inference [26] uses the Bayes’ rule to update

the hypothesis’s probability estimate as additional evidence is acquired. A variety of applica-

tions can be built on top of these frameworks including pattern recognition and classification.

Our work focuses on incrementalizing applications that can be expressed as linear algebra

programs and generating efficient incremental programs for different runtime environments.

Programming Languages. The PL community has extensively explored the direction of incre-

mental computation and information flow [47]. They have developed compilation techniques

that translate high-level programs into executables that are amenable to dynamic changes.

Moreover, self-adjusting computation supports incremental computation by exploiting dy-

namic dependency graphs and change propagation algorithms [9, 47]. However, these ap-

proaches differ from our work on several dimensions: a) Firstly, they target general purpose

programs in comparison to our domain-specific approach. b) Secondly, they require developer

knowledge and involvement by annotating the modifiable parts of the program. c) Finally, they

cannot capture the propagation of deltas across statements and efficiently represent them in a

compressed form as presented in this chapter.

5.6 Evaluation

In the previous sections, we have presented a concrete framework for expressing, deriving,

and optimizing incremental view maintenance of matrix algebra programs. In this section,

we demonstrate the performance of the derived incremental programs in comparison to

re-evaluation. We illustrate two case studies that build upon matrix algebra: computing linear

regression and evaluating graph reachability and shortest path after k hops. Moreover, we

evaluate the opportunity benefits of specialization leveraged by inferred meta-information.

We show how Lago pushes the burden and complications of IVM derivation, transformation,

optimization, and low-level specialization down to the compiler framework, while generating

trigger programs that achieve orders of magnitude better performance.

Experimental Environment. The experiments described in this section are conducted under

two different configurations: a) Local: For moderate size experiments, we use a multipro-

cessing workstation environment with a 2.66GHz Intel Xeon with 2× 6 cores, each with 2

hardware threads, 64GB of DDR3 RAM, and Mac OS X Lion 10.11.5. Dense BLAS operations

are supported through the underlying Mac VecLib framework. b) Distributed: For large scale

95

Chapter 5. Lago: Online Advanced Analytics

(a) (b)

(c) (d)

Figure 5.15 – Performance evaluation of Incremental Linear Regression.

experiments, we use a cluster of 100 server instances connected via a full-duplex 10GbE net-

work and running Spark 1.6.1 and YARN 2.7.1. We compile Spark programs using Scala 2.10.4.

Each instance is equipped with an Intel Xeon E5-2630L @ 2.40GHz server with 2 × 6 cores,

each with 2 hardware threads, 15MB of cache, 128GB of DDR3 RAM, and Ubuntu 14.04.2

LTS. We rely on the ATLAS library to support multithreaded BLAS operations. For Spark, we

have implemented a code generator for the subset of Lago required for these experiments. In

this case, we implement a runtime using Spark RDDs that allow for mutable operations on

block matrices that call efficient BLAS routines locally. All experiments on matrix RDDs have a

predefined block distribution of 10×10 blocks. Efficient partitioning of matrices is orthogonal

to the discussion of this chapter and can be handled by other systems like SystemML [78].

For example, Lago can generate SystemML matrix programs, i.e., compositions of matrix

operations using the SystemML DSL, which is then handled and optimized by SystemML. For

all IVM experiments, unless stated otherwise, We simulate a stream of rank-one updates to

evaluate the performance of incremental view maintenance.

5.6.1 Incremental Linear Regression

In this set of experiments, we evaluate the performance of the common machine learning

task of building a linear regression model given the independent and dependent variables

96

5.6. Evaluation

Iterations Compilation Rules Equivalence Programs
(#) Time (s) (#) Rules (%) Revisited (%)

OLS - 36 10869640 7% 90.98%
BGDS 4 0.567 4526 7% 75.56%
BGDS 16 0.944 28826 4% 81.08%
BGDS 128 15.139 1328854 0.8% 87.76%
BGDS 256 128.599 3841206 0.5% 87.35%

Table 5.2 – Report on compilation metrics.

X and Y respectively. In particular, we experiment on two programs: a) OLS: the Ordinary

Least Squares method as illustrated in Section 5.4.1 to evaluate the statistical estimate β∗

via the matrix expression β∗ := (X T X)−1 X T Y , and b) BGDS: the Iterative Batch Gradient

Descent method (BGDS) which, similar to OLS, evaluates the statistical estimate Θ that is

computed via the recurrence relation Θi+1 := Θi − X T (XΘi −Y). Given ΔX changes, Lago

derives the incremental version of each program and generates the corresponding trigger code.

Furthermore, to demonstrate portability, we generate Octave code (Local) for OLS and Spark

code (distributed) for BGDS. For comparison, we compare the re-evaluation of the original

programs REEVAL against their corresponding derived trigger code INCR.

OLS Evaluation. We conduct a set of experiments to evaluate the statistical estimator β∗.

The predictor matrix X has dimension (n ×m) and the response matrix Y is of dimension

(n ×1). Given a continuous stream of ΔX updates on X , Fig. 5.15a and Fig. 5.15b compare the

average execution time per ΔX update of REEVAL with that of INCR for different values of n

(x-axis). In particular, we experiment on two settings, in particular, when X is a tall skinny

matrix with dimensions n ×m, where n = 2m (Fig. 5.15a) and when X is a square matrix with

dimensions n ×n (Fig. 5.15b), i.e., m = n. The graphs illustrate how INCR outperforms REEVAL

in computing the β∗ estimate. Notice the asymptotic difference between the two, that is the

performance gap between REEVAL and INCR widens as the matrix size increases, i.e., 42.2x

— 248.2x and 110.5x — 596.7x respectively. The cost of REEVAL is dominated by costly O(n3)

matrix operations which include matrix inversion and multiplication, whereas, INCR avoids

matrix inversions and evaluates cheaper O(n2) matrix multiplications.

BGDS Evaluation. We also experiment on the batch gradient descent method to compute

the estimate Θ for the linear regression problem. This method is usually used, instead of

OLS, as a fast approximate or when the expression X T X is singular, i.e., non-invertible. For

experimental purposes, we set X and Y with dimensions (n ×n) and we fix the number of

iterations to 16 assuming that the result converges to an appropriate solution after this number

of steps. Fig. 5.15c demonstrates the average computation time per incremental update ΔX

for each of REEVAL and INCR. The results demonstrate 6.2x-85.8x performance speedups as

97

Chapter 5. Lago: Online Advanced Analytics

the dimension size n increases. Distributed matrix multiplications require partitioning the

matrices appropriately to evaluate the final result. This poses large communication overhead

due to repartitioning. On the other hand, if one of the matrices undergoing multiplication

is fairly small, e.g., vector, it is broadcasted to all partitions instead of repartitioning the

bigger matrix. Given that the delta expressions in INCR are materialized in factored forms,

their multiplications are much cheaper. Therefore, not only does INCR avoid costly matrix

multiplication operations, but it also avoids expensive communication overheads.

Search Space. We also evaluate the explored search space using the traditional breadth-first-

search (BFS) for both OLS and BGDS. OLS represents a small program and BGDS represents a

big size program, i.e., defined by the number of iterations. We experiment on two different

search configurations. For the OLS program with n = 10000 we run a complete BFS search on

the whole derived delta program, whereas for BGDS, cost-based optimization complies with

the phased approach described in Section 5.3.5 which confines the search on each statement

independently from the other statements. Fig. 5.15d illustrates two dimensions against elapsed

search time. First, the number of distinct programs explored and secondly, the minimum

inferred cost of the explored programs. The cost here depicts the sum of costs for both the

original and the trigger program. Notice how the minimum cost decays fast during the early

stages of the search as more programs are being explored.

The search begins with an initial program as illustrated in Fig. 5.13a. The original program

requires 2 matrix multiplications, 1 matrix-vector multiplication, 1 matrix inverse, and 2 matrix

transposes. That is a sum of 3n3 and 3n2 operations. Moreover, the initial trigger program,

which is achieved by naïvely replacing each X with X+ΔX, requires 3n3 and 6n2 operations. All

in all, this requires 6n3 + 9n2 operations which when substituted with n = 10000 gives around

6 billion operations as depicted in the figure at time 0. At time 1, the search algorithm is able

to transform all expensive operations O(n)3 in the trigger program to cheaper O(n)2 ones as

described in Fig. 5.13o. Then the total cost is reduced to that of the original program (pre-

computations) which accounts for 3 billion operations as depicted in Fig. 5.15d. Interestingly,

the search algorithm finds a simple equivalent program (to that of Fig. 5.13a) as follows

β := X −1Y . Although the program is numerically unstable in comparison to computing the

pseudoinverse (X T X)−1, it is analytically equivalent to the original program and it is much

cheaper to evaluate as it only requires computing one matrix inverse (n3). The program is

found at time 4 secs in Fig. 5.15d.

The search reaches a point where it introduces negligible savings. The search algorithm finds

the minimal cost at second 36, after it has explored a search space created from applying

10,105,018 simplification rules and 764,622 equivalence rules. To avoid re-visiting the same

programs within the search space, we maintain a cache that saves the hash-codes of the

canonical representation of visited programs, i.e. canonical representation of the IR tree.

98

5.6. Evaluation

This saves a lot from doing redundant work. For instance after 36 seconds the cache reports

90.983% hits and 9.016% misses. This suggests that a large number of the generated candidate

programs have been explored before, which also means that many of the different orderings of

the transformation rules yield the same programs.

Table 5.2 illustrates various compilation metrics on the derivation and optimization of OLS

and BGDS. Although OLS is a small program, the search uses a large number of rules to explore

the search space. This is because search is applied on all the statements of the programs

at once. On the other hand, BGDS has a more confined search space as it optimizes each

statement independently. This phased approach works well with large size programs.

5.6.2 Graph Analytics

Many graph computations can be formulated as matrix operations. In this section, we experi-

ment on the all pairs k-hop reachability/shortest path problem for the undirected graph G.

The program, in Fig. 5.7, is the same as the running example used through out this chapter.

As mentioned earlier, different semiring configurations for this program result in different

programs. In particular, a Boolean semiring 〈{0,1},∨,∧〉 defines the reachability problem

whereas the tropical semiring 〈R,min,+〉 defines the shortest path problem.

Meta-Information Specialization

As explained earlier in section 5.3.4, G is an undirected binary graph. This meta-information

can be encoded into the input data and Lago propagates this information and tries to infer

properties for the subsequent and intermediate statements. Meta-information leverages

specialization opportunities at the code generation phase. For instance, in the graph reacha-

bility program example, the following specialization opportunities are possible: a) Bit vectors:

The domain values are either zeros or ones only. Accordingly, rather than representing the

adjacency matrix entries using the more generic single or double-precision types, one can

utilize compressed bit vectors to pack every eight cells into a single byte. As we will demon-

strate later, this compacts storage, allows for large matrix constructions, and avoids expensive

communication costs for data shuffling in a distributed setting. b) Boolean Algebra: The

semiring operations, i.e., Boolean conjuction and disjunction, enable Boolean algebra opti-

mizations and specialization opportunities. For instance, the dot product of two vectors can

be translated as computing the bitwise-AND of the two bit vectors followed by evaluating if

the result is bigger than zero. This leverages vectorized operations. Furthermore, one can

benefit from short-circuiting rather than passing over the entire bit vectors to compute the dot

product. Matrix multiplication G ×G can be specialized along the same lines. Alternatively,

in a general purpose environment, i.e. R or Matlab, this expression is evaluated using the

99

Chapter 5. Lago: Online Advanced Analytics

following expression (G ×G) > 0. That is, it computes the matrix multiplication numerically

first and then a logical indexing is applied over the result matrix to bring it back to the bi-

nary domain. c) Symmetry: Matrix symmetry enables many specializations ranging from

compact representation, e.g., lower triangular, to calling specialized matrix opertions that

exploit symmetry. In this evaluation, we focus on a specific specialization that leverages the

matrix layout. Since the bit vector matrices can be represented as rows or columns of bit

vectors, there are two layout configurations, i.e., row-major layout and column-major layout.

The operations on the matrices define the ideal layout representation of these matrices. For

example, consider G ×G , ideally matrix G should have both row-major and column-major

layouts to support direct use of the bitwise operations; otherwise transformations to the layout

should be applied which incurs cost. Fig. A.7 depicts the inference rules for bit vector layouts.

However, if G is symmetric then GT =G , which means that matrix G represents both logical

layouts, independently from its underlying physical representation. This eliminates the need

for transforming G’s layouts and therefore its associated costs.

Specialization Evaluation. Graph analysis in this domain relies on matrix algebra operations

and most notably on matrix multiplication which is commonly used in graph clustering, be-

tweenness centrality, graph contraction, subgraph extraction, cycle detection, and quantum

chemistry [38, 165, 66]. To that end, we focus our attention on the microbenchmark of evalu-

ating the performance of specialized sparse matrix multiplications. We experiment on two

different settings:

Local. We compare between four different specialized implementations in Scala: a) SymBit

represents the implementation of all the previous specializations. b) Bit is similar to SymBit,

but excludes the symmetry specialization. c) CSC represents the implementation using the

conventional Compressed Column Storage format [150]. This format is mainly used for sparse

matrices and it maintains matrix values along with their indexes in a compact form. d) Dense

represents the multithreaded general purpose implementation that calls native dense BLAS

routines for double precision operations. Notice that the following evaluation results are for a

single thread except for Dense that leverages its native multithreading capabilities.

For the first set of experiments, we evaluate the potential of the aforementioned specializations.

To that end, we focus on the micro-benchmarks of a single matrix-matrix multiplication

G ×G . The input binary matrix is randomly generated with density 50%. We set this density

configuration because the reachability program results in denser (intermediate) results after a

few iterations (hops). Fig. 5.16a reports the average execution time for each implementation

with varying dimension size n. First, let us compare the general purpose implementations

CSC and Dense. Notice how CSC performs poorly in comparison to Dense as n grows and

how it begins to fail after 20k. This is because of the high matrix density, which makes CSC

inefficient for storage, i.e., saving index information, and for computation, i.e., no cache

100

5.6. Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 5.16 – Performance Evaluation of Meta-Information specialization opportunities.

locality. Moreover, CSC computes on one core whereas Dense leverages all the available

cores. On the other hand, the bit vector implementations Bit and Symbit exhibit scalable

performance. They can scale to larger sizes n while maintaining a very compact storage

representation up to n = 100k. Moreover, they benefit from short-circuiting given the density

of the matrices. This saves from passing over all the entries within the whole matrix and

achieves more than two order of magnitudes better performance than CSC and one order of

magnitude better than Dense with one core only. Moreover, SymBit exploits the symmetric

property and has 2x better performance than Bit.

To explore the effect of Graph density on the previous implementations, we fix the dimensions

size n = 10k and vary the density parameter. Fig. 5.16b illustrates the results. At the density

level 0.01, CSC beats all the others due to the sparsity of the input which makes this format

101

Chapter 5. Lago: Online Advanced Analytics

(a) (b)

Figure 5.17 – Performance Evaluation of Incremental Graph programs using Symbit for
Reachability and Dense for Shortest Distance.

and implementation the most suitable. SymBit and Bit cannot leverage short-circuiting

at this stage due to sparsity. However, as the density increases SymBit and Bit outperform

the others. Notice how the performance of Dense does not change, as it is agnostic to the

underlying structure of the input matrices.

Putting it all together, we experiment on the overall reachability program on randomly gener-

ated scale-free graphs G with density 0.01. Fig. 5.16c and Fig. 5.16d present the execution time

and space utilization respectively. SymBit outperforms Dense by up to 3x-5x in performance

and up to 62x in space savings. The reduction in space is consistent with the fact that bit

vectors allow compacting 64 item into 8 bytes rather than a double value that represents a

single item in 8 bytes.

Distributed. In this experiment, we evaluate the large scale matrix multiplication G ×Y under

the numerical semiring, where G is a binary graph and Y is a matrix with arbitrary values.

This operation is common in graph algorithms such as vertex clustering [79]. We compare

between two implementations in Spark: a) Bit-CSC and b) CSC-CSC. Bit-CSC represents

the first matrix in bit vector format and the other matrix in CSC. We experiment on graphs

with two density settings 0.1 and 0.2 with variable dimension size n. Fig. 5.16e and Fig. 5.16f

demonstrate how the specialized code Bit-CSC outperforms CSC-CSC as n grows. The per-

formance gains are pronounced in the communication savings of shuffling compressed bit

vectors rather than larger unnecessary general purpose datastructures. Since communication

dominates cost in a distributed environment, these savings result in better resource utilization

and performance. Notice how Bit-CSC can scale to large graphs. In summary, Lago leverages

useful meta-information that opens up opportunities for optimization at the code genera-

tion phase. As we have demonstrated, these optimizations can range from datastructure to

computation specializations.

102

5.6. Evaluation

(a) (b)

Figure 5.18 – Scalability and additional storage results.

Incremental Graph Analytics

By combining semiring configurations with IVM capability as described in 5.6.1, one can

directly derive incremental graph analytics. Notice that the delta rules operate at the abstract

level of matrix algebra operations. This permits reasoning about the derivation of incremental

programs at a high level without delving into the details of the underlying operations used

within the matrix operators i.e., semiring.

Evaluation. Fig. 5.17a compares the update performance of the previously described 4-hops

reachability problem against its incremental version as generated by Lago. Similarly, Fig. 5.17b

compares the update performance for the 4-hops shortest path problem. Lago is able to

derive the incremental program of the matrix program independent from the underlying

semiring semantics. Again, we can observe performance gains for IVM in comparison to re-

evaluation, i.e., 1.6x — 7.7x in the case of reachability and 23.16x — 173x in the case of shortest

paths. Notice how the performance gains in the boolean semiring are not as big as the other

experiments. This is because of short-circuiting which introduces large performance gains

that are comparable to the gains of IVM. Also notice how the shortest path program is much

more slower than that of reachability, although they only differ in the semiring definition. The

reason is that the Tropical semiring requires evaluating the min operator O(n3) times. There

is no specialized machine instruction for this operator as opposed to addition/multiplication

in the numerical semiring and vectorwise and/or in the boolean semiring. Therefore, the min

operator is expanded to many other machine instructions which is even much more costly in

a loop, i.e. matrix multiplication.

5.6.3 Scalability Evaluation

In this section we evaluate several dimensions of IVM in comparison to re-evaluation, in

particular, scalability, memory consumption of materialized view and performance of batch

updates. For these experiments we evaluate on the matrix powers problem on dense matrices,

103

Chapter 5. Lago: Online Advanced Analytics

Zipf factor 5.0 4.0 3.0 2.0 1.0 0.0
Octave (10K) 6.3 6.8 7.5 10.9 68.4 236.5
Spark (30K) 28.1 41.5 67.3 186.1 508.9 1678.8

Table 5.3 – The average Octave and Spark view refresh times in seconds for INCR of P 16 and a
batch of 1,000 updates. The row update frequency is drawn from a Zipf distribution.

in particular we compute the matrix power P 16 on Spark. Fig. 5.18a shows how incremental

evaluation outperforms evaluation as previous results. Moreover, INCR can scale to larger

dimensions, i.e. n= 100k, whereas REEVAL cannot go beyond 50k, as the sizes of shuffled

data for matrix multiplication increase resulting in large communication overheads and

unmaintainable states at each machine.

On the other hand, IVM requires additional storage for maintaining materialized views of

intermediate results. Fig. 5.18b demonstrates the average memory usage of INCR in com-

parison to REEVAL. INCR consistently uses 3.3x more storage no matter the dimension n,

that is because the program maintains 4 intermediate results, in particular P 2, P 4, P 8, and the

result P 16. To compare the performance speedup gains in comparison to the costs of extra

storage, the figure also demonstrates the ratio between (speedup gain)/(storage-cost). The

results show how the gains ratio keep on increasing with the dimensions size, i.e., 3x — 16x.

This is consistent with the asymptotic increase in the computational gain versus the constant

increases in storage costs.

In the final set of experiments we explore the efficiency of IVM under batches of updates. We

simulate a use case where some regions (rows) of the matrix P are updated more frequently

than others. The frequency of updates is set by a Zipf distribution that is controlled by the Zipf

exponent factor. When the factor value increases, it simulates a more skewed distribution, on

the other hand, if it decreases it converges more towards a uniform distribution of changes.

Table 5.3 reports on the performance results of IVM of P 16 under a batch of 1000 tuples. As the

Zipf factor tends to a uniform distribution, the overall rank of the updates increases and thus

IVM looses its benefit in comparison to re-evaluation. To put the results in context, the cost of

re-evaluation is 99.1 seconds and 203.4 for Octave and Spark respectively.

104

6 Conclusion

This research is motivated by the need for supporting a wider class of advanced analytics on

top of real-time data streams. In this thesis, we present foundations and techniques that enable

online query processing to efficiently support relational joins with arbitrary join-predicates

beyond traditional equi-joins; and to support other data models that target machine learning

and graph computations. This thesis is based on two main research directions:

Chapter 4 provides a novel adaptive solution to computing joins with general predicates in an

online setting. Unlike previous offline approaches, the adaptive operator presented does not

require any prior knowledge about the input data. This is essential when statistics about input

data are not known in advance or are difficult to estimate. The operator is highly scalable and

continuously processes input streams even during adaptation. Theoretical analysis proves

that our algorithm maintains a close-to-optimal state, under an experimentally validated

performance measure that captures resource utilization. Furthermore, cost of adaptation

is provably minimum. Experiments validate the theoretical guarantees and show that the

operator outperforms static approaches; is highly adaptive; and is resilient to data skew. It

is also very efficient in resource consumption and maintains high throughput and low tuple

latency. Evaluation suggests that there is room for optimization for a special class of joins like

equi and band joins. In such low-selectivity joins, the join matrix contains large regions where

the join condition never holds. These regions need not be assigned joiners. This motivates

designing a content-sensitive theta-join operator. Such an operator shares many common

features with our operator, but its design poses additional challenges (Section 4.4.4).

Chapter 5 presents Lago, a novel framework that supports the Incremental View Maintenance

of matrix algebra workloads. Linear algebra represents a concrete substrate for advanced

analytical tasks including, machine learning, scientific computation, and graph algorithms.

We show how previous works on IVM are not applicable to matrix algebra workloads, as a single

entry change to an input-matrix results in changes all over the intermediate views, rendering

105

Chapter 6. Conclusion

IVM useless in comparison to re-evaluation. Lago automatically derives and optimizes incre-

mental trigger programs of analytical computations, while freeing the user from erroneous

manual derivations, low-level implementation details, and performance tuning. We present a

novel technique that captures Δ changes as low-rank matrices which are representable in a

compressed factored form that enables cheaper computations. Lago automatically propagates

the factored representation across program statements to derive an efficient trigger program.

we present and evaluate the IVM of several practical use case examples including computing

linear regression models, gradient descent, and all-pairs graph reachability or shortest path

computations. The evaluation results demonstrate orders of magnitude (10x-100x) better

performance in favor of derived trigger programs in comparison to simple re-evaluation. Fu-

ture work includes extending the language to support other matrix algebra operations, e.g.,

element-wise operations and matrix factorizations.

106

A Appendix

A.1 Analysis under Window Semantics

Algorithm 5 Migration Decision Algorithm (with deletions).

Input: |R|, |S|, |ΔR|, |ΔS|
1: function MIGRATIONDECISION(|R|, |S|, |ΔR|, |ΔS|)
2: if |ΔR| ≥ |R|/2 or |ΔS| ≥ |S|/2 then
3: Choose mapping (n,m) minimizing |R|+|ΔR|

n + |S|+|ΔS|
m

4: Decide a migration to (n,m)
5: |R|← |R|+ |ΔR| ; |S|← |S|+ |ΔS|
6: |ΔR|← 0; |ΔS|← 0

7: end function

Theorem A.1.1. Assume that the number of joiners J is a power of two, the sizes for |R| and

|S| are no more than a factor of J apart, and that tuples from R and S have the same size. An

adaptive scheme that applies Alg. 5 ensures the following characteristics:

1. The ILF is at most 1.4 times that of the optimal mapping at any point in time. ILF ≤ 1.4 · ILF∗,

where ILF∗ is the input-load factor under the optimal mapping at any point in time. Thus, the

algorithm is 1.4-competitive.

2. The total communication overhead of migration is amortized, i.e., the cost of routing a new

input tuple, including its migration overhead, is O(1).

Alg. 5 decides migration once |ΔR| = |R|/2 or |ΔS| = |S|/2. Notice that |ΔR| and |ΔS| include

insertions and deletions. Therefore, lemma 4.4.3 implies that while the system is operating

with the mapping (n,m), the optimum is one of (n,m), (n/2,2m), and (2n,m/2). This implies

the following.

107

Appendix A. Appendix

Lemma A.1.1. If |ΔR| ≤ |R|/2 and |ΔS| ≤ |S|/2 and (n,m) is the optimal mapping for (|R| , |S|)
tuples, then under Alg. 5, the input-load factor ILF never exceeds 1.4 · ILF∗. In other words, the

algorithm is 1.4-competitive.

Proof. By lemma 4.4.3, the optimal mapping is either (n,m), (n/2,2m) or (2n,m/2). If the

optimal mapping is (n,m) then ILF = ILF∗. Otherwise, the ratio can be bounded as follows.

Without loss of generality, assume that the optimum is (n/2,2m) then

ILF

ILF∗ ≤ (|R|+ |ΔR|)/n + (|S|+ |ΔS|)/m

(|R|+ |ΔR|)/(n/2)+ (|S|+ |ΔS|)/(2m)

where the constraints |ΔR|/n ≤ |R|/n, |ΔS|/m ≤ |S|/m and those in lemma 4.4.2 must hold.

Final cardinalities are non-negative. Consider the ratio as a function of the variables |R|/n,

|S|/m, |ΔR|/n and |ΔS|/m. The maximum value of the ratio of linear functions in a simplex

(defined by the linear constraints) is attained at a simplex vertex. By exhaustion, the maximum

occurs when |ΔR| = −|R|/2, |ΔS| = |S|/2 and |S|/m = 2 |R|/n. Substituting gives 1.4.

Lemma A.1.2. The cost of routing tuples and data migration is linear. The amortized cost of an

input tuple is O(1).

Proof. Since all joiners are symmetrical and operate simultaneously in parallel, it suffices to

analyze cost at one joiner. Therefore, after receiving |ΔR| and |ΔS| tuples, the operator spends

at least max(|ΔR|/n, |ΔS|/m) units of time processing these tuples at the appropriate joiners.

By assigning a sufficient amortized cost per time unit, the received tuples pay for the later

migration.

By lemma 4.4.3, the optimal mapping is (n,m), (n/2,2m) or (2n,m/2). If the optimal mapping

is (n,m), then there is no migration. Without loss of generality, assume that |ΔS| ≥ |ΔR| and

that the optimal mapping is (n/2,2m). Between migrations, max(|ΔR|/n, |ΔS|/m) time units

elapse, each is charged 11 units. One unit is used to pay for routing and 10 are reserved for

the next migration. The cost of migration by lemma 4.4.5 is 2(|R|+ |ΔR|)/n. The amortized

cost reserved for migration is 6max(|ΔR|/n, |ΔS|/m). Since a migration was triggered, either

|ΔR| = |R| or |ΔS| = |S|. In either case, it should hold that the reserved cost is at least the

migration cost, that is,

10max(|ΔR|/n, |ΔS|/m) ≥ 2(|R|+ |ΔR|)/n.

If |ΔR| = |R|/2, then by substituting, the left hand side is 10max(|ΔR|/n, |ΔS|/m) ≥ 10 |R|/n

and the right hand side is 2(|R|+ |ΔR|)/n = 4 |R|/n. Therefore, the inequality holds. If |ΔS| =

108

A.1. Analysis under Window Semantics

|S|/2, then the left hand side is

10max(|ΔR|/n, |ΔS|/m) ≥ |ΔR|/n +4 |S|/m.

Therefore, the left hand side is not smaller than the right hand side, since 2 |S|/m ≥ |R|/n (by

lemma 4.4.2). Thus, the inequality holds in both cases. The cases, when |ΔR| ≥ |ΔS| or when

the optimal is (2n,m/2), are symmetric.

Lemma A.1.3. Lemmas A.1.1 and A.1.2 directly imply Theorem A.1.1.

109

Appendix A. Appendix

A.2 LAGO Rules

m : S

m� →m (m�)
� →m

m :D(r,c)

cols(m) →c

m :D(r,c)

rows(m) →r iterate[0](m)(x ⇒f(x)) →m
ITERATE-UNROLL

n > 0

iterate[n](m0)(x ⇒f(x)) →let x0 = f(m0) in iterate[n-1](x0)(x ⇒f(x))

let x1 = x2 inm1 →m1 [x1 := x2]

occur r ences(m2, x) = 1

let x = m1 inm2 →m2 [x1 :=m1]

occur r ences(m2, x) = 0

let x = m1 inm2 →m2

m :D(r,k)

m · zeros[k, c] →zeros[r, c] m + zeros[r, c] →m

m :D(r,c)

m · id[c] →m

m :D(k,c)

zeros[r, k] ·m→zeros[r, c] zeros[r, c] +m→m

m :D(r,c)

id[r] ·m→m

Figure A.1 – Simplification rules

110

A.2. LAGO Rules

ADD-COMM

m1 +m2 ↔m2 +m1

ADD-ASSOC

(m1 +m2) +m3 ↔m1 + (m2 +m3)

MULT-ASSOC

(m1 ·m2) ·m3 ↔m1 · (m2 ·m3)
DISTRIB

m1 · (m2 +m3) ↔m1 ·m2 +m1 ·m3

(m1 +m2)� ↔m1
� +m2

� (m1 ·m2)� ↔m2
� ·m1

� (m1 ⇒m2)� ↔m1
� �m2

�

LET-INLINE

let x = m1 inm2 ↔m2 [x1 :=m1]
FACTORIZATION

m1: D(n,k) m2: D(k,m) m3: D(n,p) m4: D(p,m)

m1 ·m2 +m3 ·m4 ↔ (m1 ⇒m3) · (m2 �m4)
WOODBURY FORMULA

m1: D(n,n) m2: D(n,k) m3: D(k,n)

(m1 +m2 ·m3)-1 ↔m1
-1 - m1

-1 ·m2 · (id[k] +m3 ·m1
-1 ·m2)

-1 ·m3 ·m1
-1

Figure A.2 – Equivalence rules

m1 :S m2 :S ∀a,b. a ◦b = b ◦a

m1 ◦m2 :S
m: D(1,1)

m :S
m: S
m�: S

m: S k ≥ 0

mk : S
Figure A.3 – Inferring symmetry of matrices.

m1: D m2: D

m1 ◦m2 :D

m1: D m2: D

m1 ×m2 :D

Figure A.4 – Inferring Sparse Structures of matrices.

m: D(r,c)

m: R≤ min(r,c)

m1: R1 m2: R2

m1 ·m2: R ≤ min(R1, R2)

m1: R1 m2: R2

m1 +m2: R ≤R1 + R2

m: R
m�: R

m: R
m� ·m: R

Figure A.5 – Inferring Ranks of matrices.

m1 :L m2 :L
m1+m2 :L

m1 :L m2 :L
m1 ×m2 :L

m : L
m-1: L

m : L
m�: U

m1 :U m2 :U
m1+m2 :U

m1 :U m2 :U
m1 ×m2 :U

m : U
m-1: U

m : U
m�: L

Figure A.6 – Inferring structure of Triangular matrices (U : Upper triangle, L: Lower triangle)

m1 :R m2 :R
m1+m2 :R

m1 : C m2 : C
m1+m2 : C m1 ·m2 :R

m : R
m�: C

m : C
m�: R m1 ⇒m2 : C m1 �m2 :R

Figure A.7 – Inferring layout of bit vector matrices (R: Row layout, C: Column layout)

111

Bibliography

[1] Amazon Architecture. http://highscalability.com/amazon-architecture.

[2] Computing at CERN. https://home.cern/about/computing.

[3] The design of telegraph: Adaptive dataflow for streams.

http://db.cs.berkeley.edu/jmh/tmp/teleover-draft.pdf/.

[4] Scalding: A scala api for cascading. https://github.com/twitter/scalding.

[5] The Apache Hadoop project. http://hadoop.apache.org.

[6] The TPC-H benchmark. http://www.tpc.org/tpch/.

[7] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang, W. Lindner,

A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of the

Borealis stream processing engine. In CIDR, 2005.

[8] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,

N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data stream man-

agement. VLDB Journal, 12(2), 2003.

[9] U. Acar, G. Blelloch, M. Blume, R. Harper, and K. Tangwongsan. An experimental analysis

of self-adjusting computation. TOPLAS, 32(1), 2009.

[10] M. R. Ackermann, M. Märtens, C. Raupach, K. Swierkot, C. Lammersen, and C. Sohler.

StreamKM++: A clustering algorithm for data streams. J. Exp. Algorithmics, 17, 2012.

[11] F. Afrati and J. Ullman. Optimizing joins in a MapReduce environment. In EDBT, 2010.

[12] C. C. Aggarwal and C. K. Reddy. Data Clustering: Algorithms and Applications. 2013.

[13] F. Akgul. ZeroMQ. Packt Publishing, 2013.

[14] T. Akidau, A. Balikov, K. Bekiroglu, S. Chernyak, J. Haberman, R. Lax, S. McVeety, D. Mills,

P. Nordstrom, and S. Whittle. MillWheel: Fault-tolerant stream processing at internet

scale. In VLDB, pages 734–746, 2013.

113

Bibliography

[15] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma, R. Lax,

S. McVeety, D. Mills, F. Perry, E. Schmidt, et al. The dataflow model: a practical approach

to balancing correctness, latency, and cost in massive-scale, unbounded, out-of-order

data processing. VLDB, 8(12), 2015.

[16] A. Alexandrov, R. Bergmann, S. Ewen, J.-C. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich,

U. Leser, V. Markl, F. Naumann, M. Peters, A. Rheinländer, M. J. Sax, S. Schelter, M. Höger,

K. Tzoumas, and D. Warneke. The Stratosphere platform for big data analytics. The

VLDB Journal, 23(6):939–964, Dec. 2014.

[17] E. Almeida, C. Ferreira, and J. a. Gama. Learning model rules from high-speed data

streams. In Proceedings of the 3rd International Conference on Ubiquitous Data Mining -

Volume 1088, UDM, 2013.

[18] Amazon. Amazon Kinesis. http://aws.amazon.com/kinesis/.

[19] Amazon. AWS Case Study: Supercell. http://aws.amazon.com/solutions/case-studies/

supercell/.

[20] Apache Flink: Scalable batch and stream data processing. https://flink.apache.org/.

[21] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U. Srivastava,

and J. Widom. STREAM: The Stanford data stream management system. Technical

report, Stanford InfoLab, 2004.

[22] S. Babu and P. Bizarro. Adaptive query processing in the looking glass. In CIDR, 2005.

[23] Z. Bar-Yossef, T. S. Jayram, R. Kumar, D. Sivakumar, and L. Trevisan. Counting dis-

tinct elements in a data stream. In Proceedings of the 6th International Workshop on

Randomization and Approximation Techniques. Springer, 2002.

[24] P. Baumann, A. Dehmel, P. Furtado, R. Ritsch, and N. Widmann. The multidimensional

database system RasDaMan. In SIGMOD, 1998.

[25] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS, 2014.

[26] J. Berger. Statistical decision theory and Bayesian analysis. Springer, 1985.

[27] J. Beringer and E. Hüllermeier. Online clustering of parallel data streams. Data Knowl.

Eng., 58(2), 2006.

[28] A. Biem, E. Bouillet, H. Feng, A. Ranganathan, A. Riabov, O. Verscheure, H. Koutsopoulos,

and C. Moran. IBM infosphere streams for scalable, real-time, intelligent transportation

services. In SIGMOD, 2010.

114

Bibliography

[29] A. Bifet and R. Gavaldà. Adaptive learning from evolving data streams. In Proceedings of

the 8th International Symposium on Intelligent Data Analysis: Advances in Intelligent

Data Analysis VIII. Springer, 2009.

[30] J. Blakeley, P. Larson, and F. Tompa. Efficiently updating materialized views. In SIGMOD,

1986.

[31] S. Blanas, J. Patel, V. Ercegovac, J. Rao, E. Shekita, and Y. Tian. A comparison of join

algorithms for log processing in MapReduce. In SIGMOD, 2010.

[32] C. Bockermann. A Survey of the Stream Processing Landscape. Technical report, TU

Dortmund University, 2014.

[33] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks: A flexible and extensi-

ble foundation for data-intensive computing. In ICDE, 2011.

[34] O. Boykin, S. Ritchie, I. O’Connell, and J. Lin. Summingbird: A framework for integrating

batch and online MapReduce computations. VLDB Journal, 7(13):1441–1451, 2014.

[35] V. Breazu-Tannen, P. Buneman, and L. Wong. Naturally embedded query languages.

Springer, 1992.

[36] V. Breazu-Tannen and R. Subrahmanyam. Logical and computational aspects of pro-

gramming with sets/bags/lists. Springer, 1991.

[37] Y. Bu, B. Howe, M. Balazinska, and M. Ernst. HaLoop: Efficient Iterative Data Processing

on Large Clusters. PVLDB, 3(1), 2010.

[38] A. Buluç and J. R. Gilbert. The Combinatorial BLAS: Design, implementation, and

applications. International Journal of High Performance Computing Applications, 2011.

[39] R. Castro Fernandez, M. Migliavacca, E. Kalyvianaki, and P. Pietzuch. Integrating scale

out and fault tolerance in stream processing using operator state management. In

SIGMOD, 2013.

[40] B. Chandramouli, R. C. Fernandez, J. Goldstein, A. Eldawy, and A. Quamar. The Quill Dis-

tributed Analytics Library and Platform. Technical Report MSR-TR-2016-25, Microsoft

Research, 2016.

[41] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F. Terwilliger,

and J. Wernsing. Trill: A high-performance incremental query processor for diverse

analytics. VLDB Journal, 8(4):401–412, 2014.

[42] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein, W. Hong,

S. Krishnamurthy, S. R. Madden, F. Reiss, and M. A. Shah. TelegraphCQ: Continuous

dataflow processing. In SIGMOD, 2003.

115

Bibliography

[43] M. Charikar, L. O’Callaghan, and R. Panigrahy. Better streaming algorithms for clustering

problems. In Proceedings of the Thirty-fifth Annual ACM Symposium on Theory of

Computing, STOC. ACM, 2003.

[44] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.

SIGMOD, 26(1), 1997.

[45] S. Chaudhuri and V. Narasayya. TPC-D data generation with skew.

[46] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query

system for internet databases. SIGMOD, 2000.

[47] Y. Chen, J. Dunfield, and U. Acar. Type-directed automatic incrementalization. In PLDI,

2012.

[48] Y. Chen and L. Tu. Density-based clustering for real-time stream data. KDD, 2007.

[49] M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Cetintemel, Y. Xing, and

S. Zdonik. Scalable Distributed Stream Processing. In CIDR, 2003.

[50] R. Chirkova and J. Yang. Materialized views. Foundations and Trends in Databases, 4(4),

2012.

[51] V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Theory of privacy and

anonymity. In M. Atallah and M. Blanton, editors, Algorithms and Theory of Computation

Handbook (2nd edition). CRC Press, 2009.

[52] T. Condie, N. Conway, P. Alvaro, J. Hellerstein, J. Gerth, J. Talbot, K. Elmeleegy, and

R. Sears. Online aggregation and continuous query support in MapReduce. In SIGMOD,

2010.

[53] S. Consolvo, I. E. Smith, T. Matthews, A. LaMarca, J. Tabert, and P. Powledge. Location

disclosure to social relations: Why, when, & what people want to share. In Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems, CHI, 2005.

[54] G. Cormode and S. Muthukrishnan. An improved data stream summary: The count-min

sketch and its applications. J. Algorithms, 55(1), Apr. 2005.

[55] S. Das, Y. Sismanis, K. Beyer, R. Gemulla, P. Haas, and J. McPherson. Ricardo: Integrating

R and Hadoop. In SIGMOD, 2010.

[56] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. In

OSDI, 2004.

[57] C. Demetrescu. Fully dynamic algorithms for path problems on directed graphs, 2001.

116

Bibliography

[58] C. Demetrescu and G. F. Italiano. Fully dynamic transitive closure: Breaking through the

o(n/sup 2/) barrier. FOCS, 2000.

[59] C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths.

ACM, 51(6), Nov. 2004.

[60] A. Deshpande and J. M. Hellerstein. Lifting the burden of history from adaptive query

processing. In VLDB, 2004.

[61] A. Deshpande, Z. Ives, and V. Raman. Adaptive query processing. Foundations and

Trends in Databases, 1(1), 2007.

[62] J. Dittrich, B. Seeger, D. Taylor, and P. Widmayer. Progressive merge join: a generic and

non-blocking sort-based join algorithm. In VLDB, 2002.

[63] J. Dittrich, B. Seeger, D. Taylor, and P. Widmayer. On producing join results early. In

PODS, 2003.

[64] T. Do and H. Gunawi. The case for limping-hardware tolerant clouds. In HotCloud, 2013.

[65] T. Do, M. Hao, T. Leesatapornwongsa, T. Patana-anake, and H. S. Gunawi. Limplock:

Understanding the impact of limpware on scale-out cloud systems. SOCC, pages 14:1–

14:14. ACM, 2013.

[66] S. Dolan. Fun with semirings: a functional pearl on the abuse of linear algebra. In ICFP

’13. ACM.

[67] P. Domingos and G. Hulten. Mining high-speed data streams. KDD, 2000.

[68] J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff. A set of level 3 basic linear algebra

subprograms. TOMS, 16(1), 1990.

[69] M. J. Egenhofer. Toward the semantic geospatial web. In Proceedings of the 10th ACM

International Symposium on Advances in Geographic Information Systems, GIS, 2002.

[70] I. P. Egwutuoha, D. Levy, B. Selic, and S. Chen. A survey of fault tolerance mechanisms

and checkpoint/restart implementations for high performance computing systems. J.

Supercomput., 65(3), Sept. 2013.

[71] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and G. Fox. Twister: A

runtime for iterative MapReduce. In HPDC, 2010.

[72] E. Elnikety, T. Elsayed, and H. E. Ramadan. ihadoop: Asynchronous iterations for

mapreduce. In Proceedings of the 2011 IEEE Third International Conference on Cloud

Computing Technology and Science, CLOUDCOM, 2011.

117

Bibliography

[73] EPFL. SQUALL. https://github.com/epfldata/squall.

[74] D. Fabregat-Traver and P. Bientinesi. A Domain-Specific Compiler for Linear Algebra

Operations. VECPAR ’12, 2012.

[75] M. Fire, D. Kagan, and R. Puzis. Data mining opportunities in geosocial networks for

improving road safety. In Electrical and Electronics Engineers in Israel, (IEEEI), 2012.

[76] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with

continuations. PLDI ’93, 1993.

[77] J. a. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia. A survey on concept

drift adaptation. ACM Comput, 46(4), Mar. 2014.

[78] A. Ghoting, R. Krishnamurthy, E. Pednault, B. Reinwald, V. Sindhwani, S. Tatikonda,

Y. Tian, and S. Vaithyanathan. SystemML: Declarative machine learning on MapReduce.

In ICDE, pages 231–242. IEEE, 2011.

[79] J. R. Gilbert, S. Reinhardt, and V. B. Shah. High-performance graph algorithms from

parallel sparse matrices. In PARA, 2007.

[80] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed

graph-parallel computation on natural graphs. In OSDI ’12, pages 17–30, 2012.

[81] A. Gounaris, N. Paton, A. Fernandes, and R. Sakellariou. Adaptive query processing: A

survey. In British National Conference on Databases, 2002.

[82] A. Gounaris, E. Tsamoura, and Y. Manolopoulos. Adaptive query processing in dis-

tributed settings. Advanced Query Processing, 36(1), 2012.

[83] G. Graefe. Query evaluation techniques for large databases. ACM Computing Surveys,

25(2), 1993.

[84] J. L. Gross, J. Yellen, and P. Zhang. Handbook of Graph Theory, Second Edition. 2nd

edition, 2013.

[85] X. Gu, P. Yu, and H. Wang. Adaptive load diffusion for multiway windowed stream joins.

In ICDE, 2007.

[86] S. Guha and A. McGregor. Approximate quantiles and the order of the stream. PODS,

2006.

[87] A. Gupta and I. Mumick. Materialized Views. MIT Press, 1999.

[88] B. Gutenberg and R. Richter. Frequency of earthquakes in california. Bulletin of the

Seismological Society of America, 1944.

118

Bibliography

[89] P. Haas and J. Hellerstein. Ripple joins for online aggregation. In SIGMOD, 1999.

[90] C. Harrison, B. Eckman, R. Hamilton, P. Hartswick, J. Kalagnanam, J. Paraszczak, and

P. Williams. Foundations for smarter cities. IBM, 54(4), 2010.

[91] J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden,

V. Raman, and M. Shah. Adaptive query processing: Technology in evolution. IEEE Data

Engineering Bulletin, 23(2), 2000.

[92] J. Hellerstein, P. Haas, and H. Wang. Online aggregation. In SIGMOD, 1997.

[93] J. M. Hernández-Muñoz, J. B. Vercher, L. Muñoz, J. A. Galache, M. Presser, L. A. H. Gómez,

and J. Pettersson. The future internet. chapter Smart Cities at the Forefront of the Future

Internet. Springer-Verlag, 2011.

[94] J. Holm, K. de Lichtenberg, and M. Thorup. Poly-logarithmic deterministic fully-dynamic

algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. ACM,

48(4), July 2001.

[95] Hortonworks. How big data is revolutionizing fraud de-

tection in financial services. https://hortonworks.com/blog/

how-big-data-is-revolutionizing-fraud-detection-in-financial-services/.

[96] P. Indyk and D. Woodruff. Optimal approximations of the frequency moments of data

streams. In Proceedings of the Thirty-seventh Annual ACM Symposium on Theory of

Computing, STOC, 2005.

[97] Y. Ioannidis and S. Christodoulakis. On the propagation of errors in the size of join

results. In SIGMOD, 1991.

[98] Y. Ioannidis and Y. Kang. Randomized algorithms for optimizing large join queries. In

Sigmod. ACM, 1990.

[99] Y. E. Ioannidis, D. L. Lee, and R. T. Ng, editors. ICDE, 2009.

[100] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-parallel

programs from sequential building blocks. In EuroSys, pages 59–72, 2007.

[101] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An adaptive query execution

system for data integration. In SIGMOD, 1999.

[102] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query processing

with the DBO engine. In SIGMOD, 2008.

[103] J. Kang, J. Naughton, and S. Viglas. Evaluating window joins over unbounded streams.

In ICDE, 2003.

119

Bibliography

[104] S. Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33(2):175 – 193,

1984.

[105] J. Kepner and J. Gilbert. Graph algorithms in the language of linear algebra, volume 22.

SIAM, 2011.

[106] V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive

closure in digraphs. In Proceedings of the 40th Annual Symposium on Foundations of

Computer Science, FOCS, 1999.

[107] C. Koch, Y. Ahmad, O. Kennedy, M. Nikolic, A. Nötzli, D. Lupei, and A. Shaikhha.

DBToaster: Higher-order delta processing for dynamic, frequently fresh views. VLDBJ,

2014.

[108] R. Kotto-Kombi, N. Lumineau, P. Lamarre, and Y. Caniou. Parallel and Distributed

Stream Processing: Systems Classification and Specific Issues. 2015.

[109] T. Kraska, A. Talwalkar, J. Duchi, R. Griffith, M. Franklin, and M. Jordan. MLbase: A

distributed machine-learning system. In CIDR, 2013.

[110] S. Kulkarni, N. Bhagat, M. Fu, V. Kedigehalli, C. Kellogg, S. Mittal, J. M. Patel, K. Ra-

masamy, and S. Taneja. Twitter Heron: Stream processing at scale. In SIGMOD, 2015.

[111] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. A study of skew in mapreduce applications.

In Open Cirrus Summit, 2011.

[112] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. Skewtune: Mitigating skew in MapReduce

applications. In SIGMOD, 2012.

[113] A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: large-scale graph computation on just

a pc. In OSDI ’12.

[114] D. Laney. 3D data management: Controlling data volume, velocity, and variety. Technical

report, 2001.

[115] B. Li, Y. Diao, and P. Shenoy. Supporting scalable analytics with latency constraints.

VLDB, 8(11):1166–1177, 2015.

[116] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy. A platform for scalable one-pass

analytics using mapreduce. In SIGMOD Conference, pages 985–996, 2011.

[117] B. Liu, M. Jbantova, and E. Rundensteiner. Optimizing state-intensive non-blocking

queries using run-time adaptation. In ICDE Workshop, 2007.

120

Bibliography

[118] X. Liu, N. Iftikhar, and X. Xie. Survey of real-time processing systems for big data. In

Proceedings of the 18th International Database Engineering & Applications Symposium,

pages 356–361. ACM, 2014.

[119] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Distributed

GraphLab: a framework for machine learning and data mining in the cloud. PVLDB ’12,

2012.

[120] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson, C. E. Guestrin, and J. Hellerstein. Graphlab:

A new framework for parallel machine learning. arXiv preprint arXiv:1408.2041, 2014.

[121] E. Lu and R. Hamilton. Avalanches of the distribution of solar flares. Astrophysical

Journal, 1991.

[122] D. Maier. Theory of Relational Databases. Computer Science Press, 1983.

[123] G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel:

a system for large-scale graph processing. In SIGMOD, 2010.

[124] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski.

Pregel: a system for large-scale graph processing. In SIGMOD, pages 135–146, 2010.

[125] G. S. Manku and R. Motwani. Approximate frequency counts over data streams. In

Proceedings of the 28th International Conference on Very Large Data Bases, VLDB, 2002.

[126] A. Marathe and K. Salem. Query processing techniques for arrays. VLDBJ, 11(1), 2002.

[127] N. Marz. STORM: Distributed and fault-tolerant realtime computation.

https://github.com/nathanmarz/storm.

[128] N. Marz and J. Warren. Big Data: Principles and best practices of scalable realtime data

systems. Manning Publications Co., 2015.

[129] F. McSherry, D. Murray, R. Isaacs, and M. Isard. Differential dataflow. In CIDR, 2013.

[130] E. Meijer. The world according to LINQ. Communication ACM.

[131] X. Meng, J. Bradley, B. Yavuz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, D. Xin, R. Xin, M. J. Franklin, R. Zadeh, M. Zaharia, and A. Talwalkar.

MLlib: Machine Learning in Apache Spark. The Journal of Machine Learning Research,

17(1), 2016.

[132] S. Mihaylov, Z. Ives, and S. Guha. REX: Recursive, delta-based data-centric computation.

PVLDB, 5(11), 2012.

121

Bibliography

[133] M. Mokbel, M. Lu, and W. Aref. Hash-Merge join: A non-blocking join algorithm for

producing fast and early join results. In ICDE, 2004.

[134] M. B. Monagan, K. O. Geddes, K. M. Heal, G. Labahn, S. M. Vorkoetter, J. McCarron, and

P. DeMarco. Maple 10 Programming Guide. Maplesoft, 2005.

[135] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,

J. Rosenstein, and R. Varma. Query processing, approximation, and resource manage-

ment in a data stream management system. In CIDR, 2003.

[136] D. G. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: a timely

dataflow system. In SOSP, 2013.

[137] G. Neukum and B. Ivanov. Crater size distributions and impact probabilities on Earth

from lunar, terrestialplanet, and asteroid cratering data. 1994.

[138] M. Newman. Power laws, pareto distributions and zipf’s law. Contemporary Physics,

2005.

[139] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph analytics.

SOSP ’13, 2013.

[140] M. Nikolic, M. ElSeidy, and C. Koch. LINVIEW: Incremental View Maintenance for

Complex Analytical Queries. In SIGMOD ’14.

[141] A. Okcan and M. Riedewald. Processing theta-joins using MapReduce. In SIGMOD,

2011.

[142] F. Olken. Random sampling from databases, 1993. PhD Thesis, UC Berkeley.

[143] M. A. Olson, K. Bostic, and M. I. Seltzer. Berkeley DB. In USENIX Annual Technical

Conference, FREENIX Track, pages 183–191, 1999.

[144] C. Olston, B. Reed, A. Silberstein, and U. Srivastava. Automatic optimization of parallel

dataflow programs. In Annual Technical Conference. USENIX, 2008.

[145] N. Paton, J. Buenabad, M. Chen, V. Raman, G. Swart, I. Narang, D. Yellin, and A. Fernan-

des. Autonomic query parallelization using non-dedicated computers: an evaluation of

adaptivity options. VLDBJ, 18(1), 2009.

[146] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and M. Stonebraker. A

comparison of approaches to large-scale data analysis. In SIGMOD, 2009.

[147] PostgreSQL Global Development Group. PostgreSQL. http://www.postgresql.org.

[148] D. Price. Networks of scientific papers. In Science, 1965.

122

Bibliography

[149] M. Puschel, J. M. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W. Singer, J. Xiong,

F. Franchetti, A. Gacic, Y. Voronenko, et al. SPIRAL: code generation for DSP transforms.

Proceedings of the IEEE, 93(2):232–275, 2005.

[150] Y. Saad. Sparskit: a basic tool kit for sparse matrix computations - version 2, 1994.

[151] F. R. Sayed and M. H. Khafagy. SQL TO Flink Translator. International Journal of

Computer Science Issues, 12(1), January 2015.

[152] S. Z. Sbz, S. Zdonik, M. Stonebraker, M. Cherniack, U. Etintemel, M. Balazinska, and

H. Balakrishnan. The aurora and medusa projects. IEEE Data Engineering Bulletin, 26,

2003.

[153] H. Schaffers, N. Komninos, M. Pallot, B. Trousse, M. Nilsson, and A. Oliveira. The

future internet. chapter Smart Cities and the Future Internet: Towards Cooperation

Frameworks for Open Innovation. 2011.

[154] D. Schneider and D. DeWitt. A performance evaluation of four parallel join algorithms

in a shared-nothing multiprocessor environment. In SIGMOD, 1989.

[155] M. Shah, J. Hellerstein, S. Chandrasekaran, and M. Franklin. Flux: An adaptive partition-

ing operator for continuous query systems. In ICDE, 2002.

[156] A. F. Simpao, L. M. Ahumada, J. A. Gálvez, and M. A. Rehman. A review of analytics and

clinical informatics in health care. J. Med. Syst., 38(4), 2014.

[157] M. P. Singh, M. A. Hoque, and S. Tarkoma. Analysis of systems to process massive data

stream. CoRR, 2016.

[158] Slick: Functional relational mapping for scala. http://slick.lightbend.com/.

[159] D. G. Spampinato and M. Püschel. A basic linear algebra compiler. CGO ’14, pages

23:23–23:32. ACM, 2014.

[160] D. G. Spampinato and M. Püschel. A basic linear algebra compiler for structured matri-

ces. In CGO ’16, pages 117–127. ACM, 2016.

[161] J. Stamos and H. Young. A symmetric fragment and replicate algorithm for distributed

joins. Transactions on Parallel and Distributed Systems, 4(12), 1993.

[162] M. Stillger, G. Lohman, V. Markl, and M. Kandil. LEO - DB2’s learning optimizer. In

VLDB, 2001.

[163] M. Stonebraker, C. Bear, U. Cetintemel, M. Cherniack, T. Ge, N. Hachem, S. Harizopoulos,

J. Lifter, J. Rogers, and S. Zdonik. One size fits all? Part 2: Benchmarking results. In CIDR,

2007.

123

Bibliography

[164] M. Stonebraker, U. Çetintemel, and S. Zdonik. The 8 requirements of real-time stream

processing. SIGMOD, 34(4), Dec. 2005.

[165] N. Sundaram, N. Satish, M. M. A. Patwary, S. R. Dulloor, M. J. Anderson, S. G. Vadlamudi,

D. Das, and P. Dubey. Graphmat: High performance graph analytics made productive.

VLDB, 8(11), 2015.

[166] Y. Tao, M. L. Yiu, D. Papadias, M. Hadjieleftheriou, and N. Mamoulis. RPJ: producing

fast join results on streams through rate-based optimization. In SIGMOD, 2005.

[167] Theano Development Team. Theano: A Python framework for fast computation of

mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016.

[168] A. Thusoo, J. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive: a warehousing solution over a MapReduce framework. In VLDB, 2009.

[169] F. Tian and D. DeWitt. Tuple routing strategies for distributed eddies. In VLDB, 2003.

[170] P. Upadhyaya, Y. Kwon, and M. Balazinska. A latency and fault-tolerance optimizer for

online parallel query plans. In SIGMOD, 2011.

[171] T. Urhan and M. Franklin. XJoin: A reactively-scheduled pipelined join operator. IEEE

Data Engineering Bulletin, 23(2), 2000.

[172] P. Vagata and K. Wilfong. Scaling the Facebook data warehouse

to 300 PB. https://code.facebook.com/posts/229861827208629/

scaling-the-facebook-data-warehouse-to-300-pb/, 2014.

[173] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber. Presto: Distributed

machine learning and graph processing with sparse matrices. In EuroSys, 2013.

[174] S. Venkataraman, I. Roy, A. AuYoung, and R. Schreiber. Using R for iterative and incre-

mental processing. In HotCloud, 2012.

[175] A. Vitorovic. Squall: Scalable Real-time Analytics using Efficient, Skew-resilient Join

Operators. PhD thesis, EPFL, 10 2016.

[176] A. Vitorovic, M. Elseidy, and C. Koch. Load balancing and skew resilience for parallel

joins. Technical Report 203656, EPFL, 2015.

[177] C. Walton, A. Dale, and R. Jenevein. A Taxonomy and Performance Model of Data Skew

Effects in Parallel Joins. In VLDB, 1991.

[178] S. Wang and E. Rundensteiner. Scalable stream join processing with expensive predi-

cates: workload distribution and adaptation by time-slicing. In EDBT, 2009.

124

Bibliography

[179] C. Whaley and J. Dongarra. Automatically tuned linear algebra software. In PPSC, 1999.

[180] A. Wilschut and P. Apers. Dataflow query execution in a parallel main-memory environ-

ment. In Parallel and Distributed Information Systems, 1991.

[181] Wolfram Research, Inc. Mathematica 8.0.

[182] Y. Xing, S. Zdonik, and J. Hwang. Dynamic load distribution in the Borealis stream

processor. In ICDE, 2005.

[183] J. Xiong, J. Johnson, R. Johnson, and D. Padua. SPL: A Language and Compiler for DSP

Algorithms. PLDI ’01.

[184] Y. Xu and P. Kostamaa. Efficient outer join data skew handling in parallel DBMS, 2009.

[185] Y. Xu, P. Kostamaa, X. Zhou, and L. Chen. Handling data skew in parallel joins in shared-

nothing systems. In SIGMOD, 2008.

[186] H. Yang, A. Dasdan, R. Hsiao, and D. Parker. Map-Reduce-Merge: simplified relational

data processing on large clusters. In SIGMOD, 2007.

[187] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. In HotCloud, 2010.

[188] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: cluster

computing with working sets. HotCloud, 10:10–10, 2010.

[189] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica. Discretized streams:

Fault-tolerant streaming computation at scale. SOSP, 2013.

[190] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an efficient and

fault-tolerant model for stream processing on large clusters. In HotCloud, 2012.

[191] X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join processing using MapRe-

duce. VLDBJ, 5(11), 2012.

[192] Y. Zhang, H. Herodotou, and J. Yang. RIOT: I/O-efficient numerical computing without

SQL. In CIDR, 2009.

[193] Y. Zhou, B. Ooi, and K. Tan. Dynamic load management for distributed continuous

query systems. In ICDE, 2005.

[194] G. Zipf. Human behaviour and the principle of least effort. In Addison-Wesley, Reading,

MA, 1949.

125

Mohammed ElSeidy
� Avenue de la gare 38

1022 Chavannes, Switzerland
� mohammed.elseidy@epfl.ch
� +41 78 714 76 03

linkedin.com/in/mohamed-elseidy
github.com/elseidy

Education
2011 - Today PhD. in the field of Database Systems, School of Computer and Communication Sciences, École Polytechnique

Fédérale de Lausanne (EPFL), Switzerland. PhD thesis advisor: Prof. Christoph Koch
2009 - 2011 MSc. Thesis in Computer Science, King Abdullah University for Science and Technology (KAUST), KSA,

GPA: 3.78/4.0. M.Sc. thesis advisor: Dr. Panos Kalnis
2004 - 2009 BSc. in Computer Science Engineering and Automatic Control, Alexandria University, Egypt, GPA:

3.8/4.0

Core Experience
2011-Present DATA lab at EPFL, Lausanne, Switzerland, Doctoral Assistant, and worked on the following projects:

� Squall (github.com/epfldata/squall): is an online distributed SQL-query processing engine (e.g., Hive)
built on top of Twitter’s Storm. I am one of the core developers of Squall which is a Java open-source
project with more than 50K loc. I am responsible for leading the project, developing the core backbone,
and designing approaches that achieve scalable load balance by up to a factor of 80×.

� Lago: is a compiler framework for linear algebra programs dedicated for machine learning, graph
algorithms, and statistical analysis. I am one of the main developers. I am responsible for the design and
development of the framework. It generates optimized programs up to 10 − 100× better in performance.

� Linview: is a compiler framework that transforms linear algebra programs into efficient update triggers
optimized for incremental computation. I am one of the main developers. My contributions present
techniques that outperform current approaches by 100 − 1000×.

� I worked on various Big Data projects during my PhD and I served as a teaching assistant for the Big
Data and Maths courses which include more than 120 students each. I lead large projects and teams
of master students. Some of these groups, were awarded best project awards such as Wikilynx and
Submetrics which was featured on MediaCom.

2014 Microsoft Research, Silicon Valley, California, USA (3–month internship, June – August 2014)
Intern in the Coconut Project, a symbolic computation compiler for machine learning and scientific
programs. I was responsible for building the core optimizer for the compiler using Monte Carlo Tree search,
which improved the performance of generated programs by up to 10×.

2010 Technische Universität München, Munich, Germany (3–month internship, July – September 2010)
As a research assistant, I was responsible for developing and evaluating parallel linear algebra kernels using
IBM’s supercomputer BLUE GENE/P. My programs achieved up to 2× better performance.

2011 KAUST, Master Thesis, and worked on the following projects:
� GraMi (github.com/ElSeidy/GraMi): is a novel framework for frequent subgraph mining in large graphs

that outperforms existing techniques by up to 1000× in performance. I was the main developer of
GraMi which is an open source Java project with around 10K loc. GraMi is extensively used in academia.

� Distributed Query Engine: Participated in the international SIGMOD competition to design and
develop a distributed database management system. I was ranked 7th worldwide.

Technical Skills
Programming

Languages
Java, C# (.NET), C/C++, Scala, SQL, HTML, JavaScript,
CSS, CUDA, Python, MATLAB, Octave, R, Assembly

Database
Systems

Relational: Oracle DB, MySQL, T-SQL, PostgreSQL / NoSQL: Cassandra, HBase, BerkeleyDB, MongoDB
Very good understanding of general database design, optimization and configuration

Tools Hadoop, Hive, Yarn, Spark, Storm, SVN, Git, Maven, LaTeX, JUnit, MPI,
JDBC, BLAS, Intel MKL, Cordova/PhoneGap

Software
Development

Scrum Master / Agile Coach

127

Additional Experience
2009 Globalimpact SW, Alexandria, Egypt

Intern in a software company that develops desktop, mobile, and web applications. I was responsible for
developing SQL plugins for Microsoft products including Powerpoint and Excel using C# and the .NET
framework. The plugins allow connecting, querying, and editing Microsoft SQL server databases.

2007–2009 Freelancer, Egypt
Developing software for customers. The main products include Bluetooth phone-webcam, graph algorithms
visualization, and an end-to-end RSA encryption framework.

Honors
2011 EPFL Graduate Fellowship: in recognition to my academic excellence.
2011 KAUST Academic Excellence Award: a financial award in acknowledgement to academic merit.
2009 KAUST Graduate Fellowship: one of the three students picked up from a large number of applicants

from Africa and Asia.
2008 Microsoft Innovation Center: chosen as one of the three finalists to be granted an excellence award in

which more than 5, 000 Computer engineers participated in Egypt.
2004-2009 Academic Excellence Recognition: received bachelors distinction awards for 5 consecutive years.

Technical Interests
� Distributed Data Analytics and Machine Learning � Scalable Online Stream Processing
� Distributed Systems and the Hadoop Ecosystem � Automation Tools for DevOps

Personal Activities
Valizo Co-founder, Seattle USA, September-December 2014

- Valizo is a phone connected smart suitcase that saves money, time, and effort. I was responsible for the
research and development area of the product.

Social Events Organizing and participating in social events, especially those that gather diverse cultures. I am interested
in charity work and fund raising events.

Learning
skills

I am always working on learning new skills in different areas. Currently I am studying economics, in
particular crypto-economics, and swing-trading.

Hobbies Boxing, gym, latin-dancing, reading

Speaking Languages
English: Fluent / Arabic: Mother Tongue / French: Basic proficiency, B1 equivalent

Publications

PVLDB Towards Incremental Computation of Advanced Analytics, Mohammed Elseidy, Amir Shaikhha,
et al., 2017, Under Submission.

PVLDB Squall: Scalable real-time analytics, Aleksandar Vitorovic, Mohammed Elseidy et al., 2016.
PVLDB Scalable and adaptive online joins, Mohammed Elseidy, Abdallah Elguindy, Alexandar Vitorovic,

Christoph Koch, 2014.
PVLDB GraMi: Generalized frequent pattern mining in a single large graph, Mohammed Elseidy, Ehab

Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis, 2014.
SIGMOD LINVIEW: Incremental view maintenance for complex analytical queries, Milos Nikolic, Mo-

hammed ElSeidy, Christoph Koch, 2014.
- The detailed list, including the rest of my publications, is available at Google Scholar

128

