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Abstract — In this work we present high-performance GaN-on-Si 
metal-oxide-semiconductor high electron mobility transistors 
(MOSHEMTs) with record reverse-blocking (RB) capability. By 
replacing the conventional ohmic drain with a hybrid tri-anode 
Schottky drain, a high reverse breakdown voltage (�

�

�) of -900 V 
was achieved (at 1 µA/mm with grounded substrate), along with a 
small reverse leakage current (IR) of ~20 nA/mm at -750 V. The 
devices also presented a small turn-on voltage (VON) of 0.58 ± 0.02 
V, a small increase in forward voltage (∆VF) of ~0.8 V, a high 
ON/OFF ratio over 1010, and a high forward breakdown voltage 
(�

�

� ) of 800 V at 20 nA/mm with grounded substrate. These results 
demonstrate a new milestone for RB GaN transistors, and open 
enormous opportunities for integrated GaN power devices. 
 

Index Terms—GaN, HEMT, reverse blocking, Schottky diode, 
tri-gate, tri-anode, breakdown, leakage current. 

I. INTRODUCTION 

everse-blocking (RB) transistors are crucial for many 
topologies of power converters, such as cyclo-converters, 

matrix converters, current source and multi-level inverters, 
some resonant converters, and among many others [1], which 
are highly desirable for applications that require reverse 
protection or bi-directional transfer of power [2,3]. 

While GaN-on-Si HEMTs emerge as promising candidates 
for future power conversion, HEMTs with RB capabilities are 
still rare up to date. In the few studies on RB-HEMTs [1], [4]-
[7], the reverse blocking was typically achieved by integrating 
a Schottky barrier diode (SBD) into the drain electrode [8]-[11], 
yet these devices presented small �B

R  and large IR, mainly 
limited by the generally poor reverse-blocking property of GaN 
SBDs. T. Morita et al. reported bi-directional GaN switches 
with RB capabilities using two monolithic normally-off gate 
injection transistors [12], which despite the highly integrated 
architecture for bidirectional switching, presented a limited �B

R 
voltage and a relatively large VON. 

Recently we have shown that the poor reverse blocking in 
lateral AlGaN/GaN SBDs could be addressed by pinning the 
reverse voltage drop at the Schottky junction (VSCH) at small 
levels [13]. This was demonstrated with a hybrid of tri-gate and 
tri-anode architectures, which allows a precise control over the 
pinch-off voltage (Vp) of the tri-gate/tri-anode regions to 
engineer the VSCH, resulting in GaN-on-Si SBDs with 
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simultaneously small VON, low IR and high �B
R  [14]. These 

results paved the path for the development of high-performance 
RB GaN transistors.  

In this work, we demonstrate GaN-on-Si RB-MOSHEMTs 
with state-of-the-art reverse and forward performances, by 
replacing the conventional ohmic drain electrode with hybrid 
tri-anode SBDs. The devices presented a small VON of 0.58 ± 
0.02 V, a small ∆VF of 0.8 V, a high �B

R of -900 V and �B
F  of 

800 V, both with grounded substrate, along with a small IR of 
~20 nA/mm at -750 V. These results are comparable to state-
of-the-art discrete devices measured with grounded substrates, 
but achieved in a single integrated device, which reveal the 
extraordinary potential of the tri-anode Schottky drain to enable 
RB-MOSHEMTs as uni-directional power switches. 
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Fig. 1. (a) Schematic and (b) equivalent circuit of the reverse-blocking 
MOSHEMT. (c) Top-view SEM image of the hybrid tri-anode Schottky drain. 
(c) Cross-sectional schematics of (d) the tri-gate and (e) tri-anode regions.  
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II. DEVICE DESIGN AND FABRICATION 

Figures 1(a) - (c) show the schematics, equivalent circuit and 
scanning electron microscopy (SEM) image of the RB-
MOSHEMT. The device consists of an ohmic electrode as the 
source, a MOS structure as the gate and a hybrid tri-anode 
Schottky diode as the drain. The latter integrates a tri-anode, tri-
gate MOS and planar field plate (FP) regions. The sidewall 
metal in the tri-anode region (Fig. 1(e)) forms a direct Schottky 
contact to the 2DEG and leads to a small VON [15,16]. In OFF-
state, VSCH is pinned at the |Vp| of the tri-anode region, which 
can be very small due to the elastic relaxation of the 
AlGaN/GaN nanowires [17], [18] and additional electrostatic 
control from the sidewall metals [19]-[28], resulting in a small 
IR [13]-[14]. The tri-gate region (Fig. 1(d)) works as tri-gated 
FPs to shield the tri-anode region from high voltages, which 
along with the planar FP improves the �B

R [14], [29], [30].  
The AlGaN/GaN heterostructure in this work consisted of 2 

nm of GaN cap, 24 nm of Al0.25Ga0.75N barrier, 300 nm of un-
doped GaN channel and 5 µm of buffer layers. The 
concentration and mobility of the 2DEG were about 1 × 1013 
cm-2 and 2000 cm2/V·s, respectively. The device fabrication 
started with e-beam lithography to define the nanowires, which 
were etched by inductively coupled plasma with a depth of 
~180 nm. The nanowire width (w) and spacing (s) were both 
300 nm, corresponding to a filling factor (FF = w/(w + s)) of 
0.5. The device isolation was done by mesa etching, followed 
by the formation of the source ohmic contact. The ohmic 

contact was formed by Ti/Al/Ti/Ni/Au (20/120/40/60/50 nm), 
annealed at 830 ºC under forming gas for 30 sec. Then 10 nm 
SiO2 and 10 nm Al2O3 were deposited by atomic layer 
deposition and selectively removed in the tri-anode region. The 
gate and drain contacts were formed using Ni/Au. The oxides 
in access/ohmic regions were later removed by wet etching, so 
the devices were not passivated, which however did not affect 
the leakage currents according to our observation. MOSHEMTs 
with the same dimensions but conventional ohmic drain 
electrodes were fabricated on the same chip as the reference.  

All devices in this work had the same gate-to-source distance 
(LSG), gate length (LG), gate-to-drain distance (LGD) of 1.5 µm, 
2.5 µm and 12.5 µm, respectively. The LGD here refers to the 
distance between the gate and the tri-anode region. The lengths 
of the planar FP (LFP) and tri-gate (LTG) regions were 1.3 µm 
and 1.2 µm, respectively. All device characteristics, such as 
drain current (ID), IR and OFF-state forward leakage current 
(IOFF), were normalized by the width of the device footprint, 
which was 60 µm, and their error bars were determined from 
measurements on 10 separate devices of the same kind.  

III.  RESULTS AND DISCUSSION 

Figure 2(a) shows the forward output characteristics of the 
devices as well as their IR, revealing excellent performance of 
the RB-MOSHEMTs as uni-directional transistors. The 
differential RON and maximum ID of the RB-MOSHEMTs were 
13.8 ± 0.6 Ω·mm and 519 ± 7 mA/mm, very close to those of 
the reference (12.6 ± 0.9 Ω·mm and 547 ± 7 mA/mm). The 
slight reduction in forward conductance can be possibly 
resolved by increasing the FF in the hybrid tri-anode Schottky 
drain [9], [10]. The VON in the RB-MOSHEMTs was 0.58 ± 
0.02 V (Fig. 1(b)), extracted at ID = 1 mA/mm. The forward 
voltage at ID = 150 mA/mm was increased from 2.13 ± 0.16 V 
in the reference to 2.90 ± 0.14 V in the RB-MOHSMETs, 
corresponding to a small ∆VF of about 0.8 V. At VD = -15 V, the 
reference presented a large IR of 280 ± 10 mA/mm, while the IR 
in the RB-MOSHEMTs was reduced by over 7 orders of 
magnitude to 19 ± 2.4 nA/mm (Fig. 1(c)), which was also 
independent on the gate voltage (VG) for a large range from -10 
V to 5 V. The inset in of Fig. 2(a) presents the average transfer 
characteristics of the MOSHEMTs and RB-MOSHEMTs. The 
devices presented a similar threshold voltage of -6.6 V, 
determined at ID = 1 µA/mm, and a similar subthreshold slope 
(SS) of 100 ± 7 mV/dec, along with a high ON/OFF ratio over 
1010. The density of traps at the oxide/semiconductor interface 
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Fig. 2. (a) Output, (b) turn-ON and (c) reverse-blocking characteristics of the 
RB-MOSHEMTs and MOSHEMTs, normalized by the width of the device 
footprint. The inset shows the average transfer characteristics of the 
MOSHEMTs and RBMOSHEMTs, which were measured at VD of 5 V and 5.6 
V, respectively. 
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Fig. 3. (a) Forward and (b) reverse characteristics of the RB-MOSHEMTs at 
RT and 150 ºC.  

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or 
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3

of these devices was estimated from the SS, according to Ref. 
[31], which was ~1.24 × 1012 cm-2·eV-1. 

High temperature characteristics of the device are shown in 
Figure 3. At 150 ºC, the VON was reduced to 0.53 V and the RON 
was increased to 26.4 Ω·mm. The IR was increased by a little 
over one order of magnitude, from 0.03 µA/mm to 0.57 µA/mm, 
which was however still below 1 µA/mm, revealing the 
excellent potential of the RB-MOSHEMTs for high-
temperature applications.   

Figure 4 shows the forward and reverse breakdown 
characteristics of the devices, measured with grounded 
substrate at room temperature. Both devices presented high 
forward breakdown voltages (�B

F ) of about 800 V at 0.02 
µA/mm under a gate voltage (VG) of -10 V, along with a very 
small IOFF of about 6 nA/mm at 650 V. While the MOSHEMTs 
showed no reverse-blocking capability, the reverse breakdown 
voltage (�B

R) of the RB-MOSHEMTs was as high as -900 V, 
along with a small IR of about 0.02 µA/mm up to -750 V.  

The RB-MOSHEMTs in this work were compared with other 
RB GaN transistors on various substrates in the literature (Tab. 
1), presenting the smallest IR, the highest �B

R, the smallest ∆VF 
along with a small VON. The RB-MOSHEMTs presented the 

smallest IR because their VSCH was pinned at a small bias of ~2.3 
V, determined by the pinch-off of the tri-anode region, 
regardless of the increase in reverse bias. This makes the IR 
saturate at a small level instead of increasing exponentially with 
voltage [13]. The high �B

R obtained in this work is attributed to 
the better-distributed electric field under reverse biases. In the 
hybrid tri-anode drain, two field plates, e.g. the planar and the 
tri-gate regions, are integrated with the tri-anode, by simply 
engineering their pinch-off voltages with the tri-gate approach, 
which spread effectively the electric field and improved the �B

R 
[29,30].  

We benchmarked our devices against state-of-the-art discrete 
GaN-on-silicon power MOSHEMTs and SBDs in Fig. 5. The 
RB-MOSHEMTs in this work presented both high �B

F  and �B
R, 

comparable to state-of-the-art discrete devices measured with 
grounded substrates, revealing their extraordinary potential as 
uni-directional power transistors. More importantly, both the 
high �B

F and �B
R were achieved in a single integrated device in 

this work, instead of using a discrete transistor in series with an 
SBD, which can greatly simplify the circuit design, reducing its 
size, resistance and parasitic components, and improve the 
efficiency of power converters.  

IV.  CONCLUSION 

In this work we presented GaN-on-Si MOSHEMTs with 
excellent reverse-blocking capability based on a hybrid tri-
anode Schottky drain. The devices exhibited a small VON of 0.58 
± 0.02 V, a small ∆VF of 0.8 V, a high ON/OFF ratio over 1010, 

a record high reverse breakdown voltage of 900 V (at 1 µA/mm 
with a grounded substrate), and a small IR of about 20 nA/mm 
at -750 V, revealing the significant potential of these devices 
for future efficient and compact GaN power converters. 
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Fig. 4. Breakdown characteristics of the RB-MOSHEMTs and MOSHEMTs 
measured at room temperature with grounded substrate.  

Table 1. Comparison of the RB-MOSHEMTs in this work with other reverse-
blocking GaN transistors in the literature. (*Substrate connection not reported.)

Substrate VRB IR (µA/mm) VON (V) ∆VF (V)
This 
work

Si -900 V at 1 µA/mm
(grounded sub.) 

0.02 at -750 V
(grounded sub.) 

0.58 ±
0.02 

0.8

[2] Si -321 V at 1 mA/mm
(floating sub.)
-200 V at 1 mA/mm
(grounded sub.)

≥ 10 at -75 V
(floating sub.)

0.55 1.25

[4] SiC -110 V at 10 mA/mm≥ 1000 at -20 V -- --

[5] Si -685 V at hard 
breakdown*

~ 6 at -100 V* 0.4 --

[6] Al 2O3 -49 V at 1 mA/mm > 100 at -25 V 1.7 ≥ 2

[7] Si -- ~0.4 at -20 V
(floating sub.)

1.91 --

[12] Si -650 V at ~0.15 
mA/mm*

-- 1.5 --
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Fig. 5. Specific RON (RON,SP) versus breakdown voltage (VBR) benchmarks the 
RB-MOSHEMTs against discrete GaN-on-silicon power (MOS)HEMTs and 
SBDs. The VBR for all reference devices was re-calculated based on the reported 
data following the definition of VBR at IOFF ≤ 1 µA/mm. A total transfer length 
of 3 µm was considered for the calculation of RON,SP, accounting for both source 
and drain contacts. For fair comparison, literature results with unspecified RON

or IR were not included. 
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