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WAR OF CURRENTS

▲ War of Currents - History is repeating, but in a somewhat different way
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MVDC POWER DISTRIBUTION NETWORKS

DC is already a reality
▶ LVDC - Telecom, Transportation, DER, ES
▶ HVDC - Bulk power transmission
▶ MVDC - Neither developed nor fully explored?
▶ Lack of Conversion and Protection technologies
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State of the art Future DC power distribution networks

▲ Today’s AC and tomorrow’s DC power distribution networks
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2013 – 2014 ABB Medium Voltage Drives, Turgi, Switzerland

2009 – 2013 ABB Corporate Research, Baden-Dättwil, Switzerland

2006 – 2009 Liverpoool John Moores University, Liverpool, United Kingdom

2003 – 2006 University of Novi Sad, Novi Sad, Serbia

Education
2008 PhD, Liverpoool John Moores University, Liverpool, United Kingdom

2005 M.Sc., University of Novi Sad, Novi Sad, Serbia

2002 Dipl. Ing., University of Novi Sad, Novi Sad, Serbia
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INDUSTRIAL RESEARCH PROJECTS (PERSONAL BACKGROUND)

ABB Medium Voltage Drives

2013–2014 R&D Platform Manager ACS 6000

ABB Corporate Research

2011 – 2013 Voltage Isolation Voltage Adaptation - VIVA

2010 – 2011 Power Electronics Traction Transformer - PETT

2009 – 2010 Advanced Power Supply Technology - APST

2009 – 2010 New Hardware Platform for Robotics - YuMi
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POWER ELECTRONICS LABORATORY

EPFL STI IEL PEL

École Polytechnique
Fédérale de Lausanne

School of
Engineering

Institute of
Electrical

Engineering

▶ Online since February 2014
▶ http://pel.epfl.ch

Competence Centre
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MVDC RESEARCH FOCUS

Technologies and Systems
▶ System Stability
▶ Protection Coordination
▶ Power Electronic Conversion

+

−

G M

˜
Zi Yo

ip(t)
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High Power Converters
▶ Modular Multilevel Converters
▶ Solid State Transformers
▶ Medium Frequency Conversion
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Components
▶ Semiconductor devices
▶ Magnetic components
▶ Optimization
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MVDC POWER DISTRIBUTION NETWORKS

MVDC Power Distribution Networks
▶ Feasibility (Applications)
▶ System Level Gains
▶ Dynamic Stability

Conversion
▶ Passive, Efficient and Stable
▶ Flexible, Modular and Scalable
▶ Efficient

Protection
▶ DC Breaker?
▶ Fault Current Limiting by Converters
▶ Protection Coordination

▲ Power electronics constituents ▲ Possible future MVDC grids and its links with existing grids
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MVDC RESEARCH PROJECTS

Power Electronic Systems
▶ MVDC Energy Conversion Technologies and Systems
▶ High Power Multi Drive Systems Operated from aMVDC Bus
▶ MVDC Protection Coordination

Power Electronic Conversion
▶ Multiport Energy Gateway -MVDC DC-DC-DC
▶ Galvanically Isolated Modular Converter -MVDC-LVAC
▶ SST for MVDC Applications - MVDC-LVDC

Power Electronic Components
▶ Solid State Resonant Conversion
▶ Medium Frequency Transformer Design and Optimization
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MVDC ENERGY CONVERSION – TECHNOLOGIES AND SYSTEMS

Objectives
▶ Quantify potential and impact of MVDC systems (w.r.t. MVAC)
▶ Develop dynamic models and stability assessment tools
▶ Develop enabling power electronics technologies

Demonstration in PEL’s MV laboratory
▶ Efficient electrical energy conversion (less losses)
▶ Compact electrical energy conversion (less raw materials)
▶ Energy storage integration (improved energy management)

WG SC C6.31 MVDC Grids - Feasibility Study
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▲ MVDC for marine distribution [1]
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▲ MVDC stability studies [2]
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MARINE MVDC ELECTRICAL DISTRIBUTION

MVDC Benefits:
▶ Increased fuel efficiency
▶ Removal of need to synchronize multiple generators
▶ Removal of bulky line frequency transformers
▶ Flexibility in design of ship electrical system
▶ Easier energy storage integration
▶ Less losses in MVDC cables (less resistive and no reactance effects)
▶ Better MVDC cable utilization (no skin effect)

▲ Electrical ship layout
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▲ MVAC marine distribution - real case
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▲ MVDC marine distribution - possible evolution [1]
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MARINE MVDC ELECTRICAL DISTRIBUTION

MVDC Challenges:
▶ Lack of conversion technologies for MVDC
▶ Lack of protection technologies (DC breaker)
▶ Multiple possible layouts for MVDC electrical distribution
▶ Various options are possible for MVDC supplies
▶ Need for stability studies during design
▶ Understanding degrees of freedom in the design of enabling technologies
▶ Design of advance control algorithms for MVDC load/sources

▲ Electrical ship layout
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▲ Active Rectifier - MMC
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MVDC LOAD-SOURCE INTERACTIONS

▶ MVDC power supplies:
▶ 6-pulse diode rectifier
▶ 6-pulse thyristor rectifier
▶ 3-L NPC active rectifier

▶ VSD at full and partial load
▶ Realistic control bandwidth assumptions
▶ Passive components are swept (cable length,

capacitances, etc.)
▶ Active rectifier shows high interactions with VSD

controller

▲ Stability results

Generator/Grid
3.3kV/60Hz

M

Motor
3.3kVSource Load

▲ Two port MVDC model used for the study

▲ Nyquist plots for stability assessments (from Zi(ω)Yo(ω) data) [2]
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DC PROTECTION COORDINATION

Fault Detection
▶ Different ZSC at different voltage levels
▶ Obscured by fast control actions
▶ Fast and Reliable detection is needed

Fault Localization
▶ System Architecture
▶ Zonal Power Distribution
▶ Quick localization is needed

Fault Isolation
▶ DC Breaker or Fault Current Limiting?
▶ Short-Circuit Proof Bus-Ties
▶ Fast Action is needed (Semiconductors)

▲ Short-Circuit Proof DC Bus-Tie (Source: Siemens) ▲ DC short circuit analysis simulations, 4MW, LVDC: (a-b) DRU, (c-d) SCR, (e-f) ARU
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MVDC ENERGY STORAGE - MULTIPORT ENERGY GATEWAY
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MVDC LVDC

▲ MEG for marine applications

EES
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▲ MEG for data-center applications
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▲ MEG for renewable PV applications

EES

MVDCLVDC

▲ MEG for renewable wind applications
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MULTIPORT ENERGY GATEWAY (MEG)

Focus
▶ MVDC-LVDC conversion system with integrated

energy storage

PEL’s
MV lab

DESL’s
µ-grid

Energy
 Storage

MEG
10kV MVDC link 750V LVDC link

20kV MVAC link
COMMELEC

Idea

MVDC LVDC

Hybrid Storage

Converter Topology
▶ SST with multiport resonant stage [3]
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MFT

Features
▶ DC transformer
▶ Soft switching

▶ Hybrid ES
▶ Three windings MFT

▶ LLC resonant circuit
▶ Efficiency

Prototype ratings
▶ P = 0.5MW ▶ VMV = 10 kV ▶ VLV = 750 V
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MEG DEMONSTRATOR

S2

S3 S5

S4 S1

V1

VDC2

V3

▲ MEG mode of operation

W YX Z

t0 t1 t2 t3 t4

▲ MEG resonant current waveforms

▲ MEG HV PEBB - design

▲ MEG HV PEBB - prototype

▲ MEG LV PEBB - design

▲ MEG test setup
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GALVANICALLY ISOLATED MODULAR CONVERTER (GIMC)

Focus
▶ MVDC-LVAC galvanically isolated conversion

system

PEL’s
MV lab

DESL’s
µ-grid

MMC
10kV MVDC link 400V LVAC link

20kV MVAC link

Features
▶ High efficiency
▶ Galvanic isolation
▶ Modularity

▶ Scalability
▶ Reliability
▶ Availability

Prototype ratings
▶ S = 0.5MVA
▶ Ncells = 6 × 16

▶ VDC = 10 kV
▶ VAC = 400 V

Considerations
▶ VSI on LVAC side of SST reduces efficiency by ≈ 2% (!)
▶ Solution with MMC + LFT preferred to overcome that issue

vga vgb vgc

M

Lg

Ls

Vs /2

Vs /2

Is

iap ibp icp

icnibnian

eap ebp ecp

ean ebn ecn

vCap1

vCapN

vCan1

vCanN

vCbn1

vCbnN

vCbp1

vCbpN

vCcp1

vCcpN

vCcn1

vCcnN

branch phase-leg

HB-SM

Csm

iga igb igc

Lbr
VPN

FB-SM

Csm

P

N

◀

Double-star Modular
Multilevel Converter for
power flow and voltage
control [4]

▼
Line Frequency Transformer
for voltage adaptation

Research challenge
▶ Transformer integration into the MMC
▶ Control system implications
▶ Overall system optimization
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GIMC – TOPOLOGY AND OPERATING PRINCIPLES

▶ Transformer integration must achieve DC bias cancellation in magnetic core [5]
▶ Two new structures are obtained

1. Stacked GIMC [4],[6]
2. Interleaved GIMC [7] } flexible configuration

▶ State-space models are identical⇒ the same control algorithm [8]
Lm
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▲ Three-windings transformer
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▲ Full switched model simulation
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GIMC – CELL OPTIMIZATION

Cell
▶ 1.2 kV / 50 A full-bridge IGBT module
▶ Ccell = 2.25mF

Thermal design [9]
▶ Cell level: detailed FEM
▶ Cabinet level: simplified FEM

7 3

Semiconductor losses
▶ Virtual Submodule concept has been utilized [10]
▶ Closed-loop waveforms are approached by analytical waveforms
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GIMC – CONVERTER DESIGN

✓ MV MMC converter laboratory prototype layout compliant with:
▶ UL840 (for cell)
▶ IEC 61800-5-1

✓ Complete AC dielectric withstand tests on real prototype [11]

▲ AC dielectric withstand test result

◀
Cabinet of one phase-leg (32 cells) in Faraday cage during insulation
coordination testing

▼ Drawer holding 4 cell (MKHP material)
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GIMC – CONVERTER LAYOUT

MMC demonstrator ratings are:
▶ 500 kVA
▶ 10 kVdc ↔ 400 Vac or 6.6 kVac
▶ 16 low voltage cells per branch⇒ 32 cells per phase (cabinet)⇒ 96 cells in total
▶ Industrial central controller and communication (ABB AC PEC 800)

branch
phase-leg

10
kV

dc

400Vac

400Vac

multi-windings
transformer

Yd11y0

Control
cabinet

▲ DC/3-AC MMC Converter Layout
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GIMC – CELL RATINGS

▶ 1.2 kV / 50 A IGBT module (Semikron SK50GH12T4T)
▶ 1.2 kV / 70 A Thyristor module (Semikron SK70KQ12)
▶ Csm = 2.25mF (6x Exxalia SnapSiC 4P 1500 µF, 400 V)
▶ Current sensor (Allegro ACS759 100 A)

▶ Bypass relay (KG K100 B-D012 X P)
▶ DSP TI TMS320F28069
▶ Integrated Flyback auxiliary cell power supply from DC link
▶ Fiber Optical communication with the central controller

HR
THYB RELB

CTRL

OVD

TX
RX

HB
FB

Vcell

▲ Simplified MMC cell: HR block allow for reconfiguration ▲ MMC cell - early design
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GIMC – CELL DESIGN

▲ MMC Cell - metal enclosure

▲ MMC Cell - zoom in

▲ MMC Cell PCBs - top view

▲ MMC Cell PCBs - side view

▲ MMC Cell - angled view

▲ MMC Cell - angle view
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SOLID STATE RESONANT CONVERSION

Focus
▶ Bulk power conversion
▶ IGCT characterization & optimization
▶ High power magnetics design

Test setup

Characterization setup
snubber

CCL

LCL

RCL DCL

GND
sw

Rd

VDC

Prototype

▶ VDC = 5 kV
▶ Imax = 2.25 kA
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LINE FREQUENCY TRANSFORMERS

IEC 60076-1 definition - Power Transformer: A static piece of appa-
ratus with two or more windings which, by electromagnetic induction,
transforms a systemof alternating voltage and current into another sys-
tem of voltage and current usually of different values and at the same
frequency for the purpose of transmitting electrical power.

Line Frequency Transformers
▶ Around for more than 100 of years
▶ Operated at low (grid) frequencies: 16.7Hz, 25Hz, 50/60Hz
▶ Standardized shapes and materials
▶ Cheap: ≈ 10kUSD / MW
▶ Efficient: above 99% for utility applications
▶ Simple and reliable device

What are the problems?
▶ Bulky - for certain applications
▶ Inefficient - for certain applications
▶ Uncontrollable power flow
▶ Fixed transformation (power, voltage, current, frequency)

▲ Source: www.abb.com
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MEDIUM-HIGH FREQUENCY CONVERSION

Switched Mode Power Supply (SMPS) Technologies
▶ Medium or High frequency conversion is not a new thing!
▶ Widely deployed in low voltage/power applications
▶ High efficiency
▶ Galvanic isolation at high frequency (standardized core sizes and shapes)
▶ Compact size (e.g. laptop chargers)
▶ Increased power density
▶ Cost savings

Could a Solid State Transformer provide that for a High Power Medium Voltage Applications?

▲ SMPS Technologies; Source: www.mouser.ch/new/tdk/epcos-smps/

Ee 2017, Novi Sad, Serbia October 21, 2017 Power Electronics Laboratory | 27 of 50



SOLID STATE TRANSFORMERS

What is a Solid State Transformers?
▶ Not a transformer replacement?
▶ Should not be compared against 50/60 Hz transformer!

What is it?
▶ A converter
▶ A converter with galvanic isolation
▶ Can be designed for DC and AC (1-ph, 3-ph) grid
▶ Can be used in LV, MV and HV applications
▶ Can be made for AC-AC, DC-DC, AC-DC, DC-AC conversion
▶ Has power electronics on each terminal
▶ Transformer frequency higher than 50/60 Hz

Excellent tutorials are available at: https://www.pes.ee.ethz.ch

xC

AC

AC

xCMFT

▲ Simplified SST concept

Solid-State Transformers 
Key Design Challenges, Applicability, 
and Future Concepts

Johann W. Kolar, Jonas E. Huber
Power Electronic Systems Laboratory

ETH Zurich, Switzerland

Tutorial No. 1
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SST APPLICATIONS

Railway
▶ 1-phase AC grids [12]
▶ Few voltage levels: 15kV (16.7Hz) or 25kV (50Hz)
▶ Low frequency (historically): (15kV) 16.7Hz or (25kV) 50Hz
▶ On-board installations - serious space constraints
▶ Volume and Weight reduction - system savings
▶ Reliability - high number of devices?
▶ Efficiency - easy to beat traction LFT
▶ Control - similar to existing solutions
▶ Cost?

▲ ABB’s PETT (Source: www.abb.com) [13], [14]

Utility
▶ 3-phase AC grids
▶ Many voltage levels: 3.3, 4.16, 6, 11, 15, 20kV, ...
▶ Grid frequency: 50Hz or 60Hz
▶ Sub-station installations - relatively low space constraints
▶ Volume and Weight reduction - not that relevant
▶ Reliability - even more complex due to 3-phases
▶ Efficiency - hard to beat distribution LFT
▶ Control - improved compared to existing solutions
▶ Cost?

▲ GE’s SST [15] (Source: www.ge.com)
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SST APPLICATIONS (CONT.)

MVDC Grids
▶ DC grids as a missing link
▶ Galvanic isolation seen as necessary
▶ Bidirectional power flow
▶ High efficiency
▶ Need for high power DC-DC converters

▲ MVDC grids (Source: www.english.hhi.co.kr)

Marine LVDC / MVDC Distribution
▶ System level benefits
▶ Improved partial load efficiency
▶ Integration of storage technologies
▶ Protection coordination
▶ Need for high power DC-DC converters

▲ MVDC marine distribution (Source: www.abb.com)
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MFT DESIGN & OPTIMIZATION

Focus
▶ High voltage MFT design [1] - insulation coordination
▶ Precise parameter control - resonant operation
▶ High power conversion - thermal design
▶ Characterization of magnetic materials

Design algorithm
ELECTRICAL INPUTS DIELECTRIC DISTANCES OPTIMISATION VAR RANGES

PREPARE DATA

CORE MATERIALS DATA

CORE DIMENSIONS DATA

WIRE DATA

DATA BASE
INPUTS

DIRECT USER 
INPUTS

Winding Losses Calculation

Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match Lσ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, Lσ,ref  dw1c, dw2c, dw1w2

 Bsat, K, α, β, ρ, µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

▲ MFT design optimization algorithm [16], [17], [18]

Optimization

Prototype

▶ P = 100 kW
▶ Vp = Vs = 750 V
▶ fsw = 10 kHz
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MFT TECHNOLOGIES AND MATERIALS

Construction Choices:
▶ MFT Types

Shell Type Core Type C-Type Coaxial Type

▶ Winding Types

Litz Wire Foil Coaxial Hollow

Materials:

▶ Magnetic Materials
▶ Silicon Steel
▶ Amorphous
▶ Nanocrystalline
▶ Ferrites

▶ Windings
▶ Copper
▶ Aluminum

▶ Insulation
▶ Air
▶ Solid
▶ Oil

▶ Cooling
▶ Air natural/forced
▶ Oil natural/forced
▶ Water
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MFT DESIGN OPTIMIZATION: ALGORITHM

ELECTRICAL INPUTS DIELECTRIC DISTANCES OPTIMISATION VAR RANGES

PREPARE DATA

CORE MATERIALS DATA

CORE DIMENSIONS DATA

WIRE DATA

DATA BASE
INPUTS

DIRECT USER 
INPUTS

Winding Losses Calculation

Magnetic Energy Calculation

Core Losses Calculation

Mass and Volume Calculation

Hot-Spot Temperature Calculation

OPTIMISATION ENGINE

SAVE DESIGN

Calculate diw to match Lσ,ref

Calculate lg to match Lm,ref

Datasheet values

AWG, Kw, Fwg

diw ≥ dw1w2, lg ≥ 0, TC,hs ≤ TC,hs max, TW,hs ≤ TW,hs max

 Un, In, f, D, Lm,ref, Lσ,ref  dw1c, dw2c, dw1w2

 Bsat, K, α, β, ρ, µr, Fcg 

 N1, J, AWG, Kw, KC, Km 

▲ MFT design optimization algorithm

Algorithm Specifications:

▶ Used Software Platform:
▶ MathWorks MATLAB

▶ Used Hardware Platform:
▶ Laptop PC (i7-2.1GHz, 8GB RAM)

▶ Performance Measure:
▶ 59000 designs are generated in less

than 190 seconds

▶ Electrical Specifications:
Pn 100kW fsw 10kHz
V1 750V V2 750V
Lσ1,2 3.27μH Lm 1.8mH
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MFT DESIGN OPTIMIZATION: RESULTS

Applied Filters:
TWmax [oC] TCmax [oC] Vmax [l] Mmax [kg] ηmin [%]

150 100 / / /
Number of Designs:

▶ More than 1.8 Million
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▲ Generated designs: left: Efficiency vs V-density; right: Efficiency vs W-density. Color code indicates hot-spot temperature
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MFT DESIGN OPTIMIZATION: RESULTS
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MFT DESIGN OPTIMIZATION: RESULTS
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MFT PROTOTYPE ASSEMBLY

Optimal MFT Design 3D-CAD Coil-Formers 3D-CAD Coil-Formers 3D-Print Primary Winding Secondary Winding

Core Assembly MFT Assembly1 MFT Assembly2 Litz-Wire Termination MFT Prototype
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OPTIMAL MFT PROTOTYPE

MFT Prototype With Distributed Resonant Capacitor Bank: Prototype Specifications:

▶ Core:
▶ 12 stacks of 4 x SiFERRITE U-Cores (UU9316 - CF139)

▶ Windings:
▶ 8-Turns
▶ Square Litz Wire (8.7x8.7mm, 1400 strands, AWG 32,

43.69mm2)

▶ Coil-Formers:
▶ Additive manufacturing process (3-D printing)
▶ High strength thermally resistant plastic (PA2200)

▶ Resonant Capacitor Banks:
▶ (7x5μF + 1x2.5μF) AC film capacitors in parallel
▶ Custom designed copper bus-bars

▶ Electrical Ratings:
Pn 100kW V1 750V Lσ1,2 4.2μH
fsw 10kHz V2 750V Lm 750μH
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MFT MEASUREMENTS: ELECTRIC & DIELECTRIC PARAMETERS

Leakage and Magnetizing Inductance Measurement:
▶ Network Analyzer Bode100
▶ Impedance Measurement
▶ Results at 10kHz: Lσ1 = Lσ2 = 4.2μH, Lm = 750μH

Dielectric Withstand Test:
▶ Partial Discharge Measurement Between All Conductive parts
▶ High Voltage 50Hz Source Within Faraday Cage
▶ 10pC - between primary and secondary winding at 4kV

LV Measurement Setup: HV Measurement Setup:

Ee 2017, Novi Sad, Serbia October 21, 2017 Power Electronics Laboratory | 44 of 50



MFT MEASUREMENTS: LOAD TEST

Test Setup Topology:
▶ B2B Resonant Converter
▶ Input voltage maintained by UDC
▶ Power circulation via IDC

Lσ1 Lσ2’Rσ1 Rσ2’
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UDC 1 I1 I2
2

3

4

Test Setup:

Measurement Results:
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ENABLING MVDC TECHNOLOGIES - RESEARCH FACILITIES

Medium Voltage Electrical Supply
▶ MVDC: up to 10 kV (777 kVA)
▶ MVAC: 3.3, 6, 9, 11, 15, 20 kV (625 kVA)

Medium Voltage Electric Machines
▶ IM, 6 kV, 4-poles, 500 kVA (355 frame size)
▶ SM, 6 kV, 4-poles, 500 kVA (355 frame size)

Equipment
▶ High Voltage / Partial Discharge test setup (100 kV, 20 kVA)
▶ HVDC supply (20 kV, 5 A)
▶ LV Grid Simulator (50 kVA, 400 V)
▶ High Current DC supply (20 V, 2250 A)
▶ De-Ionized WCU (90 kW)
▶ Breaking resistor (300 kW)
▶ Variable AC supplies (250 kW)
▶ Variable frequency supply (up to 400 Hz)
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RESEARCH FUNDING AND PARTNERS

Agencies Industry
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POWER ELECTRONICS ENABLING TECHNOLOGIES

High Power Medium Voltage Conversion
▶ Efficient and controllable bulk power processing [MW]
▶ Flexible, Modular and Scalable Conversion
▶ Advanced control and Communication
▶ Reliability, Availability

MVDC Research Opportunities
▶ System level studies (Features, Advantages, Benefits)
▶ Modeling and simulations (off-line or real-time)
▶ Power Electronics Converters
▶ Control Design
▶ Protection (Devices and protection coordination)

Academic Research - Industrial Development
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Presentation pdf can be downloaded from:
▶ https://pel.epfl.ch/publications_talks_en
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